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1 Introduction

The purpose of this research is to establish theoretical foundations and provide managerial insight
for the market entry timing problem of contract manufacturers, who have incentives to develop their
own market presence. A contract manufacturer (CM) often faces the strategic options of devoting
its manufacturing capacity entirely to a brand—carrying customer (primary market), or leveraging
a portion of its manufacturing capabilities to develop its own market presence (secondary market).
In our research, we aim to analyze these conflicting incentives of a CM in a wide variety of settings,
and establish theoretical conclusions on the existing empirical market entry timing research.

As a result of major global corporations’ shift from vertical integration to outsourcing formerly
concentrated production and manufacturing facilities to cheaper locations, contract manufacturing
has become popular in high tech industries. Contract manufacturing in electronic industry has
grown from a few billion dollar industry in the early 1990’s to over $300 billion in 2008. As contract
manufacturing became popular in high-tech industries and low cost manufacturing became widely
available, the competition among the contract manufacturers has become more intense. In order
to obtain the branded customers’ businesses, the contract manufacturers started to offer more
value added services, which in turn led to the emergence of contract manufacturers with design
capabilities. (Original Design Manufacturing ODM). ODM firms provide ready to go products for
their brand carrying customers. For example, many Japanese firms, like Sharp, Hitachi, Canon and
NEC, and U.S. firms Xerox, Compaq and Apple use ODM firms for their design and production
activities. (WTEC, 1997) [3].

‘I'he most advanced ODM producers get early signals about market shifts and technology de-
velopment, and instantly integrate themselves into advanced products. By the time brand carriers
realize the need for new product ideas, ODM firms already have products ready to market. ODM’s
only need to add their customer’s brand name and then proceed to manufacture in volume. For
example a Taiwan based ODM producer, Inventec, makes Apple’s Newton PDA’s and provides
Compaq with its high end notebook computers, both as ready to go products.

An ODM producer possesses almost every key element to design, develop and manufacture an
advanced product. However, the ability to access correct sales and marketing channels is the key in

both high volume sales and high profit margins. While ODM firms are the ones that really design



and produce the product, they lack marketing and sales capabilities.

An ODM firm has clear motivations to develop its own brand. Branded products are more
profitable. On average gross margin for non-branded products is 19%, while the margin for branded
products changes between 40%-100%. (Asiapreneur 2004) [20]. According to BusinessWeek (2003),
top 100 contract manufacturers in Asia-Pacific region totaled $85 billion of sales with $4 billion
of profits, while world’s top 100 consumer goods and retail companies, which rely on oversees
production, reported sales of $3,578 billion and profits of $228 billion. [18].

In a 2003 survey by Hong Kong Trade Development, Council (HKTDC) more Hong Kong com-
panies have started to develop their own brands, and by releasing their own branded products to
versatile markets they diversify their product lines. They consider the Chinese mainland and other
emerging markets as a good testing for developing their own brands [4].

In our research, we will analyze incentives of a contract manufacturer (CM), and entry timing
decisions considering demand dynamics of technological products. The life span of a high-tech
product is mostly determined with the pace of technological innovation. As the extent of technolog-
ical innovation accelerates, more products are driven to market in shorter periods of time. Due to
this fast paced environment, products become obsolete even before the technology used to develop
these products mature. The demand dynamics play important role in the analysis of CM’s strategic
market entry decision. We establish theoretical solutions for the optimal entry policy and generate
insights for a wide range of demand-capacity setting. Most of literature on entry timing focus on
the problems from the point of view of the brand carrying corporations. In contrast, our research
will consider the issues faced by the contract manufacturers. This research is expected to have
long-term impact to industries, where contract manufacturing is prevalent, including electronics
and computers, semiconductors, communications, automotive, and medical products.

‘The remainder of the chapter is organized as follows. We summarize the literature as it relates
to demand dynamics and market entry timing in high-tech industries. Then, in Section 4, we model
and solve CM’s entry problem for substitute products. In Section 5, we extend these results for
differentiated products and in Section 6, we address the CM’s entry problem from game theoretical
perspective. Within these sections we provide insights to the problem and demonstrate our results

with numerical examples. The chapter finishes with conclusions.



2 Literature Review

There is a rich literature on modeling and describing demand for high-tech products. Earliest first
purchase models of innovative process were introduced by Bass (1969) [1], Mansfield (1961) [12} and
Fourt and Woodlock {1960) [5]. In addition to these, several distributions such as logistic, Weibull,
and negative exponential are used to model the first purchase demand of a new product/technology.
The most widely used model among the life cycle models is the famous Bass model. Bass (1969)
[1] describes the demand for a new product by the theory of adoption and diffusion, and the model
is very powerful in estimating the magnitude and timing of the peak sales when the parameters are
appropriately estimated. Meade and Islam (1998) [13] document 29 different growth curves that
were successfully used in technological forecasting history. These demand curves are categorized
into 3 groups; symmetric, nonsymmetric and flezible, according to timing of the point of inflection.
[1} Bass (1969) describes the first purchase demand for an innovative product by parameterizing
total market size, mass-media influences and word of mouth effect of previous purchasers. The Bass
model is distinguished with its ability to describe timing and magnitude of peak demand with these
intuitive parameters.

After the introduction of the Bass model, a large body of literature revisiting the structural and
conceptual assumptions together with the research on estimation issues has been formed. Mahajan
et al. (1990) [10] provide an excellent survey, and categorize these developments until 1990 in
five categories: {1) basic diffusion models, (2) parameter estimation considerations, (3) flexible
diffusion models, (4) refinement and extensions, and (5) use of diffusion models. In their more
recent work, Mahajan et al. (2000) [11] address both the theoretical development and the practice
of innovational diffusion models, and provide future research direction in new product acceptance
demand modeling.

The earliest technological substitution model was introduced by Fisher and Pry (1971) [6]. Sub-
stitution process is usually triggered when the introduction of the new product is a line extension of
an older generation or an existing model i.e. introduction of a smart phone with Global Positioning
System (GPS) functionality added to the previous model. In general substitution process cannibal-
izes the previous products’ or models’ demand. Norton and Bass (1987) [15] develop the first model

that includes both diffusion and substitution, where successive generation of the product competes



with the previous generations. Wilson and Norton (1989) [19] in similar, setting analyze the optimal
entry time for the introduction of the second generation product over the first generation. By the
imposing simplifying assumptions, they show the conditions when the introduction is optimal at
the beginning of the planning horizon and the conditions when it is never optimal to introduce the
new generation. Mahajan and Muller (1996) [9] extend Wilson and Norton (1989) [19] and the
optimal entry decision is either now or at the maturity of the first generation of product. They
empirically demonstrate shape of the profit function in entry time for different demand parameter
settings. In Section 4, we extend their work by exactly showing the exact entry time at maturity.
In addition to this, we list all possible shapes of the profit function under mutually exclusive and
exhaustive demand and model parameter conditions, for substitute products. In Section 5, we ex-
tend our results for the products that are highly differentiated. Krankel et al. (2006) [8] analyze the
introdluction timing decisions of a firm for successive product generations. With the introduction
of a new peneration the firm incurs a fixed cost. The timing decisions are made considering the
available technological level, which stochastically improves over time. They prove the optimality of
state dependent threshold policy for the firm’s new generation introduction decisions.

The incentives for a firm to outsource a portion of their production or service has been studied
by many researchers. Quinn and Hilmer (1994) [16] discuss ways to determine a company’s core
competencies and which activities are better performed externally. Benson and Ieronimo (1996)
2] discuss the impacts of outsourcing maintenance work on firm performance by comparing Aus-
tralian firms with Japanese firms operating in Australia. Kamien and Li (1990) [7] formulate a
production planning model that explicitly considers subcontracting as a planning tool. They also
discuss different subcontracting mechanisms and their costs, concluding a class of subcontracting
mechanisms Pareto-dominate other subcontracting mechanisms. Van Mieghem (1999) {14] analyze
a competitive two stage stochastic investment game between a manufacturer and a supplier. They
discuss the outsourcing conditions for three different contract types. For more recent discussion
and survey on subcontracting and outsourcing see Simchi-Levi et al. (2004) [17]. In Section 6,
we analyze the CM’s entry timing problem from a game theoretical perspective, in which the CM
determines entry timing while the brand carrying customer decides the reserve levels on the CM’s

manufacturing capacity.



3 General Setting and Assumptions

In this section we will describe the general setting of models in Section 4 through Section 6 and
introduce the notation that is common to each setting. Later when we introduce our models, we
will describe the setting and assumptions relevant to that problem.

In all the subsequent problems, we will analyze a high tech contract manufacturer (CM), with a
fixed finite capacity rate, ¢, who considers a planning horizon of length T'. Prior the beginning of the
planning horizon, the CM has made commitment to a brand carrying customer (primary market)
to devote its entire manufacturing capacity for the brand carrying customer’s product (primary
product). The expected level of primary product demand, d?(t) follows life cycle dynamics and the
CM has full information on the demand distribution over the planning horizon via brand-carrying
customer’s (BC) information technology system, which enables information sharing within entire
supply chain system. For example, Cisco’s eHub network is widely used within major corporations’
extended supply chains as a central point for planning at various levels.

The CM has the technological maturity and marketing channels to build and market its own
brand, and has an incentive to enter a secondary market with his own product (secondary product),
whose demand also follows life cycle dynamics. The CM has the expected distribution of the demand
in secondary market, d°(¢) prior the beginning of planning horizon. The cumulative demands for
primary and secondary products are represented with DP(t) and D*(t) and follow S-shape pattern
over the planning horizon. The per unit selling prices for the primary and the secondary products
are fixed and represented with, #? and 7° respectively. In the light of above information, the CM
would like to determine the best policy for the entry to the secondary market to maximize her
profits. The entry may or may not be optimal. In case the CM enters the market, she would like
to determine the best entry time, t°, to maximize her profits over the whole horizon. There is
also a fixed cost of K to the market entry, which includes channel and/or advertising costs for the
secondary market.

For simplicity, we assume the CM consumes one unit of capacity per unit of primary and sec-
ondary product, and the inventory buildup is not proffered due to short product life cycles. Although
the CM’s production capacity is fixed if the demand from primary or secondary market overshoots

the level of capacity, the CM has the option to obtain extra production capacity instantaneously



from the spot market at price p. Raising production capacity instantaneously can be easy in envi-
ronments where used technology is matured and there are high number of manufacturers available
using similar technology.

In the next section, we will analyze the CM’s entry problemn where the primary and secondary
products are similar to each other and the same production capacity could be used interchangeably

for these products.

4 Entry Time Analysis for Similar Products

The contract manufacturer needs to find an optimal entry policy given the information of expected
primary and secondary demand distributions over the planning horizon. The primary and secondary
product or product groups share a high level similarities and the production capacity can be used
for them interchangeably.

‘The relationship between the primary and secondary market demand is described as; d*(t) =
dP(t — &) where, § is a fixed known lag parameter, and the primary market demand is a leading
indicator on the secondary market demand. We will assume that the total demand curve dP(t)+d*(¢)
has a unique maximurm over the planning horizon. This assumption implies an upper bound for the

lag parameter, §. This assumption for § reduces to § < Mg-l—@ when logistic demand functions are

In(T+4v/3)

used, and reduces to § < i

when Bass demand functions are used for both product types.
{See derivation in the Appendix B) We also assume that the production capacity is less than the
expected total demand curve ¢ < dP(t) + d*(t) for some period of time. If logistic demand curves
are use for the primary and secondary demand with parameters a and b, the bound on ¢ reduces to:

26(1 + a)
T a2+ e300 4 g3t0)

(See Appendix B)

We make this assumption because, if the production capacity were enough to cover the expected
total demand curve then the CM would enter the secondary market as earliest as possible.

