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Abstract

Linear Complementarity Problems {LCPs) belong to the class of NP-complete problems.
Therefore we can not expect & polynomial time sohition method for LCPs without requiring
some special property of the coefficient matrix. Following our recently published ideas we
generalize affine scaling and predictor-corrector interior point algorithms to solve LCPs with
general matrices in EP-sense, namely, our generalized interior point algorithms either soive
the problems with rational coefficient matrix in polynomial time or give a polynomial size
certificate that our matrix does not belong to the set of P, (&) matrices, with arbitrary large,
but apriori fixed, rational, positive K.

Keywords: linear complementarity problem, sufficient matrix, P.-matrix, interior point
method, affine scaling method, predictor-corrector algorithm,

1 Introduction
Consider the Linear Complementarity Problem (LCP): find vectors x, s € R™ that satisfy
~Mx+s=q, xs8=0, x,82>0, (1)

where M € R™ " and q € R", and the notation xs is used for the coordinatewise (Hadamard)
product of the vectors x and s.

LCPs belong $o the class of NP hard problems, since the feasibility problem of linear equations
with binary variables can be described as an LCP [14]. Therefore we can not expect an efficient
(polynomial time) solution method for LCPs without requiring some special property of the
matrix M.

In [9] we modified long-step path-following Interior Point Methods (IPMs) for LCPs with a
general coefficient matrix M. The modified algorithm either solves the LCP, or gives a certificate
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that the matrix of the problem is not P.{k) (with apriori given but arbitrary large &), or gives a
certificate that the LCP has no solution. Algorithms that do not require any special property of
the Matrix M are needed becasue it cannot be verified in polynomisl time if matrix M belongs
to the class of matrices that allow polynomial time solvability of the LCP. Indeed, Tseng [21],
proved that the problem deciding whether a square matrix with rational entries is a column
sufficient matrix is co-NP-complete, suggesting that it car not be decided in polynomial time
whether there is a finite nonnegative s with which matrix M is P,(x). In this paper we show,
that the idea behind the modification of long-step path-foliowing algorithm is general, i.e., it
can be adapted to other IPMs, too. Thus here we present the modifications of two well known
IPMs: the affine scaling and predictor corrector algorithms.

In 9] first we discussed the generalization of the embedding technique of Kojima et al. [14].
The embedding technigue is one of the options to ensure the availability of an initial interior
point. This technique is independent of the particular IPM, therefore we do not repeat it in this
paper.Thus we may assume without loss of generality that an initial interior feasible solution is
known.

The rest of the paper is organized as follows. The next section deals with the fundamental
properties of P.(x)-matrices and some well-known results are presented. In Section 3 we sum-
marize the results of paper [9]. Section 4 deals with the modification of two well known interior
point algorithms: the affine scaling and predictor-corrector algorithms.

For ease of understanding and for self containedness the main results of the papers [11, 18]
are summarized in the Appendix.

Neotation:

We use the following notations throughout the paper. Scalars and indices are denoted by lower-
case Latin letters, vectors by lowercase boldface Latin letters, matrices by capital Latin letters,
and finally sets by capital calligraphic letters. Let RY (R%) denote the nonnegative (positive)
orthant of B™. Further, I denotes the identity matrix of appropriate dimension, and X is the di-
agonal matrix whose diagonal elements are the coordinates of the vector x, so X = diag(x). The
vector xs = Xs is the componentwise product (Hadamard product) of the vectors x and s, and
for & € R the vector x® denotes the vector whose ith component is zf. The largest and smallest
coordinate of a vector is denoted by max(x) and min{x), respectively. We denote the vector of
ones by e. Furthermore, for vector x we define the sets Z,.(x) = {1 <i <n: z;(Mz); > 0}
and ZT_{x) = {1 <4 <n: z(Mz); <0}, which are used in the definition of P.(x) matrices.
Finally, F0 = {(x, s) € R¥: —~Mx +s = q} denotes the set of strictly feasible solutions of the
LCP.

2 Matrix classes and the Newton step

The class of P.(k)-matrices were introduced by Kojima et al. {14], and it can be considered as
a generalization of the class of positive semidefinite matrices.

Definition 1 Let k > 0 be a nonnegative number. A matriz M € R is @ Py(x)-matrix if
for all x € R?

