
Computational Experience with a Software Framework
for Parallel Integer Programming

Yan Xu

Operations Research R & D, SAS Institute, Cary, NC 27513, US

Ted K. Ralphs

Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA
18015, USA

Laszlo Ladányi

Department of Mathematical Sciences, IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598, USA

Matthew J. Saltzman

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

COR@L Technical Report 09T-006-R2



Computational Experience with a Software Framework for Parallel

Integer Programming

Yan Xu∗1, Ted K. Ralphs†2, Laszlo Ladányi‡3, and Matthew J.
Saltzman§4

1Operations Research R & D, SAS Institute, Cary, NC 27513, US
2Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA

18015, USA
3Department of Mathematical Sciences, IBM T. J. Watson Research Center, Yorktown

Heights, NY 10598, USA
4Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

Original Publication: September 26, 2007

Last Revised: May 22, 2009

Abstract

In this paper, we discuss the challenges that arise in parallelizing algorithms for solving
generic mixed integer linear programs and introduce a software framework that aims to address
these challenges. Although the framework makes few algorithmic assumptions, it was designed
specifically with support for implementation of relaxation-based branch-and-bound algorithms
in mind. Achieving efficiency for such algorithms is particularly challenging and involves a
careful analysis of the tradeoffs inherent in the mechanisms for sharing the large amounts of
information that can be generated. We present computational results that illustrate the degree
to which various sources of parallel overhead affect scalability and discuss why properties of the
problem class itself can have a substantial effect on the efficiency of a particular methodology.

1 Introduction

Recently, trends in the design of microprocessors have undergone dramatic change. The exponential
increases in clock speed that marked steady improvements in computer performance over the past
several decades appear to have reached a plateau. It now seems inevitable that future improvements
will be in the form of increases in the number of processing cores—individual processors mounted
on a single integrated circuit that can perform independent calculations in parallel but share access
to part or all of the memory hierarchy. This has led to a sudden realization that parallelizing

∗Yan.Xu@sas.com
†ted@lehigh.edu
‡ladanyi@us.ibm.com
§mjs@clemson.edu

2



algorithms will be the only available avenue for taking advantage of improvements in processor
technology for the foreseeable future. This recent change has resulted in an urgent focus on the
design and analysis of parallel algorithms and has quickly moved research on such algorithms from
its previous position as a scientific novelty to the mainstream.

This paper concerns a framework for parallelization of general tree search algorithms known
as the COIN-OR High Performance Parallel Search (CHiPPS) framework. In Ralphs et al. (2003,
2004), we introduced the framework and examined the issues surrounding parallelization of gen-
eral tree search algorithms. Here, we focus specifically on the performance of the framework’s
implementation of the branch-and-cut algorithm for solving general mixed integer linear programs
(MILPs). The branch-and-cut algorithm is currently the most effective and commonly used ap-
proach for solving MILPs, but many MILPs arising in practice remain difficult to solve even with
this advanced methodology. As with many computing tasks, the difficulty stems from limitations
in both memory and processing power, so a natural approach to overcoming this is to consider
the use of so-called “high-throughput” computing platforms, which can deliver a pooled supply of
computing power and memory that is virtually limitless.

Branch-and-bound algorithms are a general class employing a divide-and-conquer strategy that
partitions the original solution space into a number of smaller subsets and then analyzes the result-
ing smaller subproblems in a recursive fashion. Such an approach appears easy to parallelize, but
this appearance is deceiving. Although it is easy in principle to divide the original solution space
into subsets, it is difficult to find a division such that the amount of effort required to solve each of
the resulting smaller subproblems is approximately equal. If the work is not divided equally, then
some processors will become idle long before the solution process has been completed, resulting in
reduced effectiveness. Even if this challenge is overcome, it might still be the case that the total
amount of work involved in solving the subproblems far exceeds the amount of work required to
solve the original problem on a single processor.

In the remainder of the paper, we describe our approach to meeting the challenges that arise in
implementing parallel versions of sophisticated branch-and-bound algorithms, such as branch and
cut. The work builds and attempts to improve upon previous efforts, most notably the frameworks
SYMPHONY (Ralphs and Güzelsoy, 2008) and COIN/BCP (Ralphs and Ladányi, 2001), both
straightforward implementations employing centralized mechanisms for control of task distribution
and information sharing. The framework also builds on concepts introduced in the framework
now known as PEBBL (Eckstein et al., 2007). The paper is organized as follows. In Section 1.1,
we introduce necessary terms and definitions before reviewing previous work in Section 1.2. In
Section 2, we briefly describe the implementation details of CHiPPS, a C++ class library developed
based on the concepts of knowledge discovery and sharing. In Section 3, we analyze computational
results obtained using the framework to solve MILP instances with a wide range of scalability
properties. Finally, in Section 4, we conclude and summarize the material presented in the rest of
the paper.

1.1 Definitions and Terms

Tree Search and MILP. Tree search problems are any of a general class in which the nodes of
a directed, acyclic graph must be systematically searched in order to locate one or more goal nodes.
The order in which the nodes are searched uniquely determines a rooted tree called the search
tree. Tree search problems can be generally classified as either feasibility problems or optimization
problems. Optimization problems are those in which there is a cost associated with each path from

3



the root node to a goal node and the object is to find a goal node with minimum path cost. The
basic components of a tree search algorithm are (1) a processing method that determines whether
a node is a goal node and whether it has any successors, (2) a branching method that specifies
how to generate the descriptions of a node’s successors, if it has any, and (3) a search strategy that
specifies the processing order of the candidate nodes.

A mixed integer linear program is a problem of the form

zIP = min
x∈P∩(Zp×Rn−p)

c>x, (1)

where P = {x ∈ Rn | Ax = b, x ≥ 0} is a polyhedron defined by constraint matrix A ∈ Qm×n,
right-hand side vector b ∈ Qm, and objective function vector c ∈ Rn. As first noted by Dakin
(1965), a MILP can be viewed as a tree search problem in a straightforward way. The well-known
branch-and-cut algorithm recursively partitions the feasible region, a process that can be visualized
by associating the subsets created with the nodes of a corresponding tree. In this way, the branch-
and-cut algorithm can be fit very cleanly into the abstract framework presented in the previous
paragraph. This is the basis for the implementation of the MILP solver described in Section 2.3.

Parallel Computing. We consider parallel algorithms targeted for deployment in a modern
distributed computing environment. The most typical architecture is the so-called Beowulf cluster
(Brown, 2004). The important properties of such an architecture are (1) that it is homogeneous
(all nodes are identical), (2) that it has an “all-to-all” communications network in which any two
nodes can communicate directly, (3) that it has no shared access memory, and (4) that it has no
global clock by which to synchronize calculations. On such an architecture, all communication
and synchronization activities must take place through the explicit passing of “messages” between
processors using a message-passing protocol. The two most common message-passing protocols are
PVM (Geist et al., 1994) and MPI (Gropp et al., 1999).

“High-throughput” computing environments are similar to clusters with respect to most of the
above properties. However, processors need not be homogeneous with respect to speed, memory,
operating system, or even CPU architecture, though the ability to deploy the program to be run on
all nodes (with support for uniform communication protocols) is obviously a prerequisite. Also, the
communication network need not be fast, although at least logical direct point-to-point communica-
tion is still necessary. In principle, these properties do not preclude deploying distributed programs
across such an environment, but algorithmic parameters for such things as task granularity and
load balancing strategy would probably be significantly different.