In order to formally define the duration when the production capacity is binding for the expected
total demand curve, let ¢; and f.; be the small and large root of dP(t) + d*(t) = c¢. Closed form
solution for ¢, and f., cannot be obtained with algebra due to transcendental structure of the
demand curves. Sophisticated transformation methods could be used to obtain these roots, however

it is outside the scope of this research, moreover the roots can be solved for easily by inserting values
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Table 1. Summary of notation for similar products entry time model

Notation | Description
dP(t) Instantaneous primary market demand at time ¢
d*(t) Instantaneous secondary market demand at time ¢
8 Time lag between the primary and the secondary demand
m Scale factor representing the market potential for diffusion models
c Contract manufacturers maximum production capacity rate
te1,tez | The small and the large real roots satisfying, dP(t) + d*(¢) = c
K Fixed cost of entering the secondary market
P Per unit penalty cost for each unit of demand overshooting the capacity
ik Profit margin of the primary product
il Profit margin of the secondary product
o p—m®
2(t) Bfna,ry decision variable indicating whether there is an entry or not at ¢

of the demand parameters into above function. These roots are important to distinguish the periods
when capacity is ample and when scarce. According to this, during [0,¢,] capacity is enough to
meet total demand, during [t.,te| capacity is scarce and finally during [t., T capacity is ample.
Figure 1 illustrates the capacity and the demand setting for the contract manufacturer and Table
1 summarizes the notation for the problem.

The contract manufacturer currently serves the primary demand using her entire production
capacity. The capacity is enough to cover the primary market demand at any time during the
planning horizon. Having the market information on the secondary product the CM’s problems is
to decide on entry time £° to maximize the overall profits during the planning horizon. The problem

can be formally stated as:

max mDP(T) — Kz{t) + n° /tT d*{u)du — p/tT(d?’(u) +d*(u) — ¢)tdu
subject to
0<t<T
2(t) € {0,1}
The first term represents the profits from the primary market. The second term is the fixed
entry cost incurred if the CM decides to enter the market before the end of the planning horizon.
z{t) is a binary decision variable representing the market entry decision. z(¢) = 1 if the CM decides

to enfer the market at time ¢ and z(¢) = 0 if the CM does not enter the market. The third term



Figure 1: Problem setting for the similar products entry time model
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is the profits obtained from the secondary market, and finally the last term represents the penalty
cost of overshooting the production capacity.

We will analyze Problem 1 considering the demand life cycle dynamics and its relation to the
level of production capacity. If the CM enters the market early, she will utilize from high market
potential but she has to pay penalty cost for higher number of products. If she enters the market
later, the penalty cost for overshooting demand will be less, but the profits from the secondary
market may not be enough to cover the fixed market entry cost, K. The trade off between the early
and the late entry is represented in Figure 2(a) and Figure 2{b) respectively.

Next, we analyze the CM’s entry timing problem and construct the characteristics of the optimal

solution.

4.1 Model Analysis

We will use Lemma 4.1 through Lemma 4.4 to determine the characteristics of the CM’s profit
function in entry time, [[*(¢). We, then in Proposition 4.1, state the conditions in which the T[°(¢)
displays a different pattern over the planning horizon. After that utilizing the results of 4.5 and

4.6, we summarize the CM’s optimal entry policy in Theorem 4.1.

Lemma 4.1. There are at most two mazima of [[°(t). First mazimum is always at t = 0, and

second one (if exists) is at the large root of %’”sds(t) +dP(t) —c=0
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Figure 2: The tradeoff between early and late entry

Proof. We will analyze the profit function in entry time when the entry is realized in one the

following three ranges:

e t < iy The CM’s profit function within this range is:
P DP(T) — K + 7 (D*(T) — D*(t)) — p(D"**(tep) ~ DV (ta) — cltez — ta))

and the first order derivative of the profit function with respect to ¢ is, —w®d*{t). The profit

function is strictly decreasing in this range.

o {4 <t <tn The CM’s profit function is:
T DP(T) — K +m*(D?(T) — D°(t)) — p(DP"*(tea) — DPF(1) — cltea — 1))

and the first order derivative of the profit function with respect to ¢ is, (p—n*}d®(£)+p(dP(t)—c).
If we divide each term with p then we obtain E—'g—’fcls(t) + dP(t) — ¢. The ratio Kfi cannot
be grater than 1. Hence the solution to the first order condition has at most two real roots
within the range [tq, te2]. If p < 7° there is no real root for the first order condition, and the
first order derivative of the profit function is strictly decreasing. If the first order condition
has a unique root, then the profit function is monotonically decreasing and if the first order
condition has two real roots then the profit function is decreasing until the first root, then
increasing until the second root and decreasing until ¢.o. Hence the second maximum exists

only if the first order condition has two real roots, the larger root being the maximum point.
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o tp <t <T. The CM’s profit function in this range is #? DP(T") — K + w*(D*(T") - D*())
and the first order derivative of the profit function with respect to ¢ is —#®d*(t). The profit

function is strictly decreasing in this range.

In summary, the profit function is strictly decreasing during [0,%¢x) and (f., 7). Depending on
the solution to the first order condition in range [te, te] the profit function is either decreasing or
has an interior maximum at the large root of Rifids (f) + dP(t) — c. In either case, ¢ = 0 is the
first maximum point, and if exists, the large root of ?-Tgﬁds (t) + dP(t) — c is the second maximum
point. "

Among the problem parameters n° and its relation p has the most effect in the CM’s profit
function’s behavior. In order to specify the full characterization of the profit function and the
optimal entry policy we will introduce a set of lemmas describing the profit function behavior in
#° and then we will utilize this results to derive Proposition 4.1 for the normalized relationship
between 7° and p. Let o be defined as ”"Tfs (o £1). We will also use ¢, (if exists) as the large root

of ad®*(t) + d(t) — ¢ = 0. If =¥ is 0 then t, becomes t;.

Lemma 4.2, o There exists a unique level of secondary market profit margin, 7°, such that

R"”~~;;’:~’ids(t) + dP(t) — ¢ has a unique real root in domain [0, T).
o For0 <m* <7, BX0d*(t) + dP(t) — ¢ has two real roots.
Proof.

o p’p—’rsds(t) + dP(t) — ¢ is a continuous function of 7°. We need to show that for any =*,
%’rsdﬁ(t) + dP{t) has a unique maximum. For 7° = 0 we know that %ﬁds (t) + dP(t) has a
unique maximum (imposed by the assumption on §). 7° has to be less than p because by the
our model assumption ¢ is greater than the maximum demand rate of the primary market.

Now consider the case where 0 < 7n° < p. We will prove our claim by contradiction.

Suppose that there is more than one maximum of ad®(t) + d?(t), where both maxima are
before the maximum demand point. (Figure 3 (a}). Consider the slope represented by green
line. The total demand must be decreasing around the green line. This cannot be the case
when both demands are increasing, so the negative slope should occur after the maximum

demand rate of the primary market. i.e. the primary market demand is decreasing and the
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Figure 3: Multiple maxima of the total demand curve

secondary market demand is increasing. For n* = 0 (a = 1) the value of ad®(t) is maximum.
As 7° is increasing (o is decreasing), both the slope and the value of ad®(t) decreases for a
given time. Hence, one the slope of ad?®(t) -+ d?(¢) becomes negative it cannot go positive in

this range.

Now suppose that both maxima are after the maximum demand point. (Figure 3 (b)). Con-
sider the slope represented by green line. ad®(t) + dP{¢) must be increasing around the green
line. This cannot be the case when both demands are decreasing, so the positive slope should
occur before the maximum demand rate of the secondary market, i.e. primary market is de-
creasing and the secondary market is increasing. If ad®(t) + dP(t) has a negative slope before
the maximum demand rate this means the reduction in the primary market demand dominates
the increment in the secondary market demand. In this case, the slope has to stay negative,
because the dP(t) + d°(¢) is also decreasing in this range. Hence, the secondary maximum is

not possible.

We showed that for any level of 7°, %ﬁids {t) + dP(t) — ¢ has a unique maximum and since
P—";—sds (t) + dP(t) — ¢ is continuous in 7%, we can find a value of 7®, where the capacity level ¢
becomes the tangent of the unique maximum of Ew”3;«;’55ds(f;) + dP(t). We call this 7° level as ©°

—ar S —
and ?% =&

o We know that c is tangent to &d®(t) + dP(t) at its maximum point. For all 0 < n® < &®°

(& < a < 1), ad®(t) + dP(t) will cross capacity level twice, one being before the maximum

12



point and being after the maximum point.

Lemma 4.3. [[°({s) strictly increases as ° increases in the domain 0 < w° < #°.

Proof. We will prove our claim by showing that the first order derivative of [](t,) with respect

to w® is positive.
I*(te) = 7P D¥(T) = K 4+ *(D*(T) ~ D*(ta)) — p(DP**(tea) — DP¥*(ta) — clter — ta))

The first order derivative of J][*(¢,) with respect to =* is;

OTI (4)
oms

Ota
s

Oto
Oms

= D(T) = D*(t,) — m°d*(t,,)
= D(T) — D*(t,) > 0

+p(d*(ta) — ©)

O

Lemma 4.4. There exisis a unique level of secondary market profit margin, £°, (#* < 7°) such that

[T'(0) = IT"(ta)

Proof. The CM’s profit function is continuous in #°. In Lemma 4.3 we showed that []°(t,) is
increasing in #°. []°(0) is also increasing in 7°. For m° = 0, ¢, = £,y and,
I°(0) = 7P DP(T) — K — p(D"**(tea) = DP**(ter) — ¢{tea — ter))
TI°(t,) = n?DP(T) — K
= I°(t,) > 1I°(0)

For n* = 7*, £ = 0 is the unique maximum of the profit function, thus [°(0) must have exceeded
[T°(te) at a certain level of the secondary market profit margin, #°. This level is unique since both
IT°(0) and T]°(¢,) is strictly increasing in 7°. 0

Now we are ready to state the conditions that describe the every possible shape of []°(¢) for

varying level of the relationship of 7° and p. We will use the normalized version of the relation in

— ~ -2}
terms of . Below, @ = f—’p—”s and & = Rpi.

Proposition 4.1. Profit function can be in only one and only one of the following four forms

depending on the level of a:
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i o = 1 Profit function is represented by Figure I

ii & < o < 1 Profit function is represented by Figure II
il & < o < & Profit function is represented by Figure II]
w o < & Profit function is represented by Figure IV

Proof.

i For @« = 1 (m® = 0), the profit function is monotonically increasing in entry time %. Since
7° = 0, there is no benefit of entering the secondary market early, however there is a cost

benefit of entering late due to the decreased penalty cost.

ii For & < a < 1 the profit function has two maxima (Lemma 4.1) and the profits are higher at

t = t, than the profits at t = 0. (Lemma 4.4)

iii For & < o < & the profit function has two maxima (Lemma 4.1) and the profits are higher at

t = 0 than the profits at ¢ == t,. (Lemma 4.4)

iv For « < @ the profit function has a unique maximum at ¢ = 0 and the profit function is

strictly decreasing in £.

