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Abstract

This paper extends the Log-robust portfolio management approach to the case with short
sales, i.e., the case where the manager can sell shares he does not yet own. We model the
continuously compounded rates of return, which have been established in the literature as
the true drivers of uncertainty, as uncertain parameters belonging to polyhedral uncertainty
sets, and maximize the worst-case portfolio wealth over that set in a one-period setting. The
degree of the manager’s aversion to ambiguity is incorporated through a single, intuitive
parameter, which determines the size of the uncertainty set. The presence of short-selling
recuires the development of problem-specific techniques, because the optimization problern
is not convex.

In the cagse where assets are independent, we show that the robust optimization problem
can be solved exactly as a series of inear programming problems, and of convex programming
problems with one variable; as a result, the approach remains tractable for large numbers
of assets. We also provide insighis into the structure of the optimal solution. In the case
of correlated assets, we develop and test three heuristics. Numerical results suggest that
the manager should select the heuristic where correlation is maintained only between assets
invested in. In computational experiments, the proposed approach exhibits performance

superior to that of the traditional robust approach.

1 Introduction

Portfolio management traditionally assumes the perfect knowledge of the underlying probability

distributions of asset prices. It is, however, difficult to estimate such probabilities accurately, and
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over-reliance on wrong guesses might yield dire outcomes for financial companies. For instance,
Goldman Sachs announced in August 2007 that “its funds had been hit by moves that its models
suggested were 25 standard deviations away from normal, [which| translates into a likelihood of
0.000...0006, where there are 138 zeros before the six” (The Economist [26]). In another well-
publicized case, a trader for the hedge fund Amaranth Advisors “made some very big bets on
natural-gas prices that went spectacularly wrong,” costing his employer $6.5 billion in September
2008, “more than half of what not long before was $§9 billion it had under management” (The
Economist [26]). The hedge fund shut down shortly thereafter (International Herald Tribune
[22]).

Confronted with such levels of uncertainty, financial companies are often willing to decrease
their expected profit if it decreases their risk exposure. A natural way %0 incorporate risk
preferences would be to rely on the expected value of utility functions, which are nonincreasing
and concave in the portfolio wealth. Unforfunately, utility functions are difficult to articulate in
practice. A more intuitive risk criterion is the probability that the portfolio value falls below a
given threshold, but it suffers from tractability issues, as computing this probability will in general
require multi-variate integration. Such issues are further compounded in dynamic optimization

by the rapidly increasing size of the state space as the time horizon increases.

Literature Review. The basics of modern portiolio theory were articulated in the 1950s by
Markowitz [20], who first introduced the concept of an efficient frontier, capturing the investor’s
trade-off between risk and return. The high sensitivity of the optimal asset allocation to input
data such as mean and covariance, documented in Chopra and Ziemba [9], has required the
development of robust optimization techniques to protect the portfolio (Goldfarb and Iyengar
[15], Erdogan et. al. [12]}. Robust optimization was originaily developed to address parameter
uncertainty in mathematical programming problems; uncertain parameters are assumed to belong
t0 a known, convex uncertainty set, and the decision-malker optimizes the worst-case value of
the objective, subject to feasibility for the worst-case value of each constraint. This was first
proposed by Soyster in {24]; however, because each parameter was set to its worst-case value,
the approach was deemed too conservative for practical implementation. It regained momentum
in the mid-1990s when teams of researchers led independently by Ei-Ghaoui and Lebret [11]
and Ben-Tal and Nemirovski [1] considered ellipsoidal uncertainty sets for convex programming
problems and derived tractable robust reformulations using strong duality. The reader is referred
to Bertsimas and Thiele {5} for a tutorial-level introduction to robust optimization.

In subsequent work, Ben-Tal and Nemirovski [2] and Bertsimas and Sim [4] have applied ro-



bust optimization techniques to stochastic optimization problems where the distributions of the
underlying random variables, rather than the value of uncertain parameters, are not known. In
particular, they model stock returns as uncertain parameters belonging to known range forecasts,
and their goal is to maximize the portfolio’s worsi-case return, where the worst case is computed
over a set of allowable deviations of the stock returns from their nominal values. This implemen-
tation of robust optimization in finance also underlies the work in Bertsimas and Pachamanova
13], Pachamanova [21] and Fabozzi et. al. [13]. As pointed out in Kawas and Thiele [18], how-
ever, numerous studies of stock price behavior (see Hull [16] and the references therein) indicate
that the true drivers of uncertainty are not the stock returns, but instead the continuously com-
pounded rates of return, which are central to the well-known Lognormal model developed by
Black and Scholes [6], where they are assumed to obey a Gaussian distribution. This model has
become widely implemented in practice, but neglects the fact that the real distributions have
fat tails (Jansen and deVries [17], Cont [10]); hence, managers underestimate the probability
of adverse events. In addition, the empirical validity of the Lognormal model among possible
distributions remains open to debate (Fama [14], Blattberg and Gonedes [7], Kon [19], Jansen
and deVries {17], Richardson and Smith [23], Cont [10]). In particular, Jansen and deVries [17)
states: “Numerous articles have investigated the distribution of share prices, and find that the
returns are fat-tailed. Nevertheless, there is still controversy about the amount of probability
mass in the tails, and hence about the most appropriate distribution to use in modeling returns.
This controversy has proven hard to resolve.”

The goal of this paper is to investigate a new approach to portfolio management under
uncertainty, based on robust optimization, which is more tightly connected to the available
information and managers’ risk tolerance. Our focus here will be on the case with short sales,
i.e., the case where amounts invested in a stock can be negative. While the approach without
short sales was thoroughly investigated in Kawas and Thiele [18], the optimization problems
when short-selling is aliowed are not convex, thus precluding the direct use of strong duality to
derive tractable, exact reformulations, and requiring new solution fechnigues.

We believe that robust optimization with polyhedral sets applied to the continuously com-
pounded rates of return gives more relevant results for finance practitioners; in addition, it
exhibits performance superior to the traditional robust approach, which focuses on uncertainty

for the stock returns, while remaining theoretically insightful and numerically tractable.

