LI - -
Industrial and
Systems Enginesring

N |

Modeling and Solving Location Routing and Scheduling Problems

Z. Akca
Lehigh University

R.T. Berger

T.K. Ralphs
Lehigh University

Report: 08T-009

Modeling and Solving Location Routing and Scheduling Problems

7. Akca * R.T. Berger | T.K Ralphs

October 13, 2008

Abstract

This paper studies location routing and scheduling problems, a class of problems in which
the decisions of facility location, vehicle routing, and route assignment are optimized simulta-
neously. For a version with capacity and time restrictions, two formulations are presented, one
graph-based and one set-partitioning-based. For the set-partitioning-based formulation, valid
inequalities are identified and their effectiveness is demonstrated empirically. Two versions of
a branch-and-price algorithm are described and the results of computational experiments for
instances with 25 and 40 customers are discussed.

1 Introduction

Determining where to locate facilities and how to distribute goods to customers are important
decisions that arise in the design of logistics systems. When customers demand less-than-truckload
quantities and can be served on multiple-stop routes, the location decision and the routing decision
are interdependent and must be optimized jointly. Location and routing problems (LRPs) seek to
minimize total cost by simultaneously selecting a set of facilities and constructing a set of delivery
routes that satisfy the specified system constraints. LRPs, however, implicitly assume that each
vehicle covers exactly one route. This may potentially overestimate the number of vehicles required
and the associated distribution cost. In many cases, it is possible to serve multiple routes with a
single vehicle, in which case the decision of assigning routes to vehicles becomes interdependent with
the location and routing decisions. In this paper, we consider a class of problems that integrates
the decisions of facility location, vehicle routing, and route assignment and secks to minimize the
total cost. We refer to such problems as location routing and scheduling problems {LRSPs).

The LRSP generalizes and subsumes several well-studied problem classes, such as the LRP, the
vehicle routing problem (VRP), and the multi-depot VRP (MDVRP}. Given a set of candidate
facility locations and a set of customer locations, the objective of the LRSP is to select a subset of
the facilities, construct a set of delivery routes, and assign routes to vehicles in such a way as to
minimize total cost subject to satisfaction of the system’s constraints. As far as we know, only two
papers in the Hterature, Lin et al. (2002) and Lin and Kwok {2005), have considered LRSPs and
neither of these defines the class in full generality. Lin et al. {2002} describe an application of the

*Department of Industrial and Systems Engineering, Lehigh University, Bethiehem, PA 18015, zea2@lehigh.edu

1100 Keyes Road #104, Concord, MA 01742, rosemary.berger@verizon.net

Department of Industrial and Systems Engineering, Lehigh University, Bethichem, PA 18015, ted@lehigh.edu,
htip://coral.ie.lehigh.edu/ " ted

LRSP as it arises in the delivery of telephone bills to housing projects in Hong Kong. They propose
a heuristic approach in which they divide the problem into three phases - facility location, vehicle
routing, and vehicle assignment - and make multiple passes through each phase. The authors test
their algorithm on generated instances including up to 12 customers and 4 facilities and on a real
instance with 27 customers and 4 facilities. Lin and Kwok (2005) extend the heuristic algorithm of
Lin et al. (2002) to solve instances of a multi-objective LRSP in which they seek to balance total
cost, total vehicle time, and total vehicle load. They test the algorithm on real instances with 27
and 89 customers and on generated instances with 100 and 200 customers. Although Lin et al.
(2002) report the development of a branch-and-bound algorithm to solve instances of the LRSP
exactly, neither Lin et al. (2002) nor Lin and Kwok (2005) provides a formulation of the problem.

The main contributions of this paper are three-fold. First, we present two related formulations,
one graph-based and one set-partitioning-based, for a version of the LRSP in which there are
capacity restrictions on both the facilities and vehicles, as well as time restrictions on the vehicles.
Second, we identify several classes of valid inequalities that can strengthen the set-partitioning-
based formulation and demonstrate their effectiveness empirically. Third, we develop two versions
of a branch-and-price algorithm that can provide optimal solutions for a variety of instances.

The remainder of the paper is organized as follows, Section 2 provides a formal description of the
general LRSP and presents two formulations of the problem. Section 3 describes the components
of the branch-and-price algorithm. Section 4 presents results of the computational experiments.
Section 5 concludes the paper and provides direction for future research.

2 LRSP Description and Formulations

We consider an LRSP with capacity constraints on the facilities and on the vehicles, as well as time
constraints on the vehicles. In particular, given a set of candidate facility locations and a set of
customer locations, we seek a solution in which (i) each customer is visited exactly once, (ii} each
route starts and ends at the same facility, (iii} the total demand of the customers assigned fo a
route is at most the vehicle capacity, (iv) the total working time of a vehicle is no more than the
time limit, and (v) the total demand of the customers assigned to a facility does not exceed the
capacity of the facility. The described problem is NP-hard. To see this, consider an instance of the
LRSP in which there is at most one vehicle at each facility, there are no facility fixed costs, and the
vehicle time limit is unrestricted. Such a special case is equivalent to an instance of the MDVRP,
which was shown to be NP-hard by Bodin et al. {1983) and Lenstra and Kan (1981).

We develop models for the delivery form of the LRSP and assume that there is no service time at the
customers. The models, however, can be adapted easily for pickup problems and for nonzero service
times. At the heart of the LRSP is a network flow structure, deriving from the routing of custormer
demands, that is constrained through the vehicle and facility capacities. Hence, we consider both
arc-based and path-based formulations for the LRSP, as each has been widely applied for related
problems. In Section 2.1, we present a three-index commodity flow formulation of the LRSP. In
Section 2.2, we present a set-partitioning-based formulation of the problem. In Section 2.3, we
introduce several classes of valid inequalities to strengthen the set-partitioning-based formulation.

2.1 Graph-Based Formulation of LRSP

For the related problems of LRP and VRP, the literature contains two main types of graph-based
models, vehicle flow and commodity flow. In both formulations, integer variables represent the
number of times a vehicle traverses a given arc or edge in an underlying graph. In commodity
flow formulations, an additional variable representing the number of units of a given commodity
transported along the arc is present. In general, vehicle flow models contain an exponential number
of subtour elimination constraints, whereas commodity flow models, with the help of additional flow
variables, use a polynomial number of constraints to eliminate subtours. For the LRP and the VRP,
two-index vehicle flow formulations are preferred in solution algorithms based on branch-and-cut
since these formulations include a smaller number of variables and their LF relaxations vield better
bounds. However, it is not possible to formulate the LRSP using variables with only two indices
‘because of the time constraint for the vehicles. In this confext, we require a three-index commodity
fHow model.

To formulate the model, we introduce the following notation. Let I be the set of customer locations
and J be the set of candidate facility locations. We define a graph G = (N, A) where N =TUJ is
the set of nodes and A = (J x I) U (I x I} is he set of arcs. Let H; be the set of vehicles, and let
{H;} ey be a partition of H into homogeneous sets of vehicles assigned io each facility.

Parameters
C'jF = daily equivalent fixed cost of opening facility j, ¥j € J,
C® = vehicle operating cost per unit travel time,
¢V = daily equivalent fixed cost of a vehicle (including the driver cost),
D; = demand of customer ¢, Vi € I,
L:f = capacity of facility §, ¥Vj € J,
LY = capacity of a vehicle,
IT = time lmit for a vekicle and the driver, and
T;; = travel time between locations i and 7, ¥(i,7) € 4.

Decision Variables

o 1 if vehicle h travels on arc (i, k), Vh € H,{i,k) € A,
Tikh = 0 otherwise,

vikk = flow on arc (i, k) carried by vehicle h, V(i ke A,he H,

- 1 if facility j is selected, Vj € J,
7T 0 otherwise,

" 1 if vehicle A is used, Vh € H, and
h 0 otherwise.

(G-LRSP) Minimize ZC‘ftj +cv Z vy + C° Z z Tikikh

jeJ heH hel (i,k)ed
s.t. Z meh = 1 viel,
heH ke N
S win— Y @kin =0 Vie N,he H,
kEN kEN
Z Zyjkh”Lftj <0 Vj e J,
hEHj kel
vieh — LV zagn, < 0 Y(i,k) € A h € H,
Zymh_Zym%"DizxmhﬁO viel,heH,
ke kel kEN
ST Twaan - LTon €0 VheEH,
(ik)eA
Tikh = 0 Vi€ J k€ N, he H,te J\{j},
zan € {0,1} V(i k)€ A h€H,

€
Yikh >0 V(?:,k)@A,hEH,
t; € {0,1} VjeJ, and
vy, € {0,1} YheH.

