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1 Introduction

The purpose of this research is to provide model, analyze and develop decision tools for contract
manufacturers in high-tech industries, and facilitate their decisions related to capacity and supply
planning. Despite its enormous development potentials, the issues facing the contract manufacturers
are not well studied. We aim to close this gap by providing an analysis of capacity allocation
problems in two different settings and proposing methodologies at operational and tactical levels.

Contract manufacturing in electronic industry has grown from a few billion dollar industry in
the early 1990’s to over $300 billion in 2008. The share of manufacturing done on contract basis
in US was well over 50% (Gartner, 2004 [13]), and contract manufacturers in electronics industry
represent a dominating force and economic driver for regions such as Mainland China, Taiwan,
Korea and Malaysia.

By consolidating demands from different brand carrying customers, the contract manufacturers
are able to realize a much higher utilization on their equipment, thereby reducing unit costs. Thus,
the contract manufacturers can offer their customers a greater variety of products at a significantly
lower cost. During the booms time of late 1990’s the average utilization rate in electronics contract
manufacturing business has been between 75%-100% while after the economic downturn the utiliza-
tion rates fell to less than 50% (Benson-Armer et al. (2004) [4]). Lower utilization rates drive high
level of competition among contract manufacturers, resulting in razor thin profit margins for the
services they deliver to their brand carrying customers. Since the production capacity expansion
requires long lead-time and capital-intensive investment, it is imperative to use the capacity most
efficiently for the profitability of the contract manufacturing business.

In high-tech industry, it is very typical for branded companies to announce product release
date beforehand, i.e. Apple’s announcement of first generation iPhones months before the actual
relesse date in 2007, or Toyota’s announcement of first mass-market hybrid car model Prius to U.S.
market, in 2000. The introduction time, can be set by managers with strategic concerns of better
competing with incumbents, obtaining a higher market share or being the first entrant. However,
the limitations on production logistics may hamper expected profits. This research is posed to aid
in planning of production logistics from the contract manufacturer’s perspective when the release

date is known beforehand.



In general, contract manufacturers serve multiple branded customers and have to meet the
supply needs of a portfolio of high-tech products. A technological product, differing from the
traditional stationary demand models, exhibits a bell shaped pattern due to dynamics of the high-
tech industry and purchasing behavior of consumers. Consequently, the capacity planning for the
high-tech products requires innovative approaches rather than the traditional analysis of capacity
planning for stationary demands.

In this chapter, we propose two models to address the contract manufacturers’ capacity planning
requirement. First model is applicable to make-to-stock systems where the products are similar
to each other or share similar characteristics that the same production capacity could be used
to produce these products. The second model is applicable to make to order systems where the
products are highly differentiated or there are regula,tioﬁs that the same production capacity cannot
be used for these products interchangeably. We provide methodologies and solutions to allocate the
capacity among these products in the two settings. The methodologies and solutions techniques are
easy to implement and they could be utilized in wide variety of demand capacity situations.

In the next section, we give a brief explanation of models used for technological forecasting.

1.1 Demand Modeling in High-Tech Industries

The life span of a high-tech product is mostly determined with the pace of technological innovation.
As the extent of technological innovation accelerates, more products are driven to market in shorter
periods of time. Due to this fast paced environment, more products become obsolete even before
the technology used to develop these products mature.

In general, high-tech products, after being introduced to the market generates an increasing
demand profile until it penetrates the market, then sketches decreasing demand shape until the
time the product becomes obsolete or its substitution is released to the market. Traditionally,
the market penetration level of the high-tech products has been modeled with sigmoid functions.
Sigmoid functions produce S shaped curves and include certain families of functions, i.e. Logistics,
Weibull, Gaussian ... etc. The derivative of these sigmoid curves display bell shaped pattern and
are used to forecast the demand rate within the life span of the product.