Contributions.

(a) In the case of independent assets, we present a tractable reformulation to the robust opti-
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mization problem as a series of linear programming problems, and of convex programming
problems with one variable. We show diversification is achieved naturally, provide insights

into the structure of the optimal solution, and test the approach in numerical experiments.

(b) We use the previous results to develop three heuristics for the case of correlated assets, where
the robust problem cannot be reformulated as a convex programming problem. Numerical
results suggest the manager should select the heuristic where correlation is maintained only
between assets invested in, and correlation between other stocks (either between a stock

invested in and a stock short-sold, or between stocks short-sold} is ignored.

QOutline. We analyze the case of independent assets in Section 2. We extend the approach to
correlated assets in Section 3. We end each section with numerical experiments. Finally, Section

4 contains concluding remarks. All proofs are in appendix.

2 'The Case of Independent Assets

2.1 Problem Setup

We consider a one-period portfolio management problem, where the manager invests his money
in various assets in order to maximize his terminal wealth. Short-selling is allowed, i.e., the
manager can sell assets he does not own, with the intention of purchasing them later when their
price has decreased. From a mathematical perspective, this means that amounts invested in some
of the stocks can be negative. In line with industry practice, the total amount of money short-
sold cannot exceed a pre-determined fraction of the decision-maker’s budget. In this section, we
assume that assets are independent; this situation arises for instance when the manager invests
in asset classes such as gold, timber or real estate. The extension to correlated assets is described
in Section 3.

We use the following notation throughout the paper:



n 1 the number of stocks,
T: the length of the time period,
S;(0) :  the initial (known) value of stock 1,
Si{(Ty - the (random) value of stock ¢ at time T,
wy :  the initial wealth of the investor,
wi o the drift of the Lévy process for stock 4,
o; :  the infinitesimal standard deviation of the Lévy process for stock ¢,
Z; . the number of shares invested in stock %,
z; +  the amount of money invested in stock <.
p percentage of the initial wealth short sold.
This is the same notation as in Kawas and Thiele [18], with the addition of the leverage parameter
p, which is specific to the case with short-sales.
We model asset prices as having unknown but bounded continuously compounded rates of

return. The price of asset ¢, i = 1,...,n, at time 7" obeys the foliowing equation:

2
SZ(T) B S’},(O} exp |i(||u:«6 - %—) T+ O'%ﬁfz} ,
where the Z;, ¢ = 1,...,n, are unknown parameters of bounded support [—¢,¢|. {The approach

can easily be extended to the case where supports vary depending on the asset, but this does not
appear to yield significant improvement, since the range of the continuously compounded rates
of return is already asset-specific through the estimation of ¢;.) The transformation % = ¢z
vields:

o2

8:{(T) = 8;(0) exp K” —~ —2-) T+ U,;\/fczi] ,

with |z;i < 1 for all . The parameters 2z, 1+ = 1,...,n, are called the scaled deviations of the
continuously compounded rates of return.

While the decision-maker aims at protecting portfolio wealth from downside risk, he is also
reluctant to over-protect the portfolio and miss gain opportunities. Robust optimization aims at
optimizing a “reasonable worst-case” of the objective, where the “reasonable worst-case” captures
the fact that independent uncertainty drivers will rarely reach their worst case simultaneously,
provided that enough uncertainty drivers are present. This fact, which underlies the law of large

numbers in statistics, is modeled by the constraint:

i |2 < T
i=1



which puts a bound on the number of uncertainty drivers that can achieve their worst case.
This constraint is called a budget-of-uncertainty constraint in the literature. When I' = 0, the
uncertainty set reduces to the point where all scaled deviations are zero and the approach becomes
the nominal model, discarding risk o solely consider nominal returns. When I' = n, all scaled
deviations are equal to their worst case, so that risk protection is emphasized at the expense of
return. Selecting I between 0 and n allows the decision-maker to achieve a trade-off between
risk and return.

The manager’s goal Is to maximize the worst-case value of his portfolio, where the worst case
is measured over the uncertainty set defined above, under the constraints that (i} he spends at
most wg acquiring his portfolio (budget consiraint), and (ii) he does not short-sell more than
puwy (short-sales constraint). The Log-robust portfolio management model with short sales can

thus be formulated as:

n 2
. lop
mgx min E 1 Iy exXp {(Mi — —%)T +avT ez
==

T
st > lal €T,
i=1

Iz < 1 V4, {1

n
5.1, sz = Wy,
quxl
> (~z:) < pup.

il.?:i((}

The tractability of robust optimization hinges on the ability to reformulate max-min problems
as large maximization problems; this is traditionally done by invoking strong duality in linear or
convex programming to transform the inner minimization problem into an equivalent maximiza-
tion problem (see, e.g., Bertsimas and Sim [4]}. Here, however, the inner minimization problem
is not necessarily convex in the scaled deviations, because the amount of money invested in each
stock is not constrained $o be non-negative, so strong duality for the inner minimization problem
does not hold. As a result, the presence of short sales requires the development of new solution
techniques and algorithms, beyond those investigated in Kawas and Thiele [18].

We first provide a quick overview of the main results in Log-robust portfolio management

without short sales, which will be helpful later in the paper.

Theorem 2.1 (Optimal strategy without short sales (Kawas and Thiele {18]))



(i) The optimal wealth in the Log-robust portfolio management problem without short sales is:

wo exp{ F(I')), where F is the function defined by:

T 23
F(T) = max > xilnki—ql—> &
T =] 3

T gl

st & —oNTex =0, Vi,

n
leml)

!

(i1} The optimal amount of money x; invested at time 0 in stock ¢ s x; wo, for all i, where the

x: are found by solving Problem (2).

We can further characterize the optimali allocation in the Log-robust portfolic management
model, if we assume that the assets are ranked in decreasing order of their nominal return,

Le, ky > ... > k,. We will make this assumption throughout the remainder of the paper.