The primary goal of parallel computing is to take advantage of increased processing power
in order to either increase the amount of progress that can be made on a given calculation in
a fixed amount of time or to perform a fixed calculation faster. The scalability of a parallel
algorithm (in combination with a specific parallel architecture) is the degree to which it is capable
of effectively utilizing increased computing resources (usually processors). The traditional way to
measure scalability is to compare the speed with which one can execute a particular algorithm on
p processors to the speed of the same algorithm on a smaller number of processors (usually a single
processor, though this comparison is not always possible in practice). The aim is for the ratio of the
running times with different numbers of processors (called the speedup) to be as close as possible
to the ratios of the numbers of processors. In other words, if we increase the number of processors
by a factor of q, we would ideally like to observe a decrease in running time by the same factor,
i.e., from r to r/q.

4



For a number of reasons, this traditional analysis is not especially well-suited to the assessment of
parallel algorithms for solving optimization problems, but we defer discussion of this until Section 3.
For now, let us simply say that the ideal speedup is not typically observed for two main reasons.
First, the total amount of work to be done during parallel execution typically increases as the
number of processors increases. Second, processors may spend some of their time idle when they
might be doing useful work. Losses of efficiency stemming from either one of these two main sources
are generally termed parallel overhead and the goal of parallelization is to reduce such overhead.
In analyzing the computational experiments later in the paper, it will be useful to identify the
following specific sources of overhead that we consider.

• Idle time (ramp-up/ramp-down): Time spent by processors waiting for their first task to be
allocated or waiting for termination at the end of the algorithm.

• Idle time (synchronization/handshaking): Time spent waiting for information requested from
another processor or waiting for another processor to complete a task.

• Communication overhead : Processing time associated with sending and receiving information,
including time spent inserting information into the send buffer and reading it from the receive
buffer at the other end.

• Performance of redundant work : Processing time spent performing work (other than com-
munication overhead) that would not have been performed in the sequential algorithm.

In Section 3, we discuss further how these various contributors to overhead affect the efficiency of
tree search.

Knowledge. We refer to potentially useful information generated during the execution of the
algorithm as knowledge. Trienekens and de Bruin (1992) formally introduced the notion that the
efficiency of a parallel algorithm is inherently dependent on the strategy by which this knowledge is
stored and shared among the processors. From this viewpoint, a parallel algorithm can be thought
of roughly as a mechanism for coordinating a set of autonomous agents that are either knowledge
generators (KGs) (responsible for producing new knowledge), knowledge pools (KPs) (responsible
for storing previously generated knowledge), or both. Specifying such a coordination mechanism
consists of specifying what knowledge is to be generated, how it is to be generated, and what is
to be done with it after it is generated (stored, shared, discarded, or used for subsequent local
computations).

Tasks. Just as KPs can be divided by the type of knowledge they store, KGs may be divided
either by the type of knowledge they generate or the method by which they generate it. In other
words, processors may be assigned to perform only a particular task or set of tasks. If a single
processor is assigned to perform multiple tasks simultaneously, a prioritization and time-sharing
mechanism must be implemented to manage the computational efforts of the processor. The granu-
larity of an algorithm is the size of the smallest task that can be assigned to a processor. Choosing
the proper granularity can be important to efficiency. Too fine a granularity can lead to exces-
sive communication overhead, while too coarse a granularity can lead to excessive idle time and
performance of redundant work. We have assumed an asynchronous architecture, in which each
processor is responsible for autonomously orchestrating local algorithm execution by prioritizing

5



local computational tasks, managing locally generated knowledge, and communicating with other
processors. Because each processor is autonomous, care must be taken to design the entire sys-
tem so that deadlocks, in which a set of processors are all mutually waiting on one another for
information, do not occur.

1.2 Previous Work

The branch-and-bound algorithm was first suggested by Land and Doig (1960). Dakin (1965)
later described it as a tree search algorithm and Mitten (1970) abstracted the approach into the
theoretical framework we are familiar with today. There are a number of software packages that
implement parallel branch-and-bound or parallel branch-and-cut algorithms. These can be divided
broadly into two categories: black-box solvers and frameworks. Black-box solvers are primarily
geared towards out-of-the-box solution of unstructured MILP instances (though they may have
hooks for limited forms of customization). Frameworks, on the other hand, allow the user full
access to and control over most aspects of the algorithm’s implementation in order to implement
specialized solvers tuned to take advantage of special structure using customized functionality,
such as problem-specific cut generation, branching, or primal heuristic methods, among others.
Commercial parallel black-box solvers include ILOG’s CPLEX, Dash’s XPRESS, and the Gurobi
MILP solver, all of which are designed for shared memory architectures. PARINO (Linderoth,
1998), FATCOP (Chen and Ferris, 2001), and PICO (Eckstein et al., 2007) (part of what is now
called PEBBL, but used to be called PICO) are noncommercial parallel, black-box MILP solvers,
both of which are targeted for distributed environments. ParaLEX (Shinano and Fujie, 2007)
is a parallel extension for the CPLEX MILP solver, also specialized for a distributed computing
environment.

Among frameworks, SYMPHONY (Ralphs and Güzelsoy, 2008) and CBC (Forrest, 2003) are
open source and aimed specifically at implementation of parallel branch and cut. CBC’s parallel
mode is only for shared-memory architectures. SYMPHONY has implementations for both shared
and distributed environments. COIN/BCP (Ralphs and Ladányi, 2001) is an open source framework
for the implementation of parallel branch, cut, and price algorithms targeted to distributed memory
applications. There are also also a number noncommercial generic frameworks for implementing
parallel branch-and-bound algorithms, such as PUBB (Shinano et al., 1995), BoB (Benchouche
et al., 1996), PPBB-Lib (Tschoke and Polzer, 2008), PEBBL (Eckstein et al., 2007) (formerly
PICO), and OOBB (Gendron et al., 2005).

2 The COIN-OR High Performance Parallel Search Framework

The COIN-OR High Performance Parallel Search framework (CHiPPS) is a C++ class library
hierarchy for implementing customized versions of parallel tree search. CHiPPS currently consists
of three class libraries that combine to provide the functionality required for executing a branch-
and-cut algorithm. Below, we describe each of these three libraries.

2.1 ALPS

The central core of CHiPPS is a library of base classes known as the Abstract Library for Parallel
Search (ALPS). Because of its general approach, ALPS supports implementation of a wide variety

6



of algorithms and applications through creation of application-specific derived classes implementing
the algorithmic components required to specify a tree search.

2.1.1 Knowledge Management

Knowledge Objects. ALPS takes an almost completely decentralized approach to knowledge
management. The fundamental concepts of knowledge discovery and sharing are the basis for the
class structure of ALPS, the base library, shown in Figure 1 (along with the class structure for
BiCePS and BLIS, to be described in later sections). In this figure, the boxes represent classes, an
arrow-tipped line connecting classes represents an inheritance relationship, and a diamond-tipped
line connecting classes indicates an inclusion relationship. A central notion in ALPS is that all
information generated during execution of the search is treated as knowledge and is represented
by objects of C++ classes derived from the common base class AlpsKnowledge. This class is the
virtual base class for any type of information that must be shared or stored. AlpsEncoded is an
associated class that contains the encoded or packed form of an AlpsKnowledge object. The packed
form consists of a bit array containing the data needed to construct the object. This representation
takes less memory than the object itself and is appropriate both for storage and transmission of
the object. The packed form is also independent of type, which allows ALPS to deal effectively
with user-defined or application-specific knowledge types. To avoid the assignment of global indices,
ALPS uses hashing of the packed form as an effective and efficient way to identify duplicate objects.

ALPS has the following four native knowledge types, which are represented using classes derived
from AlpsKnowledge:

• AlpsModel: Contains the data describing the original problem. This data is shared glob-
ally during initialization and maintained locally at each processor during the course of the
algorithm.