Meade and Islam (1998) [22] document 29 different functions that have been empirically used in

practice for forecasting the demand of technological products. Among these, the most famous and



widely used model is the Bass model, which was developed by F. M Bass in 1969. Bass models the
product demand as a product of two driving sources: (1) impact of mass media influences and (2}
word out mouth effect of previous purchasers. According to Bass (1969) [2}, the demand rate at an

instantaneous time is given by:
q
d(t) = 0+ LD(t))m ~ D(s)

where p is the coefficient of innovation (mass media effect), ¢ is the coefficient of imitation {word of
mouth effect), and m is the size of potential market. D(¢) is the cumulative demand observed up
to time ¢ where %?) = d(t) and D(t) < m. The closed form of the demand rates are:

1 — e_(p+Q)t (p _l.. q)ge—(p'*“‘.'{)t
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While Bass and most other life cycle growth models was originally built in continuous time
environment, the discrete analogue of the Bass and other models exist and conveniently used in
periodic time settings. In the discrete version, the periodic demand at time ¢ is given by: dy =
pm+ (g~ p)Dy-1 — 2D}, where cumulative demand up to time ¢ is given by: D, = >0 d and
dy = pm.

In this chapter, we use both version of the life cycle models. In Section 3 we use life cycle models
in periodic time while in Section 4 we use the life cycle models in continuous time.

In the following sections, we will model a contract manufacturer (CM) who serves a customer
base using her availability capacity. The CM knows the expected demand distribution of this
product over the planning horizon. We refer to this product as the primary product and its customer
base as the primary market. At a certain time within the planning horizon the CM accepts a
another project proposal from a branded customer, or enters a new market. The CM also has the
information on the expected demand distribution of the second product. We refer to this product
as the secondary product, its customer base as the secondary market and the time when the demand
for secondary product will be available to CM as the entry time. Knowing the expected demand
distribution of these products and entry time we would like to analyze the CM’s optimal production
and allocation policy. We will answer this research question in two different settings; Make-to-Stock
systems and Make-to-Order systems and then will provide methodologies and solutions to determine

optimal allocation policies.



The reminder of this chapter is organized as follows. We summarize the relevant literature of
capacity planning for differentiated and similar products, then in Section 3 we develop a capacity
planning framework for make-to-stock systems, in Section 4 we formulate and solve a decision model
for make-to-order systems. Both sections include discussions of the results and numerical examples

to support the findings. The chapter finishes with conclusions and summary of results.

2 Literature Review

There is a rich literature on modeling and describing demand for high-tech products. Meade and
Islam (1998) [22] document 29 different growth curves found in the literature. One of the earliest
and most widely used model among the life cycle models is the famous Bass model. Bass (1969) [2]
describes the demand for a new product by the theory of adoption and diffusion, and the model is
very powerful in estimating the magnitude and timing of the peak sales when the parameters are
appropriately estimated.

After the introduction of Bass model, a large body of literature revisiting the structural and
conceptual assumptions together with the research on estimation issues has been formed, Mahajan
et al.(1990) [21] provide an excellent survey, and categorize these developments until 1990 into five
subareas; basic diffusion models, parameter estimation considerations, flexible diffusion models,
refinement and extensions, and use of diffusion models. After its introduction, Bass model has
been traditionally used for sales forecasting, however one of the other useful applications of the
Bass model is to select optimal marketing mix strategies to maximize profitability over planning
horizon considering the life-cycle dynamics. Mahajan et al. (1990) [21] summarize the use of the
Bass model. More recently, Kumar and Swaminathan (2003) [20] consider the production and sales
decisions of a single item in a capacitated system under life-cycle dynamics. ‘They assume that the
demand of the item follows a Bass type model with supply constraints. In their model the demand
at an instantaneous time depends on the cumulative sales up to that time instead of cumulative
demand. They conclude that, myopic sales plan is not necessarily optimal, and inventory build
up heuristic is a robust approximation of the optimal sales plan. They compare the performance
meagures of myopic and build up policies over a wide range of parameters. In a special setting,
they prove the optimality of build up policy when there is no initial inventory in the system. In

a similar setting, Ho et al. (2002) [17] analyze capacity, time to market and demand fulfillment
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decisions jointly. Their demand model is same as Kumar and Swaminathan (2003) [20]. They show
that delaying the product launch can act as a substitute for capacity. One interesting result of their
study is that for fixed values of capacity and product launch time, when faced between the choice of
selling an available unit immediately versus delaying the sale in order to reduce future shortages, the
firm should favor the first choice. This is due to time benefit of the immediate cash flow outweighs
the negative effect of customer loss due to demand acceleration. Qur problem setting is similar to
Kumar and Swaminathan (2003) [20] and, Ho et al. (2002) [L7]. However we significantly depart
from their work by considering the allocation of fixed capacity among two product groups over the
planning horizon. These are not considered in the previous two works.