Theorem 2.2 (Structure of the optimal allocation (Kawas and Thiele [18]))
(1) If the optimal n in Problem (2) is strictly positive, then there exists an index j such that the

decision-maker invests only in stocks 1 to § and we have:

Mo gy,
Xi = (Z; 1/%) (3)
G,:
0, +>7.

In particular, x: o; is constant for all the assets the manager invests in.
(ii) If the optimal 7 is zero, then the manager invests all his money into the asset with the highest

worst-case refurn.

Kawas and Thiele also establish in [18] that the degree of diversification of the portfolio, measured
by the parameter 7, increases with the budget of uncertainty I', until the decision-maker becomes
s0 conservative that he prefers investing in the safest asset only, and the number of stocks invested

in: falls to one.

2.2 The Log-Robust Approach

The remainder of this section will foeus on deriving a tractable reformulation of Problem (1)

and characterizing the corresponding optimal allocation in the presence of short sales. We first



introduce additional notation.

z:  scaled deviation for assets that are not short-sold,
2z scaled deviation for assets that are short-sold,
budget of uncertainty for assets not short-sold,
budget of uncertainty for assets short-sold,

nominal return without uncertainty of stock .

Specifically, we have k; = exp ({uz - %z-)T) for all 4.

We distinguish between assets that are short-sold (z; < 0} and not short-sold (z; > 0),

allocating a budget of uncertainty (to be optimized) I'™ and T'" to each group, and reformulate

Problem (1} as:

T

k)

; : nl . o
max Ffﬁllglw min Z Tk exp(ai\/fczi) +II;ln Z xoky exp(ai\ffczz-)
i 20 i|as <0
ki3 T
st Y |5 <T, st > |FIsTT,
tar; 20 i <0
Z < 1Vist z; > 0. 371 < 1Vist z <O
st I+ T7 =T,
', I'™ > 0 integer.
T
s.t. Z T; = W,
i1
T
Z &y S P wo-
iz <0

(4)
We make the following observations regarding the worst-case uncertainty in the inner minimiza-
tion problems. These observations allow us to transform the first minimization into a convex
programming problem minimizing a differentiable convex function over a polyhedral, bounded
set, and, more importantly, the second minimization into a linear programming problem over

another bounded polyhedron.

Lemma 2.3 (Worst-Case Uncertainty)
(i) At optimality, —1 < ;Ef < 0 for all stocks i that are not short-sold (i.e., the worst case is

to have returns no higher than their nominal value), and the minimization problem in Z oin



Problem (4) is equivalent to the convezr optimization problem over a polyhedral uncertainty sel:

n
min Z xik; exp(wai\/fcz;*“)

2zt
i =0

n
st Y zt<rt, | (8)

iz 20

0< 2z <1Vist x>0

(ir) At optimality, 0 < 27 < 1 for all stocks thot are short-sold (the worst case is to have
returns no lower than their nominal value), and the minimization problem in 27 in Problem ({4)

i equivalent to the linear programming problem:

min Z [zv:1 k(1 — 27 ) + 3 &y exp(os \/Tc)z;"’}

i|e; <0

k22
s.t. Z z, <T7, (6)

HERES)]

0< 2 <1, Vi|zy <0,

In the remainder of this section, we will denote by z;" the absolute value of the scaled deviations
of non-short-sold assefs, keeping in mind that the true worse-case scaled deviation E';" will be
negative. 2 will denote the true worst-case scaled deviation Z;.

Reinjecting Lemma 2.3 into Problem (4), and using the fact that I'™ = I’ ~ I't yields the

following intermediate, convex reformulation when the sets of assets short-sold, {{|z; < 0}, and



assets invested in, {i]|z; > 0} are given. (We discuss the choice of these sets later.)

n T k1)
H o e T + e, , - - o
max z‘&}inz* Z x;k; exp( oV'T ez ) + Z i Ky [exp(m VT ¢) 1} z; + Z i ki
o iz >0 ilag <0 i2;<0
g3

st Yzt <TH
n

>z <T-T7,

iz <C

0< <1, Vi,
0<z <1, Vi,
0<TF <,

I'* integer,

T

8.t. Z T; == Wy,
fe=1
T

Z —z; £ po.

‘i|$g<0
(7)
In what follows, we describe the robust counterpart to Problem (7). Recall that the stocks
are ordered in decreasing order of the k; parameters, i.e., the nominal stock returns without

uncertainty.

Theorem 2.4 (Robust Formulation)

(i) At optimality, either the monager short-sells the mazimum amount allowed, or he does not

short-gell at all.
(t1) The optimal wealth is the mazimum between the optimal wealth in the no-short-sales model,

i.e., wp exp(F(TY), where F is defined in Equation (2), and the convex problem in one variable:

max - (9 [1+1n<(1”;p))] + Fy(0, r)), (8)
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where Fp 1s defined by:

kel
Fp(8, T') = max Z Xi Ink; — Z Xiki —nT — Z&'
HEX ee0 il <0 i=1
st on+&—oVTex 20, Yi|z; = 0,
n+&—k; [exp(ofi\/Tc) - 1} Xi = 0, Yilz; < 0,
Z 56? - 61
iz 220
Z 55’1" - p)
tlag <0
n>20&=20,x 20, i,

(9)

The optimel fraction of money x; ollocated to asset i is (1 + p)—yg1 if the stock is invested in and

—¥: if the stock is short-sold.

Corollary 2.5 characterizes the structure of the optimal allocation.

Corollary 2.5 (Optimal Allocation) Assume n > 0, where n is found by solving Problem

(9). If it is optimal to shori-sell, there exist indices j and l, 7 <1 such that the manager invests

in stocks 1 to §j and short-sells stocks [ to n.

Specifically, the optimal fraction x; of money invested in asset i is given by one of the following

two allocations:

Allocation 1.

Xi

with x; < 0. Furthermore, n =

il

1/0’,;
(L+p) = :
Zfzzl 1/oq
0,
6vTe Zn: 1
a=11/0a bt g1 K [exp(% VT e) — 1] ’
_ 6vTe _ 1
ki [exp(ai VTe) - 1] I 1 1og
8v/Te
‘(3;,:]_ 1/00

il

i< 7,

jH1<i<l~1,



Allocation 2.