(1+4r) Y w(Mx)i+ Y z(Mx); >0, (2)
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The nonnegative real number k denotes the weight that need to be used at the positive
terms so that the weighted ’scalar product’ is nonnegative for each vector x € R™. Therefore,
naturally P,(0) is the class of positive semidefinite matrices (setting aside the symmetry of the
matrix M}

Definition 2 A matric M € R™X" is called a P,-matrix if it is o Pu(kj-matriz for some k > 0,
i.e.
Po= | Pulr).
k=0
The class of sufficient matrices was introduced by Cottle, Pang and Venkateswaran [3].
Definition 3 A matriz M € R™ " is a column sufficient matrix if for all x € R®

X{(Mx) <0 implies X(Mx) =20,

and row sufficient if MT is column sufficient. Matriz M is sufficient if it 4s both row and column
sufficient.

Kojima et al. [14] proved that any P,-matrix is column sufficient and Guu and Cottle [7]
proved that it is row sufficient, too. Therefore, each P,-matrix is sufficient. Véliaho proved
the other direction of inclusion [22], thus the class of P,-matrices coincides with the class of
sufficient matrices.

Definition 4 A matriz M € R™*" is o Py-matrix, if oll of its principal minors are nonnegotive,

For further use we recall some results about P.(x)- and Py-matrices The reader may consult
the book of Kojima et al. [14, Lemma 4.1 p. 35] for the proof of the following proposition.

Proposition 5 A matriz M € R™*" s o Py-matriz if and only if

M = [ —gf )l;. ] is a nonsingular matriz
for any positive diagonal matrices X, 8 € R**™, [

Proposition 5 enables us to check in strongly polynomial time whether maftrix M is Py or
not. The next statement is used to guarantee the existence and uniqueness of Newton directions
that are the solution of system (3) for various values of vector a € R™, where a depends on the
particular IPM.

Corollary 6 Let M € R™™ be a Py-matriz, (x,s) € FO. Then, for all a € R"™ the system

~MAx + As = 0 (3)
sAx + xAs = a

has a unique solution (Ax, As). O

The following estimations for the Newton direction are used in the complexity analysis of
IPMs. The next lemmas are proved by Potra in [17].



Lemma 7 Let (x,s) € FU and M be an arbitrary n x n real matriz and (Ax, As) be a solution

of system (3). Then
2
a
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Lemma 8 Let the matriz M be a P.(xk)-matriz, x,5 € F°, and a € R*. Let (Ax, As) be the
solution of system (8). Then

Z Ax;Aeg; <

; .
€T 4

4

2

|[AxAs]o < (% %*m) W% 12} [AxAs]; < (% +K> m_a\/x___s_ ’
laxAs]s < \/ @ - n) (% + ,;) 2 ?

The first statement’s proof in the previous lemma is similar to the proof of Lemma 5.1
by Illés, Roos and Terlaky [11]. The second estimation follows from the Lemma 7 by using
some properties of P,(x)-matrices, and the last estimation is a corollary of the first and second
statements using some properties of norms.

Let the current point be (x,s) € F° and (Ax, As) be the corresponding Newton direction. The
new point with step length ¢ is given by (x(6),s(8)) = {x+8Ax,s-0§As}. We use the following

notations for scaling

XS AxAs
ve, =, g= , 4
m m {4}

where in the affine scaling algorithm for the purpose of scaling we have p = 1, otherwise p > 0.
In affine scaling algorithms we use the d, centrality measure

ba(xs) = %

In the predictor-corrector algorithm the so-called negative infinity neighborhood D(v}, defined
by Potra and Liu in [18], is used. The negative infinity neighborhood for v € (0,1) is defined as

D{v) = {(x, s)e FU. XSZ"YE:ZE},

where 70 1= {{x, s) € R ~Mx+s= q} denotes the set of strictly feasible solutions of the
LCP. The D(7) neighborhood is considered to be a "wide neighborhood™.

3 Previous results

In this section we restate those results of paper (9], that we use in the rest of this paper.
The inequality in the definition of P,(k)-matrices gives the following lower bound on & for
any vector x € R™:
1 xT Mx
4 EéEI+ zi(Mz);
The following two lemmas are immediate consequences of the definition of P, (s} and P.-
matrices.

k> ke(x) =



Lemma 8 Let M be a real n xn matriz and & > 0 be a given parameter. If there exists a vector
x € R™ such that x(X) > &, then the matriz M is not P.(%) and x is a certificate for this fact.

Lemma 10 Let M be a real n x n matriz. If there ezists o vector x € R™ such that T4 {x) =
{i € T: z2i{Mz); > 0} =0, then the matriz M is not P, and x is a certificate for this fact.

