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Abstract

In this paper we consider the Convex Quadratic Optimization problem with
simultaneous perturbation in the right-hand-side of the counstraints and the linear
term of the objective function with different parameters. The regions with invariant
optimal partitions are investigated as well as the behavior of the optimal value
function on the regions. We show that identifying these regions can be done in
polynomial time in the output size. An algorithm for identifying all invariancy
regions is presented. Some implementation details, as well as a numerical example
are discussed.
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1 Introduction

Let the Bi-Parametric Convex Quadratic Optimization {CQO) problem be given as
QP(Ab, Ac, e, A) min {(c +a0e) Tz + %mTQ:c | Az = b+ elb, z > O} ,

where A € R™*® (Q € R™" is a symmetric semi-definite matrix, b € R™ and ¢ € R™ are

fixed data, € and A are two real parameters, Ab € R™, Ac € R" are the perturbation
directions and = € R™ is an unknown vector. The dual of problem QP{Ab, Ac, ¢, A) is

QD(ND, HNeye, A)  max {(b +eAD)Ty — %uTQu | ATy + 58— Qu=c++ D¢, u,s > 0} ,

where y € R™, » € R™ and s € R™ are unknowns. In general, both Ab and /¢ are non-
zero vectors. Any z(¢) > 0 satisfying Az = b+ ¢Ab is called a primal feasible solution

*Corresponding author. Email: terlaky@iehigh.edu



of problem QP(Ab, Ac,e,N). Further, a vector (u(A), y(A), (X)) with u(X),s(A) = 0 is
called a dual feasible solution of QD{Ab, Ac, ¢, \) if it satisfies ATy + s — Qu = c+ Ac.
Feasible solutions z(¢) and (u(A), y(A), s(A)) of QP(ADb, Ac, ¢, A) and QD{Ab, Ac, ¢, M) are
optimal if and only if Qz(e) = Qu()) and z(e)Ts(\) = 0 {6]. The equation z(e)"s(A) =0
is equivalent to z;(€)s;(A) == 0, i = 1,2,...,n and is known as the complementarity
condition. Let QP(Ab, e, e, A) and QP*(Ab, Ac, ¢, A) denote the sets of primal feasible
and primal optimal solutions of QP(Ab, Ac, €, A), respectively. Similar notation is used
for the sets of feasible and optimal solutions of QD(Ab, Ac,e, A). For the case when
€ == ) = 0; the CQO problem is referred to as the unperturbed problem and we drop Ab,
Ac, € and X in this case. Moreover, when either Ab or ¢ is a zero vector, or when € = A,
the perturbed CQO problem is referred to as uni-parametric CQO problem. However,
we consider the general case when e and A are not necessarily identical and refer o this
problem as the bi-parametric CQO problem.

It is well known [6] that there exist optimal solutions £* € QP* and (u*,y*, s*) € QD"
for which z* = u*, thus we may denote the dual solution by (z,y, s) for the unperturbed
problem @D. If we keep in mind this consideration for the perturbed problems, the
primal optimal solution of @QP{Ab, Le, e, A) will depends not only on e but also on A
Analogously, the dual variables y and s in QD{Ab, Ac, ¢, A) will depend on both ¢ and
A. Due to these facts, we denote a primal-dual optimal solution of the perturbed CQO
problems by (z*(¢, A), y*(¢, A}, s*(¢, A)).

The support set of a nonnegative vector v is defined as ¢(v) = {i:v; > 0}. Unlike
the case of Linear Optimization (IO} problem, where the index set {1,2,...,n} can be
partitioned into two subsets, the index set for CQO needs to be partitioned into three
disjoint subsets as

Ble,A) = {i:z}(e, A) > 0 for an optimal solution z™(¢, M)},
N(e, A) = {i: sf > 0 for an optimal solution (z"(e, A}, y"(e, A), s"(e, A}}},
T(e,A) = {1,2,--- ,n} \(Ble, \) UN (¢, A))
= {1 : 2] (e, A) = 5] (¢, A) = 0 for all primal-dual optiral solutions
(z(e, A), y"(e, A)y s7(&: M) -

We refer to this partition as the optimal partition and denote it by n(e, A) = (B(e, A),
N(e,A), T{e,A)}) as well. The optimal partition n(e, A) is unique [3]. A mazimality
complementary solution (2*(e, ), y*(c, A}, §%(e, A)) is a primal-dual optimal solution of
QP(Ab, Le, e, A) and QD(ADb, Ac, ¢, A) for which

zi(e, A) > 0 if and only if 7 € B(e, A),
si(e,A) > 0 if and only if i € N{e, A).

The existence of maximality complementary optimal solutions is a consequence of the
convexity of the optimal solution sets QP*(Ab, Ac, ¢, ) and @D"(Ab, Ac, e, A). Interior
Point Methods (IPMs) are widely used to solve CQO problems in polynomial time [14]
and sufficiently accurate solutions obtained by an IPM can be used to produce maxi-
mally complementary solutions [12]. By knowing a maximality complementary optimal



solution, one can easily identify the optimal partition. If for a given optimal partition

7 (¢, ) = 0 holds, then any maximally complementary solution is sérictly complementary.