P 1oy i<

VT ¢ Ty 1/ (ke [exp(op VTe) - 1)) ’

o P i1 1o, -

Xi = VT ¢ 3ohy 1/ (ks lexploy vTe) = 1)) ’
G, i+l <i<] -1,

_p (s exp(o V) ~ 1) .y

y Sy 1/ (ke lexplon VTe) ~ 1)) T

1
Sob=t 1/ (ks lexp(on vTe) = 1))

Corollary 2.6 studies the diversification of the portfolio. The results are similar to those in the

with x; > 0. Furthermore, n=p

no-short-sales case, in the sense that diversification increases until the decision-maker becomes
so conservative that he makes his investment decision based solely on the worst-case returns of

all the stocks.

Corollary 2.6 (Diversification) When the assets are independent, the number of the stocks

either invested in or short-sold increases in the budget of uncertainty I' until:
either T' reaches its upper bound (T' = n},
or the approach achieves complete diversification, i.e., |x:| > 0 for all ¢, for some volue of T,

or the shadow price n of the budget-of-uncertainty constreint, which is non-negative and non-

increasing with T, becomes zero.
Remarks.

e Once 11 has reached its lower bound of zero, it becomes optimal to invest in the stock with
the highest minimum return for all subsequent (higher} values of I'. We invest wg in that
stock {no short sales) if the lowest maximum return exceeds the highest minimum return,
i.e., there is a possibility that the stock we short-sell will perform better than the stock we
invest in. Otherwise, we invest (1 + p)wp In the stock with the highest minimum return,
short-selling the stock with the lowest maximum return up to the maximum amount of

money ailowed.

e Even when complete diversification is achieved (|x:| > 0 for all 1), the optimal allocation

can still evolve as a function of I, as two trends compete: (1} the increase of §, pushing

12



for more stocks invested in, and {2) the decrease of I, pushing for more stocks short-sold.
If short sales are not allowed, a dominating first trend results in an increase in the number
of stocks invested in, until this number suddenly drops off to one (which corresponds to
the asset with the highest worst-case return). A dominating second trend results in an
increase, followed by a decrease, in the number of stocks invested in, before that number

alse drops off to one.

We must now determine the optimal sets of assets short-sold and assets invested in to finalize

the methodology.

Algorithm 2.7 The optimal allocation is found by solving n linear programming problems (9),
with {ilz; = 0} = {1,...,5} for Problem j, j==1,...,n.

To see this, we use the fact that the optimal strategy is obtained by ranking the assets in order
of decreasing return without uncertainty, k; (or equivalently, Ink;). Therefore, to describe the
sets of assets invested in and of assets short-sold, we simply have to enumerate the cut-off point
between the stocks, which can be either viewed as stock 7 or {, since the manager neither invests
in nor short-sells stocks 51, ..., I—1. This procedure significantly contributes to the tractability
of the approach, because we do not have to resort to binary variables to determine the optimal

gets of assets invested in and assets short-sold.

2.3 Numerical Experiments

In this section, we will compare the performance of the Log-robust optimization approach against
that of the robust model traditionally used in portfolic management, which we introduced in

Kawas and Thiele [18]. We will also investigate the benefits associated with short-selling.

Setup.
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The traditional robust model with short sales is given by:

n

n 2 n
+ - . 9-....... - 1/2 - . . .
ml::;)sg’cr E (7 —z]) exp KM - g)T] E jexp E 1Qij Z; Ts E G
JW

g ] L

s.t. Z(mf — ;) = wo,
Gl

s84+q; > cr, Vi,

T

1/2 - .

-y < E Mm/ {z§ —z5) <y, VA,
k=1

n
Z T; < pwg
ez

+ — .
8, @, T, T, ;2 0, Vi,

with M2 the square root of the covariance matrix of exp KM — %’3) T+ VT (}:};E Qzlj/ 2Zj)} .

We consider three models: the traditional robust approach with short sales, and the Log-
robust models with and without short-sales. To compute the optimal allocation in each case,
we downloaded six months’ worth of daily stock price data for 50 stocks from Yahoo! Finance,
computed the model parameters using the continuously compounded rates of return In(S;/Si—1)
and generated 1,000 scenarios for the stock prices with a time horizon of six months. Initial
wealth is $100,000. We take ¢ = 1.96, which would correspond to a 95% confidence interval if
the demand was Gaussian; experiments not presented in the paper suggest the allocations are
not overly sensitive to the choice of the range parameter.

We also investigate the impact of correlation. To achieve this last goal, we replace the
off-diagonal elements of the covariance matrix computed above by zeros in these numerical ex-
periments about independent assets; the computational study in Section 3 presents the results
with the full (not diagonal) covariance matrix. We also consider two different data sets to make

sure our insights do not depend on the stocks selected.

Analysis of optimal solution.

Figure 1 shows the diversification level for the Log-robust and the traditional robust models, re-
garding the stocks short-sold; we note that the Log-robust model results in significantly greater
diversification. Specifically, in the traditional robust model, the manager short-sells at most one
stock, while the manager short-sells an increasing number of stocks (up to 28 stocks out of 50} in
the Log-robust model as I' increases up to 26. Then we observe a breakpoint, when the manager

is so averse to ambiguity that it becomes optimal for him to invest only in the safest stock, i.e.,

i4



the one with the highest minimum return.

[T J———
25
20
£ Log-robust
% 15 & Traditional ||
G
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° s e IR SRR
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Figure 1: Number of stocks short-sold in optimal portfolio for I' varying from 0 to 50, for the
Log-robust and the Traditional models.

Figure 2, which represents the number of shares either invested in or short-sold, shows that
the diversification obtained in the Log-robust model is genuine, in the sense that it is not a result
of buying or shorting only a few shares per stock.

Figure 3 shows the diversification in the stocks short-sold for the Log-robust model for two
different data sets. We observe similar trends in both cases while noting that the breakpoint
occurs much earlier in one data set than in the other.