The objective function (1) states that the total cost, which includes the fixed cost of the selected
facilities, the fixed cost of the vebicles (including the driver cost), and the operating cost of the
vehicles, should be minimized. Constraints (2) specify that exactly one vehicle must travel from
customer node i to some other node. Constraints (3) require that a vehicle should enter and leave
a node an equal number of times. For customer nodes, constraints (2) and (3) ensure that if a
vehicle enters a customer node, it will leave this node and therefore that each customer node is
served exactly once. For facility nodes, the number of visits by any vehicle can exceed one, since
a vehicle can cover multiple routes. Constraints (4) ensure that the total outbound flows o the
customer nodes from each facility do not exceed its capacity. Constraints (5) are vehicle capacity
constraints and define the relationship between the binary variable zxn and the flow variable
Yikh. Each constraint ensures that flow between any pair of nodes cannot exceed the capacity of a
vehicle. Constraints (6) require conservation of flow at each customer node; these constraints must
be modified for pick-up problems. Constraints (5) and (8) together ensure that no route violates the
vehicle capacity. The combined sets of constraints (2), (3), and (6) ensure that only valid traveling
salesman tours that include a facility are formed, as in Nambiar et al. (1981). Constraints {7y limit
the total time of a vehicle’s schedule to the time limit. Constraints (8) restrict travel on the arcs
originating from a facility to vehicles located at that facility. Constraints (9), (10), (11}, and (12)
are the integrality and non-negativity requirements on the variables.

G-LRSP is a three-index commodity flow formuiation. Because of the facility and vehicle capacity
restrictions, we cannot know a priori the number of vehicles required at each facility, though the
number is clearly at most |I]. Thus, this formulation can require up %o O(|T1*) binary variables and
O(|I]*) constraints, which can be as many as 6 million for an instance with 50 customers. Although
it would be possible to develop a branch-and-bound algorithm for G-LRSP, we suspect that such an
approach would not yield positive results, given the inherent symmetry in the formulation and the

4

(7

(8)
(9)
(10)
(11)
(12)

known difficulty associated with solving related problems. Instead, we propose a set-partitioning-
based formulation similar to those that have been successful for other hard combinatorial problems.

2.2 Set-Partitioning-Based Formulation of LRSP

In this section, we introduce a set-partitioning-based formulation of the LRSP. The set-partitioning-
based formulation (SPP-LRSP)} presented here is equivalent to the model obtained by applying
Dantzig-Wolfe decomposition (DWD) to G-LRSP {for details, see Akca {2008)), though it was not
developed using that technique. In the application of the DWD method, constraints (2) and (4)
form the master problem, while the remaining constraints define the subproblem. This subproblem
then can be decomposed by facility and further by vehicle. The equivalence of SPP-LRSP and
the DWD of G-LRSP follows after a further reduction in the subproblem column set based on
symmetry and constraints in the master problem.

To define the column set, the set-partitioning-based formulation uses the idea of a pairing, which
we adapt from the pairing concept in the crew scheduling literature (e.g., Desrosiers et al. (1991),
Vance et al. (1997), and Anbil et al. (1998)). In the crew scheduling literature, a pairing is a
sequence of duty periods and represents a possible schedule for a single crew. In the LRSP context,
a pairing is a sequence of routes that represents a possible (feasible) schedule for a single vehicle.
In other words, as explained below, pairings are defined by the subproblem constraints in the DWD
of G-LRSP, i.e., constraints (3), (5), (6), (7}, (8), {9), (16}, (11}, and {12), decomposed by vehicle.

A pairing is feasible if (i) each route included in the pairing starts and ends at the same facility,
(i) for each route in the pairing, the total demand of the customers assigned to the route is at
most the vehicle capacity, and (iii) the total travel time of the pairing is at most the vehicle time
limit. In addition to these constraints, we require that {iv) each customer included in the pairing
be visited only once. By adding constraint (iv), we prevent the generation of pairings that visit
some customer(s) multiple times since such pairings are set to zero in an integer feasible solution
of an LRSP.

Figure 1 shows two possible pairing constructions. Pairing 1 includes routes 1, 2 and 3; pairing
2 includes routes 4 and 5. FEach pairing specifies the routes covered by a vehicle and has an
associated cost, which is defined as the sum of the costs of the component routes plus a fixed cost
for the vehicle. Since the cost of a multiple-stop route depends on the sequence of nodes visited,
the pairing information implicitly includes sequencing information for each route. The cost of a
pairing, however, is not affected by the ordering of the routes in the absence of time windows and
thus is arbitrary. We will take this fact into consideration in the solution of the subproblem and
will not generate symmetric pairings corresponding to different orderings of the same routes.

Given a set of candidate facility locations and the set of feasible pairings that can be constructed
for each candidate facility, the objective of the LRSP is to select a subset of the facilities and an
associated subset of pairings in such a way as to minimize the total cost subject to the following
constraints: (i) each customer must be covered by exactly one pairing, (i) the total demand of
the customers assigned to a facility must not exceed the capacity of the facility, and (iii) vehicles
cannot be associated with a facility unless it is open.

To present the formulation, we define additional parameters and decision variables. Associated
with each candidate facility j € J, we let P; be the set of all feasible pairings for facility j.

o PAIRNG T

Route 1 = (facifity = 1 =2 ~ 3 = 4 — facility) |
Route 2 = {facility — 5 — 6 =~ 7 — facility) !
Route 3 = {facility - 8 —facility) !
Route 4 = (facility — 9 — facility)

Route 5 = (facility — 10 = 11 — facility)

Figure 1: Example of pairings

Parameters
= 1 if customer node i is in pairing p of facility j, Vi€ I,p€ F;,j € J,
"o 0 otherwise, and
C, = cost (vehicle fixed cost plus operating cost) of pairing p of facility j, Vp € Pjed.

Decision Variables

A 1 if facility 7 is selected, Vi € J,
7 0 otherwise,

Y = 1 if pairing p is selected for facility j, Vp € Fj,j € J, and
P 0 otherwise.
(SPP-LRSP) Minimize > Clt;+> % Coz (13)
jeJ jeJ peb;
subject to SN apzm =1 viel, (14)
jeJ peFy
SN iz~ LFt; < 0 vi e J, (1
peP; el
t; € {0,1} VjeJ, and (16)
zp € {0,1} ¥YpePjel (17)

The objective function (13) seeks to minimize the total cost. Constraints {14} states that each
customer must be in exactly one of the selected pairings. Constraints (15) guarantee that the total
demand of the customers assigned to a facility does not exceed the facility capacity. Constraints
(16) and (17) are standard binary restrictions on the variables.

The SPP-LRSP formulation eliminates the symmetry that arises in G-LRSP because of the identical
vehicles; here we enumerate one set of feasible pairings that can be assigned to any vehicle located
at a facility instead of duplicating this set for each vehicle located at a facility. Furthermore, the
pairing concept removes the symmetry caused by the different orderings of routes in a vehicle’s
schedule since the ordering is arbitrary.

2.3 Strengthening the Set-Partitioning-Based Formulation

In this section, we discuss how we can strengthen the set-partitioning-based formulation SPP-LRSP
by adding valid inequalities. First, we introduce a lower bound on the total number of facilities
required in any integer feasible solution. Let R denote 2 lower bound on the minimum number of
required facilities. Then we can add to SPP-LRSP a constraint to force the number of selected
facilities to be at least R:

>4 >R (18)

jet
For any instance, we can calculate a valid value for R from the demands of the customers and the
capacities of the facilities. If all of the facilities have the same capacity vaiue, Lf =k ¥j € J, then

o]

If at least one facility capacity differs, then a lower bound on the number of required facilities can
be calculated using a greedy algorithm: compute the total demand and assign it to the facilities
in non-increasing order of their capacities. Let n = |J| and let (41, J2; s jn) be an ordering of the
facilities such that Lfl > Lf; > 2 Lf; . Then,

l
R = argming_; ») (Z Lf; > Z Di) .

=1 2234

Constraint (18) is not necessary in the formulation of the LRSP. However, as a simple lower bound
on the number of required facilities, it may eliminate some solutions in which a fractional number
of facilities is used, thereby improving the LP relaxation bound. Alkca (2008) shows that constraint
(18) has a Chvatal-Gomory (CG) rank of one under certain conditions.