1t is worth mentioning that for any primal-dual optimal solution (z*,y*, s*), the relations

o(z*(e, A)) C Ble, A) and o(s*(¢, A)) € N{e, A} hold. Both inclusions hold with equality if

and only if the given primal-dual optimal solution is maximally (strictly) complementary.
Let ¢(¢, \) denote the optimal value function which is defined as:

dle, ) = (c+ AAe)Tz*(e, A) + 22%{e, \)TQz" (¢, A)

1
= (b+ eOb)Ty (e, A) — 557 (e, A)TQz" (¢, A), .
where Ab and Ac are fixed perturbing directions.

In optimal pertition invariancy sensitivity analysis we aim to identify the range of
parameters where the optimal partition remains invariant. The cases when either Ab or
Ac is zero has been studied in [4]. The situation when ¢ = X has been investigated in [8].
In these cases the region of the parameter is an interval of the real line calied invariancy
interval. We refer to the studies mentioned above as uni-parametric optimal partition
invariancy sensitivity analysis.

Bi-parametric optimal partition based sensitivity analysis has been studied in case of
LO in [7]. Bi-parametric active set based sensitivity analysis was developed in [2, 10]
for the LO and CQO cases. Earlier studies (see [16, 21, 11, 15, 9] for more details)
produced the ideas that are summarized in [7, 2, 10] and we refer the interested reader
to consult those publications. Fundamental properties derived in Section 2 overlap with
the ones that appeared in [2] with the difference that those are based on the active-
set notion and, consequently, require non-degeneracy assumption. While [2] contains
theoretical derivations and numerical examples, there is no complete algorithm to do
systematic analysis of bi-parametric quadratic optimization problems. In the remainder
of this paragraph, we just point out the most recent results from [7] in a nutshell. The
crucial difference of the bi-parametric LO case from the CQO case is that in the LO case
the invariancy regions are open rectangles while in the CQO case those are open convex
polyhedrons. In bi-parametric LO the invariancy regions generate a mesh-like area in R?
that simplifies enumeration of the regions. This is not the case for bi-parametric CQO
problems that results in a more complicated computational algorithm. ‘

In this paper, we consider the bi-parametric optimal partition invariancy sensitivity
analysis for CQO in the general case, when both Ab and /¢ are nonzero vectors and
parameters ¢ and A change independently. Let n = (B, N, T) denote the optimal partition
for € = 0 and A = 0. We are interested in finding all the regions on the “e — A" plane
where the optimal partition is invariant, i.e., w(e, A) = (B,N,T). We call each of these
regions invariancy region and denote it by ZR(Ab, Ac). Tt is obvious that one of these
regions includes the origin (0,0), and thus, their union is a nonempty set.

The paper is organized as follows. In Section 2 we describe the fundamental properties of
the invariancy regions and optimal value function. Section 3 is devoted to the issues arising
during the boundary detection of invariancy regions. Algorithmic and implementation
issues are addressed in Section 4. We present a numerical example in Section 5 and make
some concluding remarks in Section 6.



2 Fundamental Properties

In this section, we prove some fundamental properties of the invariancy region and describe
the behavior of the optimal value function in this region. First we prove that this region
is a convex set. Analogous result can be found in Theorems 5.4.3 and 5.4.4 in [2] and
Theorem 17 in {9},

Lemma 2.1 The set TR{Ab, c) is a convez set and its closure 4s a polyhedron.
Proof:  Let (e, A1) and (e, \g) are two arbitrary pairs in ZR(Ab, Ac). Let (21,
y®, s and (2@, 4P, s@) are maximally (strictly) complementary optimal solutions
of problems QP(Ab, Ac,¢,A) and QD(Ab, Ac,e,)) at these points. Let (e, A) be an
arbitrary point on the line segment between two points (€1, 71) and (e2, Ap). There is a
# € (0,1) such that:

e = ¢y + 0/, _ (2)
M= A+ AN, (3)

where /¢ == ¢g — ¢; and AX = Az — Ay, We define

z(e, A) = z{¢) = 8z + (1 — )z, (4)
y(e,N) = y(\) = 0yW + (1~ 6y, (5)
s(e, N) = s(A) = 05 4 (1~ §)s@. (6)

Tt is easy to verify that z(e, \) is a primal feasible solution and (z(e, A),y(e, A), s(s, A))
is & dual feasible solution. On the other hand, o(z(e, \)) = o(z®) U o(z'®) = B and
o(s(e, \)) = o(sV) U o(s®) = N, that proves the optimality of these solutions for
problems QP(Ab, Ac,e, A) and QD(AD, Ac,¢, A) as well as having the optimal partition
7 = (B,N,7) at (¢,A). That completes the proof of the first statement. Having the
optimal partition given, the optimality conditions reduce to a linear inequality system
when one fixes all z; variables zero in the N'U 7 part and the s; variables zero at the
BUT part, giving a polyhedron [19]. 3

The boundaries between the invariancy regions are line (half-line) segments. The line
segment between two adjacent invariancy regions is referred to as transitional line segment
and the intersection of two transition lines are called transition points. Iransition points
(singleton invariancy regions) and transition lines are called trivial invariancy regions.
An invariancy region that is neither a singleton nor a transition line is referred to as
non-trivial invariancy region.

Optimal value function ¢{e, A} is continuous and plecewise-quadratic. While those
results are proven in Theorems 5.5.1 and 5.5.2 in [2], the expression for quadratic function
given in the proof below is not derived in [2].

Theorem 2.2 The optimal value function is a bivariate quadratic function on invariancy
region TR{Ab, Ac).