Our modified interior point algorithms are based on the assumption that the problem data
is rational, and we are interested either to provide a polynomial size solution to the problem,
or to provide a certificate that our matrix M is not a P,(R)-matrix for some R > 0. During all
iterations of our algorithm we have an actual estimate for &, say &. At the beginning of our
algorithms, we assume that & = 0. In every iteration at different stages of the algorithm we are
checking whether our assumption related to & is violated. If we detect, that the matrix M is
not P, (%) with actual %, then the value of % will be increased. Its new value will be the lower
bound defined by the actual Newton direction Ax. In IPMs the P.(x) property need to hold
only for the actual Newton direction Ax in various ways, for example this property ensures that
with a certain step size the new iterate is in an appropriate neighborhood of the central path
and/or the complementarity gap is sufficiently reduced. Consequently, if the desired results do
not hold with the current E value, we update i by increasing it to the lower bound determined
by the Newton direction Ax, i.e.,

1 AxT As

IS Andn (As = MAx). (5)

E = r{Ax) =
The following lemma is our main tool to verify when matrix M fails to satisfy the Py(x}
property. Furthermore, the concerned vector Ax is a certificate, whose encoding size is polyno-
mial when it is computed as the solution of the Newton system (3) from rational data. We use
this lemma during the analysis. The first statement is simply the negation of the definition. We
point out in Lemma 12 that if Lemma 4.3 of [12] does not hold, then the second statement is
realized. We show in Lemma 15 and Lemma 16 that if Theorem 3.3 of {18] does not hold then
the second, the third or the fourth statement is realized.

Lemma 11 Let M be o real n x n mairiz, & > O be a given parameter, and {x,s) € F 0, If any
of the following statements holds then the matriz M is not a Pi(x)-matriz.

1. There exists o vector'y € B™ such thal
(1+ 4x) Z Yit; -+ Z yw; < 0,
i€ 4. (y) i€T - (y)
where w = My and T.(y) = {i € I 1 yyw; >0}, T..(y) = {i € I : yyu; < O},
2. There exists a solution {Ax, As) of system (3) such that

a

Vxs
8. There exists a solution (Ax, As) of system (8) such that

1+4k

[AxAs!eo > :

14+4x 2

4

a

max Z AwiAs;, — Z AxiAs; | > ~\7~M}E~S—~

i€ 4 ieT -

o



4. There exists a solution (Ax, As) of system (3) such that

2
AzTAs <~k

VXS

4 Interior point algorithms in EP form
Hereafter we modify the following two popular families of IPMs:

o A family of affine scaling algorithms [11):

2r+2
The Newton direction is the solution of system (3) with g = 1 and a = wm, where
r > 0 is the degree of the algorithm,
a |I? NVZH-I “2
The choice of a implies e A
VXS v

» Predictor-corrector algorithms [18]:
The predictor Newton direction is the solution of system (3) with a = —xs (the affine
scaling direction with r = 0).

2
= x's;

Vs

The corrector (centering) Newton direction is the solution of system (3) with a = pe — xs,

xTs
2 i b [
= i i

where &t = -
First we deal with affine scaling IPMs. We modify the family of algorithms proposed in [11],
where the particular algorithms correspond to the degree r > 0 of the algorithm, where r = 0
gives the classical primal-dual affine scaling algorithm, while r = 1 gives the primal-dual Dikin
affine scaling algorithm {1]. Further, there is a step length parameter v, that depends on the
degree r (defined among the inputs of the algorithm), and p = 1 in scaling (4).

We check not only the solvability and unigueness of the Newton system, but also the decrease
of the complementarity gap after a step. For the actual value of x we determine 6 (x), whick is
a theoretical lower bound for the maximal feasible step length in the specified neighborhood if
the matrix M satisfies the P.(k) property. Therefore, if after a step the decrease of the com-
plementarity gap is not large enough, it means, that the matrix M is not P, (1) with the actual
value of &, so we update & or exit the algorithm with a proper certificate. If the new value of &
can not be defined by (5), then the matrix M is not Py, so we stop and the Newton direction
Ax is a certificate. If the new value of x is larger than &, then the matrix is not P, (&), therefore
the algorithm stops as well and Ax is a certificate. In the rest of this subsection we consider
the case r > 0. The modified algorithm is as follows.