We introduce a second set of constraints by linking the facility variables and the pairing variables.
For the capacitated facility location problem (CFLP), Leung and Magnanti (1989) show that the
constraints that link the facility variables and the assignment variables are facets of the CFLP
polytope if the demands of the customers are less than the capacities of the facilities. Daskin
(1995) shows that these constraints improve the LP relaxation bound considerably. Due to the
similarity in structure between the CFLP and SPP-LRSP, we consider adding the constraints

tj-2> O YiedpeP; {19)

These constraints ensure that a pairing is selected only if its associated facility is open. Constraints
(19) are implied by constraints (15) and the integrality constraints, but their addition may improve
the LP relaxation bound, as in the case of the CFLP. However, having one constraint associated
with each pairing is undesirable in a set-partitioning-based formulation with an exponentially large
number of columns. We consider instead the following set of inequalities, which are valid for the
integer program:

- S apz, 2 0 Vjed i€l (20)
PEP;

Note that these are similar to the inequalities developed by Berger et al. (2007). In a feasible integer
solution, each customer ¢ € I is served by exactly one pairing, so Pope p; %ipZp is 1 for some facility

T

4 and O for all others. For any facility such that ZPE P, ®ipZp is 1, t; will be 1, which corresponds
to selecting only pairings associated with open facilities.

In Section 4, we demonstrate empirically the improvement in the LP relaxation bound of the SPP-
LRSP formulation that results from adding constraints {18), (19}, and (20). As we will show,
adding both constraints (18) and (20) to SPP-LRSP yields the largest improvement. Throughout
the remainder of the paper, we use an augmented SPP-LRSP formulation, denoted AUG-SPP-
LRSP, which is comprised of the objective function (13) and constraints (14), (15}, (186), (17), {18),
and (20).

3 Solution Algorithm

In our set-partitioning-based formulation of the LRSP, each column corresponds to a feasible pair-
ing. For medium- and large-sized instances, the number of feasible pairings can be extremely large,
making it unlikely that we can efficiently solve instances that explicitly include all feasible pairings.
Instead, we have developed a branch-and-price algorithm in which we dynamically generate only a
subset of the feasible pairings at each node of the {ree.

Branch and price has become a standard approach for solving large-scale integer programming
problems, especially those formulated using set-partitioning-based models. Barnhart et al. (1998)
discuss the general methodology and the many chailenges in developing a branch-and-price algo-
rithm. The algorithm has been applied to a variety of problems, including various vehicle routing
problems (Fukusawa et al. (2006)), location routing problems (Berger et al. (2007), Akca et al
(2008)) and airline crew scheduling problems (Vance et al. (1997)), all of which are relevant in the
context of the LRSP.

In the following sections, we describe the components of the branch-and-price algorithm that we
developed for the LRSP. In Section 3.1, we describe the column generation algorithm for solving
the LPs at the nodes of the branch-and-price tree. In Section 3.2, we describe the branching rules.
In Section 3.3, we present implementation details of the algorithia.

3.1 Column Generation

Column generation is an approach for solving LPs for which we want to avoid explicitly enumerating
all columns. The basic idea is to determine a subset of the variables that includes those that are
nongero in some optimal solution. By solving the LP including only this subset of columns rather
than all possible columns, we can obtain the optimal LP sclution. Here, we explain the terminology
and the main steps of the column generation within the branch-and-price algorithm developed for
the LRSP.

In each iteration of our column generation procedure, we work with a restricted version of the LP
relaxation; this restricted master problem (RMP) includes all of the facility location variables but
only a subset of the pairing variables. We solve the RMP and use the associated dual variable
information to formulate the pricing problem. The objective of the pricing problem is to either
identify new columns to add to the RMP or prove optimality of the current solution. From the
theory of linear programming, we know that if every variable has a non-negative reduced cost, then
the solution is optimal. Therefore, in the context of the LRSP, the objective of the pricing problem
is to determine if there are feasible pairings with negative reduced cost that can be added to the
RMP. If the pricing problem identifies at least one pairing with negative reduced cost, then we add

8

one or more columns to the RMP and reoptimize. Otherwise, the current solution is optimal for
the full problem.

As explained in Section 2.2, we decompose the pricing problem into a set of independent pricing
problems, one for each facility. To write the objective function for facility 7, we consider formulation
AUG-SPP-LRSP and obtain an expression for the reduced cost of a pairing. Let #; be the dual
variable associated with constraint (14) for customer i, y; be the dual variabie associated with
constraint (15) for facility j, and oj; be the dual variable for linking constraint (20) for facility j
and customer i. For the variable zp for p € P, the reduced cost C, can be written as

Cp=Cyp— Z AipTi + Z aipDip; + Z QipO jis (21)
iel igl 23

where Cp is the cost of pairing p. Then, we can express the pricing problem for facility j as the
problem of minimizing Cp subject to the appropriately indexed constraints from (8), (5), (6), (7),
(8), (9), (10}, (11), and (12).

One approach to solving the pricing problem is to formulate it as a network problem. Akea (2008)
describes the details of such a network problem, which is a modified elementary shortest path prob-
lem with resource constraints (ESPPRC). An alternative approach is to extend the first approach to
a two-phase pricing problem: first generate a set of feasible vehicle routes and then combine them
to construct a feasible pairing of minimum reduced cost. Each phase is also formulated as a network
problem and solved as an ESPPRC. Since the two-phase approach showed better performance in
our experiments, we describe the details here.

3.1.1 Two-Phase Pricing Problem

Since a pairing is a set of routes, we can express the variable part of the reduced cost of a pairing
as the sum of the reduced costs of the routes forming the pairing. For there to exist a negative
reduced cost pairing composed of more than one route, there must exist negative reduced cost
routes. Otherwise, the pairing including only the single route with the lowest reduced cost would
be the lowest cost pairing overall. Thus, the basic idea of the two-phase approach is to generate
feasible routes first. If there are negative reduced cost routes, then combine these routes to generate
pairings with more negative reduced cost. Otherwise, update the reduced cost of the first-phase
routes with the fixed cost to obtain a column (a single-route pairing) with negative reduced cost
or to conclude that the current solution is optimal.

Phase One: Generating Routes From the constraints of the pricing problem, a route is feasible
if it starts and ends at the same facility, visits a customer at most once, and satisfies the vehicle
capacity and the vehicle time limit constraints. To generate feasible routes, we construct a network
with |[I1 + 2 nodes: one node for each of the [I] customers, one node for the facility as & source
and one node for the facility as a sink. Each customer node has a demand equal to its demand in
the original problem. The network includes an arc from the source to each customer node, a pair
of directed arcs between each pair of customer nodes, and an arc from each customer node to the
sink node. In the constructed network, an elementary path feasible with respect to two resource
constraints {vehicle capacity and time limit) corresponds to a feasibie vehicle route. In order to
minimize the reduced cost (21), the cost of each link in the network for facility j is modified with

associated dual variables:

P Chy T3 + Dipg + 03 ifiel,
ke Chi otherwise,

where cx; is the operating cost of the link (k,%). Then, the cost of a path in the network is equal to
s+he reduced cost of the corresponding route. To determine if there is a feasible route with negative
reduced cost, we solve an elementary shortest path problem with two resource constraints (vehicle
capacity and time) by applying the extended label correcting algorithm of Feillet et al. (2004).

In the Feillet et al. (2004) algorithm, each path from the source to a node in the network is assigned
a label, which is a vector of the reduced cost of that (partial) path, the resources consumed {vehicle
load and elapsed time), the customer rodes included in the path, and the customer nodes that
cannos be visited due to the resource constraints. Customers are considered unreachable if they
have already been visited in the path or if they cannot be served by the vehicle without violating
a resource constraint. The algorithm fans out from the source node, repeatedly examining the
nodes of the graph. Each time it examines a node, the algorithm extends each of the paths to each
possible successor node, continuing until no further extensions are feasible.

To reduce the set of labels to be extended, the algorithm includes domination rules that compare
the reduced cost, the time, the vehicle capacity, and the set of unreachable customers. To be more
specific, let I; and lo be two labels for a node. Label [, dominates label Iy if all of the following
conditions are satisfied: (i) the current travel time and the vehicle load of 1y are less than or equal
to those of lo, (ii) the reduced cost of Iy is less than or equal to the reduced cost of lo, and (iii)
for all nodes i € I, i is reachable only in label {; or 7 is unreachable in both labels [; and {;. The
algorishm stores and extends only non-dominated labels at each node. At the end of the algorithm,
each label at the sink node corresponds to a feasible vehicle route with an associated reduced cost.

Let S denote the set of feasible routes with negative reduced cost at the sink. If 5 is non-empty, we
continue with phase two. Otherwise, we add the fixed cost from expression (21) to the cost of the
smallest reduced cost route to obtain the reduced cost of that single-route pairing. If this reduced
cost is zero or positive, then we can conclude that the current LP relaxation solution is optimal.
Otherwise, we have a pairing with negative reduced cost to add to the RMP. Note the implication
that, even in the case where there are no routes with negative reduced cost, we may still get a
negative reduced cost pairing (consisting of a single route) when the fixed cost associated with the
vehicle is negative. This can occur after applying certain branching rules {see Section 3.2).

