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Abstract

We present a robust optimization approach to portfolio management under ancertainﬁy
that builds upon insights gained from the well-known Lognormal model for stock prices, while
addressing that model’s limitations, in particular, the issue of fat tails being underestimated
in the Gaussian framework and the active debate on the correct distribution to use. Our ap-
proach, which we call Log-robust in the spirit of the Lognormal model, does not require any
probabilistic assumption, and incorporates the randomness on the continuously compounded
rates of return by using range forecasts and a budget of uncertainty, thus capturing the
decision-maker’s degree of risk aversion through a single, intuitive parameter. Our objective
is to maximize the worsi-case portfolio value (over a set of allowable deviations of the un-
certain parameters from their nominal values) at the end of the time horizon in a one-period
setting; short sales are not allowed. We formulate the robust problem as a linear program-
ming problem and derive theoretical insights into the worst-case uncertainty and the optimal
aliocation. We then compare in numerical experiments the Log-robust approach with the
traditional robust approach, where range forecasts are applied directly to the stock returns.
Our results indicate that the Log-robust approach significantly outperforms the benchmark
with respect to 95% or 99% Value-at-Risk. This is because the traditional robust approach

leads to portfolios that are far less diversified.
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1 Introduction

Portfolic management under uncertainty was ploneered in the 1950s by Markowitz {1959), who
first articulated the investor’s trade-off between risk and return. The optimal asset allocation,
however, is very sensitive to parameter inputs, e.g., mean and covariance, so that small estimation
errors can result in strategies that are far from optimal {Chopra and Ziemba (1993)). Goldfarb
and Iyengar (2003) have proposed robust optimization approaches to minimize the worst-case
variance and similar criteria over ellipsoidal uncertainty sets, which mitigate the impact of esti-
mation errors for these performance measures; their work was later extended to active portfolio
management with transaction costs in Erdogan et. al. (2004). The reader is referred to Bertsimas
and Thiele (2006) for a tutorial-level introduction to robust optimization. Recently, Value-at-
Risk and Conditional Value-at-Risk have emerged as pertinent risk measures in finance, and
investors have become more concerned with maximizing the worst-case value of their portfolio
than minimizing its standard deviation. This reguires the development of new methodologies.
Ben-Tal and Nemirovski (1999) and Bertsimas and Sim (2004) have applied the robust op-
timization approach not on uncertain parameters but on random variables. In particular, they
consider range forecasts at the level of the stock returns, and their goal is to maximize the port-
folio’s worst-case return, where the worst case is computed over a set of allowable deviations
of the stoclk returns from their nominal values to prevent over-conservatism. This approach is
also at the core of the robust financial models developed in Bertsimas and Pachamanova (2008),
Pachamanova {2006), Fabozzi et. al. (2007). Numerous studies of stock price behavior, how-
ever, (see Hull (2002) and the references therein) suggest that the true drivers of uncertainty are
the continuously compounded rates of return, assumed to obey a Gaussian distribution in the
famous Lognormal model developed by Black and Scholes (1973). This model gives rise to an
elegant mathematical framework and closed-form formulas, for instance for the prices of Euro-
pean options, but neglects the fact that the real distributions have fat tails (Jansen and deVries
(1991), Cont {2001), Al Najjab and Thiele {2007)). In that sense, the Lognormal model leads
the manager t0 take more risk than he is willing to accept. Furthermore, the empirical validity
of that choice among possible distributions remains open to debate (Fama {1965), Blattberg and
Gonedes (1974}, Kon (1984), Jansen and deVries {1991), Richardson and Smith (1993}, Cont

(2001)). In particular, Jansen and deVries (1991) states: “Numerous articles have investigated



the distribution of share prices, and find that the returns are fat-tailed. Nevertheless, there is
still controversy about the amount of probability mass in the tails, and hence about the most ap-
propriate distribution to use in modeling returns. This controversy has proven hard to resolve.”
Also, while risk aversion has long been incorporated to portfolio management through the use
of utility functions, such functions are difficult to articulate in practice. Robust optimization,
however, can capture risk aversion through a single parameter, called the budget of uncertainty,
which determines the degree of protection against downside risk the manager requires for his
investments.

FThe decision-maker seeking to protect his portfolio against downside risk needs to find an ap-
proach that has the same ease of implementation as the Lognormal model, but which reflects the
limited knowledge on the underlying distributions. The purpose of this paper is to provide such
an approach for one-period portfolio management, based on robust optimization with polyhedral
sets applied o the continuously compounded rates of return. To the best of our knowledge, this
is the first time a robust optimization approach has been applied to real-life models of stock
price dynamics in portfolio management. We believe this approach gives more relevant resuits
for finance practitioners than the traditional robust approach, while remaining theoretically in-

sightful and numerically tractable.
Contributions. We make the following contributions to the literature.

s We provide a mathematical modeling of uncertainty that builds upon well-established fea-
tures of stock prices behavior {specifically, the fact that the continuously compounded rates
of return are i.i.d.}, while addressing limitations of the Lognormal model, where the distri-
bution is assumed %o be Gaussian and tail events are underestimated, and of the traditional

robust approach, which does not consider the true uncertainty drivers.

¢ We reformulate the robust one-period portfolic management problem as a linear program-
ming problem, which can be solved efficiently with commercial software, including in large-

gcale settings with large numbers of stocks.

o We provide insights into the optimal allocation and the worst-case deviations of the uncer-
tain parameters. For instance, we show that when the stock prices are uncorrelated, the

amount, of money invested in each stock is inversely proportional to the standard deviation



of the continuously compounded rate of return, for all the stocks the manager invests in.

¢ We compare the proposed approach with the traditional robust framework using percentiles
of the final portiolio value as performance metrics, and show empirically that the traditional
approach leads to much less diversified portfolios, and hence much worse performance, in

implementations with real financial data.

Outline. In Section 2 we describe and analyze the portfolio management problem with inde-
pendent assets. We extend the formulation to the case of correlated stock prices in Section 3.
Section 4 contains our numerical experiments. We conchide in Section 5. All proofs are in the

appendix.