The choice of a implies

2
The choice of a impiies .

a
A/ X8

4.1 Affine scaling IPMs



Affine scaling algorithm

Input:

an upper bound & > 0 on the value of &;

an accuracy parameter £ > {;

a centrality parameter T7;

the degree of scaling r > 0;

a strictly feasible initial point (x%,8%) € F¥ such that d,(x°s%) < 7;

{2V if 0<r<l
R i AV A I

SN s 2 1 1 V7 4(7%" ~ 1)
balr) 1= mm{m (V bhdnd o - Tﬁ) D AR+ )T ”}'

begin
x =x0, s:=50 k=0
while x7s > ¢ do
calculate the Newton direction {Ax, As) with a = ~v¥+2/[v#{;
if (the Newton direction does not exist or it is not unique) then
~ return the matrix is not Po; % see Corollary 6
g = argmin {x(0)Ts(8) : 6, (x(9),s(8)) <7, (%(6),8(8)) > 0};

if (x(6)Ts(9) > (1~ 0.25v6%(x)) xTs) then

calculate x{Ax); % see (5)
if {k(Ax) is not defined) then
return the matrix is not P.; % see Lemma 10
if (k(Ax) > &) then
return the matrix is not P, (k); % see Lemma 9
K = K{Ax);
update &% (x); % it depends on &
x = x(f), s =s(0);
end
end.

1llés et al. proved [11], that if the matrix M is a P,(x)-matrix, then the step length 8;(x)
is feasible, with that step size the new iterate stays within the specified neighborhood and it
provides the required decrease of the complementarity gap. The following lemma shows, if the
decrease of the complementarity gap is not sufficient, then the matrix M does not belong to the
class of P.{x)-matrices.

Lemma 12 If x(6)Ts(8) > (1 — 0.25v 6%(k)) xTs, that is, the decrease of the complementarity
gap within the 8, < T neighborhood is not sufficient, then the matriz M of the LCP is not Pu(x)

with the actual velue of k. The Newton direction AxX serves as a certificate.



Proof: Based on Lemma 20 (sec the Appendix) the complementarity gap at 8(x) is smaller
than (1 — 0.25v 82({x)) x’'s, furthermore by Theorem 21, if M is a P.(x)-matrix, then the point
(x*, 8*) = (x(85(k)),8(0%(x))) is feasible. Therefore, if x(G)T (0 9) > (1—0.25v0%(x)) xTs, then
because the step length 6%(x) is not considered in definition of § (see the affine scaling algorithm),
so either (x*,s*) is not feasible, or this point is not in the 7 neighborhood of the central path,
namely §,(x*s*) > 7. We show that both cases imply, that the matrix M is not P.{x) with the
actual & value.

Let us denote the first three terms in the definition of #}(x) by 81, 82, and 83, respectively.
We follow the proof of Theorem 6.1 in {11] (see Theorem 21 in the Appendix). We need to
reconsider only the expressions depending on . Therefore the function @(f) = t — ¢ It:I“:I!
remnains monotonically increasing for § < 8o, and there exist positive constants « and 3 such
that ~§~ = 72 and ae < v2 < fBe. Additionally, inequalities (17) in [11] hold for 8 < 69, thus for
gx(r} too:

o+

in(v°?) 2 o= £3(6) fozr — (0206 lelo (6)
741

max(v*?) < 3~ 83(x) f =+ ) gl (1)

where g is defined by (4) (see p.4).
Let us first consider the case §,{x*s*) > 7, i.e., max(x*s") > 72 min(x"s*). From inequalities
(6) and (7) one has

2 r+1 * 2 *® * 2
(a 0500 Py = (9205 ngnm) 8= 020 oy zr“ T (0202 loo

P <) (345 lelo ®)

If 6(x) is substituted by 05 = qrpaaaim

so the inequality is still true. After substitution one has

the right hand side of inequality (8) increases,

S <o ©)

Since v* < fe and g = AxAs (see the notation given by (4)), inequality (9) gives

4
2
< = AxA .
VI < 8 < i gl = g IAxAsl (10
One can check, that
V2 < v e )2 (11)
Since (Ax, As) is the solution of system (3) with a = ~v2+2/|[v¥ [l by inequalities (10) and
(11) we have
2 y2r+l 2 5
— ToET < viise-
VXS vl




Therefore, by the second statement of Lemma 11, we get that inequality (10} contradicts to the
P.(x) property and vector Ax is a certificate for this fact.