Phase Two: Generating Pairings The objective of phase two Is to generate feasible negative
reduced cost pairings by combining the routes in set 5. Two (or more) vehicle routes can be
combined to form a feasible pairing if they do not have customer nodes in common and they can
both (all) be completed within the vehicle’s time limit. Finding a feasible pairing with the minimum
reduced cost again corresponds to solving a resource constrained élementary shortest path problem.

We construct a network with 2 -+ |S] nodes: a source node, a sink node and one “intermediate”
node to represent each of the vehicle routes in set S. The network inchides an arc from the source
node to each intermediate node, arcs between pairs of intermediate nodes, and an arc from each
intermediate node to the sink node. Note that, because the sequence of routes in a pairing is
arbitrary, we only include an arc from an intermediate node to another intermediate node with
higher index. Associated with each arc inbound to an intermediate node are two values: the time
required to complete the corresponding route and the reduced cost of the route. The time and

10

cost for arcs inbound to the sink are zero. To find a feasible pairing with the minimum reduced
cost, we solve an ESPPRC with a single resource constraint (time). As in phase one, we apply
the extended label correcting algorithm of Feillet et al. (2004). At the end of the algorithm, each
label at the sink node corresponds to a feasible pairing with an associated negative reduced cost.
The costs of pairings at the sink node are updated with the fixed cost that must be included in
the reduced cost of a variable, and any pairing with negative reduced cost is a candidate pairing to
add to the RMP. Since we solve the exact ESPPRC algorithm in each phase of the algorithm, the
overall pricing algorithm is exact and results in a column with the most negative reduced cost, if
any. In the remainder of the paper, we refer to this exact pricing algorithm as 2p-ESPPRC.

3.1.2 Heuristic Pricing Algorithms

The two-phase approach (2p-ESPPRC) is an ezact algorithm in that it is guaranteed to generate
a colums with the minimurm reduced cost. The downside of the approach is that it may not be
very efficient for large problems. To fiad feasible solutions (pairings) more quickly, we define two
heuristic versions of the algorithm, The first heuristic restricts the state space of the exact algorithm
by directly restricting the number of labels (proposed by Dumitrescu (2002)}. In particular, during
either phase of the algorithm, we can limit the maximum number of labels at each node that are
stored to be extended. During the algorithm, as we update the list of labels, we order the labels in
increasing order of reduced cost and we keep at most the first label Limit number of non-processed
labels. We refer to this heuristic pricing algorithm as 2p-ESPPRC-LL(n), where n is the value of
the label limit.

"The second heuristic Testricts the state space by considering just a subset of the customers instead
of all of them. In this way, the total number of labels to be generated is restricted indirectly. In
each pricing iteration for a facility, we determine two customers that have the lowest reduced costs
from the facility. We initialize the subset with these two customers since we expect 10 have at least
two routes in a pairing. Then, by exploring the links from the subset of customers to the remaining
customers, we repeatedly add one customer that is connected by a cheapest link to the subset until
the size of the subset is equal to the determined subset size. The 2p-ESPPRC is run for the selected
subset of customers. We refer to this algorithm as 2p-ESPPRC-CS(n), where n is the subset size.

If the heuristic versions of the pricing algorithm, 2p-ESPPRC-LL{n) and 2p-ESPPRC-CS(n), do
not identify any columns with negative reduced cost, the exact version 2p-ESPPRC must be applied
in order to conclude whether or not there exist columns with negative reduced cost.

3.2 DBranching Rules

An important step in developing a branch-and-price algorithm is devising good branching rules.
Branching rules that affect the structure of the pricing problem may make column generation
more difficult. Therefore, the main objective is to find disjunctions that eliminate as much of the
integer infeasible region as possible but that minimize the increase in difficulty of solving the pricing
problem. We apply four branching rules in our branch-and-price algorithm.

First, we apply standard variable dichotomy branching for the facility location variables . For a
fractional variable t;, in the right branch, we set ¢; = 1, which forces facility location j to be open.
The pricing problem for the right branch does not change since t variables are not present in the
constraints of the pricing problem, and the pricing problem for each facility is independent from
the others. In the left branch, we set {; = 0, which forces facility location j to be closed. Since the

11

facility is closed, no pairings associated with the facility are allowed in the solution, so there is no
need to solve the pricing problem. In addition, we set all z, variables for facility j to 0.

Second, we consider the total number of vehicles at each facility. By definition, a pairing is as-
sociated with a single facility and corresponds to one vehicle. Thus, in any integer solution, the
mumber of vehicles (pairings) used at any facility must be integer. Let w; be the number of vehicles
used at facility j. Then,

wi= Y z Vi€l (22)

per;

If we add the equalities (22) to the master problem, we can branch explicitly on the w; variables.
Assume that in a fractional solution w; = b, where b is not integer. In one branch, we require

; > [b]; in the other branch, we require w; < |b]. Branching on the w; variables instead of
unphmtiy branching on Z:pe P, is an example of explicit constraint branching, an idea developed
by Appleget and Wood {2{)00) to improve the performance of branch-and-bound algorithms for
mixed integer linear problems. These new variables make it easier to identify the necessary updates
to the pricing problem. Let 8; be the dual variable associated with constraint (22) for facility j.
Then, the reduced cost of the variable z, changes to the following:

C‘p = O - Z QipTy + Z aipDips + Zaipo'ji - 3 (23)

iEeN N ieN

In equation (23), we can interpret §; as a fixed cost for facility j that is independent of pairing
p and the included customers. Therefore, we do not need to change our network structure or the
pricing problem structure to incorporate (;. Instead, we can calculate the cost of a path in the
modified network in the same way as before and then add the fixed cost —f3; to the cost of the
solution to calculate the correct reduced cost of the column.

Third, we consider the assignment of a customer to a specific facility. In a fractional solution, a
customer may be partially served by two or more pairings assigned to different facilities. In this
case, we can create a branching rule to force a customer to be assigned to a specific facility. To
do so, for a customer 4 served by more than one facility and a facility j such that Zpe P, ip%p is
fractional, we create two branches. In one branch, we force customer node ¢ to be served by facility
i by adding the inequality

Y apz > 1 (24)

pPEF;

to the RMP. Let y;; be the dual variable associated with inequality (24). To incorporate this into the
pricing problem for facility j, we change the cost of any arc entering node i to cp—m;+ Dy +05i— 75
and solve the pricing problem as before. In the other branch, we forbid the assignment of customer
node i to facility 7 by adding to the RMP the constraint

Z apzp < 0.
PEPj

To incorporate this restriction into the pricing problem for facility j, we remove node ¢ from the
network. The pricing problems for the other facilities do not change.

Finally, we may encounter the case where a customer is covered by two or more (fractional) pairings
associated with the same facility. Then, we branch on flows on single arcs between pairs of customer

12

nodes using a modified version of the Ryan and Foster (1981) branching rule first suggested by
Desrochers and Soumis (1989). In one branch, we require that the flow on the directed arc between
the selected pair of customers is one in all possible solutions. To enforce this rule for the palrings
to be generated, we update the arcs in the network for the pricing problem. Let ny and ng be a
pair of customer nodes and (n1,ng) be the selected order. In the pricing problem, all arcs leaving
node n; and all arcs entering ny are deleted except the arc {n1,ng). Therefore, if a pairing includes
one of the nodes, then it includes the arc {n1,7n2). In the RMP, to satisfy the branching rule for
the previously created pairings, we set to zero the variables corresponding to pairings that include
only one of the nodes, ny or ng, or that include both nodes but in which no does not immediately
follow 1. In the other branch, we forbid the flow on the directed arc between the selected pair of
customers. To apply this rule for the pairings to be generated, we simply delete the arc (ny,n2)
from the network in the pricing problem. In the RMP, we set to zero the previously created pairings
in which n; is followed by ng.

3.3 Implementation Details

In this section, we discuss the implementation details of the branch-and-price algorithm. We
implemented the algorithm in MINTO 3.1 using CPLEX 9.1 as the LP solver. Within MINTO, we
customized several routines and added new ones for our algorithm.