Proof: If the invariancy region is a non-singleton trivial region, then the optimal value
function is a univariate quadratic function by Theorem 4.5 in [8]. Let the invariancy



region be a non-trivial region. Further, let (e1, A1), (€2, A2) and (es, Az) are three points in
general position (not on a line) on the “e — X” plane. We are allowed to make assumption
about the general position of points since the invariancy region is not a trivial region. Let

(z*(e1), 7* (A1), 5" (M), (2{e2), (A2}, 8% (Xg)) and (2*(e3), ¥ (As), s"(As)) be primal-dual
optimal solutions at these three points, respectively. Moreover, let (¢, A) be an arbitrary
point in the interior of the triangle formed by these three points. Therefore, there are
9;,92 © (O, 1) with 0 < &7 + 82 < 1 such that
€ = £g — 91&6} - 92A52, (7)
A=Ay — BN ~ Ay, (8)

where Aeq = €5 — €1, Aey = €3 — €9, AX; = Az — Ay and Adg = Ay — Ay, Let us define

2, A) = 2 - 6, Az — 6,02, (9)
y*(e, )\) = y(?:) - Qlﬁy(l) o Qgﬁy(z),
$°(e, ) = s® — g1 AsW — AP,

where Az®) = ¢® _ 20 Az® = 5O _ 2@ Ay = 4O _ 0 Ay® = 4 _ @)
As® = s — W and As® = B — 52, Tt is easy to verify that (z*(e),y*(A), s*(\))
is a primal-dual optimal solution of problems QP(Ab, Ac, ¢, A) and QD(ADb, Dey e, A).
Substituting (8) and (9) in (1) gives
1
dle, Ay = (b+ eAB) Ty (e, A) — "2*.%*(6, M Qx*(e, N) (10}
w Qg a1€1 + (ol + G39192 e CL46% -+ a5€§,

where

ag = bTy® + AT y®) — LB T Qz®,

a; = =0T Ay — ez ATy — D ATy + (28 TQAZW,

ag = ~bT Oy@ — ea AFTy® — Aeg ATy 4 (23T QA2

az = Der AT AY® 4+ Ay AV Ay — (D2 QA 1)
ag = Dy AT Ay® — H(AzWYTQAZY,
a5 = Dea AT AYD — HAINTQAZ®.
On the other hand, solving equations (8) and (7) for #; and 6, gives
0; = o + fre + mA, (12)
By = og + fae + 12, (13)



where

3D Ao-—Ag hén Aa(fcy+Aen)—ea{DA1+DA2)

Q1 = R At *2 5 AerDha—Des iy ;
[j) . AT 16 . {(DAo+DHM}
1™ Aadks—Beaadiagt 727 Aadaz—Headdy? (1 4)
Aeg —g&m-{—/_\él )

VM = Rabia-feahag? 12 Rabrg-Aephi

Substituting {11)-(14) in (10) leads to the following representation of the optimal value

function:
45(6,)\)mbe+b;€+bz}\+bgﬁ}\“§-b462+bg;)\z, (15)

where

by = ag + @10 + Qoo -+ age o + aw% o} agag,

by = ;81 + apfs + ag(ca B2 + caf) + 2040151 + 2050200,
by = a1 + aaye + agogye + ami) + 240071 + 205027,
by = az(1ife + 1) + 204mifh + 205720,

by = ag B1 Ba + aa By” + as o7,

bs = ag v Y2 + a4 vi® + a5 Y2 .

Clearly (15) is a quadratic function of ¢ and A. Because (e1, A1), (€2, A2) and (es, As) are
three arbitrary points in the non-trivial invariancy region, the claim of the theorem follows
directly from (15). The proof is complete. J

Corollary 2.3 The boundary of a non-trivial invariancy region consists of a finite number
of line segments, and on each such line segment the optimal value function is o univariate
quadratic function.

Proof: We know that the optimal value function on the open set representing the
non-trivial invariancy region is quadratic and represented by (15). By Lemma 2.1 the
closure of the non-trivial invariancy region is a convex polyhedron. Thus, the non-trivial
invariancy region boundary consists of a finite number of half-lines and/or line segments.
On each line segment an optimal partition is defined by construction. The bi-parametric
CQO problem can be considered as a uni-parametric problem on each line segment by
computing appropriate linear relation between two parameters. Using continuity of the
optimal value function we get that in the limit for the border line segment, we also obtain
a single quadratic function. So, the optimal value function on each border line segment
of the non-trivial invariancy region boundary is a single univariate quadratic function. O3

The range of parameter variation is an interval of the real line when A = ¢. In this
case one can identify the range of parameters via solving the following two awdliary LO



problems [8]:

A = Amin {A: Az —ADb=1b, 25 20, zyur =0, (16)

Y8

ATy 4 s—Qx —Mde=c, sy =0, spur =0},
and

Ay = Amax{ A Az — AAb=0b, 25 =0, zaur =0, (17)

7S

ATy 45— Qe —Mhe=c, sy =0, spor =0}
where 7 = (B, N, 7) is the optimal partition for ¢ = A == 0.

Remark 2.4 These auziliary problems are simpler when either [\b or e is a zero vector.
One may find the details in [4].

Remark 2.5 If solving of problems (16) and (17) lead to the singleton {0}, then the
invariancy region TR{AD, Ac) is a one dimenstonal set or the singleton {0}. In this case,
the TR(Lb, Ac) is a trivial region. Otherwise, the region is non-trivial invariancy regton.