O

Figure 4 displays all possible pattern that []°(t) can display over the planning horizon. We
identify 4 distinct patterns in varying «° levels and establish the bounds on 7° where the pattern
switch is observed. With Proposition 4.1, we establish theoretical foundations on the empirical
analysis that Mahajan and Muller (1996) [9] provide. In their research, they empirically observe
three distinct patterns of the profit function in entry time {Pattern ILIII and IV in Figure 4). We,
not only formally prove the existence of one more pattern of [ ]*(¢), we also show the conditions when
the switch in these patterns is realized. Their findings apply to the entry problem with product
cannibalization. They find that entry is now or at time where primary product demand matures in
a noncapacitated setting. We also show that entry at now or at t, maximizes the profit function in
a capacitated setting where products do not, cannibalize each other. One major insight of our results

is that we show that capacity imitates the cannibalization effect of the generations of technological
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Figure 4: All possible realizations of profit function, []°(¢)
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products. It is also intuitive to think that the competition of two products for the limited capacity
hampers the total demand satisfied, similar to the parameters in substitution models hampering
the previous generation’s demand. Hence our model also addresses the entry timing problem among
the technological generations of products by offering simpler models yet powerful insights.

Now the following lemmas will be useful in developing optimal entry policy.

JEB (P ()~ c)du
D (1)

Lemma 4.5. If 7° > DsL(T} +pB, then [[°(0) = [I°(T), where § =

Proof. We want,
I1°(T") <11°(0)
7P DP(T) <aPDP(T) + n*D*(T) — K
— p(DP*S(t0) — DPY(ty) — cltes — ter))

K - p(Dp+3(tc2) - Dp-i—s (tcl) R C(tcg - tci))
De(T)

<7

: 5 _ L@t ) —cjdu
Lemma 4.6. [f7° > WM + 08 then [[°(ta) = TI°(T), where g = t(j‘f)s(T)w;S(tZ)

15



Proof. We want,
II*(T) <I*(ta)

AP DP(T) <n? DP(T) + n(D*(T) — D*(ts)) ~ K

- p(Dws(t&) - Dp+s(ta) - C(tc2 o to.'))
K 4 p(DPte(te) — DPFo(t,) — clten — ta))
Ds(T) — D(ts)

< 7t

O
Theorem 4.1 states the optimal entry policy for every possible realization of profit function,
IT°(t), where ¢ is calculated with smallest value of 7° satisfying the condition in Lemma 4.6 and &

is calculated with the smallest value of 7° satisfying Lemma 4.5.

Theorem 4.1. Opitimal entry policy

i ] = Don’t enter
wa<a<l
&> G = Don’t enter
o < & = Fnter at t,
1o < &
o> = Don’t enter
o a< i = Fnter ai

Proof. Profits obtained by CM when there is no entry to the secondary market is [[*(T) = a2 D#(T)

1 For a = 1, the global maximum of the profit function is at ¢ = t.y, and [[(te2} = 7P D?P(T)~ K.
Since [1°(T) > [T°(t.2) no entry is optimal.

ii For & < a < 1 the global maximum of the profit function is at ¢ = t,. If & > & by Lemma
4.6 [[°(T) > []°(ta) hence no entry is optimal. On the other hand if & < &, [JHT) < [T°(ta)

and entry at ¢ == £, is optimal.

iii For o < & the global maximum of the profit function is at ¢ = 0. If o > &, by Lemma 4.5
[I*(T) > [T°(0) hence no entry is optimal. On the other hand, if & < &, []*(T) < []*(0) and

entry at ¢ = 0 is optimal.
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Figure 5: Entry policy for varying « levels, similar products case

f T Y
1

[ I

& a
Figure A

f
-

o

R
[+
23 S
o e

Figure B

£ .

= i Q) o —
[

Figure C

G
Figure 5 demonstrates the optimal entry policy in various conditions, depending on the rela-
tionship between &, & and &. In subfigure A, the optimal eniry time switches from never to t, and
then to now as n* increases. In subfigure B, the optimal entry time switches from never to now
only as the 7° level is increased.
In Proposition 4.2 we specify the minimum level of capacity at which the CM starts getting
profitable by entering at the beginning of planning horizon. The bound on the capacity level is
useful for contract manufacturers especially when they have the fixed start date and would like to

measure the pay off point of their capacity investment.

Proposition 4.2. The capacity level that is just enough to cover the all the cost of entry at the
beginning of the horizon satisfies mmg;gm = [" gr+o(d(u) — ¢)du

te1

Proof. The profit function at ¢t = 0 is (a? + 7°)m — K — pf:f dP*e(d(u) — c)du. Only cost
component that depends on capacity is the last term, and the last term is decreasing as capacity

level is increased. If we set this profit function to 0, and arrange the terms as above, we know that
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the left hand side is positive because K < (7° + 7)m by assumption. If ¢ = 0, then RHS is 2m,
that is greater than the LHS. If ¢ = di”*.s (t*) then RHS is 0 and that is less than the LHS. Since the
RHS is decreasing monotonically, there is a unique ¢ level that satisfies the condition. Above that
capacity level entry is profitable at 0, below that capacity level entry at 0 is not profitable. 0

Next, we demonstrate our results in the following numerical example.

4.2 Numerical Example

Consider that both the primary market and the secondary market demand curves are modeled by
logistics curves with parameters; a = 200, b= 1, § = 2 and m = 1000. The maximum capacity level
i, ¢ = 300. The fixed entry entry cost is K = $500. The primary market selling price is #? = $1

per unit and the penalty cost per overage demand is p = $8.

(a) What would be the CM’s dptimal entry decision if the secondary market profit margin were

7= 80, 7¢ =81, v° = $2, m* = §3, 7° = §57
(b) What is the lowest capacity level that favors entry at ¢ = 0, if 7° = $2

Solution:

(a) We need to find m*, 7*, 75 and 7 levels to be able to use the results of Theorem 4.1.

By Lemma, 4.2, if we solve %ds (£) +dP(t) = ¢ for 7 where the equation has single real root

in [0,7] we obtain 7° = $4.7, and & = 0.414.

By Lemma 4.4, if we solve [ [*(0) = []°(t,) for 7%, we obtain the unique solution as 7° = $3.08,
and & = 0.615

To calculate 7° and & we need to use Lemina 4.5. If we solve dP(t) +d*(t) = ¢ for £, we obtain,
ta = 474 and te; = 7.85. Then § = ElalDiilen-clorta) — 09 and #° = $2.1 with
a =074

Now we should compare o = E«?z;"-ri with the above boundaries and determine the entry time.
Table 2 summarizes the optimal entry decision for each secondary market profit margin.
Figure 6 shows the plot of CM’s profit function []°(¢) for different levels of secondary market
profit level w*. According to this for 7¥ = $0, n* = $1, 7° = $2, and n° = $3, entry at ¢, yields

18



Table 2: Optimal entry decision for the non allocated capacity numerical example

e o to Condition Optimal Decision | Profit Level
$0 1 7.85 o =1 Don’t enter $998.7
$1 10875 | 7.58 | a > & = 0.832 Don'’t enter $908.7

$21 075 | 7.2 |a<&=0822 Enter at {, =7.2 $1353.5
$3 10625 ! B8.75 | o <da=08 | Enter at t, = 6.75 $1922
$5 10375 | NJA |a<a=0414 Enter at t =0 $3883.7

Figure 6: CM’s profit function for varying n° levels

4200 -

2200 -

\/‘A
& ——-._-‘.‘W/
i)
200 - . el /%‘
i R f ‘ '
73“9 =] 3 / 9 12

-1800 -

higher profits than entering now, however for 7° = §5, entering now yields higher profits that

entering at £,.

(b) The capacity level that satisfies the equation in Proposition 4.2 is the lowest capacity level that
favors entry at the beginning of the planning horizon. If we insert the value of the parameters

into the equation, we have; ftif(d?’” (u) — cydu = 308.7. If we solve for c, we obtain ¢ = 267.
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4.3 Key Results

In this section, we formulated and solved the contract manufacturer’s strategic market entry decision
for similar products. We established the theoretical foundations on the existing empirical market

entry literature. Specifically our contributions are;

o We extended the empirical profit function characterization of Mahajan and Muller (1996) [9]
and theoretically proved that there can be only four distinct patterns of the profit function.
Further, we showed bounds on the model parameters where the switch in the pattern of the

profit function was observed.

e We showed that capacity imitates the cannibalization effect of technological generations of
products. We showed that technological substitution of products can be modeled with more
parsimonious models and reduced reliance on estimating the complex demand parameters in

classical substitution models.

o We generated theoretical solutions on the optimal entry time, extended now and never results

found in Wilson and Norton (1989) [19].

e We showed entry time is sensitive to the small changes in model parameters, i.e. incremental

increase in secondary market price may shift the optimal entry from never to now.
o We demonstrated our findings with numerical examples.

Next we formulate and show the insights on entry timing problem for distinct products

5 Emntry Time Analysis for Distinct Products

When there is a high level of product differentiation, or production processes are inflexible, the same
production capacity cannot be used for different product groups. Also, there might be limitations
that prevent the use of same production capacity for different product groups due to intellectual
property rights. In this section, we will analyze the CM’s entry problem for where there is a
given physical boundary on the capacity level that the CM can use for distinct product groups.
Specifically, the CM needs to decide the optimal entry time to a secondary market, before which

the CM can use her entire production capacity for the primary market and after the entry time she
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Figure 7: Problem setting for the CM’s market entry problem for distinct products
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needs to split her capacity among the two products and satisfy the primary and secondary market
demands using only the allocated capacity level. The capacity split, ¢ is given and known by the
CM. Similar to the model in Section 4 the expected demand distributions for the primary and the
secondary market follow the life cycle dynamics and represented with, d?(¢) and d*(t), respectively
with similar relationship between the primary and the secondary demand, d°(t} = d*(t — §).

Before the entry, the CM uses the entire capacity to satisfy the primary market demand. After
the entry, the split level g, (g < ¢), is used to satisfy instantaneous primary market demand and the
remaining portion ¢ — ¢ is used to satisfy secondary market demand. Again similar to the setting in
Section 4, if the demand from the two markets overshoot the allocated capacity, per unit penalty
cost, p is paid for the excessive demand. Since the values of the products are close to each other
we will assume per unit penalty cost, p is same for the two markets. We also assume that the
production capacity is less than the expected total demand curve ¢ < dP(t) + d°(¢). Let, {5 and te
be the small and large roots of dP(t} + d*(t) = ¢. Similarly, let ¢, and {,; are the small and large
roots of dP(t) = g, 0 < g < dP(t*), and t5; and ¢4 are the small and large roots of d*(t) = ¢ — q.
Had the CM entered the primary market, the CM would incur penalty costs for primary market
during [tp1, £pa], and would incur penalty costs during [ts, £s2] for the secondary market.

The tradeoff between the CM’s early entry and late entry completely depends on the capacity
split, ¢ for the product groups. When capacity split, ¢, is high, late entry may be profitable for the
CM due to high penalty costs from the secondary market. 1f capacity split is low, the early entry
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{a} Barly entry (b} Late entry

Figure 8: The trade off between early and late entry under for distinct products

Table 3: Summary of notation for distinct products entry time model
Notation | Description

dF{t) Instantaneous primary market demand at time ¢
d®(t} | Instantaneous secondary market demand at time ¢

] Time lag between the primary and the secondary demand

q Capacity level allocated to satisfy primary market demand g < ¢
c—q Capacity level left to satisfy secondary market demand
tp1,tp2 | The small and the large roots satistying, dP(t) = ¢
tea,tez | The small and the large roots satisfying, d°(t) =c—gq
te,ter | The small and the large real roots satisfying, d?(t) + d*(f) = ¢
dr(t*) | Maximum primary market demand rate

D Per unit penalty cost for each unit of demand overshooting the capacity
i Profit margin of the secondary market
4 Profit margin of the primary market

may be beneficial. Figure 8 demonstrates the tradeoff between the early entry Figure 8(a) and the
late entry Figure &(b) for a given level of capacity split, g. Table 3 summarizes the notation we will
be using throughout this section.