The CM’s allocation problem in make-to-stock systems is classified as capocitated production-
inventory problem, if the primary and the secondary products are different. In capacitated pro-
duction inventory problems the objective is to minimize the total discounted or average costs over
a finite or infinite horizon under limited capacity. The earliest formulation and the analysis of
this problem was by Evans (1967) [8]. He formulates the problem as a dynamic program under
stationary demand assumption. In cases where the capacity is not binding, he was able to char-
acterize the optimal policy in which, each item attains a maximal stock level. However, when the
capacity is binding he was unable to characterize the optimal policy. Federgruen and Zipkin {19864,
1986b) [9] [10] consider capacitated single item, periodic review inventory model under stochastic
demand. They prove the optimality of modified base-stock policy for both discrete and continuous
demand distribution assuming stationary data and convex one period cost function. The modi-
fied base-stock policy is described as; follow a base-stock policy whenever possible, and produce
to capacity when the prescribed production would exceed the capacity. Glasserman (1996) [12]
addresses the capacitated, multi-item production-inventory system with continuous review. Un-
der a subclass of allocation policies in which, some fraction of the total capacity is permanently
dedicated to each of the items throughout the planning horizon, production of an item follows a
base-stock policy. He also presents procedures for choosing asymptotically optimal base-stock levels
and capacity allocations. DeCroix and Arreola-Risa (1998) (6] generalize Glasserman (1996) [12]
for periodic review systems and show the optimality of modified base-stock policy for capacitated,
multi-item production-inventory system. When the products are homogenous (i.e identical demand

distributions and cost parameters), they show that symmetric resource allocation policy is opti-



mal for both finite-horizon and infinite-horizon problem. Kapusciriski and Tayur (1998) (18] study
the similar system as Federgruen and Zipkin (1986a, 1986b) [9] [10] studied, with an exception.
They consider, stochastic and cyclic demand. They provide the optimal policy for finite-horizon,
discounted infinite-horizon, and infinite-horizon average costs. The optimal policy is the modified
base-stock policy as described by Federgruen and Zipkin (1986a, 1986b) [9] [10], but with different
base-stock levels for each period. For the similar system as Kapuécinski and Tayur (1998) [1§],
with a different method, Aviv and Federgruen (1997) {1] independently proved the optimality of
modified base-stock level for the infinite-horizon case.

If the primary and the secondary product demands are similar, then our problem in make to stock
systems can be classified as rationing problem. In this problem, the decision maker first decides
the production or order quantity of product, later when the demands are realized, the decision
maker allocates the products to the different classes of customers according to the rationing rule,
which is to be determined. One of the earliest formulations of this problem for an uncapacitated
discrete time system is made by Veinott (1965) [27]. His focus is to find how much and when
to replenish the orders. In a nonstationary environment he proves the optimality of a base-stock
policy, but he does not consider any rationing levels. Later, Topkis (1968) [26] extends the results
of Veinott (1965) [27] by considering how inventory should be allocated in a single period of a
periodic review model.- He does the analysis by breaking down the single period into finite number
of subperiods, and as the demands are realized, he decides between satisfying the demand now,
or reserving the inventory to fill higher-class demands in the subsequent periods. He proves that,
for each review subperiod, there exist optimal nonnegative rationing levels for each demand class
such that one satisfies demand of a given class only if there is no unsatisfied demand of higher
class, and inventory level is above the rationing level for that class. However, he does not allow
replenishment of inventory within the subperiods. Most of the rationing problem literature deals
with the continuous time environment such as Nahmias and Demmy (1981) [23], Desphande et
al. (2003) [7], or the queueing control environment such as Ha (1997a, 1997b, 2000) [14], [15], [16].
Rationing problem is also similar to assortment problem and substitution problem. In the assortment
problem, a firm has the ability to produce n different items, where each item has its own demand,
but the firm must satisfy all the demand while producing m (m < n) items. In this problem demand

for any inferior item can be substituted by a superior or more costly item, and the objective is to



minimize all the costs. Pentico (1974) [25] analyzes the problem with stochastic demands and in
multi-period environment. By making some assumptions on the pattern of demand, he was able
to simplify the problem. In generalized version of the single period newsvendor problem, Parlar
and Goyal (1984) [24] investigated two-way substitution problem. Gerchak et al. (1996) [11] study
single period production systems with random yield and downward substitutable demand. They
prove that expected profit functions are concave and derive the optimality conditions. Bassok et al.
(1999) [3] analyze single period, multi-product substitution problem with downward substitution.
They prove that greedy allocation policy is optimal.