The invariancy region that contains the origin (¢, A) = (0,0) is referred to as the actual
invariancy region.

3 Detecting the Boundary of an Invariancy Region

In this section, we describe the tools to identify a non-trivial invariancy region. Recall
that for € = ), the bi-parametric CQO problem reduces to uni-parametric CQO problem.
This trivial observation suggests choosing a method to convert the bi-parametric CQO
problem into uni-parametric CQO problems. We start with finding some points on the
boundary of the invariancy region. To accomplish this, we select the lines passing through
the origin as

A = e (18)

For now, we assume that the slope t is positive. Substituting (18) into the problem
QP{Ab, Ac, e, \) converts it to the following uni-parametric CQO problem:

min {(c+ Bz + Lo Q| Az = b+ b, @ 2 o} , (19)

where ¢ = t/Ac. This way we can solve two associated auxiliary LO problems (16) and
(17) to identify the range of variation for parameter ¢ when equation {18) holds. These
two auxiliary LO problems are:

Ae= min{A: Az — A\Ab=1b, 5 = 0, znur =0, (20)

AT H,5

ATy—!mstw——)\T&_Cmc, sy =0, sgur =0},
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Figure 1: Case 1 Illustration
and
Ay == ;‘max{ At Ax — AAb=b, 25 >0, zpur =0, (21)
S\ E

ATy 4 s—Qu—Mac=c, sy >0, spur =0},

where 7 = (B, N, 7)) is the optixal partition for ¢ = A = 0.

Let us consider the case when the problem (20) is bounded for two given distinct
nonzero values t; and 5 (if the problem is unbounded, we know that the invariancy
region is unbounded) and their objective values are e(t;) and e(f2), respectively. Thus,
two points (e{t1), A(f;)) and (e(t2), AM{t1)) of the invariancy region boundary are known.

Let w(ty) = (B{t), N (t:1), T{t1)) and 7(ta) = {B(t2), N (t2), 7 (t2)) be optimal partitions
at (e(ty), A(t)) and (e(t2), AM(f2)), respectively. There are two possibilities for these optimal
partitions.

0] Case 1: 7(t;) = w(tg). The following lemma states that in this case we are able to
identify a part of the boundary of the invariancy region that is a line on the “¢ — A” plane.

Lemma 3.1 Let {e1, \y) and (63, Ag) be two distinct points on the “e—A” plane, where the
optimal partitions at these points are tdentical. Then, the optimal partition for any point
on the line segment connecting these two points is invariant, and egual to the optimal
partition at the two given points.

Proof: Let awe+ ) = 1 be the line passing via two points (e;, A1) and (¢g, Az). We take
both ¢ and 8 to be non-zero, otherwise we are back to the uni-parametric case described
in [8]. So, we have:

A:%wﬁa (22)

Substitution of (22) into the CQO problem QP(Ab, N, e, A) reduces it to a uni-
parametric CQO problem as follows:

min = {(E—f— eAe)ir+ %:ETQLE | Az = b+ elb, z = U} , (23)

where T = ¢+ $Ac and Ac = §4¢. It is proven that the range of parameter variation in
this case is an interval of the real line and for any ¢ in this range the optimal partition is
invariant [8]. The proof is complete. O



Using Lemma 3.1 we can conclude that the boundary of the invariancy region contains
a segment of the line (22). To identify the end points of this line segment, we need to find
the invariancy interval for problem (23). The following theorem provides two auxiliary
CQO problems to achieve it. The proof is straightforward and is omitted.

Theorem 3.2 Let {c1, M1} and (62, Ao) be two distinct points on the ‘e — A” plane. Let
7 = (B, N, T) denote the optimal partition at these two points. Moreover, let e+ A =1
denote the line passing through these two points. By solving the following two auziliary
L0 problems:

e, 8) = min{e: Az —edb=b, 2520, zmz=0, (24)

€,7,Y.8

ATy"l‘S"Qﬂ:'“EZ&mE, SNZO, S'B*Uﬂﬁﬁ‘mo}’
amnd

eu(e, B) = max{e: Az —eAb=0, 15> 0, zxz =0, (25)

€,8,Y,8

A%%—s——@m—eﬁé:@, sxr = 0, SEUT:O}'

where T = ¢+ %Ac and Dc = $0c, one can identify the two vertices of the invariancy
region as (es(or, B), Me(a, 8)) and (cu(e, 8), (e, B)), where Ao(ox, 3) = % - »gwﬁg(a,ﬁ) and
)‘u(af)ﬁ) = % - %Eu(a: ﬁ)

Remark 3.3 Observe that one of these auxiliary LO problems can by unbounded. In
this case, the actual invariancy region is unbounded. If both problems (24) and (25) are
unbounded than there is only one invariancy region on the “e — A” plane.

Case 1 is illustrated at [igure 1. Figure 1(a) shows two points with identical optimal
partition and Figure 1(b) depicts the corresponding identified fransition line segment.
Figure 1(c) illustrates the non-trivial invariancy region with its boundary.

) Case 2: n(t;) # w(ts). Let (€, A) be an arbitrary point on the line segment between
the two points (€1, A;) and (eg, A2). Moreover, let 7 = (B,N,T) denote the associated
optimal partition at (2, X). We distinguish three cases for these optimal partitions.