The CM’s profit, Hd(t) meaximizing problem can be stated as follows:
T
I1%(q) = max 7P DP(T) — Kz(t) + ws/ d®(u)du
t

p f (@) ~ ) + (d*(w) — (c— g))*")du

subject to
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0<t<T

z(t) € {0,1}
First and third terms are expected profits from the primary and secondary markets, second term
is the fixed entry costs incurred if entered, and the last term represents the total penalty costs after
entry for overshooting the allocated capacity for each type of demands. In the next section, we will

formally analyze the CM’s Problem 2.

5.1 Model Analysis

Before the analysis of Problem 2, we need to identify all possible allocation structures for the split
parameter, ¢. We do this in Lemma 5.1. We then analyze the CM’s problem for each allocation

type and compare the results with the previous section.

Lemma 5.1. Allocation policy can be described in one and only one of the following forms depending

on the level of g:

7 dp(fcl) < g < dp(t*) = i <ig < tpl < Tfpg <ty < ten
i d*(ty) < g < dP(ty) =ty <l <lg < by <t < g
i1 ) < g < ds(tcl) = tpl Chgp Ly Clyp < g < tp2

Proof. 0 < ¢ < dP(t*) by definition. We will divide this range into three regions and analyze the

capacity demand curves in these regions:

1 dP(ta) < q < dP(t) At time tyy and tey, dP(E)+d5(t) = c. Soif, ¢ = dP(ty) then c—q = d*(t4)
and T, = g = ta. Similarly, d*(t) = ¢ and dP(fe) = ¢ — ¢, hence ty = to — & and
ts2 = L + 0. Consider an infinitesimal amount of increase (Ag) on the level g. Then the
small root of d*(t) = ¢ + Aq (¢,;) and large root of dé {t) = ¢ — g — Ag {typ) will increase
by an infinitesimal amount leading to t,; = t} and t,, = t}, + 6, while the small root of
d*(t) = ¢ — ¢ — Ag (ts1) and the large root of dF(t) = g + Ag (t,2) will increase by an
infinitesimal amount, resulting in tg = {3 and dpy = ¢, — §. ¢ can be as high as d?(t%)
Putting these together for dP(t.;) < ¢ < dP(t*) we have t <ty < itp <tp <tm <ty (See
Figure 9 (a))
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2. d°(te) < ¢ < dP(t,;) With similar argument if g = dP(t.) then t,; =ty = o, tpp = g — &
and tg ==ty + 4. An infinitesimal amount of decrease Ag in g would increase the large root
of dP(t} = g — Ag (ty2) and the small root of d*(f) = ¢ — ¢+ Ag (ts1). Similarly, the small
root of df(t) = ¢ — A (t,1) and the large root of d°(t) = ¢~ q + A (ts) would increase
by an infinitesimal amount leading to t,1 = 3, ta = £, tpa = t15 — § and ty = , + 6.
At g = d*(ta), tp1 = tex — 6, tsn = ta + 6 and e = {p = to. An infinitesimal amount
of increase in g would increase the small root of d?(f) = ¢ + Ag (t,1) and the large root of
d*(t) = c—q— Ag (ts2). Similarly the small root of d*(t} = ¢ — g — Ag (t5:) and the large root
of dP(t) = g + Ag (t») would decrease by an infinitesimal amount leading to, t,; = £} — 9,
tsr =13 + 8, tye =t and t,. Putting everything together for d*(t.1) < ¢ < dP(t., we have

tpl <ty <is < tpg < fon < Tso. (See Figure 9 (b) and (C))

3. 0< g < d%(ter) I g = d°(tea) tpr = tex — 8, Ly =t + 6 and e =ty =ty An infinitesimal
amount of decrease in ¢ would decrease the small root of dP(t) = ¢ — Ag (f,:) and the large
root of d°(t) = c—g+Aq (fs2). Similarly the small root of d°(t) = ¢—¢+Agq (s ) and the large
root of d(t) = ¢ — Agq (¢,2) would increase by an infinitesimal amount leading to, £,y = t;; —4,

ts1 =1 + 0, tp =t} and t7,. Hence for ¢ < d¥(t, we have ty; <t <ts < te <to <lpm .

J
In Lemma 5.2 similar to profit function for similar products, we show that the profit function

in distinct products case [[*(¢) has at most two maxima points.

Lemma 5.2. For any allocation scheme there are at most two mazima of the profit function. First

mazimum is always at £t = 0 and the second one, if exists, is always larger than t,.

Proof. In the first part of the proof, we will show that for each allocation scheme the profit function
is either decreasing always or, first decreasing, then increasing and finally decreasing again. In the
former case, the only maximum point is ¢ = 0, and in the latter case in addition to ¢ = 0, second
maximum is the time point where the profit function switches from increasing scheme to decreasing
scheme. In the second part of the proof, we will show that the interior maximum, if exists, is always
larger than {, that was defined in Section 4.1. Tables 4-6 show the first order derivatives of the

profit function with respect to entry time ¢ for each allocation schemes, (), (41), (41} in Lemma 5.1.
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(1) tsg <t < tp <ty < fea < ty We will use Table 4; Profit function is decreasing for

(1)

0 <t < iy, because the first order derivative is negative in this range. During 3 <t <ty
the first order derivative is —m®d®(t) plus a positive term p(d*(t) — ¢ + ¢). Depending on
the level of p the first order derivative might become positive, because d*(t) is increasing in
this range. (See figure 9 (a)). If the first derivative does not become positive then the profit
function is decreasing in this range too. Now consider the range ¢, <t < t,5. During this
range the first order derivative is (p — n*d*(t)) ~ p(c — ¢) (the first order derivative in the
previous range plus a positive term p(d?(t) — ¢)). If the profit function switched from the
decreasing scheme to increasing scheme in the previous range, then it will continue to increase
during this range too. However, if the profit function were decreasing in the previous range,
then the profit function might switch to increasing scheme due to the positive term. Note that
the positive term, p(d¥(t) —q) converges to 0 at the end of this range, because dP(t,0) = ¢. Now
consider the range t,y < t < ¢49; during this range the secondary market demand reaches its
peak demand rate. If the profit function were decreasing in the previous range, then it might
switch to the increasing scheme before the peak demand point. If it doesn’t, then the profit
function will continue to decrease. If the profit function were increasing in the previous range,
then it will continue to increase until the first order derivative becomes 0. (Eventually it will
hit 0, because d*(t) will be decreasing after the peak demand point). During the last range, the
profit function is decreasing always. Combining all the information above, we reach the claim
in the lemma, that is, either profit function is decreasing always, or has decreasing-increasing-
decreasing pattern. Now for this allocation scheme we will show that the inner maximum, if
exists is larger than t,. By definition ¢, is the large root of (p — 7°)d*(¢) + dP(£) — ¢, and this
large root lies between the peak point of total demand curve and f.,. In other words, £, lies
in range (fp2,%s2) and the first order derivative in this range is:
(p —7°)d*(t) — plc — q)
=(p —7*)d*(t) + pd’ (t) — pc + plg — & (1))
At t, first three terms sums to 0, and the last term is positive. So, that means the profit

function reaches its inner maximum at a point that is greater than 1,.

tp1 < ta < ts <ty < feo <t We will use Table 5. Profit function is decreasing for

0 <t <y, because the first order derivative is negative in this range. During t,; < < 5
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Table 4: First Order Derivative of Profit Function, []*(¢,t), under sllocation scheme t,; <ty <
tpr <ty <o < g

Entry Time | First Order Derivative of Profit Function w.r.t ¢, ?—Il;%’bﬂ
0<t<ta —m°d*(t)

ta <t S ip (p—w*)d(t) — p(c —q)

tor <t <t (p — m#)d?(t) + pdP(t) — pe

tyy <t <t (p—m*)d*(t) — plc~q)

tg <t < T —7éd®(t)

the first order derivative is —#*d®*(¢) plus a positive term p(d?(t) — ¢). Depending on the
level of p the first order derivative might become positive. If the first derivative does not
become positive then the profit function is decreasing in this range too. Now consider the
range ty < t < t,». During this range the first order derivative is —n°d®(t} + p(d*(t) — q)
(the first order derivative in the previous range) plus a positive term p(d®(t) — ¢+ q). If
the profit function switched from the decreasing scheme to increasing scheme in the previous
range, then it will continue to increase during this range too. However, if the profit function
were decreasing in the previous range, then the profit function might switch to increasing
scheme due to the positive term. Now consider the range t,p <t < t,; during this range the
secondary market demand reaches its peak demand rate. If the profit function were decreasing
in the previous range, then it might switch to the increasing scheme before the peak demand
point. If it doesn’t, then the profit function will continue to decrease. If the profit function
were increasing in the previous range, then it will continue to increase until the first order
derivative becomes 0. (Eventually it will hit 0, because d°(t) will be decreasing after the
peak demand point). During the last range, t,» < t < T, the profit function is decreasing
always. Combining all the information above, we reach the claim in the lemma, that is, either
profit function is decreasing always, or has decreasing-increasing-decreasing pattern. Now for
this allocation scheme we will show that the inner maximum, if exists is larger than {,. By
definition %, is the large root of (p — 7®)d®(t) + dP(t) — ¢, and this large root lies between the
peak point of total demand curve and to. In other words, t, lies in range (t,9,%s2) and the

first order derivative in this range is:
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Table 5: First Order Derivative of Profit Function, Hd(q,t), under allocation scheme £, < f; <
T < ipg < g < tgn

(iid)

Entry Time | First Order Derivative of Profit Function w.r.t ¢, Q—ﬁy
0<t < tp —md (1)

ty <t <tg — o de () + pdP(t) — pg

tsl <t ..<,.. tp‘z (p - ﬂ-s)ds(t) +pdp(t) - PC

tya <t 5 ts2 (p — m*)d*(t) — plc—q)

tp <t<T —1'd*(t)

(p—7*)d*(t) ~ plc — q)
=(p — 7*)d*() + pd®(t) — pc + p(g — &"(2))
At t, first three terms sums to 0, and the last term is positive. So that means the profit

function reaches its inner maximum at a point that is greater than ..

tp1 <t <t <l <l <t We will use Table 6. Profit function is decreasing for
0 <t < t,, because the first order derivative is negative in this range. During i,y <t <y

the first order derivative is —m*d®(t) plus a positive term p(dP(t) ~ q). Depending on the

Jevel of p the first order derivative might become positive. If the first derivative does not

become positive then the profit function is decreasing in this range too. Now consider the
range tgq < t < ty. During this range the first order derivative is —m*d? (t) + p(d?(t) — q)
(the first order derivative in the previous range) plus a positive term pld?(t) —c+4q). I
the profit function switched from the decreasing scheme to increasing scheme in the previous
range, then it will continue to increase during this range too. However, if the profit function
were decreasing in the previous range, then the profit function might switch to increasing
scheme due to the positive term. Now consider the range ¢, <t < #9; during this range the
secondary market demand reaches its peak demand rate. If the profit function were decreasing
in the previous range, then it might switch to the increasing scheme before the peak demand
point. If it doesn’t, then the profit function will continue to decrease. If the profit function
were increasing in the previous range, then it will continue to increase until the first order
derivative becomes 0. (Eventually it will hit 0, because d®(t) will be decreasing after the

peak demand point). During the last range, to < ¢ < T, the profit function is decreasing