In our research, the CM serves the primary and the secondary market with the same or similar
products, which use the same technology and facility. Unlike the classical capacitated production-
inventory problem or the classical rationing problem the CM needs to consider the allocation scheme

under life cycle demand models.

3 Capacity Rationing for Make-to-Stock Systems

Make-to-stock manufacturing in high-tech industry is frequently employed especially if the depre-
ciation on the stock values could be tolerated, or when the planning horizons are rather short.
Building inventory acts as an extra capacity. Due to inability to develop capacity in short period of
time through capital investment, having available stocks when the product is demanded could have
been proved to be very profitable; even more than the profits obtained from physical value of the
product. For example brands that sell famous home-video-games such as Sony and Nintendo pile
large amounts of PS3 and Wii stocks before the products are commercially available. Although it
is not frequently observed that a Wii fan buying PS3 console after desperately long waiting times
for the product availability, a shopper for mp3 players may choose to buy the competitor’s brand
to prevent long waiting times. The methodology proposed in this section formally addresses these
issues and proposes policies to prevent the lost demand due to unavailability. In the next section,

we state model assumptions and formulate our problem.

3.1 Problem Setting and Assumptions

A high-tech CM with finite production capacity currently uses his capacity to produce a product

referred as the primary product. The CM anticipates a certain time, referred as entry time, £%, at
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which she will use her capacity to produce a second type of product, referred as secondary product.
The primary and the secondary products are very similar to each other and same production facilities
or precesses could be used to produce these products. The CM’s maximum production rate, C is
fixed and each type of product require one unit of capacity for production.

Demands of each product is described with life cycle growth models and observed in periodic
intervals. Actual demands of the products are stochastic and modeled as the expected demand plus
an i.i.d. error terms for each period. Formally to fix the notation, let the expected primary demand
be at time ¢ is given by uf. Then actual demand observed at time ¢ is given by d® = uf + & where
&1 is Lid random variable with the pdf and the cdf f(&) and F(&;), respectively. The expected
demand of the secondary product at time ¢, uf is described in relation to u? as s = b, where v
is the scale parameter and & > 0 is the integer lag parameter. The actual demand of the secondary
product observed at time ¢ is modeled as df = uf + & where & is i.i.d random variable where pdf
and cdf are f(&;) and F(&;), respectively.

The planning horizon includes T' units of equally spread decision points of one unit length. At
each decision point of time, ¢ the CM needs to determine (1) how much to produce, (2) how much
to allocate the on hand inventory for the primary market if ¢ < ¢ and (3) how much to allocate the
on hand inventory for the primary and the secondary market if ¢ > ¢°. The production cost, ¢ is
fixed per unit per period. The selling price for the primary product, 7y (d}) is a function of quantity
demanded from the primary market, with «Q%(ljﬁ < 0. As the primary market demand increases
selling price of per unit product decreases. This structure is commonly observed in spot market
where there is a high level of competition among the suppliers. The selling price of the secondary
product, 7° is per unit and constant. The unsatisfied demand from the primary and the secondary
market is lost incurring a penalty per unit cost of p? and p® per period, respectively. There is a
fixed per unit holding cost of h per period, and periodic discount factor, o € (0,1} is used to help
determine net present valuation,

We further impose the following assumptions;

L. mf(df) 4+ p? > ¢ for all possible realizations of df, and similarly 7° + p* > ¢. This assumption
ensures that, it is not optimal to never satisfy current period’s demand and accumulate penalty

CcOSts.



2. of(mfy(d) +0°) — (rf(d)) + pP) < SSihe®h Vi€ {1,2,...,T — t}. This assumption
ensures that, it is not optimal to cut current period’s primary market demand to satisfy
the future period’s primary market demand at a higher price. The assumption is practically
relevant when the CM only serves the primary market. This assumption automatically holds

for the secondary market, since #* is constant.

Note that we are not imposing any assumptions for the cross benefit case (i.e. cutting current
period’s primary demand, to satisfy future secondary market demand at a higher price, or vice
versa). Since, these allocation decisions are critical to the CM’s profitability.

We assume that production decisions take place at the beginning of each period and unsatisfied
demand is lost. The decisions that the CM faces throughout the planning horizon are described as

follows:

1.y the inventory level after production at the beginning of period ¢. I, being the on hand
inventory level before the production decision takes place, the production can be at most the
production capacity; y, — I, < C, and the inventory level after the production cannot be less

than the beginning onhand inventory. [, < y;.