Initial Columns To initialize the algorithm, we need to construct an initial RMP that is feasible.
From previous computational experience with branch-and-price algorithms, we expect a reduction
in the number of pricing iterations required to solve the LP relaxation when starting from a good
set of columns rather than an easily constructed or arbitrary solution. However, there is a trade off
between the effort (time) required to generate such a solution and the resulting reduction in overall
running time. We have developed an algorithm that combines a facility location heuristic, several
VRP heuristics, and a bin-packing heuristic to generate an initial set of pairings. The basic idea
of the routine is to sequentially determine the following decisions for a given set of open facilities:
allocation of customers to facilities, design of feasible vehicle routes, and assignment of routes to
vehicles. The total cost of such a sequentially determined solution for a given set of open facilities
is calculated. To decide what set of open facilities would yield such a solution of lowest cost, the
algorithm starts with all facilities open and iteratively closes the facility whose elimination results
in the greatest cost savings until the problem becormes infeasible (this is called the DROP heuristic
in the context of facility location problems). We refer to this heuristic algorithm as I-Heur. I-Heur
produces a feasible solution for the problem as well as a set of columns.

Primal Feasible Solution Having good primal feasible solutions can reduce the size of the ex-
plored tree. We used four ways to obtain primal feasible solutions in our solution algorithms:
MINTO’s built-in primal heuristic routines, I-Heur, a standard branch-and-bound algorithm, and
a heuristic branch-and-price algorithm. For relatively small problems, since the quality of the solu-
tion generated by the I-Heur is sufficiently high, we initialized the upper bound with the solution
obtained from I-Heur and used MINTO’s primal heuristic routines within the branch-and-price
algorithm. For larger, more difficult problems, we implemented a more powerful procedure to both
improve the upper bound and generate an initial set of columns. We run a heuristic branch-and-
price algorithm called H-BP, in which we construct an initia)l branch-and-price tree subject to a
time limit, employing only the heuristic pricing algorithms 2p-ESPPRC-LL(n} and 2p-ESPPRC-
CS{n). When the time limit is reached (or the algorithm terminates), we have a set of generated
columns available to be used and an upper bound for the problem. To improve the quality of the

13

upper bound obtained by H-BP, we applied a standard branch-and-bound algorithm to an integer
RMP with the current set of columns at the root node of the H-BP subject to a one-hour time
limit. Our computational experiments showed that the quality of the upper bound obtained using
H-BP is very high.

Algorithm Overview We have implemented two versions of a branch-and-price algorithm. For
small or medium size instances, we ran a one-stage solution algorithm that is an exact branch-and-
price algorithm initialized with columns generated by I-Heur. We refer to this version as E-BP. For
larger instances, we implemented a two-stage solution algorithm designed on the idea of “restart”.
The first stage of the algorithm runs H-BP to get a good upper bound and a good set of columns.
The second stage is an exact branch-and-price algorithm that is initialized with the results of H-
BP. We refer to this version as B-BP-2S. In our experiments, we used E-BP for instances with 25
customers and BE-BP-28 for instances with 40 customers.

Since the steps of the overall pricing algorithm and the parameters used in E-BP and E-BP-25 are
different, we separately explain the pricing algorithm in each version.

Pricing Algorithm In E-BP. At each node of the branch-and-price tree, we employed the
following procedure:

1. Set both the subset size and the iteration limit to 12. Execute 2p-ESPPRC-CS(12) for 12
iterations or until the algorithr fails {the algorithem fails if it does not generate any negative
reduced cost columns).

2. Set the starting label limit value (m} to 50 and the maximum label limit to 300.

3. Call 2p-ESPPRC-LL(m) for each facility. If, during an iteration, no negative reduced cost
columns are generated for a particular facility at its current label limit, execute the following
procedure:

i. If the current label limit is less than the maximum, increment the label limit with
a multiplier of 2, i.e., let m = 2 % m, and solve 2p-ESPPRC. If the pricing problem
identifies negative reduced cost columns, keep the label lmit value, return to the
beginning of step 3 and continue with the pricing problem for the next facility.
Otherwise, set the label limit to the maximum.

ii. If the current label limit is equal to or greater than the maximum, do not solve
the pricing problem for this facility during the subsequent pricing iterations for the
current node. Return to step 3.

4. When no columns are generated for any facility, the pricing problem for all facilities must be
solved using the exact version, 2p-ESPPRC, to prove optimality.

Pricing Algorithm In E-BP-2S. In E-BP-2S, the algorithm first calls H-BP for a limited time.
The steps of the pricing algorithm in H-BP are similar to E-BP except that some parameters are
different and the exact pricing 2p-ESPPRC is never used in H-BP. The details follow.

1. Set the subset size to 15 and the iteration limit to 20. Call 2p-ESPPRC-CS(15) for 20
iterations or until the algorithm fails.

2. Set the starting label limit value (m) to 5 and the maximum label limit to be 15.

14

3. Call 2p-ESPPRC-LL(m) for each facility. If, during an iteration, no negative reduced cost
columns are generated for a particular facility ab its current label limit, do the foliowing:

i If the current label limit is less than the maximum, increment the label limit with a
multiplier of 2, i.e., let m = 2% m, and re-solve 2p-ESPPRC-LL{m). If the pricing
problem identifies negative reduced cost columns, keep the label limit value, return
to the beginning of step 3 and continue with the pricing problem for the next facility.
Otherwise, return to step 1.

{i. Tf the current label limit is equal to or greater than the maximum, skip the pricing
problem for this facility during the subsequent pricing iterations for the current
node. Return to step 3.

After solving H-BP, we initialize E-BP-25 and start the second stage of E-BP-28 in which the pricing
algorithm is the same as E-BP except that it skips step 1, i.e., it does not cail 2p-ESPPRC-CS(n).

4 Computational Experiments

The goal of the computational experiments was two-fold: to empirically demonstrate the benefit
of the valid inequalities described in Section 2.3 and to demonstrate the effectiveness of the overall
branch-and-price algorithm. For all of the experiments, we used a Linux-based workstation with a
1.8 GHz processor and 2GB RAM. The only LRSP instances available in the literature are those
of Lin et al. (2002); we present our results for those instances in Section 4.1. For further testing,
we generated several sets of larger instances. We describe the instances in Section 4.2 and then
present the results in Sections 4.3 and 4.4.

4.1 Instances from Lin et al. (2002)

Lin et al. {2002) present six instances: a base instance that includes 27 customers and four facility
locations in Hong Kong plus five instances generated from the original by considering three subsets
of 10 customers snd two subsets of 12 customers while keeping the same four facility locations.
We used only the four instances available to the reader to test our branch-and-price algorithm, in
particular, our E-BP algorithm.

Lin et al. {2002) solve these instances with a branch-and-bound algorithm and with their heuristic
algorithm. Within a time limit of 10,000 seconds, their branch-and-bound algorithm is able to
prove optimality only for the 10 customer instances and is not able to find a feasible solution for
the original 27 customer problem. The heuristic quickly finds solutions for all instances. Table 1
compares their reported results to results obtained with E-BP. As shown in Table 1, our algorithm
quickly provides optimal solutions for all four instances. (The * indicates the best solution found
in 10,000 CPU seconds on a Pentium IIT machine.)

4.2 Generated Instances

For further testing, we generated two sets of eight base instances from the MDVRP instances of
Cordeau et al. (1997): one set has instances with 25 customers and the other has instances with 40
customers. Fach instance contains a subset of the customer locations and demand data from one

Table 1: Comparison of Lin et al. (2002) results and branch-and-price results

Instance LinB & B Lin Heuristic Akca E-BP
Cust | # Fac | Objective | CPU (s) | Objective | CPU{s) | Objective | CPU(s)
10 4 309,817 1155 309,817 0.44 300,817 .66
10 4 309,808 982 309,808 0.49 309,808 0.10
12 4 312,086% | > 10,000 | 312,036 .82 312,036 0.05
27 4 - - 625,752.5 6 623,750.2 | 57.83

of the Cordeau et al. (1997) instances. In particular, we selected instances p01 (50 customers}, p03
{75 customers) and p07 (100 customers) from which to generate our base set of instances. Table 2
specifies for each instance the corresponding Cordeau et al. (1997) instance {denoted as Ref), the

customers included, and the coordinates of the five candidate facility locations (denoted as Fac.
Loc. (X,Y)).

Table 2: Details for LRSP instances generated from Cordeau et al. (1997) MDVRP instances

| Ref | Custormners Fac. Loc. (X,Y) # | Ref Customers Fac. Loce. (X)Y)
TPl | 1-25 | (20,200, (30,40Y, (15,409, | 9 | po1 1-40 (20,20Y, (30,40), (15,40),
2 | pol | 26-50 (45, 40), (55,50) 10 | po1 11 - 50 (50, 30), (55,55)

3 p03| 1-25 (40,40), (50,22), 117 p03 1-40 (40,409, (50,22)

4 | p03 | 26-50 (25,45), (20,20), 12 | p03 | 16 - 35, 41 - 60 (25,45), (20,20)

5 | pos| 51-75 (55,55) 13 | p03 36 - 75 (55,55)

6 po7 | 1-25 (15,359, (55.35), 14 | p07 140 (15,35), (55,35),

7| p07 | 26-50 (35,20), {35,50), 15 | p07 31-70 (35,20), (35,50)

8 | po7| 51-75 (25,45) 16 | p07 | 1-20,50-70 (25,45)

Rounded Euclidean distances between each pair of nodes were used in the algorithm, and we ensured
that the distance matrices satisfied the triangle inequality. Based on the demand information, we
assumed that the capacity of all facilities was 250, which requires at least two facilities to be open.