28



always. Combining all the information above, we reach the claim in the lemma, that is, either
profit function is decreasing always, or has decreasing-increasing-decreasing pattern. Now for
this allocation scheme we will show that the inner maximum, if exists is larger than t,. By
definition ¢, is the large root of (p — #%)d*(t) + dP(¢) — ¢, and this large root lies between the
peak point of total demand curve and f.. In other words, ¢, lies in range (f,2,%s2) and the

first order derivative in this range is:

Table 6: First Order Derivative of Profit Function, Hd(q, t), under allocation scheme t,; < ;4 <
Ta1 < feo < feg < tp:g

Entry Time | First Order Derivative of Profit Function w.r.t ¢, a—ﬂ—;:(q—’t}
0<t <ty G

tpr <t <t —mtd®(t) + pdP(t) — pg

tg <t <ty {p— m*)d*(t) + pd®(t) - pc

oo <t <ty —md*{t) + pdP(t) — pg

b <t<T —meds(t)

(p—7*)d*(t) —plc—q)
=(p — m°)d*(t) + pd”(t) — pc + p(g — &°(t))
At t, first three terms sums to 0, and the last term is positive. So that means the profit

function reaches its inner maximum at a point that is greater than £,. ]

Theorem 5.1. For any entry time, profits in similar products case always dominates the profit

function for distinct products. i.e. For anyt and ¢, [°(t) = T]*(¢, )

Proof. The proof is done by showing that at any given entry time, ¢ the total unsatisfied demand
in non allocated capacity case is always less than or equal to the total unsatisfied demand in the
allocated capacity case. There are three allocation schemes as shown in Lemma 5.1, and we need
to prove our claim for every capacity allocation schemes. The methodology to prove the claim
is to compare the unsatisfied demand rate in two setting by going backwards in time, since total
unsatisfied demand at a future entry time is a subset of total unsatisfied demand at an earlier entry
time. Below tables summarizes the unsatisfied demand accumulation rate for the allocated and non
allocated capacity models for each allocation schemes. The last column at each table shows the

difference between the unsatisfied demand rate.
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Table 7: Allocation scheme £ < o < ilp <ilpp < lep <tg

Unsatisfied Demand Accumulation Rate

Bntry Time Complete Capacity Split Capacity Difference
0<t<ty 0 0 0

ta <t <t 0 @) —(c—q) |d(t)—{c—qg
tg <t <ty | d()+d(t)—c &(t) — (c—q) g — dP(t)
oy <t < (2% ds(t) + dp(t) —C ds(t) dp(t) —-c 0

tip <t St | () +dP(t)—c d*(t) — (¢ —q) g — dP(t)
ter <t < tgp 0 d*(t) — (¢ — ¢q) d*(t) — (¢ —q)
to<t<T 0 0 0

Table 8: Allocation scheme £, < fo <its <ty <l <itp

Entry Time Unsatisfied Demand Accumulation Rate Difference
Complete Capacity Split Capacity

0<t<ty 0 0 0

t <t <t 0 &(t) —q &(t)—q
ta <t<tg| &EE)+dPl)—c dP(t) — q c—q— d*(t)
tag <t <ty | d°(t)+dP(t)—c &)+ dP(t) —c 0

top <t <t | d(t)+d(t)—c d*(t) ~ (¢ ~ q) g ~ dP(t)
b <1< tsp 0 &) —(c—q) |&F)—(c—q)
tsg <t <T 0 0 0

The last column in Tables 7-9 are nonnegative for every entry time specified in the first columns.
This suggests that accumulation of unsatisfied demand in the split capacity model is higher than
the nonallocated capacity model, For any entry time less penalty cost is paid in the nonallocated

capacity case, resulting higher profits as suggested in our claim. (]

5.1.1 Special Cases

In this section, we will compare the profit functions for the distinct products with the profit function
for similar products for two special cases and generate insights on the complete characterization
of the profit functions. These special cases are 1. g = d”(ty) and 2. ¢ = d*(te). Figure 10(a)
demonstrates special case ¢ = d?(t.;) and Figure 10(b) demonstrates special case ¢ = d*(t¢). Next,

we analyze the special case ¢ = dP(ty)
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Table 9: Allocation scheme tp; <y <t <o < lop <ty

Unsatisfied Demand Accumulation Rate

Entry Time Complete Capacity Sphit Capacity Difference
0<t <ty 0 0

b <t <t 0 df’(t) g v (t) -

ta <t <ta | d(t)+dP(t)~ dP(t) — q ¢~ q—d*(t)
to <t<te | d(t)+dr(t)— d*(t) + dP(t) — 0

tog <t <t | d(E)+ dP(t) — dP(t) — ¢ c—g—dt)
tep <t < tp2 0 dp(f) q dp(t) -

tpy <t <T 0 0 0

Demand Demand

Time

= Id
By =ty =ty <l <hg <y, g=d"{l,)

(a} Special case ¢ = d”(tc1)

(b} Special case g = d*(ts)

Figure 10: Special Cases of allocation schemes: g == dP{t.;) and g = d*(ta)

1. g = dP(tc1)
If the split level is set as, ¢ = dP(t.1), then we have t, = t, = {5, and overall we have {y <
tpa < teg < ts2. Table 10 displays the difference between []°(¢) and Hd(dp(tci), t) for a entry time ¢.
According to this, after the time point {4 the two functions become equal. Figure demonstrates the
comparison of [[°(¢) and [J*(d?(t.,t)) under the all possible parametric situation we constructed
in Section 4. As shown in all subfigures, the profit function in this special case is dominated until
the time point ts9, later they become equal.

2. q = d*(te1)

If we set the primary market capacity level as, ¢ = d¥(

te1), then we have tn = ty = tg, and

overall we have t,) < f, < ts5 < tm. Table 11 displays the difference between the []°(t) and

Hd(ds(tcl),t) during the planning horizon. According to this, after the time point 4 the two
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Table 10: Comparison of profit functions, [J°(t) and [[*(dP(ts), t) in entry time

Entry Time TT°(t) - T1%(dP(tey), £)
0 <t <ty r (2dp( el 0)5 + D@ (t 2) + Dp(tpg) i Dp+s(tcg)
b <t <ty p[ (2dP(ta — )6 + D*(ts3) + DP(tpz) — DP*(tes)

”ﬁpg <t S tcg p((dp(tcl — C)(S + Ds(tsg) -+ Dp(t) - Dp+s(tc2) -+ dp(fcl(f}cg e t)))

teo <1t <ty P((dp(tcl —C)(tsz — 1) -+ D*(ts3) — Ds(t)))
o <t < T

Figure 11: Comparison of profit functions, [[*(t) and [1%(d?(ta,))
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Figure 12: Comparison of profit functions, []*(¢) and [1*(d* (e, t))
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functions become equal. Figure demonstrates the comparison of [[°(t) and []*(d*(t.1,t)) under the

all possible parametric situation we constructed in Section 4. As shown in all subfigures, the profit

function in this special case is dominated until the time point &, later they become equal.

Below, we show that the profits in split level ¢ = d®(t.1) always dominates the profits in split
level g == dP(tx).

Proposition 5.1. ]—Id(ds(td),t) > Hd(dp(tcl),t)

Table 11: Comparison of profit functions, [1°(t) and []*(d*(t),t) in entry time

Entry Time T1° () = TT%(d(te), 1)

0<t<ty p((c = 2025 + D7 (ta) = D200) - D(ta) )

tn <t <ty p((c — d*(ta1))6 + DPFE(te) — DP(t) — D% (ts1) — d°(fer)(tes — t)))
fop <t <t p((c — d¥(te1))6 + D*(ts1) ~ Ds(t))

bty <t <t 0

tp <t <T 0
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Proof. We need to show that for any entry time the profit function of the special case g = d®(t.1)
is always higher than or equal to the profit function in special case, ¢ = d?(¢). For this we will
utilize from Tables 10 and 11. Let the roots of dP(t) = d°(t.1) be identified as t;; and t,, and the
roots of d*(t) = ¢ — d*(t.1) be identified as t}; and t,,. These time points represent the allocation
scheme g == d*(t.;). Now let the roots of dP(t) = dP(t.1) be identified as ¢, and tj, and the roots of
d*(t) = ¢ — dP(t,) be identified as t}, and tJ,. If we subtract the second column of Table 11 from

Table 10 we obtain [[%(d*(ta),t) — [J*(d?(te),t). For each row we have; (see Figure 10)
d
Ud%(te), H (dP(te),t) = ((2dp(tcl — )8 + D° () + DP(t);) — DP™° (L))

(o= 26%(t))3 + DP**(t) — DP(Ely) Dsct;n))
=0 Vtel0,t,]

=TT, ) = o (2 = 005+ D8 + DP05) = D7¥1)
— ((c = d*(ta1))8 + DP"2 () — DP(2) — D*(t4)
@ (te1) (b1 — t)))> 0 Vt € () ter)
)= TT@ (), ) = 5 (06 - 15+ D(8) + D) = D)
— ((c = d*(ta))d + D*(t,) — Dﬁ(t))) >0 Vi€ (tg,t]
d d
H (d*(taa), t) H p(de(tcl —¢)d + D*(t5,) + Dp(tgz) - Ders(tc?))
>0 Yt € (ty, byl
d

~ [Tt 6 = (@t - 0+ D) + D(e) = D7
+ dP{ter){tea — t))> 0 Vi€ (ty tel

Hd(ds(tcl),t) — Hd(dp(fcl),t) = p((df’(iel) — C)(tsgﬂ — t) "+“ Ds(tsg-'-') s Ds(ﬁ)))
> OVt € (e, tis)
A (ta), 1) = [[(@(ta), ) =0 Vi€ (5, T)

Next, we demonstrate our findings with numerical examples.
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Table 12:

Optimal entry decision for the allocated capacity numerical example

q [Ep1, Tp2) [ts1,ts2] | Optimal Decision | Profits
40 | [2.16,8.44] N/A Enter at 7.3 $1227.1
90 | [3.00,7.50] | [6.44,8.16] | Enterat 7.1 | $1292.2
140 | [3.69,6.90] | {5.90,8.69] Don’t enter $998.7
190 | [4.22.6.38] | [5.350.24] | Don’t enter | $998.7
240 | [4.86,5.72] | [4.61,9.98] Don’t enter $998.7

5.2 Numerical Example

Consider that both the primary market and the secondary market demands are modeled by logistics
curves with parameters; ¢ = 200, b = 1, § = 2 and m = 1000. The maximum capacity level is,
¢ == 300. The fixed entry entry cost is K = $500. The primary product profit margin is #? = §1
per unit, the secondary product profit margin is #® = $2 per unit, and the penalty cost per overage

demand is p = $8 per unit.

(a) What is the optimal entry decision for CM if the capacity allocated for the primary product
demand is g = 40, g = 90, ¢ = 140, ¢ = 190, ¢ = 240 units?

(b) What is the optimal entry decision under special cases ¢ = d®(ty) and ¢ = dP(t4)7

Solution:

(a} Table 12 summarizes the times at which the capacity allocated for the primary and the
secondary products are binding ([tp1, tx] and [ts, te2]), optimal entry decision and maximum
level of profits for each allocation level ¢. Figure 5.2 illustrates the CM'’s profit function in
entry time for these allocation quantities. According to this, the highest profits are generated
for split level ¢ = 90 and lowest profits are generated for split level g = 240. As seen from
the figure it is hard to generalize the split levels that dominating profit functions. We can say
that split level g = 90 dominates the split levels 40 and 240. We can also say that split level
g = 140 dominates the split level ¢ = 190; however we cannot say anything specific for other

split level comparisons.