2. zy: Inventory level below which the CM cannot use the on hand inventory to satisfy the

primary market demand. (z; < ).

3. 2z Inventory level below which the CM cannot use the on hand inventory to satisfy the
secondary market demand. In other words z, is the minimurn reserved inventory level for the

next period. (0 < 2z < 2y).

Note that, the order of shipments, does not affect the problem structure, since for any given
demand, the CM cannot satisfy more than the difference of two inventory levels assigned for that
type of demand. In any given period, CM will supply min{y, —z;,d?} to the primary market. After
satisfying the primary market demand, the remaining inventory level is max{z,,y; — & oIt <t
then x; = z, that is if the entry has not been realized yet, there is no need to reserve capacity
for the secondary market. If ¢ > 1¢ then, then CM will deliver min{max{z, 3 — &} — 2, d5}
to the secondary market, and then the remaining inventory level at the end of period would be

max{max{y; — dj,z:} — df, z}, which is the inventory level at the beginning of the next period.
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Table 1: Summary of notation for Make-to-Stock system capacity modeling

Notation | Description
73 (d}) | Unit selling price to the primary market
vl Unit seiling price to the secondary market
c Unit production cost
7 Unit penalty cost of not satisfying demand from primary market
o Unit penalty cost of not satisfying demand from secondary market
h Unit holding cost per time period
I Inventory level at the beginning of period ¢
C Maximum periodic production capacity
Ys Inventory level after production,
24 Minimum inventory level after satisfying the primary market’s demand
2 Minimum inventory level after satisfying secondary market’s demand
d;, df | Realizations primary and secondary market demands respectively
k Integer lag parameter for the secondary market demand
y Scale parameter for the secondary market demand
FC), F() | pdf and cdf of ii.d random variables & and &
o Periodic discount factor

CM’s problem is to minimize total expected cost of the planning horizon. At the end of the
planning horizon, the remaining on hand inventory can be salvaged at the production cost, ¢c. Table
1 summarizes the notation and description of the problem parameters and decision variables. The

following functions will be useful in modeling the CM’s problem:

1. HY(I;) = minimum expected net discounted cost in periods 1,2, ..., f, given that period ¢

begins with inventory level I, and ¢ < t¢

2. H}(I;) == minimum expected net discounted cost in periods ¢,1 + 1, ..., T, given that period ¢

begins with inventory level I, and ¢ > ¢¢

H}(1;) is the cost-to-go function of CM's after entry problem and H?(I,) is the minimum expected

cumulative cost of before entry. H?(1,) is found according to following formulation:

t
H{(L) :Z@men E{Q?Ui;%ﬁi)]
=1

subject to O0<uz; <y, <L +C, I < Us 1)

Iizy = max{y; — &, z;}, t < t*

2
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where, g0 (X, v, ;) is the periodic cost function and found by:
c(ye — Io) — 7 (df Jmindy, — ¢, &7} + pP(ys — @ — df) ™ + hmax{y, — df, z,}

The first term above is the production cost, the second term is the revenues obtained from
primary market, the third term is the penalty cost of unsatisfied primary market demand, the fourth
term is the holding cost of the inventory carried to the next period. H}(I,) is found according to

the following dynamic programming formulation:

Htl (Z:) my{ﬂi{it E[g}(ft,yt, Ty, 2¢) + O‘Ht1+1(ft+1)]
subject to 0< <z <y <L+C, L <y (2)
Ly = max{max{y, — &, z;} — d, %} t > e
where, g{ (I, ¥, 7:, 2:) is the periodic cost function and found by:
ey — Iy) — of (df )min{y, — ze, &} + 9 (ye — 20 — df)~
— n°min{max{y; ~ df, 2:} — %, di } + p’(max{y; — &}, z:} — z ~ df)~
+ hmax{max{y, — df, z:} — df, 2}

The first term above is the production cost, the second term is the revenues obtained from
primary market, the third term is the penalty cost of unsatisfied primary market demand, the
fourth term is the revenues obtained from the secondary market, the fifth terms is the penalty cost
of unsatisfied secondary market demand, and the last term is the holding cost of the inventory
carried o the next period. The boundary conditions for Formulations 1 and 2 are H¥(I) = 0 and
H}, (I741) = —clpyy, where Iy, are found from the recursions in 2.