• AlpsSolution: Contains the description of a goal state or solution discovered during the
search process.

• AlpsTreeNode: Contains the data associated with a search tree node, including an associated
object of type AlpsNodeDesc that contains application-specific descriptive data and internal
data maintained by ALPS itself.

• AlpsSubTree: Contains the description of a subtree, which is a hierarchy of AlpsTreeNode

objects along with associated internal data needed for bookkeeping.

The first three of these classes are virtual and must be defined by the user in the context of the
problem being solved. The last class is generic and problem-independent.

Knowledge Pools. The AlpsKnowledgePool class is the virtual base class for knowledge pools
in ALPS. This base class can be derived to define a KP for a specific type of knowledge or multiple
types. The native KP types are:

• AlpsSolutionPool: Stores AlpsSolution objects. These pools exist both at the local level—
for storing solutions discovered locally—and at the global level.

7



Figure 1: Library hierarchy of CHiPPS
.

8



• AlpsSubTreePool: Stores AlpsSubTree objects. These pools are for storing various disjoint
subtrees of the search tree that still contain unprocessed nodes in a distributed fashion (see
the sections below for more information on how ALPS manages subtrees).

• AlpsNodePool: Stores AlpsTreeNode objects. Each subtree has a node pool that contains
the queue of candidate nodes associated with this subtree.

None of these classes are virtual and their methods are implemented independent of any specific
application.

Knowledge Brokers. In ALPS, each processor hosts a single, multitasking executable controlled
by a knowledge broker (KB). The KB is tasked with routing all knowledge to and from the processor
and determining the priority of each task assigned to the processor (see next section). Each specific
type of knowledge is represented by a C++ class derived from AlpsKnowledge and must be regis-
tered at the inception of the algorithm so that the KB knows how to manage it. The KB associated
with a particular KP may field two types of requests on its behalf: (1) new knowledge to be inserted
into the KP or (2) a request for relevant knowledge to be extracted from the KP, where “relevant”
is defined for each category of knowledge with respect to data provided by the requesting process.
A KP may also choose to “push” certain knowledge to another KP, even though no specific request
has been made. Derivatives of the AlpsKnowledgeBroker class implement the KB and encapsulate
the desired communication protocol. Switching from a parallel implementation to a sequential one
is simply a matter of constructing a different KB object. Currently, the protocols supported are
a serial layer, implemented in AlpsKnowledgeBrokerSerial and an MPI layer, implemented in
AlpsKnowledgeBrokerMPI. In the future, we plan to support shared-memory/multi-core parallel
architectures, as well as hybrid shared/distributed architectures that will soon be commonplace.

2.1.2 Task Management

Due to the asynchronous nature of the platforms on which these algorithms are deployed, each single
executable must be capable of performing multiple tasks simultaneously. Tasks to be performed may
involve management of knowledge pools, processing of candidate nodes, or generation of application-
specific knowledge, e.g., valid inequalities. The ability to multi-task is implemented using a crude
(but portable) threading mechanism controlled by the KB running on each processor, similar to
that used in PEBBL (Eckstein et al., 2000). The KB decides how to allocate effort and prioritize
tasks. The principle computational task in ALPS is to process the nodes of a subtree with a
given root node until a termination criterion is satisfied, which means that each worker is capable
of processing an entire subtree autonomously and has access to all of the methods needed to
manage a sequential tree search. The task granularity can therefore be fine-tuned by changing this
termination criterion, which, in effect, determines what ALPS considers to be an indivisible “unit
of work.” The termination criterion can be based on time, number of nodes processed, or any
other desired measure. ALPS contains a mechanism for automatically tuning the granularity of
the algorithm based on properties of the instance at hand (primarily the average time required to
process a node). Fine tuning the task granularity reduces idle time due to task starvation. However,
without proper load balancing, increased granularity may increase the performance of redundant
work.

9



Master-Hub-Worker Paradigm. In a typical master-worker approach to parallelism, a single
master process maintains a global view of available tasks and controls task distribution to the
entire process set directly. This approach is simple and effective for small number of processors,
but does not scale well because of the obvious communication bottleneck created by the single
master process. To overcome this restriction, ALPS employs a master-hub-worker paradigm, in
which a layer of “middle management” is inserted between the master process and the worker
processes. In this scheme, a cluster consists of a hub and a fixed number of workers. The hub
manages the workers and supervises load balancing within the cluster, while the master ensures the
load is balanced globally. As the number of processors is increased, clusters can be added in order
to keep the load of the hubs and workers relatively constant. The workload of the master process
can be managed by controlling the frequency of global balancing operations. This scheme is similar
to one implemented in the PEBBL framework (Eckstein et al., 2000). The decentralized approach
maintains many of the advantages of global decision making while reducing overhead and moving
much of the burden for load balancing and search management from the master to the hubs. The
burden on the hubs can then be controlled by adjusting the task granularity of the workers.

2.1.3 Load Balancing

The tradeoff between centralization and decentralization of knowledge is most evident in the mech-
anism for sharing node descriptions among the processors. Because all processes are completely
autonomous in ALPS, idle time due to task starvation and during the ramp-up and ramp-down
phases of the algorithm (defined below) are the most significant scalability problems. To combat
these issues, ALPS employs a three-tiered load balancing scheme, consisting of static, intra-cluster
dynamic, and inter-cluster dynamic load balancing.

Static Load Balancing. Static load balancing, or mapping, takes place during the ramp-up
phase, which is roughly defined as the time until every KB has been assigned at least one task. The
goal is to quickly generate the initial pool of candidate nodes and distribute them to the workers to
initialize their local subtree pools. The problem of reducing idle time during the ramp-up phase of
branch-and-bound algorithms has long been recognized as a challenging one (Borbeau et al., 2000;
Eckstein et al., 2000; Gendron and Crainic, 1994). When the processing time of a single node is
large relative to the overall solution time, idle time during the ramp-up phase can be one of the
biggest contributors to parallel overhead.

ALPS has two static load balancing schemes: two-level root initialization and spiral initializa-
tion. Based on the properties of the problem to be solved, the user can choose either method.
Two-level root initialization is a generalization of the root initialization scheme of Henrich (1993).
During two-level root initialization, the master first creates and distributes a user-specified number
of nodes for each of the hubs. After receiving their allocation, the hubs then create a user-specified
number of successors for each of their workers. Spiral initialization is designed for circumstances
in which processing a node takes a substantial amount of time or creating a large number of nodes
during ramp-up is otherwise difficult. The main difference is that nodes are shared by the master
and workers immediately as they are created in order to maximize parallel utilization and ensure
all workers are employed as quickly as possible. By sharing nodes immediately, however, the initial
distribution of nodes may not actually be as well-balanced at the end of the ramp-up phase as it
would be with two-level root initialization, requiring more dynamic load balancing during early

10



phases of the algorithm. It is therefore only recommended when two-level root initialization would
result in an exorbitantly long ramp-up phase.

In addition to accelerating the generation of nodes, it is possible to keep processors busy during
ramp-up in other ways. For example, processors could be employed by running primal heuristics,
performing preprocessing, executing a more intensive version of strong branching in parallel, or
even processing multiple trees in parallel. CHiPPS does not yet implement these techniques.