(b) The small and the large roots of dP(t) 4+ d*(t) = ¢ are t, = 4.74 and t,, = 7.85.
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Figure 13: CM’s profit function for varying ¢ levels
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For the special case ¢ = d?(t.1) = 233, we have the small and the large roots of dP(t) = 233 as
tyy = 4.74 and £, = 5.85, and the roots of d°(f) = 300 — 233 = 67 as t; = 4.74 and ?, = 9.85.

As shown in Figure 10 (a), we have t{; = 1) =t = 4.74.

For the special case g = d*(t,;) = 67, we have the small and the large roots of d?(t) = 67 as
o1 = 2.74 and t,, = 7.85, and the roots of d°(f) = 300 —67 = 233 as t{; = 6.74 and £, = 7.85.
As shown in Figure 10 (b}, we have t[, =t , =t = 7.85.

Figure 14 displays the CM’s profit function in entry time for the special cases ¢ = dP(ta)
and d*(t.;) and the profit function when capacity is not allocated (model in Section 4.1). As
stated in Proposition 5.1, the allocation policy ¢ = d®*(f.;) always dominates the allocation

policy ¢ = dP(te).
5.3 Key Results

In this section, we formulated and solved the contract manufacturer’s strategic market entry decision
for distinct products. We showed that there are only three possible allocation patterns for a given

split level g, and under each allocation type we generalized the characteristics of the profit function.
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Figure 14: CM’s profit function for special cases ¢ = d*(t1) and ¢ = d”(t.) numerical example
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We showed that the profits in similar products setting always dominates the profits in distinct
products, regardless of the split level. This is intuitive since, the capacity is less efficiently utilized
in the distinct products case than the similar products case. We also demonstrated two special
cases defined by values of split levels and showed that the pattern of the profit functions in special
cases follow the pattern of the profit function in similar products case. We supported our findings

with numerical examples.

In the next section we will analyze the CM’s market entry timing problem from game theoretical

perspective.

6 Entry Time Analysis with Game Theoretical Models

In real world situations, if a contract manufacturer (CM) while serving a brand-carrying customer
{BC), has an incentive to develop its own market presence, then the BC would take precautious
actions before the entry is realized or recourse actions after the entry is realized. The intensity of

these actions depends on different circumstances. One precautious strategy for a potential entry is
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Figure 15: Problem setting of the game theoretic model
Order of events
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to build up inventories, because later when CM enters the market the CM’s production capacity
may not be available. Another is to reserve the capacity of the CM pay paying a premium upfront.
As an example precautions actions, the BC may threaten the CM that he will cut his business with
the CM upon her entry to an secondary market. In this portion of our research we will try to answer
how the CM’s market entry timing decisions are affected when the brand carrying customer is also
a decision maker.

The BC has an option to satisfy his demand, d(t) with instantaneous spot market purchase
or with a contract manufacturer who offers better prices than the spot market, hence the CM is
the preferred supplier of the BC. The price of the component obtained from the spot market is
time dependent. Initially, the purchase price of the component is high because there are not many
manufacturers that have the technology for this component. However, as time passes the required
technology is adopted by more manufacturers hence the price of the component in the spot market
decreases as a result of increased competition. For a simplified model, we assume that § = 0, that
is same amount of product is demanded from each market at any time. We use d(t) to describe the

instantaneous demand from the BC’s market and the secondary market.
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We assume that the spot market has unlimited capacity and the units purchased are delivered
instantaneously. The purchase price in the spot market is w(t), with w(t)’ < 0 and w(#)” > 0. BC
has the option to reserve CM’s production capacity by paying a reserve price, 7, per unit capacity
per time. Assume r < w(t),Vt € [0,T]. Then, when the BC faces customer demand, the option is
exercised at price 7P, Order of events are as follows; Before any demand is observed, BC determines
the capacity reserve level of ¢°, then CM responds with the entry time, ¢ and last BC adjusts the
after entry reserve level ¢*. BC's after entry problem is to minimize ordering costs and this problem
is called P3: i

P3 = n;j‘nrq“(T ~ t} ~%—w(t)]t (d(w) — ¢*)*du (3}

The first term is the total price paid to reserve ¢g* units of capacity, and the second term is the
purchase costs from the spot market. The optimal ¢* is a function of entry time. At the second
stage knowing how BC would change his allocation level, ¢*, CM’s determines the optimal entry

time for a given before entry reserve level ¢°. Let the second stage problem called P2.

P2 = max rgPt +rg*(T —t) + 7 (/; min{q®, d(u) ydu + /tT min{g*(t), d(u)}du)
T T (4)
+7° /t d(u)du — p/t (d(u) — ¢+ ¢*(t) du
The first two terms are profits from BC for reserving ¢° and ¢ units of capacity for him. The
third and the fourth terms are the profits from BC and the secondary markets. The last term is
the penalty paid for unsatisfied demand for the secondary market. Note that the CM does not pay
penalty for the BC demand because, by reserving production capacity of CM, the BC accepts not
to demand more than the reserve level. The CM decides on the entry time for a given level of ¢°
and. Finally in the first stage, knowing the CM’s problem hence the entry time BC would decide
the before entry reserve level, ¢*. This problem is called P1.
Pl = rr;%n rg®t + w(0) /{:(d(u) — @®")*du + P3 (5)
The first term in problem P1 is the cost of reserving ¢° unit of capacity at a unit cost of r until
entry time. The second term is the cost of satisfying the extra demand at initial spot price w(0).
The third term is the cost of satisfying after entry demand.
Table 6 summarizes the notation of each problem. In the following sections, we will analyze

each decision via backward induction.
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Table 13: Summary of Notation for the game theoretical model
Notation | Description
d(t) Instantaneous primary and secondary market demand at time ¢
q° Before entry capacity reserve level set by the BC
q* After entry capacity reserve level set by the BC
w(t) Spot market price of the CM’s service, available to the BC at time ¢

wn

0 CM’s profit margin from the secondary product

P CM’s profit margin from the primary product

c CM’s maximum production capacity rate

T CM'’s price to reserve unit of capacity for BC’s product

tge,tee | The small and the large roots of equation d(t) = ¢°

t,tp | The small and the large roots of equation d(t) = ¢°

d(t*) Maximum demand rate of the primary and secondary product demand
t The small root of d(t) == ;9%
ty The large root of d(t) = W
D=1

6.1 Amnalysis of After Entry Reserve Level

There is a unique optimal solution to the problem P3 and the optimal reserve level ¢*(t). Lemma

6.1 through Lemma 6.2 help the analysis of problem P3.

(T ~t)

Lemma 6.1. R s a increasing function of €.

Proof. We show our claim by taking the first derivative of the function and show that it is always

positive. First derivative is:

or{T —t)fw(t)y 7 W ()T —t)
= )

The inside of the parenthesis is negative, since the fraction in the parenthesis is less than —1.

Because we have w(t) is a convex function w'(t)(T" — £) < ~w(t). So the first derivative is always

positive hence the function is increasing in ¢. il
Lemma 6.2. There exists a unique interior time point 7 such that d(7) = d(7 + r(T — 7)/w(7))

Proof. 7 = T satisfies the above statement, however we are in search of an interior time point that
makes the above statement true. Since r(T'—7)/w(7) is a positive quantity, 7 and 747 (T —7) /w(T)
are the small and the large roots of a statement d(t) = ¢. For symmetric curves the small and large

roots are symmetric around the maximum demand point £*. That is the arithmetic mean of these
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two roots is t*; Hence we have:
(T —7)
2w(T)

Now we will show that there exists a unique 7 level that satisfies above statement. Remember that

T = {*

t* is the time point where maximum demand rate occurs and £* = T/2 by assumption. By Lemma

6.1, 1+ Tg;a;) is an increasing function of {. Hence the lowest level of this function is achieved at

t=0. At t =0 we have { + T;z:&f) = rt*/w(0) < t*. Since r < w(t) for all ¢ € [0, T] by assumption.

Now evaluate the function at £ = ¢*. We have t* + Tg&t)) > t* The time point where equality holds

is less than t*, and since the function is always increasing in ¢ the cross over point is unique. 0
Proposition 6.1. There exists a unique optimal reserve level ¢* for any entry time, t. Furthermore,

e Optimal reserve level:

C gt =d{t* + rg(—g}) fort <7

c gt =d{t+ T(j(;)t)) fort >

o Optimal reserve level ¢* decreases with in entry time.

Proof. By Lemma 6.2, £+ Tg(};) <t*and t+ %ﬂ > t* conditions refer to two mutually exclusive
ranges of £. By assumption we have ¢® < d(t*). For ¢® < d(t*), there are two roots of the equation
d(t) = ¢*. Let the small and the large root of this equation be called t and t,. For ¢ = d(t*)
small root is equal to the large root and both are equal to ¢*. For any entry time ¢ > 7, the objective
function is:

rq"(T = 1) + w(t)(Dlteg) — D(t) — ¢*(tgg — 1))

If we take the derivative of the objective function with respect to ¢* and force it to be 0, we have:
8tqa . 6%“
T(T - t) +W(t) (d(tqg)—é—q—g- — (tqg — t) —q aTq;): 0
r(T—t) —w(t)(tyg ~1t) =0
(T~ t)
tae=t P
qa + (.L)(t)

Note that first term and the third term in parenthesis in the first line above cancel each other out,

since d(teg) = ¢° So optimal ¢* = d(t + "252)
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For ¢ < 7 the objective function is:
rg* (T —t} + w(t)(D(tge) — D(tge) ~ q*(tgg — tge))

If we take the derivative of the objective function with respect to ¢* and force it to be 0, we have:

Dt ys Ot Ot Ot
(=0 (0 dltg) 5 — ) 35— (tg = ) — (5~ 5 ) =0
r(T —t) — w(t){teg —tge) =0
tgg — tgp = T(Z (;;) £) and using the fact that {p + f, = 2" we have:

)
‘—’>tqg =1 4 2&)(15)

In the first line above, the first two terms in parenthesis are canceled with the last term in

parenthesis, because d(t,e) = d(fe) = ¢*. After using some algebra we obtain ¢* = d(t* + ’"éi:(";?)
fort<r.

Now we will prove the second part in Proposition; that is optimal reserve level, ¢® decreases with
time. Consider the entry times satisfying t < 7. If we take derivative of optimal ¢® with respect to

t, we have:
{T—t)

dg° _ Sd(t* + D) ) ( T (1 N W' ()T — t)))

ot Bt T 2w(t) w(t)

The term in outer parenthesis on right hand side is positive by Lemma 6.1 and the term before

the outer parenthesis is negative, because the demand function is decreasing. So, the reserve level
decreases as entry time increase. Now consider the entry times satisfying ¢ > 7. If we take the

derivative of optimal reserve level with respect to ¢, we have:

w(t)

Again, the first term in front of the outer parenthesis is negative and the term inside the paren-

?: _ ad(s ;;“%;32) (1 ~ .,,,,Im(l w’(tifg)— t)))

thesis is positive, yielding a negative first order derivative. Hence, optimal reserve level decreases
with entry time. !

Next we analyze CM'’s problem of entry time.

42



6.2 Analysis of Entry Time

In the previous problem, we found the BC’s optimal capacity reserve level as a recourse upon CM’s
entry decision. In this section, we will analyze the CM’s entry problem with the knowledge of BC's
best response function, ¢°.