For each instance, we considered two time limit values and two vehicle capacity values. Time
limits of 7 and 8 hours (which can be converted to distance limits of 140 and 160 miles under the
assumption that vehicles travel 20 miles per hour) were used. In all instances, 140 is more than
twice the distance between each customer and its farthest candidate facility.

We chose two vehicle capacity values based on the fact that at least two facilities are required to
be open due to the capacity and using the following equation similar to Laporte et al. (1986):

Zie! Dy

B =(1-a)maxer{Di} +o 5

(25}
with o equal to 0.1 and 0.2. Small & values were considered since a schedule employing multiple
trips for a single vehicle is only realistic if the vehicle capacity is small compared to the demands
of the customers. We used the 25 customer instances to determine vehicle capacities and used the
same values in the 40 customer instances. For each o value, we took the average of the calculated

16

B values for the instances generated from the same Cordeau et al. {1997) instance, divided it by
10, rounded it up, and multiplied by 10. We obtained vehicle capacity values B0 {for & = 0.1) and
70 (for & = 0.2) for instances 1, 2, 6 - 10 and 14 - 16, and 60 (for ¢ = 0.1) and 80 (for o = 0.2) for
the instances 3 - 5 and 11 - 13. The smaller vehicle capacity values can cover at least one customer
plus the customer that has the largest demand in the instance.

Based on the cost values reported by Burlett (2002) and Kenworth Truck Company (2003), fixed
costs for the facilities were generated using a uniform distribution on the interval [1500,2300], the
fixed cost and the operating cost of a mid-size vehicle were estimated to be $225 per day and $1
per 1 mile traveled, respectively. The same cost parameters were used in all instances.

4.3 Comparison of alternative formulations

In this section, we compare the strength of the formulations constructed with the valid inequalities
described in Section 2.3. We enumerated all of the feasible pairings and solved the instances using
a standard branch-and-bound algorithm without column generation. Due to the large number of
feasible pairings, we had to conduct our experiments with smaller instances containing only 20
customers. In Table 3, for each instance, the first column lists the referenced Cordeau et al. (1997)
instance, the second column lists the subset of customers, and the third and fourth columns list
the vehicle capacity and time limit, respectively.

Let SPP denote the base SPP-LRSP formulation that contains only constraints (14) and (15).
We constructed SPP; by adding constraints (19), SPP; by adding constraints (20), SPP; by
adding constraint (18), and SP Py by adding both constraints (18) and (20). In Table 3, for each
instance, we report the total number of feasible pairings, the integer optimal objective value, and
the percentage gap of the LP relaxation associated with each of the formulations. In the table, a
— indicates that the branch-and-bound algorithm could not solve the relaxation within 6 hours of
CPU time. For one instance, the set of feasible pairings could not be generated, so we did not use
it in the experiments.

We compared SPP with SPP, and SPP; to evaluate the strength of constraints (19) and (20).
Notice that adding inequalities (19) in SPP; made the problem difficult to solve and yielded at
most only a small improvement in the LP relaxation bound. Adding inequalities (20) in SPPy
improved the LP relaxation bound by a moderate amount.

Comparing SPP with SPP; and SPP; evaluated the impact of adding constraint (18) alone and
in combination with constraints (20). In all instances, adding inequality (18) in SPP; lead to a
dramatic reduction in the gap as compared to adding (20) alone. Together, the two inequalities
(18} and (20) in SPP; further reduced the gap for all but 3 instances. The average gap for SPF;
is 3.54 while the average gap for SPPy is 2.28. These results suggest that adding both inegualities
(18) and (20) to the SPP-LRSP yields a stronger formulation, which we denote as AUG-SPP-LRSP.

4.4 Branch-and-Price Results

In our main experiments, we evaluated the performance of the branch-and-price algorithm on the
95. and 40-customer instances. For the 25-customer instances, we used E-BP and applied a time
Himit of 6 CPU hours. Table 4 shows the results for instances 1 through 8 with 25 customers.
For each instance, Table 4 reports the instance number, the vehicle capacity (L"), the time limit
(L), the upper bound obtained from I-Heur (I UB), the LP relaxation value at the root node

17

(LP), the optimal objective value (IP), the integrality gap at the end of the running time (Gap
%), the number of evaluated nodes (Nds}, and the total CPU time in minutes {CPU). The last
three columns present some details about the optimal solution: the indices of open facilities (Loc},
the number of vehicles used at each open facility (# Veh), and the total number of routes in
each solution (# Rt). Overall, the algorithm handled the 25-customer instances well; 28 of the
32 instances were solved to optimality in less than 25 minutes with the majority (21) solved in 10
minutes or less. For only one instance did the algorithm terminate due to the time limit before
proving optimality.

For the 40-customer instances, we used E-BP-2S with a time limit of 2 CPU hours for stage one
and 8 CPU hours for stage two and reported the results in Table 5. The labels in Table & are same
as the ones in Table 4 but with three additional columns: the fifth column (H-BP UB) contains
the upper bound obtained at the end of H-BP, the tenth and eleventh columns contain the CPU
times spent in H-BP and E-BP, respectively. As expected, the solution times in the 40-customer
instances were larger than the 25-customer instances. Even though the algorithm terminated with
& nonzero gap in some cases, the algorithm was able to prove optimality most of the time. For
other instances, good solutions with small integrality gaps were obtained within the time limit.
The gap was at most 0.35% for four of the instances and between 1.26% and 4.18% for the other
seven instances.

The initial feasible solutions provided by I-Heur were good for the 25-customer instances with an
average deviation of 4.4% from optimality. Similarly, for the 40-customer instances, the average
deviation of the upper bound obtained from I-Heur from the optimal or best integer solution was
4.5%. However, for the 40-customer instances, the overall success of the algorithm can be attributed
to the effectiveness of H-BP in finding good upper bounds. In all but one instance, the H-BP upper
bound was better than the I-Heur upper bound, and for 23 instances out of 32, the H-BP upper
bound value equaled. that of the optimal (or best integer) solution.

The LP relaxation bounds were quite strong, as expected with the addition of valid inequalities at
the root node. The average deviation of the LP relaxation bound from the optimality was 2.6% in
9%5-customer instances and 2.2% in 40-customer instances, which are in line with the results of the
smaller instances (instances with 20 customers in Section 4.3).

The solution information provided in Table 4 and Table & highlights the value of solving the
integrated problem instead of a series of problems. Although the same number of facilities is
selected within an instance group (meaning a fixed set of customer locations and a set of candidate
facility locations), the particular facilities selected may differ depending on the vehicle capacity
and time limit values. Which facilities are selected impacts which customers are served by each
facility and hence the sequence of the routes and the structure of the pairings. From the solution
information, we can see that, within an instance group, increases in the vehicle capacity and the
tire limit reduce the total cost through changes in facility, decreases in the number of vehicles
required, changes in the underlying route sequences.

18

Table 3: Comparison of LP relaxation bounds with constraints (19}, {20) and (18)