Now we consider the case (x*,s”) is not feasible, so there exists such an index ¢, that either
x} < 0 or sf < 0. Let us consider the maximum feasible step size § < Ga(n}, for which
(x(f?) s(#)) = (%,8) > 0 holds and at least one of its coordinates is 0. For this point %8 # 0, else
8 = @ by the definition of 4, and the new point would be an exact solution, so the decrease of the
complementarity gap would be x”'s contradicting with the assumption of the lemmma. Therefore
0 # max{%8) > r’min(%8) = 0, so inequality (8) holds with §. Because of f3 > 0%(x) > 0,
inequality (9) holds as well, and as we have already seen this means that the matrix M is not
P.(x) and the vector Ax is a certificate for this fact. ]

The following lemma proves, that the algorithm is well defined.

Lemma 13 At each iteration, when the value of « is updated, then the new value of 95(k)
satisfies the inequality x(0)Ts(8) < (1 ~ 0.25v 85(k))x"s. :

Proof: In the proof of Theorem 21 we use the P.{x) property only for the vector Ax. When
parameter & is updated, then we choose the new value in such a way, that the inequality
in the definition of P,(x)-matrices (2) would hold for vector Hx. Therefore the new point
defined by the updated value of step size 6}(x) is feasible and it is in the r-neighborhood
of the central path. Thus the new value of 63(x) was considered in the definition of 8, so
x(A)Ts(8) < (1 —-0.25v0%(x)) x7s. n

Now we are ready %o state the complexity result for the modified affine scaling algorithm for
general LCPs in case an initial interior point is given.

Theorem 14 Let (x0,s%) € 70 such that 6,(x%8%) < 7 = v/2. Then after at most

O(Mﬁﬁhgxﬁs), FfOo<r<landn>4
O(n(l+4ﬁ}log®%ﬁg), if r=1andn >4

@] (22’""211,(1 + 4%) log L’i‘%fjﬁ) ., if 1 <7 andn sufficiently lorge

iterations the affine scaling algorithm either yields a vector (X, 8) such that %78 < ¢ and 6,(%8) <
T, or it gives a polynomial size certificate that the mairiz is not P, (), where & < & is the largest
value of perameter k.

Proof: The algorithm at each iteration either takes a step, or detects, that the matrix is
not P,(&) and stops. If we take a Newton step, then by the definition of the algorithm and
by Lemma 13 the decrease of the complementarity gap is at least 0.25v8;(x) x¥s. One can
see from the definition of 8}(k) that larger x means smailer #;(x), so smaller lower bound on
the decrease of the complementarity gap. Therefore, if the algorithm stops with an ¢- optzmai
solution, then each Newton step decreases the complementarity gap by more than 0.25v 6’* xTs,
where 8; is determined by R. It means that after at most as many steps as in the original
method the complementarity gap decreases below ¢ in case for each vector during the algorithm
sufficient decrease of the complementarity gap is realized according to the Py (&) property or
at an earlier iteration the lack of P,(%)-property is detected. This observation, combined with
the complexity theorem of the original algorithm (see Theorem 22 in the Appendix) proves our
statement. [ |

At the end of this subsection let us note that the case r = 0 can be treated analogously.



4.2 Predictor-corrector IPMs

In this section we modify the algorithm proposed in [18]. In this predictor-corrector algorithm
we take affine and centering steps alternately. In a predictor step &;(x) {see the definition
in Lemma 15) is a theoretical feasible step length if the matrix M is Pu(x). Therefore, if
the maximal feasible step length is smaller than 6} («), then the matrix is not Pyi(x) with the
actual valae of &, s0 & should be increased. In a corrector step we return to the smaller D(v)
neighborhood with step size 8}(x) (see the definition in Lemma 16) if the matrix is Py (x).
Accordingly, if the new point with step length 67(x) is not in D(y), then the matrix M is not
P, (k) with actual value of &, so & should be updated. Similarly to the Affine Scaling algorithm,
if in a predictor or corrector step the new value of & is not defined by (5), then the matrix is
not P, and the current Newton direction is a certificate of it. Furthermore, if the new value of
% is larger than &, then the matrix is not P, (&) and the Newton direction is a certificate for it.
The modified algorithm is as follows:

Predictor-corrector algorithm

Input:

an upper bound & > 0 on the value of &;
an accuracy parameter € > {;

a proximity parameter v € (0,1);

an initial point {x%,s%) € D{vy};

begin
x =%, 5 =80 pi= (xO7T/n, k=0
while xTs > ¢ do

Predictor step
fm A

[T admF
calculate the affine Newton direction (Ox, As) with a = —xs;
if (the Newton direction does not exists, or it is not unique) then
return the matrix is not Pg; % see Corollary 6