Figure 4 shows the effect of the leverage parameter p on diversification for the Log-robust
model (diversification did not change with p for the traditional robust model). We observe that
increasing the amount of money the investor can use to short-sell stocks results in an increase in
the number of stocks short-seld. Interestingly, the brealkpoint occurs for the same value of the
budget of wncertainty.

Figure 5 shows the diversification behavior in relation to the budget of uncersainty for the
stocks the manager invests in and the stocks the manager short-sells. Because the stocks are
ranked in decreasing order of nominal return, the shaded area in the upper part of the figure
corresponds to stocks invested in, and the shaded area in the lower part of the figure corresponds
to stocks short-sold. The blank area between the previous two corresponds to stocks that are

neither invested in nor short-sold. For this data set, the manager never achieves complete
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Figure 2: Number of shares of both stocks invested in and short-sold, for I' = 10 and I' = 20, in
the Log-robust model.

75
20
Data Set 1
5 Data Set 2 _

# of Stocks

Figure 3: Number of stocks short-sold in optimal portfolio for I' varying from 0 to 50, for two
different data sets for the Log-robust model.

diversification, in the sense that there are stocks he never invests in nor short-sells, for any
value of I'. Diversification increases steadily when I' increases up to 10, resulting in at most 26

stocks invested in and 12 stocks short-sold, out of 50. Then diversification breaks and the very
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Figure 4: Number of stocks short-sold in optimal portfolio for I" varyving from 0 to 50, for two
different values of the leverage parameter p for the Log-robust model.

ambiguity-averse decision-maker invests in one stock only and short-sells one stock onty. The
stock invested in is the stock with the highest minimum value and the stock short-sold is the
stock with the lowest maximum value. The highest minimum value of the former is higher than

the lowest maximum value of the latter, which explains why the manager keeps short-selling.

Analysis of performance in simulations.
We now investigate performance of the approach with respect to 99% Conditional Value-at-Risk
{cVaR), which is defined as the expected value of the portfolio given that its value falls below
the 1% percentile. The decision-maker naturally wants this worst-case portfolio value to be as
large as possible, so 99% cVaR is here a risk-adjusted performance measure, not a risk measure,
and should be maximized here instead of minimized. Hence, it is well-suited to our framework.
We also ran all the tests using the 99% VaR, i.e., the value of the 1% of the portfolio; the graphs
are emitted in this paper because they are very similar to those obtained in the ¢VaR case, but
all of our conclusions extend to the VaR performance metric.

The simulations were performed using @Risk 5.0 from Palisade Corporation. We consider
two cases: (i} the case where the random variables do obey Normal (Gaussian) distribution, in
which the only error made by the manager implementing the traditional robust approach is to

use symmetric confidence intervals for the stock prices themselves rather than for the true drivers
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Figure 5: Impact of " varying from 0 to 50 on stock allocation and diversification for uncorrelated
stocks.

of uncertainty, the continuously compounded rates of return, and (ii) the case where the random
variables obey a Logistic distribution and hence have “fat tails”, in which case the Lognormal

model of stock prices behavior underestimates rare events.

Normal Distribution.

Figure 6 shows the 99% cVaR for the three models (traditional robust and Log-robust model
with short-sales, and Log-robust model without short-sales), when assets are uncorrelated and
the distribution of the continuously compounded rates of return is Gaussian. We note that the
Log-robust optimization approach without short sales beats the traditional robust optimization
approach with short sales, for some values of the budget of uncertainty, by up to 3%, further
emphasizing the importance of applying robust optimization to the true uncertainty drivers.
Short-selling allows the decision-maker to increase the 99% cVaR by 7-11%. The proposed
model with short sales also beats the traditional robust model by up to 16%.

Logistic Distribulion.

Figure 7 shows the 99% cVaR for the three models, traditional robust and Log-robust model
with short-sales, and Log-robust model without short-sales, when assets are uncorrelated and
the distribution is Logistic. The curves are similar to the case with Gaussian distribution (Figure

6). The henefit of applying the Log-robust approach with and without short sales, compared to

18
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Figure 6: 99% cVaR for the traditional model with short-sales, Log-robust with short-sales, and
Log-robust without short-sales, in the uncorrelated case for the Gaussian distribution.

the traditional model, is very pronounced here, as the Log-robust approach without short sales

outperforms the traditional model by up to 9%, and underperforms it by at most 1% for other

values of I'.
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Figure T: 99% cVaR for the traditional model with short-sales, Log-robust with short-sales, and
Log-robust without short-sales, in the uncorrelated case for the Logistic distribution.

19



3 The Case of Correlated Assets

3.1 Problem Setup

We now extend the approach describéd in Section 2 o the case of correlated assets. The tradi-

tional Log-Normal model of asset prices describes stock prices as follows:

(5) (- reme

where the random vector Z is Normally distributed with mean 0 and covariance matrix 4.
We define:
Y =Q 32,

where Y ~ N(0,I) and Q% is the symmetric positive definite matrix square root of @. In the
robust optimization approach, the random variables Z; are replaced by uncertain parameters (;,

which can be expressed as a linear combination of the scaled independent uncertainty drivers:
- 2
1/2 -
G=cy ij/ i,
=1

with each component ; belonging to [~1,1] and ¥; belonging to [—¢, ¢] for all %; ¢ is the scale
parameter as in Section 2.

Problem (1) becomes:

T T
max min Zma exp | (p: — 03/2) T+ VTe z Qilj/z 7
i Lt =1
T
st. > |Gl <T,
J=1
- ) (10)
i
s.4. 221 = 1y,
==l
Z (—zi) < pwo.
iz <0

Not only do we lose convexity, as in the case for independent assets, but we can no longer
isolate the impact of the uncertain parameters g; on the objective, because of the correlation. In

particular, because correlation makes all the stocks affected by all the uncertainty drivers:
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(i) we cannot say whether the worst case is achieved for positive or negative scaled deviations,

(ii) we can no longer split the problem into two subproblems, one for the uncertain parameters
corresponding to stocks we invest in and the other for the uncertain parameters corre-

sponding to stocks we short-sell,

(iif) we can no longer extract the scaled deviations for the stocks short-sold out of the exponential
term in order to go back to a linear programming problem, because other scaled deviations

remain inside the exponential.