Subcase 2.1: T # 7, 7 # =(t;) and ¥ # w(t2). In this case, all three points (e1, A1),
(€, X2) and (g, 2) are on the boundary of the invariancy region. Moreover, the
points (e1, A1) and (e, A2} are the transition points on the boundary of the invari-
ancy region. Figure 2 illustrates this case. The statement follows directly from
Corollary 2.3.

Subcase 2.2: T # 7 and either @ = #(£,) or 7 = 7(tz) holds. Without loss of generality,
let T # w(t:), but @ = 7w(ty). In this case, both points (¢2, Az) and (g, A) are on a
single boundary line of the invariancy region and consequently, Theorem 3.2 can be
used to identify two vertices of the invariancy region. We claim that in this case,
(€1,21) is one of the endpoints on this part of the invariancy region. Because, if
(€1, A1) is not one of the endpoints of this line segment, then the endpoint shouid

9
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Figure 3: Case 2.2 Illustration

be somewhere between (eg, A;) and (€, A). It means that {e;, A1) is not on the line
segment between (e, Ay) and (€, A). It is obvious that (e, A1) and (&, ) are not in
the neighboring line segment, because two adjacent line segments could not have the
same slope. Thus, these two points lay on different line segments. This situation
contradicts the convexity of the invariancy region. This subcase is illustrated on
Figure 3.

Subcase 2.3: % = =. It this case, it is immediately understood that the point (€, )

belongs to the invariancy region ITR(Ab, &c). It this case, we solve the problems
(20) and (21) for ¢ = t3/c, where t3 = 2.

First we prove that problem {20) for Ac = t3Ac is not unbounded. To the contrary,
let (20) is unbounded. One can consider that i) = rts, where x > 0. In this
case, it leads to the conclusion that problem (24) is unbounded which contradicts
the assumption. Thus, let €5 be the optimal objective function value of problem '
(20). Consequently Az is known. Let m(ts) = (B(ts), N (f3), 7 (3)) be the optimal

\ disin et
N~ ((w(h_] ¢(¢,))(E o Amte (Mn)elta])
/ 5 o (B f -
o BZ BN T N X = b S E 2 BN T) | o D=t
e 3 (M), e
Y (0.0)f
(a) (b) ((J)

Figure 4: Case 2.3 Hlustration
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partition at {3, As). Henceforth, the situation between optimal partitions w{t;) and
7(ts) and optimal partitions 7 (t2) and 7{ts) would fall in one of the two cases: Case 1
or 2. Now, we consider pairs of points (€1, ;) - (e3, Ag) and (es, Az) - (€2, A2) again
to determine if Case 1 or 2 applies to each pair. We repeat this procedure until the
invariancy region boundary between the points (e1, A1) and (ez, Ag) is completely
traced. Figure 4 illustrates the procedure. In this way, we can continue to identify
all the transition points (and transition lines) of the invariancy region. Since the
number of optimal partitions is finite, and all auxiliary LO problems can be solved
in polynomial time, thus identifying the borders of the actual invariancy region is
done in polynomial time in the number of optimal partitions.

Now, we can summarize the procedure of identifying all transition points {vertices) and
transition lines (edges) in an invariancy region. Lets assume that we know an initial inner
point of the invariancy region and one of the edges (Figure 5{(a) and (b) shows how to
find an inner point of the region). We are going to "shoot” by solving problem (24) or
(25) counter-clockwise from the initial point to identify each edge (see Figure 5(c-f)). As
we already know one of the edges, we exclude all the angles qep between the initial point
and the two vertices v; and vy of the known edge from the candidate angles to shoot. So,
we shoot in the angle v — vy plus in the small angles 8 and 26 and identify the optimal
partition in the two points we get. Here we use Case 1 or Case 2 described above to find
the invariancy region boundary between the vertex vy and the point we get when shooting
in the angle 28. If the optimal partition is the same for the points in the directions 3 and
23, we compute the vertices of this new edge e and verify if one of those correspond to
5 vertex of the previously known edge e;. If it is not the case, then bisection is used to
identify the missing edges between e, and e;. We continue in this manner until all edges
of the invariancy region are identified.

4 Transition from an Invariancy Region to the
Adjacent Invariancy Regions

The first step of the algorithm is to determine the bounding box for the values of e. Due to
the fact that ¢ is the parameter appearing in the constraints, the problem QP{Ab, Ac, ¢, A)
may become infeasible for large or small € values. Determining the bounding box is done
as in many computational geometry algorithms [5, 17]. To find the range of ¢ where the
parametric problem QP(Ab, Ac, ¢, A) is feasible, we solve the following problem starting
from the initial point {Ag, €):

1
min {(c + Dedg) o+ awTQﬁ | Az =b+ Db, z 2 0} : (26)

Solving problem (26) gives the values of e, and ema that (see Figure 6{(a)) are the lower
and the upper feasibility bounds for the bi-parametric problem QP{Ab, Ac, ¢, A). Observe
that we may have either ¢pi, = —00 01 €pax = +00.