Dynamic Load Balancing. Dynamic load balancing is perhaps the most challenging aspect of
implementing parallel tree search and has been studied by a number of authors (Fonlupt et al.,
1998; Henrich, 1993; Kumar et al., 1994; Laursen, 1994; Sanders, 1998; Sinha and Kalé, 1993).
In ALPS, the hub manages dynamic load balancing within each cluster by periodically receiving
reports of each worker’s workload. Each node has an associated priority that indicates the node’s
relative “quality,” which is a rough indicator of the likelihood that the node or one of its successors
is a goal node. For example, the quality measure typically used in relaxation-based branch-and-
bound for optimization problems is value of the bound computed at a given node. In assessing the
distribution of work to the processors, we consider both quantity and quality. If it is found that the
qualities are unbalanced (i.e., high-priority nodes are not evenly distributed among workers), the
hub asks workers with a surplus of high-priority nodes to share them with workers that have fewer
such nodes. Intra-cluster load balancing can also be initiated when an individual worker reports
to the hub that its workload is below a given threshold. Upon receiving the request, the hub asks
its most loaded worker to donate nodes to the requesting worker. If the hub finds that none of its
workers have any work, it asks for more from the master.

The master is responsible for balancing the workload among the clusters, whose managing hubs
periodically report workload information to the master. Hence, the master has an approximate
global view of the system load and the load of each cluster at all times. If either the quantity or
quality of work is unbalanced among the clusters, the master identifies pairs of donors and receivers.
Donors are clusters whose workloads are greater than the average workload of all clusters by a given
factor. Receivers are the clusters whose workloads are smaller than the average workload by a given
factor. Donors and receivers are paired and each donor sends nodes to its paired receiver.

The dynamic load balancing scheme in ALPS has one rather unique aspect. In order to allow
efficient storage and transmission of groups of search tree nodes, ALPS tries to ensure that the sets
of search tree nodes passed between pairs of processors during balancing constitute the leaves of
a subtree of the original tree, and are shared as single units, rather than individual nodes. Each
candidate subtree is assigned a priority level, defined as the average priorities of a given number
of its best nodes. During load balancing, the donor chooses the best subtree in its subtree pool
and sends it to the receiver. If the best subtree is too large to be packed into the message buffer
(whose size can be controlled by the user), the donor splits it and sends a part of it to the receiver
(Xu, 2007). If a donor does not have any subtrees to share, it splits the subtree that it is currently
exploring into two parts and sends one of them to the receiver. In this way, differencing can still
be used effectively even without centralized storage of the search tree.

2.2 BiCePS

The Branch, Constrain, and Price Software (BiCePS) library is the data-handling layer needed
in addition to ALPS to support relaxation-based branch-and-bound algorithms. The class names
in Figure 1 with prefix Bcps are the main classes in BiCePS. BiCePs consists primarily of classes

11



derived from the base classes in ALPS and implements the basic framework of a so-called Branch,
Constrain, and Price algorithm. In such an algorithm, the processing step consists of solving a
relaxation in order to produce a bound. Node descriptions may be quite large and an efficient
storage scheme is required to avoid memory issues and increased communication overhead. For
this reason, we have developed compact data structures based on the ideas of modeling objects and
differencing. Note that there is no assumption in BiCePS about the structure of the instance to be
solved, making it possible to use it as a base for implementing solvers for a wide range of problem
classes, including linear, non-linear, and discrete optimization problems.

2.2.1 Knowledge Management

Knowledge Types. In addition to classes BcpsSolution, BcpsTreeNode, BcpsNodeDesc, and
BcpsModel derived from the corresponding native knowledge types in ALPS, BiCePS introduces
a new knowledge type known as a modeling object that supports sharing of information about
mathematical structure, in the form of new variables and constraints, and enables creation of
efficient data structures for describing search tree nodes. A modeling object in BiCePS is an object
of the class BcpsObject that can be either a variable (object of derived class BcpsVariable) or a
constraint (object of derived class BcpsConstraint). All such objects, regardless of whether they
are variables or constraints, share the basic property of having a current value and a feasible domain.
This allows mechanisms for handling of modeling objects, regardless of subtype, to be substantially
uniform. The modeling objects are the building blocks used to construct the relaxations required for
the bounding operation undertaken during processing of a tree node. Hence, a node description in
BiCePS consists of arrays of the variables and constraints that are active in the current relaxation.

Differencing. In many applications, the number of objects describing a tree node can be quite
large. However, the set of objects generally does not change much from a parent node to its
child nodes. We can therefore store the description of an entire subtree very compactly using the
differencing scheme described below. The differencing scheme we use stores only the difference
between the descriptions of a child node and its parent. In other words, given a node, we store
a relative description that has the newly added objects, removed objects and changed objects
compared with its parent. The differencing scheme always stores an explicit description consisting
of all the objects active at the root.

To store a relative description for a node, the differencing scheme identifies the relative difference
of this node with its parent. The data structures used to record differences are BcpsFieldListMod

and BcpsObjectListMod. The class BcpsFieldListMod stores the modifications in single field,
such as the lower bounds of the variables, for example. The class BcpsObjectListMod, on the
other hand, stores modifications of the overall lists of variables and constraints active in the node.
A flag can be set to indicate that explicit storage of the node is more efficient than storing the
difference data.

Note that our differencing scheme for storing the search tree also means that we have to spend
time simply recovering the explicit descriptions of tree nodes when processing them or sharing them
among processors. This is done by working down the tree from the first ancestor with an explicit
description, applying the differences until an explicit description of the node is obtained. This is
the trade-off between saving space and increasing search time. To prevent too much time being
spent in recovering node descriptions, the differencing scheme has the option to force storage of an
explicit description for all nodes at a certain depth below the last explicitly stored description. We

12



have found that a well-managed differencing policy can have a significant impact on performance—
the reduced communication overhead and smaller memory footprint more than compensate for the
computation required to reconstruct the instance at the current node.

2.2.2 Task Management

BiCePS assumes that the algorithm employs an iterative bounding scheme. During each iteration,
new objects may be generated and used to improve the fidelity of the current relaxation. Because
the number of objects generated in each iteration may be quite large, newly generated objects may
first be placed in a local pool that acts as a cache of potential candidates for addition. Duplicate
and ineffective objects previously added to the relaxation are generally removed aggressively in
order to control the size of the relaxation. Those that prove to be particularly effective may be
added to a knowledge pool for sharing with other KBs.

2.3 BLIS

The BiCePS Linear Integer Solver (BLIS) library provides the functionality needed to solve mixed
integer linear programs and consists mainly of classes derived from BiCePS with a few additions.
The class names in Figure 1 with prefix Blis belong to the BLIS library.

2.3.1 Knowledge Management.

Native knowledge types in BLIS are represented by classes BlisConstraint, BlisVariable, BlisSolution,
BlisTreeNode, BlisNodeDesc, and BlisModel, all derived from the classes in BiCePS. Other
classes include those for specifying algorithms for constraint generation, primal heuristics, and
branching strategies. The main types of knowledge shared by BLIS (in addition to the types dis-
cussed above) are bounds, branching information, and modeling objects (variables and constraints).

The bounds that must be shared in branch and cut consist of the single global upper bound and
the lower bounds associated with the subproblems that are candidates for processing. Knowledge of
lower bounds is important mainly for load balancing purposes and is shared according to the scheme
described in Section 2.1.3. Distribution of information regarding upper bounds is mainly important
for avoiding performance of redundant work, i.e., processing of nodes whose lower bound is above
the optimal value. This information is broadcast immediately in an efficient manner described by
Xu (2007).

If a backward-looking branching method, such as one based on pseudo-costs, is used, then
the sharing of historical information regarding the effect of branching can be important to the
implementation of the branching scheme. The information that needs to be shared and how it is
shared depends on the specific scheme used. For an in-depth treatment of the issues surrounding
pseudo-cost sharing in parallel, see Eckstein et al. (2000) and Linderoth (1998).