Therefore, we will consider tractable approximations of Problem (10} instead of solving it exactly.

3.2 Heuwuristics

This section defines three heuristics. For each heuristic, the master algorithm still ranks the
assets in order of decreasing nominai return, as in the case of independent assets, and solves n
approximated robust problems, where the set of assets invested in in subproblem j§ is {1,...,7}.

We present numerical experiments in Section 3.3.

Heuristic 1: No correlation for stocks short-sold,

We first investigate a heuristic that discards correlation for the stocks we short-sell. This means
that there is neither correlation between stocks short-sold, nor between a stock short-sold and a
stock invested in. Decoupling the assets in that manner allows us to use the model for correlated
assets without short sales, presented in Kawas and Thiele [18], and the model for independent
assets with short sales, developed in Section 2 above. Let R be the covariance matrix for the

stocks we invest in.
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Heuristic 1 solves Problem (8), where the function F, given in Equation (9) is replaced by:

F(6, 1) max Z Xi Ink; — Z Xiki—nT — Z&

Tn'a )X

iy 20 <0

st n+&—vVTe S RI'%; 20 Vilz; > 0,
Jle; =0

n+&+vTe S RI%; 20, Vilz; > 0,
Fla; >0

174 & oy [exp(oz\/fc) - i} =0, iz < 0,

iz 20

Z 55’-', - p!

il <0

n20,&20X 20, Vi

Heuristic 2: Approximating the off-diagonal elements by their average.
In this second heuristic, we approximate the ofi-diagonal elements (of the square root of the

covariance matrix) by their average:

ZQW
exp | VTc ZQW ~exp [VTe | Q4+ ”ét > 4 ,

2
J#t

and then approximate Z#@?Jsi by I' — ;. This allows us to use the results derived in the

independent case {Section 2), with:

ZQW

ki =k; exp |VTe i’:—l—I‘ ,

and:

ZQl/Z

/2 J#
i
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Heuristic 3: Approximating the off-diagonal elements by a conservative estimate of
their worst-case value.
Because the robust optimization approach is inherently a pessimistic approach, it is also rea-

sonable to consider a more conservative approximation of the {squared root of the) covariance
matrix than the one proposed in Heuristic 2. Here, we replace Zj# ngf zﬂj by —L; when asset
i is invested in, and +L; when asset ¢ is short-sold, where the new parameter L; is defined as
1/2
i

return of the assets the manager invests in, respectively short-sells. The approximation is more

the sum of the I" greatest |Q;/7] for j # i. This decreases, respectively increases, the rate of
conservasive than the robust optimization approach, since the manager selects different values
of §; for different assets 4 in the heuristic, instead of keeping the same value for §; throughout.

1/2

Therefore, Heuristic 3 reduces to the independent model with o; = Q]

4 | and:

k;— = k,‘,’ exp(-—\/ch«;), fOI' I 2 O>

and:
kT =k exp(ﬁcLi), for =; < 0.

3.3 Numerical Experiments

We now repeat the experiments in the case of correlation. The setup remains the same as in
Section 2.3. We comment on the allocations given by the three heuristics, compare their per-
formance, and argue that it is better not to incorporate correlation rather than incorporate it
in an approximate manner, i.e., the decision-maker should implement Heuristic 1. Then we test
the allocation given by Heurlstic 1, against the fraditional robust model with short sales and the

Log-robust model without short sales.

Analysis of optimal solution.

Figure 8 shows the optimal allocation given by Heuristic 1 as a function of the budget of uncer-
tainty. 'We note that correlation introduces rows of zeros in the allocation for the assets invested
in, although the assets are ranked in order of decreasing nominal value as before. There is no row

of zeros for the stocks short-sold, because correlation between these stocks has been discarded.

Figure 9 shows the allocations for the three heuristics when I' is equal to 5. We observe that
Heuristic 1 is the least diversified, since the manager would neither invest in nor short-sell asset

7 to 28; furthermore, he would invest a large amount of shares in asset 29. Heuristic 2 invests
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Figure 8: Impact of I' varying from G to 50 on stock allocation and diversification for correlated

stocks.

in or short-sells asset classes in the middle of the graph, but does not short-sell assets with low

nominal return, which are short-sold by both Heuristics 1 and 3, specifically, assets 1 to 4. Figure
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Figure 9: Allocation for the three heuristics, I' = 5.
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10 shows the allocations for the three heuristics when I 18 equal to 10. The difference between
Heuristic 2 and Heuristics 1 and 3 is even starker here: it has become optimal to short-sell only
one stock and invest in only one stock with Heuristic 2, while the other two heuristics remain

diversified, and generally invest similar (but not equal) amounts in the same stocks. Finally,
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Figure 10: Alocation for the three heuristics, I" = 10.

Figure 11 shows the allocations for the three heuristics when I' is equal to 20. At that stage, it
has become optimal for all three allocations to short-sell only one stock and invest in only one
stock. We observe that Heuristics 2 and 3 yield the same allocation, while Heuristic 1 differs
significantly from the other two, short-selling a stock with lower nominal return and investing in
a stock with higher nominal return.

This analysis of the three allocations suggests that Heuristic 1 is going to perform better in

experiments. This is indeed what we observe in simulations, as described below.

Comparison of the three heuristics,

As in the case of independent assets, we use Conditional Value-at-Risk (cVaR) as our perfor-
mance metric.

Normal Distribution.