After identifying the feasibility bounds in the “e — X" plane, we choose €min w00 O
€max 7 00. Let € = eun and the optimal partition at the point (Mg, €min) 38 Fmin =
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Figure 5: Invariancy Region Exploration Algorithm

(Buminy Nanin, Tmin). Then we can solve problems {16) and (17) with the optimal partition
7= T and AAc replaced by epndde to identify the edge on the line e == ey, {see
Figure 6(b)). If the point (Ag, €min) is & singleton, we find the invariancy interval to the
right from it. Now, we have an edge of one of the invariancy regions and we can get an
initial inner point of that invariancy region selecting a point on the edge and utilizing
Algorithm 1 from [8]. Using that initial inner point, we can identify the first non-trivial
invariancy region including all of its edges and vertices as described in Section 3 (see
Figure 6{(c)).

To enumerate all invariancy regions in the bounding box, we use concepts and tools
[5, 17} from computational geometry. The algorithm-that we are going to present possess
some similarities with polygon subdivision of the space and planar graphs. Our algorithm
is essentially the subdivision of the bounding box into convex polyhedrons that can be
unbounded. First, we introduce the notation and data structures used in computational
geometry to describe these type of problems. Second, we show how to modify those data
structures to create the complete algorithm for invariancy region enumeration.

The geometric objects involved in the given problem are vertices, edges and cells (faces),
see Figure 7. Cells correspond to the non-trivial invariancy regions. Edges and vertices
are trivial invariancy regions, each edge connects two vertices. It is important to notice
that cells can be unbounded if the corresponding invariancy region is unbounded. That
is why we need to extend the representation of the vertex to allow incorporating the
information that the vertex can represent the virtual endpoint of the unbounded edge if
the corresponding cell is unbounded. For instance, edge e; on Figure 7 is unbounded,
so in addition to its first endpoint v;, we add another virtual endpoint being any point

12
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on the edge except v;. Consequently, each vertex need to be represented not only by its
coordinates {z,y), but also by the third coordinate z that indicates if it is a virtual vertex
and the corresponding edge is unbounded. Another note to make is that the optimal
partition may not be unique for each vertex or edge. First, at every virtual vertex,
the optimal partition is the same as on the corresponding edge. Second, we may have
situations when the optimal partition is the same on the incident edges and vertices if
those are on the same line (edges e; and ey and vertex vs haves the same optimal partition
on Figure 7).

The data structures that we use for storing the information about vertices, faces and
cells are similar to the ones used in many computational geometry algorithms [5]. Travers-
ing the cell is usually done counter-clockwise and we are going to follow that convention
as well. The extension of the standard storage and representation model is that we aliow
convex polyhedrons {cells) to be unbounded and that we do not require the vertexes to
be in general positions (three vertexes can be on one line). Moreover, we add some extra
fields to the records representing each geometric object. The structures of the records
corresponding to vertices, edges, cells and optimal partitions are:

vertex {
vertex id
coordinates (x,y,2)
optimal partition code
¥
edge {
edge id
vertex_1 id
vertex_ 2 id
incident cell_1
incident cell_ 2
optimal partition code
+
cell {
cell id

13
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Figure 7. Computational Geometry Problem Representation

list of edges
optimal partition code
)
optimal partition {
optimal partition ceode
list of objects with this optimal partition

Optimal partitions are numerically encoded as an integer number for minimizing the
storage as follows: partition BB...BB=10,BB...BN =1,BB.. . BT =2, BB.. . NB=
3, ete. To do the conversion we apply the summation formula, Ef_ol d;3*, where d; = 0 if
i€ B, d;=1ifi e N and d; =2 if i € 7. This encoding (optimal partition code) allows
not only saving storage, but also to establish the lexicographic order of the identified
optimal partitions and to use binary search tree for verifying if the identified optimal
partition was already encountered. We are using binary search trees for searching quickly
among identified vertices, edges, cells and opfimal partitions.

To enmmerate all invariancy regions we use two queues that store indices of the cells that
are already investigated and to be processed. At the start of the algorithm, the first cell
enters the to-be-processed queue and the queue of completed cells is exnpty (¢ is entering
the to-be-processed queue on Figure 7). After that, we identify the cell ¢; including all
faces and vertices starting from the known edge €; and moving counter-clockwise {please
note that the virtual vertices corresponding to the unbounded edges are not shown on
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Figure 7). Due to the fact that the optimal partition at the edge between the vertices
v; and v is the same, we are able to identify only the edge e; at the moment. Now,
when we have identified all the edges incident to the cell ¢; we can add the potential cells
corresponding o each of the edges to the to-be-processed queue, so e; — B(infeasible),
€9~ Cg, €3 — C3. 30, we add ¢y and ¢z to the to-be-processed queue and move ¢ to the
completed queue. Next, we start processing the cell ¢y as the first element of the to-be-
processed quene. At this stage, we identify that the edge e, is shorter than the original
one and we split it into two edges — ey and e; (nofe that the edges ey, er and vertex vy
have the same optimal partition). As the result of splitting edge e; into two edges, we
need to add the cell ¢4 that corresponds to the edge ey to the to-be-processed queue. We
get e; — 4, € — ci(already processed), ey — ((infeasible), es — ¢5, es — c5 and add
¢4, Cs, Cg into the to-be-processed queue. Now, ¢ is moved to the completed queue. Next
in the to-be processed queue is ¢g that gives us ez — cy(already processed), eg — ¢7 and
eg — cg. S0, ¢y and cg are added to the to-be-processed queue and ¢z is moved to the
completed queue. Next, we process ¢y and identify that c4 = cg = ¢ based on checking
the identified optimal partitions list and identified edges list. Here, e;p — cg. So, ¢4 is
moved to the completed queue and ¢, ¢; are removed from the to-be-processed queue.
Next in the to-be-processed queue is ¢s and we identify that ¢s = ¢g = ¢y and there are
no more new edges. As the result, we move ¢ to the completed queue and remove ¢y and
¢e from the to-be-processed queue. The to-be-processed queue is empty now, so we have
identified all the invariancy regions.