2 Portfolio Management with Independent Assets

2.1 Generalities

We will use the following notation throughout the paper.
7 ¢ the number of stocks,
T :  the length of the time horizon,
Si(0) :  the initial (known) value of stock 4,
S;(T) : the {random) value of stock ¢ at time T,
wg :  the initial wealth of the investor,
Hi o the drift of the Lévy process for stock 4,
a; +  the infinitesimal standard deviation of the Lévy process for stock 4,
#; + the number of shares invested in stock 4,

x; ¢ the amount of money invested in stock 4.

Short sales are not allowed. We start our analysis by assuming all asset prices are independent;
this assumption is relaxed in Section 3. Independence between assets arises in particular when
managers invest in indices tracking asset classes, such as gold and real estate, rather than stocks.

In the traditional Log-normal model (see Hull (2002) for an overview), the random stock price i



at time T", S;(T), can be described as:

S _f e ST
In S5(0) = (po1 5 T-{-Uz\/'sz.

where Z; obeys a standard Gaussian distribution, i.e., Z; ~ A(G,1). The portfolio management
problem, where the decision-maker seeks to maximize his expected wealth subject to a budget

constraint and no short sales, is then formulated as:

™
max EmiE[Sz(T)]
n
5.t. Z{c@Sﬁ{O) = Wy,
§=1
F >0, Wi

It 1s easy to see that the investor will allocate all his wealth to the stock with the highest ratio
E gi (DT) . To diversify the portfolio in the Lognormal framework, it is then necegsary to introduce
additional risk constraints, e.g., limiting portfolic variance,

Our goal in this paper is to investigate the optimal asset allocation when the stock price still
satisfies Equation (2.1) but the distribution of the Z;, ¢ = 1,...,n is not knoun. (In particular,
it is not necessarily Gaussian.) Instead, we will model Z; as uncertain parameters with nominal
value of zero and known support [~¢,¢], for all 4. Note that all uncertain parameters have
the same support, in the spirit of all the random variables in the Lognormal model obeying a

standardized Gaussian distribution.

In the remainder of the paper, we will describe the uncertain parameter Z;, i = 1,...,n, as:
Ly = ¢ F,

where % € [~1,1] represents the scaled deviation of Z; from its nominal value, which is zero.

Furthermore, #z will denote the absolute velue of the scaled deviation, for all 4.

2.2 Problem Setup

To incorporate risk in the formulation, we adopt a worst-case approach where we seek to maximize

the worst-case portfolio return over a set of feasible, “realistic” stock returns. The decision-maker



has at his disposal the range forecasts [—¢, ] for the scaled uncertain parameters Z;. Furthermore,
because the uncertain parameters are assumed independent, it is quite unrealistic for many of
them to turn out to be equal to their worst-case value; in pr@ctice, due to the assumption of
independence, some should be higher than their nominal value and some lower, so that a part of
the uncertainty will cancel itseif out. This motivates the introduction of a budget-of-uncertainty
constraing, first presented in Bertsimas and Sim (2004}, which bounds the total scaled deviation
of the independent, uncertain parameters from their mean (here, zero) by a nonnegative budget
denoted I*:
SIEST, 3 <1, Vi

i=1
If T = 0, all the uncertain parameters are equal to their mean (nominal value). If I’ = n,
the budget-of-uncertainty constraint is redundant with {Z;] < 1 for all 7 and the decision-maker
will protect the portfolio return against the worst possible value of each stock return. Selecting
I' between these two extremes allows the decision-maker to achieve a trade-off between not
protecting the system against any uncertainty and being extremely conservative.

The robust portfolio management problem can then be formulated as:
n

2
max mjnz Z:5:(0) exp | (s — i{%m)fl"‘ + oV TeE;
Z E 2

3=l
T

st Y |5 <T,
FE=3

|&] < 1V,
n
5.t. Z 53‘3'3-5(0) = wg.
i=1

&; > 0 Vi,

or, using that the amount z; of money invested in stock ¢ at time 0 satisfies: x; = 5;(0) &, for all



n
max min Z zexp |(p;
@ z
f==1

2
— %)T + cn;\/fcz}

mn
st. Y |& < T,
dm=1

15| < 14, (1)

T
s.t. Z T = wp.
i=1

x; = 0 Vi

Robust optimization addresses the fat-tails issue by specifically planning against the rare (tail)
events in the worst-case optimization framework, while these events are under-represented in the
traditional Lognormal model, due to the mistakenly low probability estimates.

We observe that the objective in Problem (1) is linear in the asset allocation and nonlinear but
convex in the scaled deviations, because short sales are not allowed. In contrast, the traditional
robusé optimization problem is linear in both the asset allocation and the scaled deviations. Such
a modeling approach makes the formulation easier to solve but less relevant in practice, since
the true uncertainty driver is inside the exponential term, as mentioned in the literature review.
This matters because increasing the deviation of the return exp((i; — 07/2)T 4+ o3V T'cZ)], from
its nominal value, should not use the same marginal amount of budget if the return is close to its
nominal value and if it is already far away from it, due to the nonlinear nature of the function,
and especially here where the uncertainty affects the system exponentially.

To ensure that Problem (1) can be solved efficiently using commercial software, our focus
will be on rewriting the inner minimization problem as a maximization problem using duality

arguments and studying the properties of the resulting formulation.