Before the entry time CM needs to optimize the production and supply decisions considering
the after enfry demands from the primary and the secondary markets. For a given entry time the
CM’s optimal cost during planning horizon is:

V(Io) =Hg 1 (Feoy) + Hi(Ie)
subject to fry; = max{max{y — &, x;} — df, %} Vit >¢°
Ly = max{y, — &, z,} WVt <t® (3}
I <y

0 <oy <y <L+ C
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3.2 Model Analysis

The optimization problem 3 is quite complex to solve. Without the capacity constraint, it can be
easily shown that H(I;) is convex in IVt € {1..£° — 1} hence, the optimal policy is the base-stock
policy for the case when the CM is serving the primary market only. With the capacity constraints,
the optimal policy is a modified base-stock policy. At each period one brings the on hand inventory
to the base stock level as close as possible. If on hand inventory is less than base stock level the
CM produces up to base stock level and if on hand inventory is more than the base stock level, the
CM produces nothing.

The analysis of H/ (I}), even without the capacity constraints, is complicated. In this situation,
the CM needs to decide the inventory level after production, y;, and the minimum on hand inventory
level for the secondary market, z;, in each period. For the unlimited capacity case, there is no need
to produce more than the demand needed in current period (i.e. z = 0). Then, the cost function
in each period is H}(I;) in formulation 2 except the upper bound on v, < I, + C.

If we explicitly analyze H}(l;) for the unlimited case starting from the last period 7. The

underlying cost-to-go function is:

Yo7 yr—df,
By =—chr+mincn+ [ |-ni@)dh -] [T apar(en
G 0

" f °° (vr - d?«)dF(d%)} 1y / ;@(dg" i — yr)AF(dS)
yr —df.
+ (h— ac) ]0 (g — b — d3)AF(dy) | AP (a2
+ /O‘: [_W?(d@(yﬁ" -~ ) + P (dy — (yr — z7)) (4)

-7t { /G ” s dF(ds) + /m N deF(d%)} +p° /m Do(d% — zr)dF(dz)

T T

+(h - ac) /@ 7 (o — VAP | dF(d)

subject to
Ozr=<yr, Ir<yr
First three lines of the above equation is the cost of last period, when observed demand from

the primary market is less than the amount of inventory reserved for it (ie. d. < yr — z7). Note
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that, there is no penalty cost for not satisfying the primary market demand in this part, since the
realized demand does not overshoot the on hand inventory for the primary market. Last three lines
of Equation 4 represents the cost of last period, when observed demand from the primary market is
more than on hand inventory reserved for the primary market. (i.e. df > yr-z7). After combining

the terms and making simplifications (see Appendix A), Equation 4 becomes:
Hi(Iy) = — clp + P + p i+

Inin cyp ~ (2 +2")yr — zr) — (° + 7°)2r
YT
+(pp+7rp~ps-*7r”)/ F(d7)dds
0

yr—zr  pyT—dp
+ {(p° +7° + h — ac) f f F(d?)dd%dp(dga)
4] o]

+ [ [T ranagara)
yr—zr JO

where (7, and uf are the mean levels of the primary market and the local market demand
at period T. Unfortunately, the function in the minimization part is neither convex nor strictly
quasiconvex.(See Appendix A) Even in the uncapacitated case, there is no analytical optimization
for the periodic cost function, g(I;, ye, @4, )

Inability to find an analytical solution to a dynamic programming (DP) problem is quite a
comumon issue. In most cases a numerical solution is necessary. However, the computational re-
quirements for this are often overwhelming, and for many problems a complete solution of the
problem by DP is impossible. The reason lies in what Bellman has called the ”curse of dimen-
sionality”, which refers to an exponential increase of the required computation as the problem'’s
size increases. For H}(I;) (for the capacitated case), state, control and the disturbance spaces are
(RF)L, (R*)%, (R1)?, respectively. In a straightforward numerical approach, these spaces are dis-
cretized. Taking d discretization points per state axis results in a state space grid with d points.
For each of these points, the minimization must be carried out numerically, which involves compar-
ison of d® numbers, and to calculate these numbers, one must calculate an expected value of over
the disturbance, which is the weighted sum of d* numbers. Also, calculation must be done for each
of the T stages. Thus, number of computational operations can be as much as Td®. If 7' = 10 and

d = 100, then we the number of computations is 10'3. Even a computer, which can perform 1000
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operations/sec., then finding a numerical solution would take 317 years.