Data: The CQO optimization problem and Ab, Ac
Result: Optimal partitions on all invariancy intervals, optimal value function
Initialization: compute bounding box in the “e — A" plane and compute inner point
in one of the invariancy regions;
while not all invariancy regions are enumerated do
run sub-algorithm to compute all edges and vertices of the current invariancy
region;
add all unexplored regions corresponding to each edge to the to-be-processed
queue and move the current region to the queue of completed region indices;
if to-be-processed queue of the unexplored regions is not empty then
pull out the first region from the to~be-processed queue;

‘ compute an inner point of the new region;
else
return the data structure with all the invariancy regions, corresponding
optimal partitions and optimal value function;
end

end

Algorithm 1: Algorithm for Enumerating All Invariancy Regions

The proposed Algorithm 1 on page 15 runs in linear time in the output size (the constant
C - nis 3). But, by the nature of the parametric problem, the number of vertices, edges
and faces can be exponential in the input size. In our experiences worst case does not
happen in practise very often though.
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5 TIllustrative Example

Here we present some illustrative rumerical results for a simple example by using the
algorithm outlined in Section 4. Computations can be performed by using any IPM solver
for LO and CQO problems due to the fact that IPMs find a maximally complementary
solution in the limit. We have used the McIPM [20] and MOSEK [1] solvers for our
computations. Let us consider the following CQO problem with z,c € R® b € RS,
Q € R5*® being a positive semidefinite symmetric matrix, A € R¥® with rank(A} = 3.
The problem data is as follows

[42000] 16

7
25000 —20 6 22100 11 1
@=100000], c= 0f, De=10]|, A= 121010, b= | 8|, Ob= |1/,
00000 0 0 25001 20 1
100000 0 0]

With this data the perturbed CQO instance is

min (=16 + 7A)zy + (~20 + 6A\)zg + 227 + 23122 + $23

s.t. 2my + 229 + T =11+¢
21 4 Tg + x4 = 84¢ (27)
221 + 5z9 + x5 =204 ¢

xy, T3, T3, T4, Ty = O

The result of our computations is presented in Figure 8 and Figure 9. Figure 8 shows
the invariancy regions, the corresponding optimal partitions and the equations for the
optimal value function. The optimal partitions for the invariancy intervals are shown
in ovals, where each letter corresponds to the corresponding index being in one of the
tri-partition sets B, N or 7. The partitions for the transition points are shown next
to them. The solid dots correspond to the cases where the optimal partition in those
transition points are different from the partitions on the neighboring invariancy intervals
and invariancy regions. The circle at the point A = 10/3, ¢ = ~8 corresponds to the
case when the optimal partition for the whole line € = —8 is the same, but it differs
for the other segments ending at the point. The graph of ¢(¢,A) and the corresponding
invariancy regions are presented on Figure 9. The plecewise quadratic optimal value
function is drawn in different shades that correspond to the invariancy regions.

6 Conclusions and Future Work

We have extended the uni-parametric simultaneous perturbation results for CQO to the
bi-parametric case. The algorithm outlined in the paper allows identifying all invariancy
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Figure 9 The Optimal Value Function (the image is rotated for better visibility)
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regions where the optimal partition is invariant by solving a series of uni-parametric CQO
problems. We can also compute the optimal value function and maximally complementary
solutions on each invariancy region.

Even though all presented auxiliary optimization problems can be solved in polynomial
time by IPMs and the number of different optimal partitions is finite, enumeration of
all invariancy regions may not be achieved in polynomial time due to the fact that the
number of different optimal partitions may increase exponentially with the cardinality of
the index set. That is why the algorithm presented is linear in the output size, but not
in the input size.

We would like to mention some differences of our algorithmic approach to paramet-
ric CQO optimization and the algorithm described in {18] which is implemented in [13].
First, in our study we consider simultaneous perturbation in the right-hand-side of the
constraints and the linear term of the objective function with different parameters, while
in [18] and related publications only perturbation in either the right-hand-side or the
linear term of the objective is considered. Second, in {18] the authors define a critical
region as the region of parameters where active constraints remain active. As the re-
sult, an important precondition for analysis in [18] is the requirement for either making
non-degeneracy assumption or exploiting special tools for handling degeneracy, while, our
algorithm does not require any non-degeneracy assumptions. Finally, the algorithm for
parametric quadratic optimization described in [18] uses different parameter space explo-
ration strategy than ours. Their recursive algorithm identifies a first critical {invariancy)
region, and after that reverses the defining hyperplanes one by one in a systematic process
to get a subdivision of the complement set. The regions in the subdivision are explored re-
cursively. As the result, each critical {invariancy) region can be split among many regions
and, consequently, all the parts has to be detected. Thus, each of the potentially expo-
nential number of invariancy regions may be split among exponential number of regions,
which makes their algorithm computationally expensive.