Figure 12 compares the three heuristics when the distribution is Normal. Heuristic 1 outpexforms
the other two, and Heuristic 3 outperforms Heuristic 2, for all values of I". Heuristic 1 most out-

performs the other two when the decision-maker is most conservative, and makes money for all
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Figure 11: Allocation for the three heuristics, I' = 20.

values of ", in the sense that 99% ¢VaR is higher than the initial budget of $100,000. Heuristic

3 makes money for I’ from 0 to 11. Heuristic 2 loses money except for I' equal to 4 and 5.
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Figure 12: Comparison of the three heuristics with Normal distribution using cVaR.
Logistic Distribution.
Figure 13 compares the three heuristics when the distribution is Logistic. The curves are very
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similar to the case where the distribution is Normal and Heuristic 1 again significantly outper-
forms the other two, while Heuristic 3 outperforms Heuristic 2 for all values of I'. This suggests
that incorporating correlation in an approximated way can hurt the performance of the portfolio,

and that it is better not to mcorporate correlation at all for the stocks short-sold.
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Figure 13: Comparison of the three heuristics with Logistic distribution using cVaR.

Analysis of performance in simulations.
Due to Heuristic 1’s dominance, we only test that heuristic against the allocations obtained in

the traditional rebust model with short sales and the Log-robust model without short sales.

Normal Distribution.

Figure 14 shows the 99% c¢VaR for the three models. Notice that the Log-robust model with
1o short sales beats the traditional with short sales for I' > 0, and that the Log-robust model
with short-sales beats both, by up to 15% compared to the traditional model and up to 10%
compared to the Log-robust model without short sales. The main lesson from this graph is that it
is much more beneficial for the decision-maker to incorporate uncertainty at the level of the true
drivers of uncertainty rather than to allow short sales, although incorporating both is of course
best. Correlation seems to improve the performance of the proposed approach, especially the
Log-robust model without short sales, which beats the traditional approach more consistently
than before.

Logistic Distribution.
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Figure 14: 99% cVaR for the traditional model with short-sales, Log-robust with short-sales, and
Log-robust without short-sales, for Gaussian distribution.

Figure 15 shows the 99% c¢VaR using a Logistic distribution for the simulated random variables.
While the curves exhibit trends similar to the ones in the Gaussian case (Figure 14} and our
broad conclusions still hold, the most notable feature of this set of experiments is that the Log-
robust model without short sales beats the Log-robust model with short sales for I' between 11
and 24: however, maximum ¢VaR is achieved for " equal to 6 and 7, in line with the rule of
thumb presented in Bertsimas and Sim [4], which suggests a budget of uncertainty equal to the

square root of the number of uncertain parameters.

4 Conclusions

We have extended the Log-robust portfolio management approach to the case with short sales.
When assets are independent, it is optimal for the manager to either short-sell as much as he can,
or not short-sell at all; we have also derived tractable, equivalent reformulations, and provided
optimal allocations. When assets are correlated, we have compared three heuristics, which we
have tested in simulations. Our numerical results suggest that the manager should implement the
heuristic where only the assets invested in are correlated with each other, and other correlations
{between stocks invested in and stocks short-sold, or between stocks short-sold) are discarded.

Computational experiments are encouraging. In particular, they indicate that it is critical for
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the decision-maker to apply robust optimization at the level of the true uncertainty drivers — the
continvously compounded rates of return —~ rather than at the level of the stock returns, as has

been traditionally done in the literature.
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Proofs

A.1 Proof of Lemnma 2.3

(i) Follows immediately from the sign of the z;’s and the fact that the exponential function is

increasing in its argument.

(i) An argument similar to (1) yields the formulation, for the stocks short-sold:

k(2

min Z i ki exp(cr?;\/?cz;")
B il <0
ke
s.t. Z 2 <TI7, (11)
tle; <0

USZ{SI, Yist oz < 0.
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It follows from the concavity of the objective {due to z; < 0 for all stocks short-soid), which is
minimized over a polyhedron, that the optimal solution is achieved at one of the corner points
of the feasible set. In particular, because I'™ is integer, the corner points satisfy 2 € {0,1} for
all ¢ such that stock ¢ is short-sold. The gross return of stock ¢ can therefore be rewritten as &;

if 277 = 0 and k; exp{oVT c) if z; = 1. This yields Problem (6) immediately. 0.

A.2 Proof of Theorem 2.4

The inner minimization in Problem (7) is a convex problem. To reformulate it in a tractable
manner, we invoke strong duality in convex programming (Boyd and Vandenberghe [8]) and

rewrite the inner minimization problem as:

7% T e
n+,f§§?§§,g~ zwr,rz}ii"r:lﬁ Z x; by exp(—oy \/if‘—czf") o Z i ks [exp{a,; \/fc) - 1] z + Z z; ki
iz 20 #z; <0 il <0
il T
+nt sz'-—:[‘"}” +97 Ez;—(I‘——Eﬂ')
;20 das <0

+ > [E-0gt -0+ > e -0t - 670

iy 20 ;<0

8.t 5?1’6;“0205 V3|39720,

167720, Vi| 2 <0,
7t 20,
(12)
Note that we are able to discard the constraint 0 < 't < T" because it will be naturally enforced
in the optimal solution, as there would be infeasibility of the primal problem otherwise. Since I'*
is unconstrained in Problem {12), we have ™ = 5™, which we denote 7. We then differentiate

with respect to z;” and zj‘ , which yields at optimality:

oL (LG

Zl = , Vil a; 2 0,
Hiikiﬁi\/Tc)' |

- n
t G’i\/TC
and:
5 ky (1~exp(ai\/§;c)) gy £1 —6;'0, Yi| x; < 0.
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Injecting these equations into Problem (12) leads to:

’r]+€;~1—€:—0) |: (7?—%5*1—5*-0)]
max E e S 1 —11’1 s T + E -’L'k
g ( O‘@ﬁc Tk vVIe L

|z 20 izi<0
k13
1 s
et etom
;20 ilw; <0

st ok (exp(o*i VTe) - 1) tn &~ 60 =0Vi| 7 <0,
G610 > 0, Vi 2 > 0, (13)
67020, Vi| 2; <0,

n =0,

Zmi = wy,

i=1

> (~z) £ puo.
ilwi«({]