of SPP | SPP; | SPP, | 8PPy | SPR

Ref | Cust | LY | LT | Pairing | IP Obj | % Gap | % Gap | % Gap | % Gap | % Gap
p01 1-20 | 50 | 140 67558 | 4420 24.54 24.49 19.79 248 1.78
53 | 160 | 154903 1 4419 26.06 - 22.08 3.69 3.52
70| 140 | 147368 | 4378 26.17 - 23.24 3.80 3.44
70 | 160 | 349885 | 4369 27.52 - 25.05 4.86 4.83
pOi § 31-50 1 b0 | 140 26266 | 4780 33.51 33.38 27.98 5.37 2.16
50 | 160 60211 | 4599 32.77 32.72 28.08 3.49 0.58
70 | 140 51638 | 4605 33.64 33.51 29.91 4,30 1.67
TO | 160 | 121027 | 4481 33.24 33.23 30.81 2.97 1.54
po3 | 1-20 | 60 | 140 52618 | 4468 15.64 15.63 14.08 0.72 0.43
60 | 160 ¢ 121933 | 4461 17.25 - 16.12 2.32 2.13
80 | 140 | 107172 | 4421 18.04 ~ 1742 2.88 2.75
80 | 160 | 254863 | 4421 19.78 - 19.12 4.58 4.44
ph3 | 28-47 1 60 1 140 37751 | 4543 18.6 18.42 15.83 3.20 3.02
‘ 60 1 160 BO465 | 4442 18.13 - 16.02 2.35 2.3
80 | 140 78580 | 4383 19.15 - 17.59 3.19 - 3.19
80 | 160 | 193509 | 4376 20.13 - 18.2 412 4.12
pl3 | 56- 75 60 | 140 32801 | 4617 31.27 30.84 26 4.74 1.72
60 | 160 | 79215 1 4467 30.19 30.13 27.08 277 1.30
80 | 140 51052 | 4404 20.84 29.84 28.35 1.45 1.04
80 | 160 | 133853 7 4399 31.76 - 30.45 3.55 3.11
p07 | 1-20 | 50 | 140 68267 | 4426 38.22 37.96 34.78 2.81 1.13
50 | 160 | 166551 | 4421 39.33 - 37.18 3.60 2.57
70 | 140 | 133873 | 4380 39.45 - 38.55 3.25 2.58
pG7 1 21-40 | BG | 140 27623 | 4840 31.69 31.47 25.75 4.73 1.01
50 | 160 51753 | 4801 32.79 32.72 27.97 5.681 2.91
70 | 140 54964 | 4751 32.8 32.48 29.09 534 2.32
70 | 160 | 127679 | 4543 31.15 - 28.1 2.43 0.68
pO7 1 31-50 1 60 | 140 11287 | 4758 29.49 29.47 26.03 3.62 1.05
53 | 160 28315 | 4670 30.44 30.06 28.58 3.77 2.08
70 | 140 19283 | 4688 32.39 31.83 30.98 5.57 4.14
70| 160 53689 | 4460 30.47 30.28 29.2 2.11 1.33
Avg. 28.24° | 29.81 25.50 3.54 2.28

19

Table 4: Results for instances with 25 customers and 5 {acilities

#1LV] LY |[1UB] LP IPY [Gap % | Nds | CPU (m) | Loc | # Veh | # Rt
1] 50 | 140 | 4795 | 4504.4 | 4699 0 31 0.9 04 2.2 10
1| 50| 160 | 4795 | 4425.8 | 4511 0 197 280.5 | 0,4 1,2 10
11 70 | 140 ¢ 4722 | 4366.1 | 4425 0 97 2441 04 1,2 7
11 70 | 160 | 4722 | 4295.4 | 44325 0 71 204 04 1,2 7
2 1 50 1 140 | 5193 | 4849.8 | 4899 0 22 0.7 0,1 2,2 8
2 | 50 | 1680 | 4968 | 4725.4 | 4815 0 121 33|04 2,2 8
2 | 70 | 140 | 4809 | 4669.0 | 4759 0 157 581 04 2,2 G
2 1 70 | 160 | 4762 | 4537.1 | 4602 0 39 861 0,1 1,2 7
31 60 | 140 | 5281 | 4810.0 | 5062 g 268 271 0,2 3,2 1G
3| 60 | 160 | 5139 | 4701.1 | 4837 G 75 22102 2,2 10
3| 80 | 140 | 5048 | 4606.1 | 4758 0 579 511 04 2,2 8
3| 80 | 160] 4831 | 4502.5 | 4742 0 49 6.7 04 2.2 8
4 1 B0 | 140 | 4995 | 4697.4 | 4785 0 867 57| 04 2,2 10
4 1 60 | 160 | 4869 | 4578.2 | 4785 0.1 3790 36001 04 2,2 10
4 | 80 | 140 | 4992 | 4485.8 | 4689 0 5% 361 04 2,2 7
4 | B0 | 160 | 4767 | 4396.1 | 4479 0 9 1061 0,4 1,2 7
51 60 | 140 | 518G | 4795.3 | 4842 g 17 0.6 0,2 2,2 9
51 60 | 160 | 4871 | 4670.2 | 4803 0 35 19104 2,2 7
5 | 80 | 140 | 4805 | 4620.9 | 4741 G 43 2.8 04 2,2 6
5 1 80 | 160 | 4805 | 4507.6 | 4655 G 45 ilbi 24 1,2 7
6 | 50 | 140 ; 4870 | 4642.6 | 4761 0 57 1.6 | 0,2 1,3 7
6§ | 50 t 160 | 4823 | 4544.5 | 4685 0 71 1306 | 2,4 2,1 9
6 1 70 | 140 | 4721 | 4485.6 | 4703 0 263 95102 2,2 6
6 | 70 | 180 | 4721 | 4388.3 | 4482 0 181 2391 0,2 1,2 6
7| 50 | 140 | 5412 | 5000.1 | 5098 0 441 1.1 0,4 2,3 9
71 50 | 160 | 5238 | 4852.2 | 4889] 161 32| 04 2,2 9
770 | 140 | 5159 | 4739.4 | 4787 G 21 0.5 04 2,2 T
7170 | 160 | 4934 | 4609.8 | 4781 v 105 401 04 2,2 8
8 | B0 | 140 | 5134 | 4836.5 | 4898 0 39 1.3 01 2,2 8
8 | 50 | 160 | 5162 | 4703.1 | 41886 0 2475 91.8 1 0,2 2,2 8
8 1 70 | 140 | 5025 | 4646.2 | 4767 0 781 16.5 | 0,2 2,2 8
& 170 | 160 | 4769 | 4513.1 | 4592 0 149 207101 1,2 6

10Optimal or best IP found by the algorithm within the time limit.

20

Table 5: Results for instances with 40 customers and 5 facilities

I | H-BP Gap CPU(m) # #
LY | LT 1 UB | UB LP | IPY | % | Nds{H-BP | E-BP | Total | Loc Veh | Rt
9 | 50 [140 | 7170 | 7131 | 6976.0 | 7131 0| 807 | 5327 150.0 | 2032 0,34 | 221 |14
9 | 50 | 160 | 7170 | 7170 | 6826.2 | 6999 | 0.32 | 1065 | 120.0 | 360.0 | 480.0 | 0,24 | 12,2 | 14
9 | 70 | 140 | 7064 | 6866 | 6700.2 | 6866 0| 203 491 113.0 1 117.9] 0,24 | 1,22 | 11
9 | 70 | 160 | 6984 | 6821 | 6581.0 1 6821 | 1.26| 35| 3541 360.7 13961 034 | 211 |10
10 | 50 | 140 | 7449 | 7183 | 6899.7 | 7183 | 3.22 | 573 | 120.1] 360.4 | 4805 0,24 | 1,23 | 15
101 50 | 160 | 7236 | 6934 | 6757.4 | 6934 0] 43 56| 480 536 024 | 122 |15
101 70 | 140 | 7166 | 6823 | 6616.7 | 6823 0 129 24| 103.2 10561 024 | 1,22 |10
101 70 | 160 | 7166 | 6633 | 6513.6 | 6612 0ol 25 84| 187.6|196.0 | 024 | 1,1,2 | 10
11| 60 | 140 | 9253 | 8780 | 8697.4 | 8780 0| 97 96| 97.8]107.4(0124] 21,11 16
11 | 60 | 160 | 9028 1 8753 | 8578.6 | 8753 0| 41| 280 154.6| 1826 (01,24 1,1,2,1 | 16
11| 80 | 140 | 8943 | 8663 | 8439.0 | 8440 0 3 7.8 88| 1660124 | 1,1,1,1 § 11
11 | 80 i 160 | 8943 | 8438 | 8390.4 | 8438 0 9| 115 138.2|149.7 | 01,24 | 1,1,1,1 | 11
12 | 60 1 140 | 7827 | 7740 | 7050.9 | 7253 012524 1200 | 360.1 | 480.1 | 0,24 | 222 |15
12 | 60 | 160 | 7544 | 7236 | 6907.7 | 7236 | 2.95 | 24| 84.01 360.4 | 4444 | 024 | 2,22 | 15
12| 80 | 140 | 7479 | 7132 | 6793.9 | 7132 | 279 | 27| 120.0 | 360.1 | 480.1 | 0,24 | 2,22 | 11
12 | 80 | 160 | 7430 | 6947 | 6655.5 | 6947 | 4.18 4| 3723603 (3975] 0,14 | 21,2 |12
13| 60 | 140 | 7386 | 7167 | 6920.4 | 7167 0] 183 15| 556 | 57.11 0,24 | 2,22 [13
13| 60 | 160 | 7212 | 6950 | 6771.6 | 6950 | 0.05 | 2121 | 120.0 | 360.0 | 480.0 | 0,24 | 2,1,2 | 13
13| 80 | 140 | 7121 | 6849 | 6662.9 | 6849 6] 159 39| 1138|1177] 0,24 | 1,22 | 10
13 | 80 | 160 | 7018 | 6846 | 6544.7 | 6639 6] 53] 39020093209 024 | 1,12 |10
14 | 50 | 140 | 7424 | 7167 | 7053.1 | 7167 0! 95 33| 221 253 023 | 1,22 |13
14| 50 | 160 | 7340 | 7001 | 6906.1 | 7001 0: 433 11.0| 755 8.5 0,24 | 1,22 |13
14| 70 | 140 | 7174 | 6881 | 6745.5 | 6881, 0 317 85| 149.0 | 1575 | 0,24 | 1,22 | 10
14| 70 | 160 | 7000 | 6845 | 6620.4 | 6845 | 2.34 ¢ 43| 20.3| 360.1 3804 | 1,24 | 1,12 | 10
15 | 50 | 140 | 7860 | 7343 | 7256.3 | 7343 Gi 79 0.8 441 52 014 | 222 [14
15| 50 | 160 | 7656 | 7124 | 7091.1 | 7117 ol 29 1.8 6.5 83| 0,14 | 1,22 |13
15| 70 | 140 | 7466 | 7005 | 6924.5 | 7000 G| 277 351 1286 | 1322 014 | 1,22 | 10
15| 70 | 160 | 7241 | 6944 | 6762.8 | 6944 0| 281 5712112 2169 | 0,24 | 1,22 | 10
16 | 50 | 140 | 7283 | 7013 | 69405 | 7012 o 2061 102 147811581 01,4 | 1,22 |13
16| 50 | 160 | 7058 | 6972 | 6806.6 | 6972 | 0.35 | 661 76.2) 360514367 | 024 | 1,22 |13
16| 70 | 140 | 6945 | 6857 | 6649.8 | 6665 | 0.04 | 19 682 391.1 459.2| 0,14 | 1,1,2 | 10
16 | 70 | 160 | 6945 | 6658 | 6535.4 | 6658 | 1.64 6] 2613633138051 024 | 1,1,2 | 9