2.3  Problem Reformulation

We consider the inner minimization problem of Problem {1}):

L of 3
min Zmz exp [(,u@ - E—)T} axp {Jiﬁczi]
o]
st M IA| ST 2)
i=1
Zl<1 Vi

The following lemms allows us to discard the absolute values in Problem (2):

Lemma 2.1 At optimality, ~1 < 2 <{) for all i and Problem {2) is equivalent to:

L o2
min me exp {(,u,t- - ~2-1—)T exp [—aq;\/fczfg]

i=1

s Y m<T, (3)

gl

0Lz <1, Vi

I the remainder of this section, 2 will refer to the absolute value of the scaled deviation and
the true worst-case scaled deviation Z will be negative. Problem {3) is convex; therefore, we
study its optimal solution using a Lagrange relaxation approach (see Bertsekas (1999) for a
review on nonlinear optimization). For notational convenience, we denote by k; the constant
exp [(M‘ - %?L)T

unconstrained, convex Lagrange relaxation of Problem (3):

. We introduce the Lagrangian multipliers c, A? and A} for all i and obtain the

k(] kel T kel
mzin Z T kg exp(wai\/;fczi) + e (Z 2 - I‘) - ZA?% -+ Z )\7](,27 -1 {4)
i=] im=]

(e | g==]
Note that strong duality holds because the objective is convex and Slater’s condition is satisfied.
Lemma 2.2 (Worsi-case deviations)
(i) The optimal deviations z; (for fived values of the Lagrange multipliers) are given by, for all 4

such that ©; > 0.

(5)

1 jits k}i O’ivTC
2 = In g Ak
v ie o~ ’\i + Ai

(i) Specifically, for z; > 0:



o If0 <z <1, then both A9, A\l = 0 and Equation (5) becomes:

T

2 = L [ln (mz k; O'Z‘X/TC) - 1n a] . (6)

J; Tc

o Ifz; =0, then )\} =0 and /\? > 0 is such that: x; k; oivTc=a - )\?.

o Ifz; =1, then \) =0, and A} > 0 is such that: In (W) = opVTe, i.e, o+ Al =
4
2 ki oo/ Te exp(—ovTe).

(4i) If z; = 0, then it is optimal to have 2z = 0.

Theorem 2.3 shows the robust portfolic management problem (1) can be solved as a linear

programiming problem.

Theorem 2.3 {Optimal wealth and allocation)
(1) The optimal wealth in the robust portfolio management problem (1) is: woexp(F(I')), where
F is the function defined by:
n k12
FI)=max » xilnki—nT=> &
mXE i i=1

st n+&—ovVTex, 20, Vi,

ke
> xi=1,

i=1

(i) The optimal amount of money invested at time O in stock i is x;wy, for all i, where the x;

are found by solving Problem (7).
Remarks.

¢ The optimal wealth is proportional to the initial amount of money invested, as expected.

¢ Because Problem (7) is a linear programming problem, it can be solved using the simplex
method, yielding a corner point of the feasible set. In particular, the same asset allocation
(z;, proportional to x;, for all ©) will be optimal for a range of budgets of uncertainty T,

which only affect the objective function.

o The worst-case scaled deviations become, for all 4 2z = ~—i [nk — F(].
oivTe




— 20 4 Al
» Using the notations of Section 2.3, we have w = wo exp(F(I))x;:.
T C

¢ If the investor has additional requirements on the feasible allocation besides the budget
constraint and non-negativity, we may still obtain a similar problem formulation using the
specific structure of the constraint set. In practice, the easiest way to incorporate additional
constraints on the asset allocation is to compute the optimal allocation using the proposed
robust optimization approach, and then pick the feasible strategy that is “closest” {for

instance, in a least-squares sense) to the theoretical one we have just obtained.

Corollary 2.4 (Scaled deviations) Assume 4t is strictly suboptimal to invest in only one
stock. Then the scoled deviations for the assels the manager invests in never reach their bounds,

te, 0 <z <1 fori such that z; > 0 at optimality.

2.4  Structure Of The Optimal Solution

We conclude this section by characterizing the optimal allocation in the Log-robust portfolio
management model. We assume that the assets are ranked in decreasing order of their nominal

return, le., b < ... < ky.

Theorem 2.5 (Structure of the optimal allocation) Assume it is strictly suboptimnal to in-
vest in only one stock. At optimality, there exists an index § such that the decision-maker invests

only in stocks 1 to 7 and we have:

e mmmwo
x o (Ei:ﬂ 0—7‘;) . (8)

In particular, x; ¢; is constant for all the assets the manager invests in.
Remarks.

s The optimal allocation does not depend on the scale parameter ¢, except indirectly through

the choice of the diversification parameter j.

e When the manager invests in all assets, Equation (8} is identical to the optimal allocation
in the Markowitz mean-variance model when the portfolio variance for independent assets

is minimized and the expected return constraint is not binding, but the meaning of the o;

10



is different. In the present approach, the o; are the standard deviations of the continucusly
compounded rates of refurn. In the Markowitz model, the oy traditionally denote the
standard deviations of the rates of return over the one period considered. It is natural
that the two approaches do not yield the same allocation, since the robust optimization
framework does not seek to minimize variance, but instead to maximize worst-case portfolio

value.

Diversification. The degree of diversification of the portfolio is determined by the parameter 7,
the number of stocks the manager invests in. It is easy to see that at optimality, if n > 0, we have
n=+VTe/ (Zﬁ;xl 1/ow) and & = 0 for all i. We also know that the optimal » is non-increasing
with I' because Problem (7) is piecewise linear, convex, non-increasing in I', with slope —#.
Hence, the degree of diversification § of the portfolic is non-decreasing in I', as long as n > 0.
When 7 becomes zero, it becomes optimal to invest in only one stock, specifically the stock with
the highest worst-case return. This can be seen mathematically by noting that we have then

& = o/ Tex: for all i, so that the robust problem becomes:

n
m;?,x Z(in k; — oy \/Tc)xz-

i=1
n
s.t. ZXT’ =1,
gm=]
xi = 0, Vi

The optimal solution of this linear programming problem is achieved at a corner point of the
feasible set, representing an allocation where only one x; is non-zero, i.e., only one asset is
invested in. The asset selected at optimality is the one with the highest objective coefficient,
nk; — S0, 0: VT ¢, which is the asset’s worst-case return.

In summary, the log-robust approach yields increased diversification until the manager be-

comes so risk-averse that he prefers allocating all of his budget to the safest investment.