We rewrite the first group of constraints as x; k; (exp(cri VT ¢) — 1) +n+ & L' > 0 because
n+ & -
& ® > 0. As in Kawas and Thiele [18], we use the change of variables x; = —’\/T_—Z to
T; [4
replace &j’o and optimize over the non-negative z; with w™ the amount invested in stocks we do
not short-sell, using a straightforward Lagrange approach {dualizing the equality constraint). We
-1
find that the optimal amount invested in asset  is z; = x; w (Zj!mjzo Xj) . We parametrize

by > ife;z0 Xi = 0. Problem (13) becomes:

max 6 (1 +In (%t)) + B0, w™, 1),
st owy < wt < (14 p)wo, | (14)
8> 0,
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where }?p is defined by (after concatenating the vector of & ! for 2; > 0 and & Y for z; < 0 into

one vector £):

ﬁp(B,er,F)m max Z xi Ink; 4 Z xiiﬂi**ﬁpwzn:&

o +E N
TEXT a0 il <0 =1

st. n+&—ovTexi 20, Vilz; > 0,
n--&+ ks [exp(oi\/fc) e 1] x; > 0, Yilz; < 0,

Z Xi =0, (15)

fles 20

Z (~2;) = w

<0

nz0,& 20, Vi,

xi = 0, Yi|z; > 0.

We then optimize Problem {14) with respect to 6. The objective function is concave as the sum
of two concave functions. Differentiating yields 8 = w™ exp(@fp) at optimality, where 61?,, is
a subgradient of the piecewise linear funection f}, at 8. In particular, 8F does not depend on
# {using strong duality, we define F' as a minimization problem where 6 only appears in the
objective, s0 we can theoretically enumerate the extreme points of this dual feasible set, which
do not depend on 8, to find the optimal solution.)

Reinjecting into Problem (14), we obtain a linear expression in w™ after noting that
Fo(w exp(8Fy), wt, T") = w¥ exp(8F,) OF, + k where k is a constant. It follows that the max-
imum is reached at one of the extremities of [wg, (1 + p)wp]. Problem (9) follows immediately
when w' = (1 + p)wp is optimal, where we redefine F, to drop the dependency in w™.

To conclude the proof, we need to check that the resulting I'™ is indeed integer, since this is
key to Lemma 2.3. To do this, we observe that Problem (9) always has an optimal solution, so
that strong duality holds. We compute the dual, with n and £ as the primal variables, when the

% are set to their optimal valuzes ¥7. This yields an objective of:

Z XiInk; — Z Xiki+min | - Z oiVTex) 2 Z kslexp(osVTe) — 1% 2
ilz:>0 il <0 il >0 iz <0
T

s.t. ZZ}, <T,

i=1

0<% <1, Vi
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This is a linear programming problem and the optimal solution will be achieved at one of the
corner points, i.e., the components of the optimal z are all either 0 or 1. In particular, Ziimi <0 Zis

which is equal to '™, is integer. &

A.3 Proof of Corollary 2.5

Problem (9} is a linear programming problem; hence, it allows for constraint splitting, i.e.,
the dualization of only some of the constraints. We choose to dualize the budget constraints
Ziimiao i = 0 and Zilma <0 Xi = p, introducing the dual variables v+ and v, respectively, and
then note that & = max(0, 0;vTeX; — 0, ks [exp(esv/Te) — 1)%: — 7). The problem becomes:

min  max E Xi kg - E Xi ki ~nT
vho™ pxt, x| 3
t|lzy 20 ijm; <0

i
- Zmax (0, oV TS —n, ki [exp(a,;\/fc) - 1150 - n)

f=]
~vt | Y R-0) -0 | Y Xi-p

iz 20 i)z <0

{16)
Assume 7 is a given, arbitrary positive number. If % > 0-and o;vTeX; > 1, so that & ==
oivVTeX; —n > 0, then we must have Ink; — o3v/Te — v+ = 0 to prevent unboundedness (a
strict less-than-zerc inequality would make ¥; hit its lower bound, a contradiction.) Then if
oV TeX; <, wehave ¥ = 0 if Ink; < v and ¥; = n/(o:VTe) if mk; > v*. If there exists j
such that o; \/Tcp?j > 1, then we use the fact that the budget constraint for assets not short-sold
must hold in order to determine that X;. Otherwise, we have vt = Ink; for some j, again because
the budget constraint must hold, and that ¥; is such that 3 ., ¥; = #. A similar argument holds

for ¥; when z; < 0, leading to the following allocation as a function of n:
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where x; is the fraction allocated to stock 4. It is equal to (1 + piy:/@ if the stock is invested in,
and ~%; if the stock is short-sold.

Problem (16) can then be rewritten as a plecewise linear, convex problem as a function of 7
(note that the j and ! indices have a hidden dependence in », since we must have x; > 0 and
x1 < 0, so that j decreases and ! increases as 1 increases). Hence, the optimal # is achieved at
one of the breakpoints, which is when either x; or x; become zero {which means that either j or
[ would be relabeled as j — 1 or [+ 1, respectively, to respect the fact that x; > 0 and x; < 0
by definition, and leads to the two possible allocations stated in the theorem), or when 7 = 0,
i.e., the manager does not use all of his budget of uncertainty I'. In the case where n = 0, x;
becomes y1 and y; becomes y,, which remains of the form advertised.

Note that j < [ because if 7 > [, there would exist an index i such that the manager both
invests in and short-sells stock 4, and he would strictly increase his portfolio wealth by allocating

his money away from such a stock ¢, and that would contradict the optimality assumption. O

A.4 Proof of Corollary 2.6

The optimal n is non-increasing with T', because F, is a convex, non-increasing function of T
with slope —n. If the optimal allocation is given by Allocation 1 in Corollary 2.5, it follows
8Tec '

v / that j increases, i.e., more stocks are invested in. As the 37 _, 1/0, term
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becomes bigger but the 1/¢; in Allocation 1 for the assets short-sold does not change, the amounts

from 7 =

of money invested in short-sold assets from the previousty determined stock ! to stock n decrease.
Since the amount of money short-sold must equal pwg, we conclude that [ is non-increasing, so
that more stocks are short-sold. A similar argument holds if the optimal allocation is given by

Allocation 2. This trend continues until I' = n or complete diversification is achieved. ]
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