For t < 7 BC’s best response will be ¢* = d{t* + Tg(_t)t)) by Proposition 6.1. The objective

function for the CM becomes:

b * T(T - t) D K . b
rg’t + rd(t* + 5TE) WI'—t) + (/(; min{g’, d{u)}}du
+ /t min{d(t* + T(Qz&)t)), d(u)}du) +7rsft d(u)du (6)
—p /ﬁ (d(w) — e+ d(* + Tgu(_t)t)

If we take the derivative of above function with respect to ¢, and after using some algebra (See

))Fdu

Appendix B) we obtain:

G —
mmman E;ilt ST =rq’ - (7P -+ 7)d(t) + ﬂpmin{qb, d(t)} — rd(t* — Tg;(t)t))
r(T—1), dd(t — D) 1 (T — 1)
0w (n® —7/2) (,%2 ) (1+ o) ) (7)
—ple—d(t = "E =0 e 1)

2w(t)

For ¢t > 7 again by Proposition 6.1 the BC’s best response function is ¢* = d(t + ’"f(:}t)). The

objective function of the CM becomes:

T(T(; DN —t) + (fg min{q’, d(v)}du

)
(T —t)
w(t)

rg’t + rd(t +

),d(u)}du)-l—wsft d(u)du (8)
r{T = 1)\ 4 "
ol ))"d

If we take the derivative of above function with respect to ¢, and after using some algebra (See

w
T
—i~/ min{d(f +
Ji
T

wpft (d(w) — ¢+ d(t +
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Appendix B) we obtain:

&
SILOEZT b — (a4 w7)d(t) + aminf e, d(2)} — vt + 20— D)

ot w(t)
(T=t), , wit)—r 0+ ) W) -1 (0
Sl L vl 7 (H o ) )
= ple -t - ")t - max(ta 1)

The derivative of the objective functions in Equation 7 and 9 are extremely hard to evaluate.
Hence, in order to provide insights we will analyze special cases and obtain the solution for CM’s
entry time. We will analyze two special cases; Upon CM’s entry decision 1)BC sets his reserve level

g® == 0 and 2)BC continues to reserve before entry reserve level, ¢° = ¢°.
6.2.1 ¢* =0 Policy

For a given BC’s before entry reserve level and ¢* = 0, the CM’s objective function becomes:

¢ T
m?xrqbt + 7P / min{q®, d(u)}du + 7° / d{u)du (10}
0 ¢

Since, ¢* = 0 all capacity is used to satisfy secondary market demand, as a result there is no
penalty cost incurred for the unsatisfied demand of the secondary market. The entry time depends

the before entry reserve level ¢°. Proposition 6.2 summarizes the optimal entry time for any level

of ¢°.
Lemma 6.3. o For ¢* < d(0), unique mazimizer of objective function is t=0

o For d(0) < ¢* < d(t*), there are two mazima of the objective function; first one is the small
b .
root of d(t) = - and the second is t =T
Proof. Let, t;» and t» as the small and the large root of d(t) = .
e For ¢* < d{0) the objective function is (7P +r)g® +n*(D{T) — D(t)) and the first derivative of
the objective function with respect to t is (7P + r)g® — 7°d(t). The derivative of the objective
function is negative because 7° > n¥ + r by assumption and d(¢) > d(0),Vt € (0,7). Hence

t = 0 is the unique maximizer of the objective function for ¢* < d(0)
e For d(0) < ¢° < d(t*) the objective function is
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o rq°t + 7P D(t) + =*(D(T) — D(t)) for t <ty
o rg’t + 7P (D(ty) + @t — 1) +7°(D(T) — D(t)) for tp St <ty

o 1"t +mP(D(tyg) + ¢ty — te) + D(t) —~ D(ty)) +*(D(T) - D)) for tgt <T

and the derivative of the objective function with respect to ¢ is:

o rg® — (x* — wP)d(t) for ¢t <ty and first order condition is: d(t) = 5
of the equation is the maximizer of the profit function for ¢ < tob

o — (P —r)g® — wod(t) for tp <t < tp. The first derivative is negative, hence ty is the

maximizer of the profit function in this range

o " — (w° — wP)d(t) for ¢t < T and first order condition is d(t) = W—sqg The derivative

switches from negative to positive at the large root of the first order condition, hence

t == T is the maximizer of this range.

So there are two maximizer of the profit function when d(0) < ¢* < d(#*) 0

We need to compare the profit function at the two local maxima points and specify conditions
which root becomes the global optimal. Let the small root of ﬁ% = d(t) be called ¢t;. Lemma
6.4 specifies the conditions when entry time ¢ = {; is global optimal and when never entry ¢ = 1" is

global optimal.

Lemma 6.4. There exists a unique before entry reserve level §° such that above which never entry

is optimal and below which entry at £y s optimal

Proof. Total profits of the CM if she enters at #; is r¢°t; + 77 D(t1) + #°(D(T) — D(t1)) where
d(ty) = ;}%—5 Total profits of the CM if she does not enter the secondary market is, r¢®T” +

7P (D{tge) + Pty — te) + D(T) — D(ty)). If we subtract the profits at ¢ = ¢; from the profits at

t =T we have;
rg" (T — t1) +7P(D(tp) + ¢ (tg — tp) + D(T) — D(tyg) — D(tr)) — 7*(D(T) — D(t))

If we take derivative of the difference of profits at ¢y and ¢t = T with respect to ¢°, we obtain:

» Ot ot
T'(T e tl) - ‘T'q m -+ (71' — Wp)d(tl)-g'%
o(_g L‘ 8t b d 5‘tq1 b thg 8tq§
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The first and the second terms in the second line are canceled with the last term on the second line

because ¢° = d(tey) = d(te) by definition. Also if we insert d(t;) = = fiﬂ, into the third term in the
first line, the second and the third terms in the first line cancel each other. Hence the derivative
becomes, (T —t1) +wP(d(t,s) — d(te)) > 0, which means that as the before entry capacity reserve
level ¢° increases, the profits at ¢ = T increases more than the profits at ;.

If we show two capacity reserve levels such that at one level the profits at ¢; is higher than profits
at t = T and at second level {which is greater than the first level) the profits at ¢; is less than the
profits at ¢ = T, we prove that there is a unique cross over point. Consider a reserve level ¢° = d(t*).
Then profits at t; = rd"t*)ty + 7P D(t;) + m(D(T) ~ D(t1)) and profits at T = rd(£*)T + 7* D(T).
If we take the difference of each other:

I(T) — (t:) = rd(t" )T — t1) — (n° = 7")(D(T) — D(t1))
=d(t1)(T" — t2) — (D(T) — D(t)) > 0
Now consider a reserve level ¢° = d{0) + &, where ¢ is a small value. Then the difference of profits

at t; and the profits at T" are:
(T) — TI{t) = r¢"(T — ;) — (x° = ?)(D{tg) + (g ~ ) + DT) = Dlty) — D(t))
~ (D) + ¢ (g — )
<0
Because the last term is greater than the first term. Our proof is complete. |
Now we can generalize the optimal entry time as in the following Proposition
Proposition 6.2. The optimal entry time t for CM under BC’s ¢* = 0 policy is:
e ¢*<d(0),t=0
. qbégb:tzth

o P <t <d(t),t="T

Proof. The statements are direct results of Lemma 6.3 and Lemma 6.4.
Numerical Example
Consider the case where the CM has a capacity level, ¢ = 300 units per time. The CM mainly

uses her capacity to meet the demand from the BC. The BC has the option to reserve some portion
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of the CM’s capacity by paying a premium upfront. The reserve price per unit capacity the BC
pays to the CM is r = 1. In exchange for this per unit capacity price, the CM reserves her capacity
up to ¢° and does not use for any other purposes. In addition to this the BC pays CM =% = 2 per
unit demanded up to the reserve level. The BC cannot demand more than the reserve level. The
demand for the BC’s market is represented by the logistics curve with parameters b = 1, a = 200,
m == 1000. The length of the planning horizon is T = 12 periods. The CM’s The CM’s capacity
is more than enough to serve only one market. She wants to have maximum utilization on her
capacity, hence considers using her capacity to meet the demands for a secondary market. The
secondary market demand is represented with exactly the same parameters of the BC’s own market
demand.

The CM knows that at the time she announces her market entry, the BC will not continue to pay
for the reserve level from the entry time to the end Qf the horizon. In other words the CM will loose
the BC’s business. If she enters the secondary market she will be able to obtain a profit margin of
7° = 3.1 per unit sold. What should be the CM’s best response if the BC reserved, ¢® = 1, ¢* = 80,
q* = 150, ¢® = 210, ¢® = 280 unit capacity per time?

Solution:

Table 14 and Figure 6.2.1 summarize the data and optimal solution for the problem. We will utilize

Proposition 6.2 to determine the optimal entry time.

e For ¢® = 1, we will use the first condition in Proposition 6.2, since ¢® < d(0) = 5. The entry

should be at ¢ = 0.

o For ¢* = 80, the entry is either at £ = #; or £ = T" whichever is higher. We see in Table 14
that entry at t; = 2.83 yield higher profits than entry at £ = 7.

e Tor ¢* = 150, the entry is either at £ = t; or £ = T whichever is higher. We see in Table 14
that entry at ¢; = 3.65 yield higher profits than entry at t =7

e For ¢* = 210, the entry is either at ¢ = #; or t == T whichever is higher. We see in Table 14
that entry at ¢ = 7" yield higher profits than entry at t; = 4.22.

e For ¢° = 280, the entry is either at t = T
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Table 14: Numerical Example of entry time under ¢® = 0 policy

q® | t; | Profits at t; | Profits at T | Optimal Policy
1 | N/A N/A 0 Enter at 0
80 | 2.83 325 205 Enter at 2.83
150 | 3.65 348.5 342 Enter at 3.65
210 | 4.22 372.6 442.5 Don’t Enter
280 | N/A N/A 526.5 Don’t Enter

Figure 16: CM’s profit function under g* = 0 policy

600

300
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6.2.2 g¢* = ¢® Policy

Now consider the BC’s strategy ¢® = ¢°. Then CM’s problem is:

T T T
mtg,xrqu + Wpf min{q®, d(v)}ydu + =° / d(u)du ~ pf (d(u) — e+ ¢") T du (11).
0 : ¢

The profits are now independent of BC’s price and demand parameters because the CM knows
that the BC will commit to the ¢® reserve level although she enters to the secondary market.
The profits are maximized considering the trade off between incurring the penalty cost and profits
obtained froxﬁn the secondary market. Let £ and £, be the small and the large roots of d(t) = c—¢”.
If ¢ — ¢* > d(¢*) then no such roots exist. Proposition 6.3 describes the optimal solution to CM’s

problem under BC’s ¢* = ¢* policy.
Proposition 6.3. e Ford(#*)<c—¢° t=0

o For d(0) < c—q® < d(t*), there exists at most two local mazimizers of the profit function, one

is at t = 0 and the other is at the large root of d(t) = pgf fs) if P""'" g(t‘f;

o For c—q° < d(0) the maximizer is at the large root of d(t) = Pr(f fs} if &= i ( . Otherwise

t =T is optimal.
Proof.

e For d(t*) < c—¢b, ¢ = O capacity is ample to meet all the dernand from the secondary market,

hence the CM best response is to enter the market earliest possible.

e For d(0) < c—¢" < d(t*), the function is decreasing between [0, t3, ), because the first derivative

with respect to ¢ is ~m°d(f) < 0. For ¢ € [t ,¢7 ] the derivative of the profit function is

fIl’

(p — 7°)d(t) — p(c — ¢°). At time ¢, the derivative is negative. If M < w&»(}%; the derivative

will always stay negative hence the profit function will continue to decrease. On the other
hand if E:p—’f—s T ), the derivative will hit 0 at the small and large roots of d(t) = %:—qf).