11



3 Portfolio Management with Correlated Assets

3.1 Problem Formulation

We now extend the approach deseribed in Section 2 to the case with correlated assets. Equation

(2.1), which characterizes the behavior of the stock prices, is replaced by:

Sz(T) _ 0'1-2
M50 T (‘“ } 7) Tz,

where the random vector Z is normally distributed with mean 0 and covariance matrix Q. We
 define:
Y = Q~Y27,

where Y ~ N(0,I) and Q2 is the square-root of the covariance matrix Q, i.e., the unique
symmetric positive definite matrix 8 such that 82 = Q. In the robust optimization approach,
the vector of scaled independent uncertainty drivers ¥ is related to the vector of (here, non-scaled)

deviations Z as follows:

T
~ 1/2 .
Z=cy Qz-j/ s,
=1

with each component §; belonging to [—1,1] so that ¥; € {—c¢, ¢] for all <.

The robust optimization model becomes:

s o S (et 77 (S5
i=1

E )

ki
st > | <T,
=1

751 <1, 94,

9)

T
s.t. Z T ==y,
=1

12



We first need to reformulate the inner minimization problem:

H},in im exp K,uz - a?/‘z) T] exp

VTe (i@iﬁ y"aﬂ
=1

i=1

U 10
st Dol < (10)

j=1

7 < 1, ¥4,

as & maximization problem to keep the approach tractable.
Lemma 3.1 Problem (10) is convez.

Therefore, we can characterize the optimal solution using a Lagrangesn relaxation approach.

3.2 Special Case

In the special case where the coefficients of the square root of the correlasion matrix are all
non-negative, we observe (using the same argument as in Lemma 2.1) that the minimum of the
objective function in Problem (10) is achieved for gf; < 0. We define y; = |g;|, so the minimization

problem becomes:

n}tjn Zn:aa exp Km ~ 0’3/2> T] exp | ~v7ec (Zn: Qij/g yj)}
i1 Fa=1

kL3
s.t. Zyj <T, (11)
j=1

0<y; <1, Vj.

Lemma 3.2 (Worst-case deviations) The optimal solution to Problem (11) is given by:
i
Y= """\/—-}'"C; le/z 11’1{@6‘&),

where:
5 = Zee [(p - 0?/2) T
QY (ae ~ X0 4 MY

o, A% and A are the Lagrange multipliers associated with the constraints of Problem (11).

Theorem 3.3 shows that the robust portfolio management problem in this special case of cor-

relation can be solved as a linear programming problem; hence, as in the non-correlated case

13



(Theorem 2.3), the problem can be solved efficiently using commercial software.

Theorem 3.3 {Optimal wealth and allocation)
(i) The optimael wealth in the robust portfolio management problem (8) is: woexp(F(T)), where
F s the function defined by:

it n
F(T) = max XilnkiwnI‘wa;}
mx:€ 1 puy

g

T
st. n+&-VTe (Z Qi x;,-) > 0, Vi,
n =1
ZX": — 1:
=]

(12)

(i) The optimal amount of money invested at time 0 in stock i is x;wo, for all 1, where the x;

are found by solving Problem (12).

‘We have seen in Section 2 that, when assets are uncorrelated, o; x; is constant for all the assets ¢
the manager invests in. A similar result, provided in Theorem 3.4, holds in the gpecial correlated
case. Because it is an immediate extension to the arguments provided in Section 2, it is stated

without proof.

Theorem 3.4 (Structure of the optimal solution) Let S{I') be the set of indices j such that
Xxj > 0 at optimality. There exists o set SE(T') of size [S{T)|—1 such that (x; )jes(ry is determined
by the set of |S(T)| equations:

1/2 7* () Vi € &7
ST QA = L2, vie SsHD),
)Qz.? Xj TC 2 £( )

jes(r

>ox o= L
jes(h)

For j & S(I'), x; = 0.

The robust optimization approach for the correlated case can therefore be interpreted as choosing
the sets 5(I') and S (I') (which depend on each other) appropriately. Once these sets are chosen,

the asset allocation is uniquely determined by the equations above.

14



Diversification. We now comment on how the degree of diversification of the optimal solution

varies with I". We observe two opposite trends.

Trend 1 The optimal objective of the linear programming problem (7} is convex, non-increasing
in I (because it can be reformulated as the maximum of linear functions in I" over all the
extreme points of the feasible set}, so #*(I") is non-increasing as well. As a resulf, the

inequalities vT ¢ Y7 Q?“-/ 2 x5 = 77 (1) become less construining as [ increases.
F=1%ij J

Trend 2 The number of such constraints tends to increase with T, because we know from robust
optimization theory (see Bertsimas and Sim (2004)) that there is at least I' such constraints.

Sa, in that sense, the system becomes more constrained when I increases.

Hence, two opposite effects are at play: the number of constraints increases with I°, intuitively
making it more difficult to satisfy all of them, but the right-hand side they all have in common
decreases, making it easier to satisfy all of them. This is why, in numerical examples, we observe
a degree of diversification that first increases with I' (the increase in the number of constraints
is the dominant factor, so the increased diversification reflects the impossibility of satisfying all
of the constraints by investing in fewer assets), before seeing it decrease steadily (the decrease
in n*(I") then dominates the other trend, and it becomes possible to satisfy the constraints by
investing in fewer assets.}

We also observe in experiments that, in the first phase where the degree of diversification
increases with I', the & remain zero, as in the case with independent assets. In the second
phase, however, when diversification decreases, we note that some of the ¢ become non-zero.
This situation was never observed when assets were independent; maximum diversification was
then immediately followed by a complete drop in the number of assets invested in and the
& were never zero as long as n > 0. In this special correlated case, when 1 becomes zero,

£ = VTe (E?ﬂ Qi?/ 2 Xj) for all 7 and the robust problem becomes:

n 23 Tt
m%x inlnkin\/fc (ZQ%/zxj

i=1 =1 =1
n

8.1, ZXi =1,
ieel

15



As in the case of independent assets, the optimal solution of this linear programming problem is
achieved at a corner point of the feasible set, i.e., when the budget of uncertainty is large enough
so that 7 = {}, it becomes optimal to invest only in the asset with the highest worst-case return,

here Ink; — VT e 2=t Ql,-/z.

g%

3.3 General Correlated Case

We now address the general case in the presence of correlation, when the coefficients of the square

root of the correlation mairix can be positive or negative.