2.3.2 Task Management

In branch and cut, there are a number of distinct tasks to be performed and these tasks can be
assigned to processors in a number of ways. The main tasks to be performed are node processing,
node partitioning (branching), cut generation, pool maintenance, and load balancing. The way
in which these tasks are grouped and assigned to processors determines, to a large extent, the
parallelization scheme of the algorithm and its scalability. In the current implementation of BLIS,

13



node processing, cut generation, and node partitioning are all handled locally during processing of
each subtree. Load balancing is handled as previously described.

Branching. The branching scheme of BLIS is similar to that of the COIN-OR Branch-and-Cut
framework (CBC) (Forrest, 2003) and comprises three components:

• Branching Objects: BiCePS objects that can be branched on, such as integer variables and
special ordered sets.

• Candidate Branching Objects: Objects that do not lie in the feasible region or objects that
will be beneficial to the search if branching on them.

• Branching Method : A method to compare candidate objects and choose the best one.

The branching method is a core component of BLIS’s branching scheme. When expanding a node,
the branching method first identifies a set of initial candidates and then selects the best object based
on the rules it specifies. The branching methods provided by BLIS include strong branching (Apple-
gate et al., 2006), pseudo-cost branching (Bénichou et al., 1971), reliability branching (Achterberg
et al., 2005), and maximum infeasibility branching. Users can develop their own branching methods
by deriving subclasses from BcpsBranchStrategy.

Constraint Generation. BLIS constraint generators are used to generate additional constraints
to improve the problem formulation in the usual way. BLIS collects statistics that can be used to
manage the generators, allowing the user to specify where to call the generator, how many cuts
to generate at most, and when to activate or disable the generator. BLIS stores the generated
constraints in local constraint pools. Later, BLIS augments the current subproblem with some
or all of the newly generated constraints. The BLIS constraint generator base class also provides
an interface between BLIS and the algorithms in the COIN-OR Cut Generator Library (CGL).
Therefore, BLIS can use all the constraint generators in CGL, which includes implementations for
most of the classes commonly used in modern MILP solvers. A user can easily develop a new
constraint generator and add it into BLIS.

Primal Heuristics. The BLIS primal heuristic class declares the methods needed to search
heuristically for feasible solutions. The class also provides the ability to specify rules to control the
heuristic, such as where to call the heuristic, how often to call the heuristic, and when to activate
or disable the heuristic. The methods in the class collect statistics to guide searching and provides
a base class from which new heuristic methods can be derived. Currently, BLIS has only a simple
rounding heuristic.

3 Computation

Having described the flexibility of the framework in adapting to a wide range of algorithm and
problem types, we now discuss our efforts to use the framework “out of the box” to solve generic
mixed integer linear programs. It should be emphasized that the challenges involved in developing
software that is expected to be used “out of the box” are substantially different than those involved
when the algorithm is expected to be used as a “framework” and pre-tuned by the user to take

14



advantage of the known properties of a particular problem class. When properties of a particular
problem class are known a priori, improved performance can be expected. With no such foreknowl-
edge, it is crucial that default parameter settings be reasonable and that there be some mechanism
by which the parameters can be adjusted automatically as the properties of a particular instance
reveal themselves.

The experiments reported here are intended to demonstrate the performance that could be
expected by a user employing the framework without the benefit of any foreknowledge. No after-
the-fact tuning was done to obtain the results described below. We selected instances that seemed
interesting based on the difficulty of their solution using state-of-the-art sequential codes without
considering other characteristics, such as the size of the search tree or the amount of time required
to process a node. It should be emphasized, however, that the challenges that arise in testing a
parallel implementation such as this one are many and difficult to overcome. Because the amount
of variability in experimental conditions is such that it is often extremely difficult to ascertain the
exact causes for observed behavior, results such as those presented here have always to be taken
with a healthy degree of skepticism. The situation is even more difficult when it comes to providing
comparisons to other implementations because the scalability properties of individual instances
can be very different under different conditions, making it difficult to choose a test set that is
simultaneously appropriate for multiple solvers. We have done our best to provide some basis for
comparison, but this is ultimately a near-impossible task.

Below, we report on a number of experiments to test performance and identify the major con-
tributors to parallel overhead, as well as the effectiveness of our attempts to reduce it. We ran tests
both on instances of the knapsack problem, which exhibit favorable conditions for parallelization
and for a wide range of MILP instances without known structure, some of which exhibit very poor
scalability properties. A number of different computational platforms were involved, including:

• An IBM Power5 Beowulf cluster at Clemson University with 52 PPC64 dual-core nodes. The
clock speed was 1.654 GHz. The two cores share 4 GB RAM, as well as L2 and L3 cache, but
have their own L1 cache. The backbone network was a 2 GB/sec Myrinet.

• An Intel/AMD Beowulf cluster at Clemson University with 516 dual-quad-core Intel Xeon
64-bit nodes and 255 dual-quad-core AMD Opteron 64-bit nodes. We used the AMD nodes,
which have 4 MB L2 cache, 16 GB RAM and 2.33 GHz clocks. The backbone was a 10
GB/sec Myrinet.

• A Blue Gene system at San Diego Supercomputer Center (SDSC) (Reed, 2003) with three
racks with 3072 compute nodes and 384 I/O nodes. Each compute node consists of two
PowerPC processors that run at 700 MHz and share 512 MB of memory.

In Section 3.1, we first analyze the overall scalability of CHiPPS with default parameter settings
under ideal conditions. The results presented there provide a baseline for comparison to tests with
generic MILP instances, which provide a significantly more difficult challenge. In Section 3.2.1, we
use a tradition scalability analysis to examine results obtained using the framework to solve a set
of relatively easy instances. In Section 3.2.2, we show what can be done with a set of test problems
that are much more challenging.

15



3.1 Knapsack Problems

To demonstrate the scalability of the framework under favorable conditions and on a class of problem
with known properties, we first report results of solving knapsack instances with a simple knapsack
solver that we refer to below as KNAP, which was built directly on top of ALPS. This solver uses
a straightforward branch-and-bound algorithm with no cut generation. These experiments allowed
us to look independently at aspects of our framework having to do with the general search strategy,
load balancing mechanism, and the task management paradigm. We tested KNAP using a test
set composed of difficult instances constructed using the method proposed by Martello and Toth
(1990).

The test set consisted of 26 very difficult knapsack instances available from CORAL Laboratory
(2009). This experiment was conducted on the SDSC Blue Gene system. Because the instances
show a similar pattern, we have aggregated the results, which are shown in Table 1. The column
headers have the following interpretations:

• Total Nodes is the total number of nodes in the search trees for the 26 instances. Observing
the change in the size of the search tree as the number of processors is increased provides
a rough measure of the amount of redundant work being done. Ideally, the total number
of nodes explored does not grow as the number of processors is increased and may actually
decrease in some cases, due to earlier discovery of feasible solutions that enable more effective
pruning.

• Ramp-up is the percentage of total average wallclock running time time each processor spent
idle during the ramp-up phase for solving the 26 instances.

• Idle is the percentage of total average wallclock running time each processor spent idle due
to work depletion during the primary phase of the algorithm.

• Ramp-down is the percentage of total average wallclock running time each processor spent
idle during the ramp-down phase, which starts when any of the processors became idle for
the rest of the run due to lack of tasks globally.

• Total Wallclock is the total wallclock running time (in seconds) for solving the 26 knapsack
instances.

• Eff is the parallel efficiency and is equal to 64 times the total wallclock running time for
solving the 26 instances with 64 processors, divided by p times the total wallclock running
time for solving the 26 instances with p processors. Note that the efficiency is being measured
here with respect the solution time on 64 processors, rather than one, because of the computer
memory and running-time limitation encountered in the single-processor runs.