‘The large root is the maximizer since the derivative becomes negative from positive at the

large root.

e For ¢ — ¢ < d(0) the derivative of the profit function is {p — 7*)d(t) — p(c ~ ¢*). again with

C"""

the same argument as above if p— < & © the derivative will stay positive at all times hence
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t = T is optimal. On the other hand if E—‘fi < Z("tﬂ then the profit function will reach the

highest profits at the large root of d(t) = "’;C_;ff)- 0O
Numerical Example:

Consider the similar example in Section 6.2.1. However, in this section upon the CM’s entry, the
BC continues to utilize from the CM capacity with the same price and before entry reserve level.
Differing from the previous section now CM'’s has to weigh the trade off between using the capacity
for the secondary market or for the BC’s market after entry. Since CM has to reserve the same
capacity level for the BC after entry, there might not be enough capacity left for the secondary
market demand. The CM has to pay penalty cost per unit unsatisfied secondary market demand at
a level p = 9. What should be the CM’s best response if the BC reserved, ¢* = 1, ¢® = 80, ¢* = 150,
g° = 210, ¢* = 280 unit capacity per time?

Solution:
We will utilize from the results of Proposition 6.3. We need to check whether 2= 7‘? > d—@% hold for
the reserve level. Table 6.2.2 summarize the data and the optimal policy under dlf‘ferent BC’s given

Teserve levels.

e For ¢* = 1, the condition ""p” %(E%; does not hold. Hence, according to the Proposition 6.3

the optimal entry time is at £ = 0. It is also illustrated in Figure 17.

d{t"‘
entry time is at £ = 0.

e For ¢* =

d(t*
at 1 =ty or £ = 0 optimal. From Table 6.2.2 we see that profits at £ = 0 are higher. This is

also easily seen in Figure 17

é_@% holds and according to Proposition 6.3 either entry
at t3 = 7 or £ = 0 optimal. From Table 6.2.2 we see that profits at ¢, = 7 are higher than
profits at £ = 0. This is also easily seen in Figure 17

C“Q‘
a0

at tp = 8.8 or ¢ = 0 optimal. From Table 6.2.2 we see that profits at ¢, = 8.8 are higher than

holds and according to Proposition 6.3 either entry

profits at ¢ = 0. This is also easily seen in Figure 17
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Figure 17: CM’s profit function under ¢® = ¢° policy

600 -

300 -

Table 15: Numerical Example of entry time under ¢* = ¢° policy

¢ %ﬁs%;—&%’ Profits at 0 | Profits at ¢» | Profits at 7' | Optimal Policy
1 No 342.6 N/A 33.1 Enter at 0

80 No 487.2 N/A 204.9 Enter at 0

150 Yes 482.1 414.7 342 Enter at 0

210 Yes 384.4 479.4 442.3 Enter at to =7

280 Yes 107.7 533.5 526.5 Enter at £y = 8.8
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We obtained the optimal best response functions for the CM after observing the BC’s before
entry capacity reserve level g. Propositions 6.2 and 6.3 summarizes the best response decisions of
the CM under the BC after entry ¢* = 0 and ¢* = ¢® policies, respectively. In the next section we
will analyze the first stage of the game, namely BC’s before entry reserve level, ¢” for his after entry

g° = 0 and ¢* = ¢® policies.

6.3 Analysis of Before Entry Reserve Level

Using the results of Proposition 6.2 and 6.3, we will solve for the BC’s optimal before entry reserve

level, ¢” under ¢® = 0 and ¢ = ¢” policies.
6.3.1 ¢* =0 Policy

Under ¢* = 0 policy BC’s problem 5 becomes:
t T
min rg°t -+ w(0) / (d(u) — )" + w(t) / d(u)du
q 0 ¢
According to Proposition 6.2 for a given ¢® level, CM’s best response is either t = 0, ¢ = #; or
t =T. Let the small and large roots of d{t) = ¢* be called £ and f,2 respectively. The following
Lemmas describe BC’s best policy.

Proposition 6.4. Ift qz < {0) then BC' is better off by setting q° = d(t* — ) and force CM

never enter the market than setting ¢° < d{0) and letting CM enter the market at the beginning of

the horizon

Proof. If BC sets ¢ < d(0), the CM’s best response would be ¢ = 0 and BC'’s cost would

be w(0)D(T). d(t* — 251(';)) > ¢ because fz — fn < wf(%. If BC sets ¢® = d(t* — zb‘)(0)) the

CM’s best response is to never enter the market. In this case the BC's cost function becomes
rd(t* — 525T + w(0) (D(tg) — Dite) — qb(i’qg — te))). 1f we insert ¢ —tp = ’"('g) the BC’s cost
would become w(0)(D(Z; — D(tp)) which is less than w(0)D(T). Hence we prove our claim. O

2w 2(0)

If BC sets the before entry reserve level, d(0) < ¢® < ¢ then the CM would enter the market at
t =t; where d(t,) = . In this case BC’s cost would be, r¢’t; +wt1(D(T) — D(t,)). We are not
able to show analytically which before entry reserve level within the range (d(0), ¢° minimizes the
BC’s cost. Also without knowing the spot market price function and the demand parameters it is

hard to compare r¢’t; + wt; (D(T) — D(t;)) with the never entry cost w(0)(D(f — D(te))-

%
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6.3.2 ¢* =¢" Policy

Under ¢* = ¢” policy BC’s problem 5 becomes:

¢ T
minrd'T +0(0) [ (@) = )% +(0) [ (@) - )
0

q t

According to Proposition 6.3 for a given ¢” level, CM's best response is either ¢ = 0, ¢ = ¢,

or t = T. Remember that £, is a local minimizer provided that p_p“s > %. If the condition

%ﬂ's > g—(“ﬁ% does not hold the BC would optimize his cost function over the entry times £ = 0 and
t=T.

If %‘f < ﬁfﬁ% the CM will either enter the market at ¢ = 0 or never enter the market. In both
cases the BC’s cost function will be rqu—I-w(O)(D(tgg) = D(tp)— qb(tqg —1g)). 1f we take derivative
with respect to ¢” and set it to 0, we obtain ¢* = d(t* — E’;%); and at this reserve level the BC cost
function becomes w(0)(D(t,3) — D(tp). This cost is equivalent to the costs under ¢* = 0 policy and
preventing CM enter the market.

We showed that under the special case ¢° = 0, and ¢® = ¢° there are only three time points that
are candidate to be optimal entry time. Among these entry now or never is the common to the two
special cases. Under ¢* = 0 policy the CM’s interior local maximum is earlier than the interior local
maximum in ¢* = ¢* policy. When considered it is also intuitive, the CM would benefit entering the
market earlier if she is not getting the BC’s business. With ¢° = ¢® policy the BC has less option
to manipulate the CM’s entry time, and the minimum level of costs that he can generate can be
also generated in ¢* = 0 policy. ¢* == 0 policy provides more choices for BC to manipulate the CM’s
entry time.

Next we demonstrate the BC’s cost using the same numerical examples in CM’s entry time
model.

Numerical Example: Consider the numerical example in Section 6.2.1. Assume that the spot

market price is modeled as w(t) =r + Jﬁ What would be the BC’s overall cost under:
(a) q* = 0 policy?
(b) ¢* = ¢" policy?

if before entry reserve levels are ¢® = 1, ¢* = 80, ¢* = 150, ¢* = 210, ¢* = 280.

Solution:
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Table 16: BC’s cost under ¢® = 0 policy, numerical example

b

q° | CM’s entry Time | BC’s costs
1 0 4158.15
80 2.83 1693.97
150 3.65 1836.46
210 Never 34'76.00
280 Never 3360.00

Table 17: BC's cost under ¢° = ¢° policy, numerical example

g | CM’s entry Time | BC’s costs

1 0 4118.52
80 0 2849.67
150 0 2582.43
210 Never 2712.29
280 Never 3360.00

(a) Table 16 summarizes the CM’s entry time and BC’s overall cost under ¢° = 0 policy. If BC
set ¢° = 1, then from the numerical example in previous section, we know that the CM will
enter at time ¢ = 0 and if we insert £ = 0 into the BC’s problem ming rg’t + w(0 fot d(u) —

D) 4w j:‘.

Table 16. Slmliarly for other ¢” levels, we use the CM’s optimal entry decision and calculate

uw)du and plug in the parameters we obtain the BC’s cost as 4158.15 as in

the BC’s cost accordingly. According to this, among the before entry reserve levels ¢° = 1,

q° = 80, q° = 150, ¢* == 210, ¢® = 280, ¢* = 80 vields the smallest BC’s cost.

Table 17 summarizes the CM’s entry time and BC's overall cost under ¢° = ¢® policy. If the
BC sets ¢° = 1, the from the numerical example in previous section, the CM’s entry decision is

0) Jo(d(u)—g") +w(t) [ (dlu)~

¢®)*du and use the problem parameters, we obtain the BC’s cost as 4118.52. Similarly we

at t = 0. If we plug ¢ = 0 into the BC’s model mings rg®T 4w

obtain the BC’s cost for other before entry reserve levels. According to this, among the before
entry reserve levels ¢° = 1, ¢® = 80, ¢® = 150, ¢* = 210, and ¢* = 280, ¢® = 150 yields the
smallest cost for the BC. However, the costs are higher than the g% = 0 policy.

q® = 0 yields the minimum cost for the BC, although the CM enters the market in the planning

horizon. As seen from the numerical example, the CM’s early entry might actually be good for the
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BC. Overall, BC’s best policy in terms of reserve level ¢° depends on the demand parameters and

spot market prices. Next we summarize the contributions of this section.

6.4 Summary of Results

We can summarize this section’s contributions and results as follows:

e We showed that the BC’s optimal after entry allocation policy (solution to P3) is decreasing
in entry time. This is intuitive because first the after entry reserve level is independent of
the before entry reserve level and as the entry time increases, the BC’s remaining market

potential decreases, hence he requires less reserved capacity to meet the demand.

e Due to inability to solve second stage problem analytically, we solved CM’s entry time in
special cases ¢* = 0 and ¢ = ¢®. Under ¢* = 0 we showed that entry time is now, never or an
interior point closer to the beginning of planning horizon. We provided the bounds at which
the shift in optimal entry time is realized. Under ¢® = ¢® policy we showed that entry time is

at now, never or at an interior point closer to the end of horizon.

o Under ¢® = ¢® policy the BC does not have any bargaining power to effect the CM’s entry

time.

Above results provides insights on the BC’s possible capacity reservation policies in the presence
of CM’s incentive to enter a new market. These results are obtained when the BC has an alternative
supplier spot market whose benefits increase over time. More detailed analysis could be done in a

future research when the spot market price relations has direct effect on the BC’s demand.

7 Conclusions

In this chapter, we thoroughly analyzed a contract manufacturer’s incentive to develop her own
market presence and her strategic market entry timing problem from a wide variety of settings. We
established theoretical foundations on the existing empirical market entry literature. We also extend
the theoretical results obtained in the previous research models. In the first part, we approached
this problem when the products in the existing market and the potential market are similar. We

showed the complete characterization of the profit function and optimal entry decision. As a side
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benefit in this section we showed that limited capacity imitates the cannibalization parameter in
the demand models of technological substitution models. In the second model we show that when
the products are different or competing each other the CM’s profits are always less than the profits
in the first model. This is also intuitive hence, distinct products generally lead to inefficient use
of resources and competing products reflects the conflicting goals which yield to lower profit levels.
In the final section we modeled the entry timing problem in a game theoretical environment and
showed that under special cases, the CM’s entry decision is shifted earlier when there is a threat of

losing BC’s business.
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