Theorem 3.5 (Optimal wealth and allocation)
(i} The optimal wealth in the robust portfolio management problem (9) is: woexp(F (), where
F is the function defined by:

Tt T
F(I)=max Y xilok—-nl=> &
ﬂ:x:f 'L'=1 -‘.’=1

n
s.t. ?7+£5——\/fc ZQ;/QXV.; >0, Vi,
i=1

L 13
?7+§?:+\/Tc ZQ-lfzxj >0, Vi, (1)

]
J=1
n
Z xi =1,

goml

=0, x:, & =0, Vi

(i) The optimal amount of money invested ot time 0 in stock ¢ is x;wo, for all i, where the x;

are found by solving the linear programming problem (13).

We see easily that the difference between Problem (12} and Problem (13) is that the constraints
nté~vVTe (Z?=1 Q:j/z Xj) > 0 have become n+ & — VT ¢ } 1 Qij/z Xj‘ > 0 for all 4.
We now provide the counterpart to Theorem 3.4 in the general case, which we state without

proof.

Theorem 3.6 (Structure of the optimal solution) Let S(T') be the set of indices j such that

Xj > 0 at optimality. There ewists o set Sf(I") of size |S(T'){~1 such that (x;)es(r) s determined

16



by the set of |S(T)] equations:

L
S Q| = , Vi € SE(T),
FE8() g \/;f’“c
>.x = L
Fe8(I)

For j ¢ S(I), 3 = 0.

Agsin, the robust optimization approach for the correlated case can be interpreted as choosing

the sets S{I') and S{(I") appropriately.

Diversification. We have similar insights as in the special correlated case. In particular, the
number of assets invested in first increases in I' (we observe in numerical experiments that this
corresponds to the case where 1 > 0 and & = 0 for all i), then decreases (this corresponds to
the case where n > 0 but & > 0 for some 7.) The main difference is that, when the decision-
maker becomes very conservative (I" is large), the number of assets invested in can stabilize at a
number greater than 1. We can explain this behavior mathematically as follows. When 5 = 0,
we combine the first two groups of constraints to obtain: & =T ¢ IE?“1 Q}j/ 2 x;| for all 4. The

robust problem is then:

n
> x

=1

n T
m%x Z)@lnki - ﬁcz
f==1

gm=1
T
s.t. ZX@ = 1,
gl

>0, x, &= 0, Vi

This is a piecewise linear (not linear} programming problem, so the optimal solution will not
necessarily be at a corner point of the feasible set, where the manager invested in only one asset.
4 Numerical Experiments

The purpose of this section is o compare the proposed Log-robust approach with the robust
optimization approach that has been traditionally implemented in portfolio management. We

will see that:

17



1. The Log-robust approach yields far greater diversification in the optimal asset allocation.

2. It outperforms the traditional robust approach, when performance is measured by percentile
values of final portfolio wealth, if at least one of the following two conditions is satisfied:
{a) the budget of uncertainty parameter is relatively small, or (b) the percentile considered

is low enough.

This means that the Log-robust approach shifts the lef$ tail of the wealth disiribution o the
right, compared to the traditional robust approach; how much of the whole distribution ends up
being shifted depends on the choice of the budget of uncertainty. The rule of thumb in Bertsimas
and Sim (2004), suggesting that the budget be of the order of the square root of the number of

uncertain parameters, satisfies {a) and yields high-quality results in our experiments.

Setup.

The traditional robust approach when the stock prices belong to polyhedral uncertainty sets is
due to Bertsimas and Sim {2004). The presence of correlation in real-life data requires extending
their formulation %o incorporate this case; the mathematical details are straightforward and left
to the reader. The traditional framework, using the notations introduced at the beginning of the

paper, is:
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with M2 the square root of the covariance matrix of exp K,u? - %’2‘) T+VT ( ol Q;J('? Zj)] .

In both the traditional robust and the Log-robust models, we downloaded six months’ worth
of daily stock price data for 50 stocks from Yahoo! Finance, computed the drift parameters
and covariance matrix @ based on the continuously compounded rates of return n(S5;/8:.-1)

and generated 1,000 scenarios for the stock prices six months from now. In the traditional
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" model, we then used these 1,000 scenarios to compute MY/2. Initial wealth is $100,000. We take
o = 1.96, which corresponds to a 95% confidence interval for a standardized Gaussian random
variable. This choice {of a confidence interval with high probability rather than the full demand
support) 18 common practice in the robust optimization literature to avoid over-conservatism.
In particular, researchers routinely pick the confidence intervals as deviating from the nominal
value by two standard deviations on each side (left and right). See for instance the references
in Bertsimas and Thiele (2006) for numerical experiments reflecting these choices, performed by
independent research teams. It appears that such an approach strikes a good trade-off between
covering & large number of the potential values taken by the random variables, while not being
too conservative. Ben-Tal et. al. (2006) explores in depth the consequences of this modeling, in

particular with respect to having realizations fall outside the uncertainty set.

Analysis of optimal solution.
Figure 1 studies the level of diversification achieved in both models by showing the number of
stocks invested in as a function of I'. A key observation we make is that, while the numerical
example in Bertsimas and Sim (2004) with artificial data {taken from Ben-Tal and Nemirovski
(1999)) suggested that the robust approach would lead to a diversified portfolio for a wide range
of budgets I, the results in Bertsimas and Sim (2004} appear to have been driven by the specific
numerical values for the range forecasts of the stock returns (with tiny changes in mean and
standard deviation from one stock to the next) and are not replicated with the real-life data we
have considered. In our example, the traditional robust portfolio uses at most two stocks (and
in general only one, as in the deterministic case). In contrast, the Log-robust model provides
the manager with a diversified portfolio, with the number of stocks invested in increasing from 1
in the determinisiic case (I' = 0) to 31 for I' between 21 and 25, and then decreasing steadily to
7 when I" = 43. The number of stocks invested in then remains constant for higher values of I’
(the bump at T = 45 corresponds to a situation where two assets are virtually indistinguishable
from a drift and variance perspective), up until the most conservative value of I" = 50.