Efficiency should normally represent approximately the average fraction of time spent by processors
doing “useful work,” where the amount of useful work to be done, in this case, is measured by the
running time with 64 processors. Efficiencies greater than one are not typically observed and when
they are observed, they are usually the result of random fluctuations or earlier discovery of good
incumbents.

The experiment shows that KNAP scales well, even when using thousands of processors. There
are several reasons for this. First, the node evaluation times are generally short and it is easy to
generate a large number of nodes quickly during ramp-up. Second, the static load balancing does

16



tend to result in a workload is already quite well balanced at the beginning of the search, perhaps
due to the fact that the search trees for these “near-symmetric” instances tend to be well-balanced.
Finally, the node descriptions are small and the overhead from any load balancing that is required
is relatively low.

As the number of processors is increased to 2048, we observe that the wallclock running time of
the main phase of the algorithm becomes shorter and shorter, while the running time of the ramp-
up and ramp-down phases inevitably increase, with these phases eventually dominating the overall
wallclock running time. When using 2048 processors, the average wallclock running time for solving
an instance is 9.8 seconds, among which the ramp-up took 0.9 seconds and ramp-down took 2.2
seconds. This illustrates why the existence of portions of the algorithm with limited parallelizability
imposes a theoretical bound on the maximum overall speedup that can be observed for a fixed set
of test instances, regardless of the number of processors (Amdahl, 1967). To get a truer picture of
how the algorithm scales beyond 2048 processors, we would need to scale the size and difficulty of
the instances while scaling the number of processors, as suggested by Kumar and Rao (1987). This
analysis was not performed due to resource limitations and the practical difficulty of constructing
appropriate test sets.

Table 1: Scalability for solving knapsack instances.
Processors Total Nodes Ramp-up Idle Ramp-down Total Wallclock Eff

64 14733745123 0.69% 4.78% 2.65% 6296.49 1.00
128 14776745744 1.37% 6.57% 5.26% 3290.56 0.95
256 14039728320 2.50% 7.14% 9.97% 1672.85 0.94
512 13533948496 7.38% 4.30% 14.83% 877.54 0.90

1024 13596979694 13.33% 3.41% 16.14% 469.78 0.84
2048 14045428590 9.59% 3.54% 22.00% 256.22 0.77

3.2 Generic MILPs

3.2.1 Moderately Difficult Instances

For our first set of tests on generic MILP instances, we chose instances that were only moderately
difficult and employed a traditional scalability analysis. We selected 18 standard MILP instances1

from Lehigh/CORAL (CORAL Laboratory, 2009), MIPLIB 3.0, MIPLIB 2003 (Achterberg et al.,
2006), BCOL (Atamtürk, 2007), and Pfetsch (2005). These instances took at least two minutes
but no more than 2 hours to solve with BLIS sequentially. We used four cut generators from
the COIN-OR Cut Generation Library (Lougee-Heimer, 2003): CglGomory, CglKnapsackCover,
CglFlowCover, and CglMixedIntegerRounding. Pseudo-cost branching was used to select branch-
ing objects. The local search strategy was a hybrid diving strategy in which one of the children
of a given node was retained as long as its bound did not exceed the best available by more than
a given threshold. As per default parameter settings, ALPS used two hubs for the runs with 64
processors. For all other runs, one hub was used.

Table 2 shows the results of these computations. Note that in this table, we have added an extra
column to capture sources of overhead other than idle time (i.e., communication overhead) because

1aflow30a, bell5, bienst1, bienst2, blend2, cls, fiber, gesa3, markshare 4 1 4 30, markshare 4 3 4 30, mas76,
misc07, pk1, rout, stein, swath1, swath2, vpm2

17



Table 2: Scalability for generic MILP.
Processors Total Ramp- Idle Ramp- Comm Total Average Eff

Nodes up down Overhead Wallclock Wallclock

1 11809956 — — — — 33820.53 — 1.00

4 11069710 0.03% 4.62% 0.02% 16.33% 10698.69 0.00386 0.79

8 11547210 0.11% 4.53% 0.41% 16.95% 5428.47 0.00376 0.78

16 12082266 0.33% 5.61% 1.60% 17.46% 2803.84 0.00371 0.75

32 12411902 1.15% 8.69% 2.95% 21.21% 1591.22 0.00410 0.66

64 14616292 1.33% 11.40% 6.70% 34.57% 1155.31 0.00506 0.46

these become significant here. The effect of these sources of overhead is not measured directly, but
was estimated as the time remaining after all directly measured sources had been accounted for.
Note also that in these experiments, the master process did not do any exploration of subtrees, so
an efficiency of (p − 1)/p is the best that can be expected, barring anomalous behavior. To solve
these instances, BLIS needed to process a relatively large number of nodes and the node processing
time were generally not long. These two properties tend to lead to good scalability, and the results
reflect this to a large extent. However, as expected, overhead starts to dominate wallclock running
time uniformly as the number of processors is increased. This is again an example of the limitations
in scalability for a fixed test set.

Examining each component of overhead in detail, we see that ramp-up, idle, and ramp-down
time grow, as a percentage of overall running time, as the number of processors increases. This
is to be expected and is in line with the performance seen for the knapsack problems. However,
the communication overhead turns out to be the major cause of reduced efficiency. We conjecture
that this is primarily for two reasons. First, the addition of cut generation increases the size of the
node descriptions and the amount of communication required to do the load balancing. Second, we
found that as the number of processors increased, the amount of load balancing necessary went up
quite dramatically, in part due to the ineffectiveness of the static load balancing method for these
problems.

Table 3 summarizes the aggregated results of load balancing and subtree sharing when solving
the 18 instances that were used in the scalability experiment. The column labeled p is the number of
processors. The column labeled Inter is the number of inter-cluster balancing operations performed
(this is zero when only one hub is used). The column labeled Intra is the number of intra-cluster
balancing operations performed. The column labeled Starved is the number of times that workers
reported being out of work and proactively requested more. The column labeled Subtree is the
number of subtrees shared. The column labeled Split is the number of subtrees that were too
large to be packed into a single message buffer and had to be split when sharing. The column
labeled Whole is the number of subtrees that did not need to be split. As Table 3 shows, the
total number of intra-cluster load balancing operations goes down when the number of processors
increases. However, worker starvation increases. Additionally, the number of subtrees needing to
be split into multiple message units increases. These combined effects seem to be the cause of the
increase in communication overhead.

In order to put these results in context, we have attempted to analyze how they compare to
results reported in papers in the literature, of which there are few. Eckstein et al. (2000) tested the
scalability of PICO by solving six MILP instances from MIPLIB 3.0. For these tests, PICO was

18



Table 3: Load balancing and subtree sharing.
Processors Inter Intra Starved Subtree Split Whole

4 — 87083 22126 42098 28017 14081
8 — 37478 25636 41456 31017 10439
16 — 15233 38115 55167 44941 10226
32 — 7318 44782 59573 50495 9078
64 494 3679 54719 69451 60239 9212

used as a pure branch-and-bound code and did not have any constraint generation, so it is difficult
to do direct comparison. One would expect that the lack of cut generation would increase the size
of the search tree while decreasing the node processing time, thereby improving scalability. Their
experiment showed an efficiency 0.73 for 4 processors, 0.83 for 8 processors, 0.69 for 16 processors,
0.65 for 32 processors, 0.46 for 64 processors, and 0.25 for 128 processors. Ralphs (2006) reported
that the efficiency of SYMPHONY 5.1 is 0.81 for 5 processors, 0.89 for 9 processors, 0.88 for
17 processors, and 0.73 for 33 processors when solving 22 MILP instances from Lehigh/CORAL,
MIPLIB 3.0, and MIPLIB 2003. All in all, our results are similar to those of both PICO and
SYMPHONY. However, because we are using a more sophisticated and therefore less scalable
algorithm, this can be seen as an improvement. Also, SYMPHONY was not tested beyond 32
processors and it is unlikely that it would have scaled well beyond that.