Future work inspired by this paper includes extending the methodology of solving bi-
parametric programming problems to other classes of optimization problems and improv-
ing the implementation. To the best of our knowledge, this paper is the first atfempt
to study systematically bi-parametric convex quadratic optimization problems with dif-
ferent parameters in the coefficients of the objective function and right-hand-side of the
constraints. Parametric optimization can be used not only for performing sensitivity anal-
ysis, but also for solving multi-objective and stochastic optimization problems [10]. Thus,
extending our parametric analysis to other classes of Conic Linear Optimization problems
is high in our priorities.

Acknowledgements

The authors’ research was partially supported by the NSERC Discovery Grant #48923,
the Canada Research Chair Program, a grant from Lehigh University and MITACS. We
are grateful to Antoine Deza and Olesya Peshko for valuable suggestions and discussions.
The authors are grateful to the anonymous referees for calling the authors’ attention to
important contributions on this area.

19



References

(1} Erling D. Andersen and Knud D. Andersen, The MOSEK eptimization tools manual.
Version 5.0, MOSEK ApS, Copenhagen, Denmark, 2008.

[2] Bernd Bank, Jirgen Guddat, Diethard Klatte, Bernd Kummer, and Klaus Tammer,
Non-linear parametric optimization, Birkhduser Verlag, Basel, Switzerland, 1983.

3] Arjan B. Berkelaar, Benjamin Jansen, Cornelis Roos, and Tamaés Terlaky, An
interior-point approach to parametric convexr quadratic programming, Working pa-
per, Erasmus University Rotterdam, Rotterdam, The Netheriands, 1997.

[4] Arjan B. Berkelaar, Cornelis Roos, and Tamés Terlaky, The optimal set and opti-
mal partition approach to linear and quadratic programming, Advances in Sensitivity
Analysis and Parametric Programming (Thomas Gal and Harvey J. Greenberg, eds.),
Kluwer Academic Publishers, Boston, USA, 1997.

i8] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf, Com-
putational geometry: Algorithmns and applications, 2™ ed., Springer-Verlag, Berlin,
Germany, 2000.

6] William S. Dorn, Duality in quadratic programming, Quarterly of Applied Mathe-
matics 18 (1960), 155-162.

7] Alireza Ghaffari-Hadigheh, Habib Ghaffari-Hadigheh, and Tamés Terlaky, Bi-
[ g
parametric optimal partition invarioncy sensitivily analysis in Linear optimization,
Central European Journal of Operations Research 16 (2008}, no. 2, 215-238,

[8] Alireza Ghaffari-Hadigheh, Oleksandr Romanko, and Tamds Terlaky, Sensitivity
analysis in conver quadratic optimization: Simultaneous perturbation of the objec-
tive and right-hand-side vectors, Algorithmic Operations Research 2 {2007), no. 2,
94-111.

[9] Jirgen Guddat, Stability in conver guadratic programming, Mathematische Opera-
tionsforschung und Statistik 7 (1976), no. 2, 223-245.

[16] Jirgen Guddat, Francisco Guerra Vasquez, Klaus Tammer, and Klaus Wendler, Mul-
tiobjective and stochastic optimization based on paramelric optimization, Mathemat-
ical Research, 26, Akademie-Verlag, Berlin, Germany, 1985.

(11] Horst Hollatz and Horst Weinert, Fin Algorithums zur Ldésung des doppelt-
etnparametrischen linearen Optimierungsproblems, Mathematische Operations-
forschung und Statistik 2 (1971}, 181-197.

[12] Tibor Illés, Jiming Peng, Cornelis Roos, and Tamés Terlaky, A strongly polynomial
rounding procedure yielding « marimally complementary solution for Pk) linear
complementarity problems, SIAM Journal of Optimization 11 (2000), no. 2, 320-340.

20



(13]

(14]

(15]

{16]

[17]

[18]

[19]

[20]

[21]

Michal Kvasnica, Pascal Grieder, Mato Baoti¢, and Manfred Morari, Multi-
Parametric Toolbox (MPT), Hybrid Systems: Computation and Control (Berling,
Germany) (Rajeev Alur and George J. Pappas, eds.), Lecture Notes in Computer
Science, vol. 2993, Springer, 2004, pp. 448-462.

Yuri Nesterov and Arkadii Nemirovskii, Interior point polynomial methods in convex
programming: Theory and applications, SIAM, Philadephia, USA, 1994.

Frantigek Nozitka, Uber eine Klasse vor linearen einparametrischen Opti-
mierungsproblemen, Mathematische Operationsforschung und Statistik 3 (1972),
159-194,

FrantiSek Nozicka, Jirgen Guddat, Horst Hollatz, and Bernd Bank, Theorie der
linearen parametrischen Optimierung, Akademie-Verlag, Berlin, Germany, 1974.

Joseph O'Rourke, Computational geometry in C, 2" ed., Cambridge University Press,
Cambridge, UK, 2001.

Efstratios N. Pistikopoulos, Michael C. Georgiadis, and Vivek Dua (eds.), Multi-
parametric programming: Theory, algorithms, and applications, vol. 1, Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007.

R. Tyrell Rockafellar, Convex analysis, Princeton University Press, Princeton, USA,
1970.

Oleksandr Romanko, An interior point approach to quadratic and parametric
quadratic optimization, Master's thesis, Department of Computing and Software,
McMaster University, Hamilton, Canada, August 2004.

Horst Weinert, Doppelt-einparametrische lineare Optimierung. I: Unobhingige Pa-
rameter, Mathematische Optimierungsproblems und Statistik 1 (1970), 173-197.

21