Figure 2 shows the number of shares bought in each of the stocks invested in either for I' = 10
or I" = 20, ranked in decreasing number of shares for I" = 10. (Stocks that are not invested in in
either case are not shown.) In the deterministic model and the Traditional-Robust model, the

manager only invests in Air Products and Chemicals, Inc. (APD). Figure 2 indicates in particular
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Figure 1: Number of stocks in optimal portfolio for I' varying from 0 to 50, in the Traditional-
Robust and Log-robust models.

that the number of shares bought in each stock is often quite substantial, so the diversification
effect observed in Figure 1 is not due to the manager buying just one or two shares of more

stocks; in other words, we achieve genuine diversification.

Analysis of performance in simulations.

Since the goal of the proposed methodology is to protect against downside risk, we pay particular
attention to the 99% and 95% Value-at-Risk of the portfolio in the Traditional-Robust and the
Log-Robust models. We gather data on the other percentiles as well, to study under which
circumstances the framework proposed here outperforms the traditional one. The simulations
were performed using @Risk 4.5 from Palisade Corporation. We consider two cases: (i) the
case where the random variables do obey a Normal distribution, and the only mistake made by
the manager implementing the traditional robust approach is that he uses symmetric confidence
intervals for the stock prices rather than for the true drivers of uncertainty, their continuously

compounded rates of change, (ii) the case where the random variables have “fat tails”, as has been
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Figure 2: Number of shares in optimal portfolio for T = 10 and I = 20, for various stocks, in
the Log-robust model.

observed in practice (see Hull 2002}, in which case the Lognormal model of stock price behavior
underestimases rare events. This happens for instance when the scaled random variables Z obey
a Logistic distribution. To calibrate the distribution we selected the same 95% confidence interval
as that given by the Gaussian model with mean 0 and standard deviation 1, to keep the same
range forecasts throughout. (The methodology was tested for other distributions as well and
vielded similar results.)

Recall that the 99% and 95% Value-at-Risk are the 1% and the 5% percentiles of the portfo-
lio wealth. For instance, the $9% VaR is the number such that there is only a 0.01 probability
that the portfolio value will fall below that number. The dacision-maker naturally wants these
worst-case portfolio values to be as large as possible, so that investors remain wealthy even un-
der adverse market conditions. In particular, 99% and 95% VaR are risk-adjusted performoence

measures, not risk measures, and should be maximized, not minimized.

Normal distribution.
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Table 1 keeps track of the $9% Value-at-Risk for values of " varying from 0 to 50 in increments
of 5, in the traditional and the Log-robust models; the last column shows the relative gain in
99% VaR when the manager implements the Log-robust approach. The values are obtained using

10,000 replications. We observe that 99% VaR decreases steadily as the level of conservatism

I' { Traditional Log-Robust Relative Gain

51 700568.81 107828.94 51.96%
101 70958.81 104829.93 47.73%
15§ 70958.81 162502.79 44.45%
20 | 70958.81  101707.00 43.33%
25 ¢ 70958.81 1060905.96 42.40%
30§ 70958.81 101763.58 43.41%
35§ 7095881 08445.23 38.74%
401 70958.81 96120.18 35.46%
45 1 70958.81 04253.62 32.83%
50§ 70958.81 94032.09 32.52%

Table 1: 99% VaR. as a function of I" for Gaussian distribution.

{measured by the budget I') increases, so that the relative gain from using the Log-robust ap-
proach decreases from about 52% to about 33%. {Recall that for I' = 0, both frameworks yield
the deterministic model.) Because the stocks are correlated, the uncertain parameter z affects
not only the stock price of asset 7, but also the stock prices of the other assets. This iz why,
although the decision-maker invests in at most 31 stocks, the VaR. keeps decreasing ~ instead of
becoming constant — for values of I* greater than 31. Bertsimas and Sim (2004) have suggested
selecting a value for the budget of uncertainty of the order of /n {about 7 here) with n the num-
ber of uncertainty drivers, and Table 1 suggests that values of I' in the 5-10 range are precisely
those that maximize the benefit of using the Log-robust approach, at least for the 99% VaR.
We investigate this point further in Figure 3, which shows the relative gain of the Log-robust
approach for percentiles of the portfolio value between 5 and 95%, in increments of 5, and T’
between 0 and 50, in increments of 5. (Negative relative gains indicated that the traditional
robust approach performs better.)

Wa observe that the relative performance of the Log-rebust approach decreases as I' increases
and as the percentile increases; up to the 10th percensile (90% VaR), the Log-Robust model
outperforms the traditional approach for any value of I'. The Log-robust approach performs best

for a risk-averse decision-maker (focusing on 99% or 95% VaR) and for moderate values of I’
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Figure 3: Relative gain of the Log-robust model compared to the Traditional robust model, for
percentiles from 5% to 95% and T from 0 $o 50, in the Gaussian case.

{about 5 or 10).

Logistic distribution.