10ptimal or best IP found by the algorithm within the time limit.

21

5 Conclusions and Future Research

In jointly optimizing the decisions of facility location, vehicle routing, and route assignment, the
LRSP provides solutions that more accurately capture the practical aspects of designing logistics
systems. In this paper, we presented two formulations for the LRSP with capacity and time limit
constraints. For the set-partitioning-based formulation, we developed valid inequalities and demon-
strated their effectiveness empirically, and we developed a branch-and-price algorithm with several
variants. The pricing problem can be formulated as an elementary shortest path problem with
resource constraints (ESPPRC). To solve the exact pricing problem, we developed a two-phase so-
lution algorithm that utilizes the ESPPRC labeling algorithm and described two heuristic pricing
extensions. We extended the branch-and-price algorithm to a two-stage algorithm; the algorithm is
restarted after a heuristic branch-and-price procedure is completed. Finally, we presented compu-
tational results for instances including 25 and 40 customers. The algorithm finds optimal solutions
for the majority of instances and obtains good solutions with smail integrality gaps for the rest.

Although the valid inequalities proved to be effective in significantly closing the gap, the experiments
showed thaf there remains a gap of two to three percent between the LP relaxation bound at the
root node and the optimal solution. One research avenue is to explore ideas for generating additional
inequalities and to extend the algorithm to a branch-cut-and-price algorithm. We expect that the
addition of further cutting plane routines will prove helpful in solving larger instances.

There are two practical implications of the work reported in this paper. First, we have demonstrated
that it is computationally feasible to obtain optimal or good quality solutions for the integrated
problem and that there is value in solving the integrated problem. Namely, for a fixed set of
customers and candidate facility locations, the integrated problem identifies opportunities to lower
cost through changes in facility selection, reduction in vehicle quantity, and/or changes in customer
routing. Second, since the LRSP is a generalization of other well-known problems, such as LRP,
MDVRP, VRP, and VRPMT (VRP with multiple trips), the algorithm described in this paper can
be modified to solve these special cases. One area of ongoing and fufure research is to to explore
possible contributions of our algorithm to the literature for these special cases. Early results for
one special case, the LRP under capacity constraints, are reported in Akea et al. (2008).

Acknowledgment. This research was supported in part by the P.C. Rossin School of Engineering
at Lehigh University.

References

7. Akca. Location Routing and Scheduling Problems: Models and algorithms. Working paper, COR@L Lab,
Lehigh University, 2008.

7. Akca, R. T. Berger, and T'. K. Ralphs. A Branch-and-Price Algorithm for Combined Location and Routing
Problems Under Capacity Restrictions. Working paper, COR@L Lab, Lehigh University, 2008.

R. Anbil, J.J. Forrest, and W.R. Pulleyblank. Column Generation and the Airline Crew Pairing Problem.
Proceedings of the Fnlernational Congress of Mathematicians Berlin, Extra Volume, IIE667-686, 1998.

J. A. Appleget and R. K. Wood. Explicit-Constraint-Branching for Solving Mixed-Integer Programs. In
M. Laguna and J.L. Gonzélez-Velarde, editors, Computing Tools for Modeling, Optimization and Sim-
ulation, pages 245-261. Kluwer Academic Publishers, Boston, 2000.

C. Barnhart, E. L. Johnsen, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance. Braach and Price:
Column Generation for Solving Huge Integer Programs. Operations Research, 46(3):316~329, 1998.

22

R. T. Berger, C. R. Coullard, and M. S. Daskin. Location-Routing Problems with Distance Constraints.
Transportation Science, 41:29-43, 2007,

L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and Scheduling of Vehicles and Crews: The State of
the Art. Computers and Operotions Research, 10, 1983,

L. Burlett. Regional Operating Expenses: A Case Siudy, 2002. Available at http://www.sh-
d.com/issues/winter2002/features,/save.asp.

Kenworth Truck Company. White Paper On Life Cycle Cost, 2003,

LF. Cordeau, M. Gendreau, and G. Laporte. A Tabu Search Heuristic for Periodic and Multi-Depot Vehicle
Routing Problerms. Networks, 30:105-118, 1997.

M. S. Daskin. Network and Discrete Location: Models, Algorithms and Applications. John Wiley and Sons,
Inc., New York, 1995,

M. Desrochers and F. Soumis. A Column Generation Approach to the Urban Transit Crew Scheduling
Problem. Transportation Science, 23(1):1-13, 1989,

J. Desrosiers, Y. Dumas, M. Desrgchers, F. Soumis, F. Sanso, and P. Trudeau. A Breakthrough in Airline
Crew Scheduling. Technical Report G-91-11, GERAD, 1991.

I Dumitrescu. Constrained Path and Cycle Problems. PhD thesis, Department of Mathematics and Statistics,
University of Melbourne, 2002.

D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An Exact Algorithm for the Elementary Shortest Path
Problem with Resource Constraints: Application to Some Vehicle Routing Problems. Networks, 44(3):
216-229, 2004.

R. Fukusawa, H. Longo, J. Lysgaard, M. Poggi de Aragaoc, M. Reis, E. Uchoa, and R. F. Wemeck. Robust
Branch-and-cut-and-price for the Capacitated Vehicle Routing Problem. Muathematical programming,
106(3):491-511, 2006.

G. Laporte, Y. Nobert, and D. Arpin. An Exact Algorithm for Solving a Capacitated Location-Routing
Problem. Annals of Operations Research, 6:293-310, 1986,

J. Lenstra and A, Rinnooy Kan. Complexity of Vehicle Routing and Scheduling Problems. Nelworks, 11:
221228, 1981.

J. M. Y. Leung and T. L. Magnanti. Valid Inequalities and Facets of the Capacitated Plant Location
Problems. Mathematical Programming, 44:271-291, 1989,

C.K. Lin and R.C.W. Kwok. Multi-Objective Metaheuristics for a Location-Routing Problem withMultipie
Use of Vehicles on Real Data and Simulated Date. Burepean Jowrnal of Operational Research, In Press,
2005.

C.K. Lin, CK. Chew, and A. Chen. A Location-Routing-Loading Problem for Bill Delivery Services. Com-
puters and Industrial Engineering, 43:5-25, 2002.

J. M. Nambiar, L.F.Gelders, and L.N. Van Wassenhove. A Large Scale Location Allocation Problem in the
Natural Rubber Industry. Buropean Journal of Operational Research, 6:183-189, 1981,

D. Ryan and B. Foster. An Integer Programming Approach to Scheduling. In A. Wren, editor, Compuler

Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pages 269-280. North-
Holland, 1981.

H. P. Vance, C. Barnhart, E. Johnson, and G.L. Nemhauser. Airline Crew Scheduling: A New Formulation
and Decomposition Algorithm. Operations Research, 45(2):188-199, 1997

23