=sup {6>0: (x(6),5(6)) € D((1 ~t)), V0 € (0,01}
f (0 < 6;(x)) then

e

caleulate k{Ax); % see (5)
if (k{Ax) is not defined) then

return the matrix is not P % see Lemma 10
if (x{Ax) > k) then

return the matrix is not Pu(&); % see Lemma 9
k= k{AX);

update 8;(x) and 67 (x);
x=x(9), §=s(0), p=%x"8/n;
Corrector step
calculate the centering Newton direction (AX, A8) with a = ye ~ X8,
if (the Newton direction does not exists, or it is not unique) then

10



return the matrix is not Py; % see Corollary 6

if (((63(x)),%(02(x)) ¢ D(7))

caleulate K(AX); % see (5)
if (k{AR) is not defined) then

return the matrix is not P, % see Lemma 10
if (x(Ax) > K) then

return the matrix is not P, (&); % see Lemma 9
k= K(AX);

update 0(x) and 0;(x);
o+ = argmin {(6): (%(9),5(6)) € D(7)}s
xT =%+ 0TAR, st =54 0TAg, pu = (xT) st/
end
end.

Potra and Liu [18] determined the maximum feasible predictor step length as the minimum
of n+ 1 number (§ = min{f; : 0 < i < n} see Lemma 23 in the Appendix). Furthermore, they
proved, that if the matrix M is a P.(x)-matrix, than §;(x) and 8%(x) (defined in the following
lemmas) give a feasible predictor and corrector step length pair. The following lemmas show
that if 65(x) or the 67(x) is not a feasible step length, than the matrix is not a P.(x)-matrix.

Lemma 15 If there exists an index ¢ {0 < i < n) such that

éz‘ < 9;(&) - 2\/ (1 m’Y)’Y

T (1 4drin+ 2]

then the matriz M is not a P.(k)-matriz and the affine Newton direction is o certificale for this.

Proof: Forany x 2 0andn > 1

03 (k) <

2
1+ +/1+4x’

therefore if f < 63(x), then by the definition of fy one has

2 o 2
= f < ——m—
1+ +/1-4delg/n ©  1++/1+dr
implying eTg/n < —x, thus ¥ ,.; AzAs; < —kny = —kx7Ts, Therefore, by Lemma 11 the
matrix M is not a Pu{x)-matrix and the affine Newton direction Ax is a certificate for this.
Ife < 9;‘(&), where 0 < ¢ < n, then let consider the following inequality, which was proved
by Potra and Liu in [18] on p.158:

VI =7+ VI den + D2 491~ v) < (1 +4x)n+2. (12)

11



Using Lemma 24, Lemma 8 and the definition of ¢, one has

VA=Y ey s B 2
Grdanrr = 2020 e T el T e
2
14 1T+ (t7) H4lgleo + 1)
2v/(1 =)y . (13)
VL =)y + VA 4s)n + D{dglle + 1) + (1 - )
From inequality (13} and (12) we get
Algllo +1 > (1 +4k)n + 1. (14)

Since {Ax, As) is a solution of system (3) with a = —xs, and using inequality (14) with un =

xT's, one has

(1+4r) 7 1l4+4s) a 2

X s= N

so by the second statement of Lemma 11 one has M ¢ P.{x), and Ax is a certificate for this. ®
Now let us analyze the corrector step.

|AxAs|o >

1

Lemma 16 If

. 2y
* § T m———— e
fere) (1+ 4r)n + 1
is such a corrector step length that (X(62(k)),8(65(x))) & D(7), then the matriz M is not a
P.(k)-matriz and the corrector Newton direction is a certificale for this.

Proof: Notice that
%(0)5(0) = (1 — 0)XE + e + O°AXAS
and AxT A
() = B+ 9P ———.