We now consider the more realistic case where the distribution has “fat tails,” i.e., the Gaussian
assumption underlying the Lognormal model underestimates the risk of extreme events. Table
2 keeps track of the 99% Value-at-Risk for values of I' varying from 0 to 50 in increments of 5,
in the traditional and the Log-robust models, when the scaled random variables Z obey Logistic
distributions with 95% confidence intervals [—c¢,¢]; as in Table 1, the last column shows the
relative gain in 99% Vall when the manager irnplements the Log-robust approach. As in the
Gaussian cage, the relative performance of the Log-robusi appreach decreases as I' increases
and as the percentile increases; up to the 10th percentile (90% VaR), the Log-Robust model
ocutperforms the traditional approach for any value of I'. The Log-robust approach performs best

for a risk-averse decision-maker (focusing on 99% or 95% VaR) and for moderate values of T’
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I' | Traditional Log-Robust Relative Gain

5 65415.97 108234.32 58.20%
10 | 68415.97  105146.66 53.69%
15 | 68415.97 102961.66 50.49%
20 | 68415.97 102124.75 49.27%
25 | 68415.97 101294.347 48.06%
301 6841597 102206.73 49.39%
35| 68415.97 98508.69 43.98%
40 | 68415.97 95940.01 40.23%
45 | 68415.97 93841.05 37.16%
B0 | 6841597 93562.59 36.76%

Table 2: 99% VaR as a function of I for Logistic distzibution.

{(aboui 5 or 10). This is shown in Figure 4. The changes compared to Figure 3 are minor; for

instance, the relative gain for I' = 5, considering the 20th percentile, has changed from 7.41%

(Gaussian case) to 6.05% (Logistic case).
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Figure 4: Relative gain of the Log-robust model compared to the Traditional robust model, for

percentiles from 5% to 95% and I from 0 to 50, in the Logistic case.
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Conclusions of Experiments.

Our numerical results indicate that incorporating robustness at the level of the true uncertainty
driver, the continuously compounded rate of return, results in better performance for the risk-
averse manager maximizing his 99% VaR (or 95% or 90% VaR.). They also suggest that the budget
of uncertainty should be of the order of the square root of the random variables to optimize the

performance of the approach. This is in line with rules of thumb available in the literature.

5 Conclusions

‘We have proposed a robust optimization approach to portfolio management, where robustness is
incorporated in the continuously compounded rates of return of the stock prices rather than in
the prices themselves. This departure from the traditional robust framework aligns our model
with the finance literature without requiring the mathematically convenient assumption of stock
prices following a Lognormal process, which has been shown to underestimate extreme events in
practice. We have obtained a robust formulstion that is linear and thus can be solved efficiently,
and have derived theoretical insights into the worst-case uncertainty and the optimal number
of shares to buy of each stock. In numerical experiments when the decision-maker maximizes
his 95% or 89% Value-at-Risk, the Log-robust approach outperforms the traditional robust op-
timization approach by double-digit margins, with an even more significant gain if the budget of
uncertainty is well-chosen (about the square root of the number of stocks). This is because the
iraditional robust optimization approach does not achieve diversification for real-life financial
data. Hence, we believe the Log-robust approach holds much potential in portfolio management

under uncertainty.
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A Proofs

A.1 Proof of Lemnma 2.1

Because we do not allow shor$ sales, the coefficient in front of the exponential is nonnegative and

the exponential is minimized for the smallest value of its argument. a

A.2 Proof of Lemma 2.2

(i} Problem (4} is an unconstrained convex optimization problem, and as such its optimal solution
is found by setting the gradient of the objective to zero. (ii) follows from complementary slackness
applied to Problem (3). (iii) If z; = 0 and z; > 0, then taking z[ = 0 yields a feasible solution

with same objective value. 0
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A.3 Proof of Theorem 2.3

Injecting Lemma 2.2 into Equation (4), and using strong duality in convex programming with
Slater’s condition {see Bertsekas 1899}, we obtain that the robust portiolio management problem

(1) is equivalent to:

LR By zikioivVT e &
ke sk 1 B PPN i AR | S S, o SV
5 a0 mzl( oivVTe o a— A+ A ¢ ;Az

7
s.t. Z..’C?, = wg,
gl

a> 0,22, Mz >0, v,

— )0 1
or alternatively, using the change of variable: §; = %, which must be non-negative
g; C

due to the term in log:

o ;ﬁz [1 + In (___:6 )] ~al =Y A

: f==1
n
s.t. Zml == U, (14)
i=1
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We solve Problem (14} by first maximizing over the z; and then over the remaining variables.

The maximizing problem in the z; can be formulated as:

Tt
max z; Gi - Inx;
=

s.1. Zm.‘,’ = Wa, (15)
i=1

Problem (15) is a convex optimization problem, which we solve using a Lagrange approach,

obtaining z; = Giwo Note that this means that z; and 5; are both zero or both positive,
3 i=10i
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for each i.) We reinject the optimal asset allocation into Problem (14} and now have to solve:

F=1

T k3
ka’i 1
max E ;- |1+ 1n wai‘wi)\-
@ f, A imlﬁz { ( 7 ﬂj” =

18
5.1, a+)\i1—-aix/ffcﬁia{), Vi, (16)

a =, ﬁia /\5 =0, Vi

Because the right-hand side of the feasible set of Problem (16} is zero, we can parametrize over
# > 0 where 377 B; = @ (note that § must be nonnegative for the logarithm to be defined) and

scale the decision variables by 1/8. Problem (16) becomes:

T ki
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(Note that, with these new notations, z; = y;wo for all i.) We then regroup the terms depending

on ¢ and use Y iy x: = 1 to reformulate the robust optimization problem as:

max [1 + F(I) +1n (?—"’Q—OH 9, (17)

where F is defined by Equation (7). The objective in Problem (17) is concave, as is easily
checked by computing the second derivative, and the optimal value of 8 follows by setting the
first derivative to zero. This yields: & = wyexp(F(I')). Reinjecting into the objective leads to

an optimal wealth of we exp(F(I")). O

A.4 Proof of Corollary 2.4

We use that 2; = (Ink;—F(T))/(0: VT ¢) as stated in the remarks after Theorem 2.3; this equation
was derived by injecting inte Equation (5) the fact that z; = wp x; = wo 5;/6 ab optimality, with
= woexp(F(I)) and B = (o — AV + AN/ {e: VT c). Since it is strictly suboptimal to invest in
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only one stock by assumption, we have that:
EI) > Ink; — 0: VT e, Vi,

obtained by computing the objective value of Problem (7) for the feasible solution x; =1, x; = 0
for j 5% 4, n =0, £¢xa¢\/fcand{fjm0forj%i.
Now, consider the dual of Problem (7):

s.t. O'a'\/TCui-i-U > Ink;, Vi,
7

Z g S r?
[E=3}

<y <1, Vi

By complementarity slackness, we know that for all ¢ such that x; > 0, i.e.,, x; > 0, we have
oi VT cu; +v = Ink; so that u; = (Ink; — )/ (o5 VT ¢) for all 4 such that x; > 0.