3.2.2 Difficult Instances

For the second set of experiments, we abandoned the traditional measures of scalability and tried
simply to answer the question of whether we could use CHiPPS to accomplish something substan-
tively different with a relatively large number of processors available to us than we could otherwise.
We chose 24 test instances primarily from the Lehigh/CORAL test set that we predicted would
be difficult or impossible to solve in less than 24 hours on a single processor. Note that because
of the difficulty of getting large blocks of computing time, we had to commit to using this test
set without knowing much about the instances. This is far from a typical use case—it would be
unusual not to have some opportunity to learn about the instances before commencing production
runs. Therefore, although these results need to be treated with informed skepticism, we do believe
they give a realistic and positive view of the potential of this methodology once larger numbers of
processors become more freely available. As technology advances, we will have more opportunities
at testing with larger test set and more runs to smooth out the variability.

The instances were solved on up to 255 Opteron nodes on the Clemson Xeon/Opteron cluster
running for a full 24 hours. For all tests, we used only one core per processor to eliminate sources of
variability due both to the use of shared memory and to inconsistency in the speed of inter-process
communications. The results are shown in Table 4. Note that seven instances have been excluded
from the reporting because no solution was found during any of the tests. These were simply too
difficult for BLIS to make progress on, most likely because of the lack of powerful primal heuristics
in the default implementation. In the table, the numbers followed by an “s” are the time in seconds
it took to solve the instance to optimality. The number followed by “%” are the gap after 24
hours. “NS” indicates that no solution was found after 24 hours. The lack of an entry indicates
the experiment was not performed. The experiments with 255 nodes required reserving the entire
Clemson cluster and this could only be done for relatively short periods of time. Thus, we were

19



Table 4: Scalability of harder MILPs.
Name 1 64 128 255

mcf2 43059s 2091s 1373s 926s
neos-1126860 39856s 2540s 1830s 2184s
neos-1122047 NS 1532s 1125s 1676s
neos-1413153 20980s 2990s 3500s 4230s
neos-1456979 NS NS 78.06%
neos-1461051 NS 536s 1082s 396s
neos-1599274 9075s 8108s 1500s
neos-548047 482% 376.48% 137.29%
neos-570431 21873s 1308s 1255s 1034s
neos-611838 8005s 886s 956s 712s
neos-612143 4837s 1315s 1716s 565s
neos-693347 NS 1.70% 1.28%
neos-912015 10674s 275s 438s 538s
neos-933364 11.80% 6.79% 6.67%
neos-933815 32.85% 8.77% 6.54%
neos-934184 9.15% 6.76% 6.67%
neos18 79344s 30.78% 30.78%

only able to perform these runs for the problems that could solve to optimality relatively quickly.
The remaining experiments would have required more than a solid week of computation and this
simply was not possible.

A qualitative analysis of the results indicates that for this small test set, we were in fact able
to make substantially more progress on a substantial fraction of these problems using parallelism.
In a number of cases, running times improved from on the order of a day to on the order of an
hour. In some cases, significantly improved gaps were obtained and in others, solutions were found
with multiple processors where none were found on a single processor. Of course, the results didn’t
always improve with additional processing power, but these cases were the exception rather than
the rule.

As noted above, efficiency can be a somewhat problematic measure of performance for dynamic
search algorithms in general. In addition, it is more appropriate for analysis of parallel algorithms
run on dedicated machines, which is what is commonly meant by “high-performance comput-
ing”. Performance measures for high-throughput computing should more appropriately focus on
throughput for a collection of jobs sharing the resources globally across jobs. Processors that are
idle during the processing of one problem could be put to work solving other problems, improving
overall throughput of a set of jobs. CHiPPS currently does not support such a processing mode
directly, but its architecture is such that adding such a mode or integrating it with throughput
management systems such as Condor (Thain et al., 2005) could be done.

3.3 The Impact of Problem Properties

As we have mentioned several times, the properties of individual instances can significantly affect
scalability, independent of the implementation of the solver itself. Table 5 shows the detailed results

20



Table 5: Problem properties and scalability.
Instance P Nodes Ramp-up Idle Ramp-down Wallclock Eff

input150 1 64 75723835 0.44% 3.38% 1.45% 1257.82 1.00
128 64257131 1.18% 6.90% 2.88% 559.80 1.12
256 84342537 1.62% 5.53% 7.02% 380.95 0.83
512 71779511 3.81% 10.26% 10.57% 179.48 0.88

fc 30 50 2 64 3494056 0.15% 31.46% 9.18% 564.20 1.00
128 3733703 0.22% 33.25% 21.71% 399.60 0.71
256 6523893 0.23% 29.99% 28.99% 390.12 0.36
512 13358819 0.27% 23.54% 29.00% 337.85 0.21

pk1 64 2329865 3.97% 12.00% 5.86% 103.55 1.00
128 2336213 11.66% 12.38% 10.47% 61.31 0.84
256 2605461 11.55% 13.93% 20.19% 41.04 0.63
512 3805593 19.14% 9.07% 26.71% 36.43 0.36

of solving three specific MILP instances with BLIS on the SDSC Blue Gene. We use the time for
the 64-processor run as the baseline for measuring efficiency.

Instance input150 1 is a knapsack instance. When using 128 processors, BLIS achieved su-
perlinear speedup mainly due to the decrease in the tree size. BLIS also showed good parallel
efficiency as the number processors increased to 256 and 512. Instance fc 30 50 2 is a fixed-charge
network flow instance. It exhibits very significant increases in the size of its search tree (indicating
the performance of redundant work) as the number of processors increases, resulting in decreased
efficiency. It was found that the optimality gap of instance fc 30 50 2 improves very slowly during
the search, which causes a large number of nodes to be processed. Instance pk1 is a small integer
program with 86 variables and 45 constraints. It is relatively easy to solve. Although the efficiency
is reasonable good when using 128 processors, it is eventually wiped out by significant increases in
ramp-up and ramp-down overhead as the number of processors increases.

The results in Table 5 show that problem properties can have a tremendous impact on scalability.
For instances that have large tree size and short node processing time, it is relatively to achieve
good speedup. For instances that are particularly easy to solve or for which the upper bounds
are difficult to improve, however, it can be difficult to achieve good speedup regardless of the
effectiveness of the implementation.

4 Conclusions and Future Work

It has now become clear that we have no choice but to pursue parallelization of the most funda-
mental algorithms if we want to continue to enjoy the advantages of improvements in processing
power. Parallelizing algorithms such as branch and cut in a scalable fashion is a challenge that
involves balancing the costs and benefits of synchronization and the sharing of knowledge during
the algorithm. Because this analysis can yield different results for different problem classes, it is
difficult in general to develop a single ideal approach that will be effective across all problem classes.
However, we have shown the approach taken by CHiPPS to be effective across a fairly wide range
of instances. It would be premature to say that parallelism is a panacea or that one could expect
uniformly good results out of the box. However, the results in Section 3.2.2 indicate that even in

21



conditions much worse than what would typically be encountered in practice, there is hope. In
a more typical use case, solving a large number of instances with similar properties and with the
benefit of tuning over the long term, much better speedups should be possible.