From Lemma 7 and Lemma 25 we get

2
T A . _lllpe-xs|* 1 || B [&
T . L = S Y B
AXTAE < ZAthsmgtli = _4,u i =
Iy
11— (1—4t)y
< Ipil AT HY
S Paogy ™
therefore
~ 1~ (1 —=1)y 2)_
Hh< |14+ ———c— 198 . 15
0 < (14 55 ) (15)

Sinee 8% (x) is an infeasible step length, there exists index ¢ such that
2(0;(r))s 8(02(x)): < Yi(0:(x)), namely

12



(1 - 0:{k))E:8 + 02 ()i + (65(<))?AZ:AF; < vE(O;(x)).
The predictor point (%,8) € D((1 - t)7), so & > (1 — t)vi. Furthermore, by inequality {15}
one has

(1= 0(0)) (1 ~ OB + 62 () + (02()) A5 < 7 (1 + (e:<n>>2) 5

which implies

— (1 ~1¢)y

(i - 1)

One can check, the following equality by substituting the values of t and 65{x)

<ty B2R) (1~ (L= t)) + 5 CACS (16)

(9:(@)2%%‘";&‘”

(1 -7

* (1L —%)y s
0= (I +4r)n+ 1) = —ty+ 0 (k)1 — (1 —t)v) - w[(l + dr)n + ] (02 (k)
Therefore
- 1411({-;}?7 (1+4r)n (65(k))% = ty ~ G5(K) (1~ (1 = t)y) + W (02())2.

Combining this with inequality (16), and then considering Lemma 25, we get

G-VE

Since (AX, A8) is a solution of system (3) with a = [ie — X8, using inequality (17), one get

A@-Agm— — - )7(1+4n) o< — (1+4"'“

0=ty (17)

o 14+4R)p || /%8 1+4ri a |
JARAS]| o *("‘“‘“lﬁ _ = 1 “\/E
x5
Thus, by the second statement of Lemma 11, the matrix M is not a P.(x)-matrix and the
corrector Newton direction AR is a certificate for this. [ ]

The following lemma proves, that the predictor-corrector algorithm is well defined.

Lemma 17 At each iteration when the value of r is updated, the new value of O5{x) satisfies
the inequality 6 2 05(x), and the new point (%(0;(x}),8(0;(x))), determined by the new value of
the corrector step size 0% (x), 1s in the D(7y) neighborhood.

Proof: In the proof of Lemma 26 we use the P.(k) property only for the vector Ax or A%.
When parameter « is updated, then we choose the new value in such a way that the inequality
in the definition of P.(k)-matrices (2) holds for the vectors Ax and A%. Therefore the new
value of 7(x) satisfies the inequality 8> 5{x), and the new value of #7(x) determines a point
in the D{'y) neighborhood. =

Now we are ready fo state the complexity result for the modified predictor-corrector algo-
rithm for general LCPs in case an initial interior point is available.

13



Theorem 18 Let (x%,5%) € F¥ such that (x°,5%) € D(v). Then after at most
ONT o0
O ((1 + Rinlog E{%)

steps, where & < K is the largest value of parameter i throughout the algorithm, the predictor-
corrector algorithm generate a point (%,8), such that £78 < ¢ and (%,8) € D(v), or provides o
certificate that the matriz is not Py (k).

Proof: We follow the proof of the previous complexity theorem (see Theorem 14). If we
take a predictor and a corrector step, then by Theorem 27 and Lemma 17 the decrease of the

complementarity gap is at least
3V =)y xTs
2((l +4r)n+2) n
This expression is a decreasing function of k, so at each iferation, when we make a predictor
and a corrector step, the complementarity gap decreases at least by

3V 7Yy xTs

200 +48n+2) n~

We take at most as many iterations as in the original predictor-corrector IPM with a P, (%)-
matrix. Thus, referring to the complexity theorem of the original algorithm (see Theorem 28 in
the Appendix) we have proved the theorem. =

5 Summary

In this paper we have presented modifications of affine scaling and the predictor-corrector interior
point algorithms that enable us to solve general LCPs without the prerequisite to verify special
properties of the coeflicient matrix. In particular, we have given two constructive proofs of
the following EP type theorem from paper [9]. We assume that the data are rational (solving
problems with computer this is a reasonable assumption), ensuring polynomial encoding size of
certificates and polynomial complexity of the algorithmns.

Theorem 19 Let an arbitrary matriz M € Q™" a vector q € Q" and a point (x°,s%) € FO be
given. Then one can verify in polynomial time that ot least one of the following statements hold

(1) problem LCP has a feasible complementary solution (X,s) whose encoding size is polyno-
mially bounded.

(2) the matriz M is not in the class of P.(R) and there is a certificate whose encoding size is
polynomially bounded.
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6 Appendix

To make our paper self contained, we include those results from [11, 18]} that are needed for our
developments. All lemmas, theorems are converted o our notations.