But it is easy to see that: 3 ;cqryws = I' at optimality, where S(I') is the set of assets the
manager invests in. This is because, if 30, u; < T' is not tight at optimality, we can solve
Problem (18) after discarding this constraint, which yields a strategy of investing everything in
that asset i achieving the smallest Ink; — oy v/ ¢. This contradicts the assumption that it is
strictly suboptimal to invest in only one stock.

Note that v = F(I') by strong duality. Using that 37,z #: = I’ and rearranging leads to:
AT

Zi ink;
P(r) = 2580 o VT

i
224€8(T) T

So, to have z; = 0 for some j such that z; > 0, we must have F(I') = Ink; or, using that

Ink; = (pu; - O‘?/Q)T:

o2 a2
=)= s - | 7
I o=
e8I oivTe

But the right-hand side does not depend on I" (except in the choice of indices), so the equality
cannot possibly hold.

It follows immediately that 0 < z; < 1 for all ¢ such that z; > 0. 0
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A.5 Proof of Theorem 2.5

The result is trivial if we only invest in one asset. If S(I') has at least two elerhents, we use
Corollary 2.4 to justify that 0 < z; < 1 for all ¢ such that z; > 0. Let R = 3 ;cq(m ;’”’lﬁ: The

robust portfolio management problem is equivalent to the convex optimization problemu:

=

1
max R -exp (-%) [ H (zeksoiV/Te) 7evTe

e5(I) (19)
s.1. Z Ti = WQ.
€SI

The proof is as follows, We use the first bullet point of Lemma 2.2 (ii} to rewrite the objective
function of Problem (3) as 2 ;g ;w%; = o R where R has been defined above. To find o we
use that I"' = }:iES(f‘) Z;

1 i Ky cfz\/_cﬂ
I' = In
ic? 0“/—0 { ( o

1
= in{xg by m\/w Te .
zESZ 7 \/_C ( ) zEjSL;l") giﬁc
This yields: .
-T i B
@ == eXp (_) : H (:C'L r’CiG’i\/TC) 7VTe . (20)
R .
=5

We then inject Equation (20) into the objective o B $o obtain Problem (19}, which is convex

because the geometric mean is a concave function of its arguments.

We now prove Theorem 2.5. To find the optimal value of the z;’s in Problem (19), we invoke
the convexity of the problem and introduce the Lagrangian multiplier § of the budget constraint;

the model becomes:

max a{z)R — 5( Z mz—wg)

ieS(
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We set the gradient of the objective to zero to find the optimum value of the z;’s. This yields,

for all ¢ in S(I),

1
exp (—»%) : ( 11 (scjkjajﬁc);ﬁﬁ) ) =8 (z;0:VTe). (21)
JES(T)
So x; 03 is constant for all ¢ such that x; > 0.
We now prove that the set S(I') is of the type {1,...,7} for some j, where the assets have
been ranking in decreasing order of their nominal return.
Setting the variables n and & for all i to their optimal value 7*(I") and &/(I") in Problem (7)

vields the following linear programming problem in the x;:

k1
m)?,x Z i Ink;

guml

n
5.5, in =1,

iz=]

oo TOEED

oivTe

Because this is & linear programming problem, it can be solved by dualizing only some of the
constraints (here, the coupling constraint) and keeping the others (here, the bound constraints)

in the feasible set. Let o be the dual variable associated with the coupling constraint. We obtain:

n n
max iink;——a ; — 1
h ;X i (;Xz )

() + &)
O'?;\/TC

st 0<y; <2 , Vi.

At optimality, x; is equal to its lower bound if the coefficient in front of y; in the objective,

Ink; ~ @, is negative, and to its upper bound if that coefficient is non-negative. O

A.6 Proof of Lemma 3.1

The feasible set is convex {all the constraints are less-than-or-equal to constraints with convex
functions in the left-hand side) and the objective is the weighted sum with nonnegative coefficients
of the composition of convex functions with afline functions of the decision variables (Boyd and

Vandenberghe 2004). 0
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A.7T Proof of Lemma 3.2

Follows immediately from solving the Lagrange relaxation of Problem (11) and invoking strong

duality in convex optimization, since Slater’s condition is satisfied. O

A.8 Proof of Theorem 3.3

Similar to that of Theorem 2.3. O

A.9 Proof of Theorem 3.5

The proof is similar to that of Theorem 2.3 and we only skeich the main ideas. We use the
transformation: §; = y; ~y; (and hence, ;] = yj" + 5 ), which does not change the optimal

objective because Problem (106) is convex. This yields, for the inner minimization problem:

T ki3
: 1/2 -
min > wikiexp [VTey Qij/ (v —v7)
EANY) i1 i=1

i

st Y (w +y;) ST
; 7 J (22)
yi +y; <1, 9,
v, yi =0, Vi

We solve the convex optimization problem (22} using a Lagrange approach, with Lagrange mul-
tipliers @, A}, A7 0 and AF 0 for all i. Setting the gradient to zero yields:

2o+ Ay = AP0 - A70 =0, 5,

and:

- 1 & ~1/2 [Ql/z(&e + Al A_D)]i .
T e e , V5.
Yi T VTe ; Q” " VTez k; J

Using that )\;"G = 2{o + Ajl) - )\;0, introducing the change of variables: vT'¢8 = Q™ 1/%{ee +
Al — A0 injecting the nonnegativity of )\j"e and )\;."G for all j and scaling by 377 G5 yields

the desired result, similarly to the proof of Theorem 2.3, ]
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