Of course, many challenges remain. In the near term, we plan to continue improving CHiPPS
by refining the load balancing schemes and knowledge sharing methods. Reducing the length of the
ramp-up and ramp-down phases will be a particular focus, as effort during these phases remains
a significant scalability issue. We also plan to generalize the implementation of BLIS in order to
better support column generation and related algorithms, such as branch and price. In the longer
term, we plan to develop modules for solution of additional problem classes, such as non-linear
programs. We also hope to improve fault tolerance and develop a knowledge broker appropriate
for deployment on computational grids.

References

Achterberg, T., T. Koch, A. Martin. 2005. Branching rules revisited. Operations Research Letters
33 42–54.

Achterberg, T., T. Koch, A. Martin. 2006. MIPLIB 2003. Operations Research Letters 34 1–12.

Amdahl, G. M. 1967. Validity of the single-processor approach to achieving large-scale computing
capabilities. AFIPS Conference Proceedings. AFIPS Press, 483–485.

Applegate, D., R. Bixby, V. Chvátal, W. Cook. 2006. The Traveling Salesman Problem: A Com-
putational Study . Princeton University Press, Princeton, NJ, USA.

Atamtürk, A. 2007. Berkeley computational optimization lab data sets. http://ieor.berkeley.

edu/~atamturk/data.

Benchouche, M., V.-D. Cung, S. Dowaji, B. Le Cun, T. Mautor, C. Roucairol. 1996. Building a
parallel branch and bound library. Solving Combinatorial Optimization Problems in Parallel,
Lecture Notes in Computer Science 1054. Springer, Berlin, 201–231.

Bénichou, M., J. M. Gautheier, P. Girodet, G. Hentges, G. Ribière, O. Vincent. 1971. Integer linear
programming. Mathematical Programming 1 76–94.

Borbeau, B., T. G. Crainic, B. Gendron. 2000. Branch-and-bound parallelization strategies applied
to a depot location and container fleet management problem. Parallel Computing 26 27–46.

Brown, R. G. 2004. Engineering a beowulf-style compute cluster. http://www.phy.duke.edu/

~rgb/Beowulf/beowulf_book/beowulf_book/.

Chen, Q., M. Ferris. 2001. Fatcop: A fault tolerant condor-pvm mixed integer programming solver.
SIAM Journal on Optimization 11 1019–1036.

CORAL Laboratory. 2009. Data sets. http://coral.ie.lehigh.edu/instances.html.

Dakin, R.J. 1965. A tree-search algorithm for mixed integer programming problems. The Computer
Journal 8 250–255.

22



Eckstein, J., C. A. Phillips, W. E. Hart. 2000. Pico: An object-oriented framework for parallel
branch and bound. Tech. Rep. RRR 40-2000, Rutgers University.

Eckstein, J., C. A. Phillips, W. E. Hart. 2007. PEBBL 1.0 user guide.

Fonlupt, C., P. Marquet, J. Dekeyser. 1998. Data-parallel load balancing strategies. Parallel
Computing 24 1665–1684.

Forrest, J. J. 2003. Cbc: Coin-or Branch-and-Cut. https://projects.coin-or.org/Cbc.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. S. Sunderam. 1994. PVM: Parallel
Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel Computing . MIT Press,
Cambridge, MA, USA.

Gendron, B., T. G. Crainic. 1994. Parallel branch and bound algorithms: Survey and synthesis.
Operations Research 42 1042–1066.

Gendron, B., T. G. Crainic, A. Frangioni, F. Guertin. 2005. Oobb: Object-oriented tools for parallel
branch-and-bound.

Gropp, W., E. Lusk, A. Skjellum. 1999. Using MPI . 2nd ed. MIT Press, Cambridge, MA, USA.

Henrich, D. 1993. Initialization of parallel branch-and-bound algorithms. Second International
Workshop on Parallel Processing for Artificial Intelligence(PPAI-93).

Kumar, V., A. Y. Grama, Nageshwara Rao Vempaty. 1994. Scalable load balancing techniques for
parallel computers. Journal of Parallel and Distributed Computing 22 60–79.

Kumar, V., V. N. Rao. 1987. Parallel depth-first search, part ii: Analysis. International Journal
of Parallel Programming 16 501–519.

Land, A. H., A. G. Doig. 1960. An automatic method for solving discrete programming problems.
Econometrica 28 497–520.

Laursen, P. S. 1994. Can parallel branch and bound without communication be effective? SIAM
Journal on Optimization 4 33–33.

Linderoth, J. 1998. Topics in parallel integer optimization. Ph.D. thesis, School of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

Lougee-Heimer, R. 2003. The common optimization interface for operations research. IBM Journal
of Research and Development 47 57–66.

Martello, S., P. Toth. 1990. Knapsack Problems: Algorithms and Computer Implementation. 1st
ed. John Wiley & Sons, Inc., USA.

Mitten, L. G. 1970. Branch-and-bound methods: General formulation and properties. Operations
Research 18 24–34.

Pfetsch, Marc. 2005. Markshare instances. http://miplib.zib.de/contrib/Markshare.

23



Ralphs, T. K. 2006. Parallel branch and cut. E. Talbi, ed., Parallel Combinatorial Optimization.
Wiley, USA, 53–102.

Ralphs, T. K., M. Güzelsoy. 2008. SYMPHONY Version 5.1 User’s Manual . http://www.

brandandcut.org.

Ralphs, T. K., L. Ladányi. 2001. COIN/BCP User’s Manual . http://www.coin-or.org/

Presentations/bcp-man.pdf.

Ralphs, T. K., L. Ladányi, M. J. Saltzman. 2003. Parallel branch, cut, and price for large-scale
discrete optimization. Mathematical Programming 98 253–280.

Ralphs, T. K., L. Ladányi, M. J. Saltzman. 2004. A library hierarchy for implementing scalable
parallel search algorithms. The Journal of Supercomputing 28 215–234.

Reed, D. A. 2003. Grids, the teragrid, and beyond. Computer 36 62–68.

Sanders, P. 1998. Tree shaped computations as a model for parallel applications. In ALV’98
Workshop on application based load balancing. SFB 342, TU Munchen, Germany, March 1998.
http://www.mpi-sb.mpg.de/~sanders/papers/alv.ps.gz.

Shinano, Y., T. Fujie. 2007. ParaLEX: A parallel extension for the CPLEX mixed integer optimizer.
F. Cappello, T. Herault, J. Dongarra, eds., Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer, 97–106.

Shinano, Y., K. Harada, R. Hirabayashi. 1995. A generalized utility for parallel branch and bound
algorithms. Proceedings of the 1995 Seventh Symposium on Parallel and Distributed Processing .
IEEE Computer Society Press, Los Alamitos, CA, 392–401.

Sinha, A., L. V. Kalé. 1993. A load balancing strategy for prioritized execution of tasks. Seventh
International Parallel Processing Symposium. Newport Beach, CA., 230–237.

Thain, Douglas, Todd Tannenbaum, Miron Livny. 2005. Distributed computing in practice: the
condor experience. Concurrency—Practice and Experience 17 323–356.

Trienekens, H. W. J. M., A. de Bruin. 1992. Towards a taxonomy of parallel branch and bound
algorithms. Tech. Rep. EUR-CS-92-01, Department of Computer Science, Erasmus University.

Tschoke, S., T. Polzer. 2008. Portable parallel branch and bound library. http://www.cs.

uni-paderborn.de/cs/ag-monien/SOFTWARE/PPBB/ppbblib.html.

Xu, Y. 2007. Scalable algorithms for parallel tree search. Ph.D. thesis, Department of Industrial
and Systems Engineering, Lehigh University, Bethlehem, PA, USA.

24