Lemma 20 (Lemma 4.5 in [12]) Let M be an arbitrary real matriz, d,(xs) < 7 and (Ax, As)
is the affine scaling direction.
() If 0<r<1andf <<, then

22

(i) If 1 <7 and § < ¥ then

n ?

x0/75(0) < (1~ f‘lfi) V2.
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Theorem 21 (Theorem 6.1 in [11]) Let M be a Py(k)-matriz, r > 0, 7 > 1 and let (Ax, As)
be the affine scaling direction. If (x,8) € FU, §,(xs) <7 and

2 1 1
< 6 < mi SN (Y R P
056 <min {{1+4n}'r( L= = n)’

v oy )
{r4+1)72" (1+46)(1 +72)727/n [’

then (x(8), s(8)) is strictly feasible and 8,(x(8)s(0)) < 7.

Theorem 22 (Corollary 6.1 in [11])
Let M € Pulk) and (x°,5%) € FO such that §,(x%%) < 7= v2.

o fO<r <1 andn > 4, then we may choose 8 = “g%‘lfzz,;%: hence the complexity of the

. . . 0yT50
affine scaling algorithm is O (nl(i';f%’f} log & )E £ )

o Ifr=1 and n >4, then we may choose = m, hence the complexity of the affine
(XO)TSO

scaling olgorithm s O {n{l + 4x) log == }.
&

o Ifr > 1 and n is sufficiently lorge, then we may choose § = s hence the com-
Flivdr)vh
TSO

plexity of the affine scaling algorithm is O (22“271(1 + 4k) log thf)gm)

Lemma 23 (From ezpressions (8.16), (3.17) in [18])
Let M be an arbitrary malriz, {x,s) € D(vy), (Ax, As} be the predictor direction in the predictor-
corrector algorithm and let the predictor step length be

6 = sup {@ >0: (x(6),s(6)) € D((1—t)y), VO € [0, é]} .

Furthermore, let 8y = and
1 4elg/n
gi=4 1 if gi—(L—t)reTg/n=0
220D e A 0 and g — (1 - tveTg/n £ 0
-tV ¢ gi €8 ’

where
A= (w2 - (1 —t)7)? -4l - (1 —1t)y) (gi — {1~ t)veTg/n) , foreachQ <i<mn.
Then we have _ _
f=min{f;: 0<i<n}.
Lemma 24 (From the proof of Theorem 3.5 in [18])
Let the assurnptions of Lemma 28 hold, and 8;, 1 < ¢ < n be as il is given in Lemma 23, then
7> 2
T 14 V1 () (liglle + 407/n)
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Lemma 25 (From the proof of Theorem 3.3 in [18])
Let M be an arbitrary matriz and let the point ofter the predictor step in the predictor-corrector
algorithm satisfy (%,8) € D{1 ~ t}y). Then

214

Lemma 26 (From Theorem 3.8 in [18])
Let M be a P.(x)-matriz and (x,s) € D(v). Then the predictor step length satisfy

10—ty
(1 —t)y

0 () = éi 4%)%2 <sup {050 (x(6),5(0)) € D1~ 1)), Vo€ 0,01},

and the corrector step length

02 () =

T (14 4rIn 4 1
determines a point in the D{y) neighborhood, i.e., (X(8%(k)),5(05(x))) € D(v), where (X,§) =
(x(65(r)),s(05(x))) € DL — t}).

Lemma 27 (From Theorem 3.8 in [18])

Let M be an arbitrary matriz, (x,8) € D(v), py = x Ts/n, the definition of parameters 85 (k)
and 8%{x) be the same as in Lemma 26, 8 be the predictor and 81 be the corrector step length,
(Ax, As) be the predictor and (AR, A8} the corrector Newton direction in the predictor-corrector
algorithm. If 8 > 0;(x) and the step length 67(rx} determines a point in the ) neighborhood,
i.e., (R(92()), 5(62(6)) € D(v), where (%,8) = (x(8),5(8)), then

Mgw(l_ EAVA Che o )#ga

2((1 + 4x)n + 2)
where pt = (x*) st fn = %(6T)8(6%) /n.

Theorem 28 (Corollary 3.4 in [18])

Let M be a P,(x)-matriz and (x°,8°) be a feasible interior point such that (x%,5%) € D(v). Then
T

mn at most O ((1 + s)nlog L’-‘—OEL”f) steps the predictor-corrector algorithm produces a point (X, §)

such that (%,8) € D(v) and £78 < e.
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