Often in practice one settles for a suboptimal control scheme that finds a reasonable balance
between convenient implementation and adequate performance. For this problem, we propose to
apply Certainty Equivalent Controller (CEC) to simplify the computational requirements.

CEC is a suboptimal control scheme that is inspired by linear-quadratic control theory. At
each stage CEC finds an optimal decision if some or all the uncertain quantities were fixed at some
"typical” values. Bertsekas (2000) [5]. In our problem uncertain quantities are the periodic demands
of the primary market and the secondary market. Typical values for these random quantities would
be their expected values, pf and uf V¢ € {1..T'}, for the primary market demand and the secondary
market demand, respectively. The CEC approach often performs well in practice and yields near
optimal policies. In fact, for the linear quadratic problems where there is no constraint on the
selection of decision variables, the CEC produces the optimal policy. However, this is not the case
for our problem environment, since we have capacity constraints on our decision variables even
though we formulate a quadratic problem.

In the subsequent parts, we will find the optimal CEC solution to HY(I;) and H}(/,). In order
to prevent confusion, we will denote the deterministic functions as H(J,) and H(I,), and optimal
decisions as §;, &4, 2 Vt € {1..T'} that are generated by CEC.

With CEC, our problem reduces to find an optimal policy to two deterministic problems. The
first problem is to find HL(I) that is an optimal order up to level (%), optimal supply to the
primary market (; — &), and optimal supply to the secondary market (#, — %) YVt > 1 . The
second problem is to find an optimal order up to level (§;) and optimal supply to the primary
market (§; — &) V¢ < ¢° in anticipation of HL(J,).

In the next sections we re-formulate the above problems and develop exact algorithms to find to
optimal solutions to CEC problems. We will use the same notation except we add " to the notation

in order to differentiate from the originals.
3.2.1 Optimal CEC Policies: After Entry

In this section, we will develop an exact algorithm to find the optimal solution to HL (1), given the
inventory level at the beginning of the entry period is Jre. The demand expected demand vectors are

{ttge, ey i} and {pfe, pfes .5} for the primary and the secondary market. Note that when
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the BC demand is known at a given period we also know the selling price for the unit primary
market demand. For a given vector of primary market demand we can associate a price vector
{mle, Mheqy ooy T}
Let the periodic cost of CM after entry is represented as:
ot (Is, 24, e, ) :—-(«g~ — ) Iy + ey, — mhmin{y, — @y, 4 } + pPmax{uf — (y, — z,),0}
— memin{max{y; ~ uf, z;} — z, u}

+ p*max{y + z — max{y, — 1, z:},0}

h
== — L —nu — 7t + ey + (nf + pP)mac{uf — (y, ~ 21),0)

+ (ﬂ's + ps)max{uf + 2 = max{yt - .U'fa .’L‘g}, 0}
The boundary condition is AL vildry) = (h/o — €)I7yy where I, is obtained from the recursive
formula Iy = max{z, max{y; — pf, 2} — pf}. CEC cost-to-go function:

HN(L) = min gL, 2, 20, 46) + BL (Tigy)

Y, T, 2t

subject to J4q =max{z, max{y; — pf, z} ~ 1}, (5)

0<n<z <y <C+1I, vte{l,2,.T}
Although the Problem 5 is a shortest path problem, continuity of state and decision variables
make it intractable to enumerate the optimal decisions for evéry possible state variable. However,
by analyzing the characteristics of the optimal solutions we are able to provide an algorithm to

solve Problem 5 exactly.
Proposition 3.1. At period T, optimal value 37 = 0.

Proof. We will prove our claim by contradiction. After excluding the constant terms, the mini-

mization problem to find the last stage cost-to-go function can be written as:

min_ oy + (nf + pP)max{ — (yr — 1), 0}

Y27,
+ {® + p*ymax{y + zr — max{yr — 5, zr}, 0}
+ (A — ac)max{zy, max{yr — pb, Tr} — pi}

P
min cy; + T+

YT\ BT BT 2

([lﬁ} + 2y — yr| + (p + 27 — yT)) +0.5(x* + p° + h — ac)zr (6)

m+p' +h - | | 1
+ 5 /"’T"'ZTW"z"(mg“‘*'xi"_yl’l+(£T+yT”M§‘))’

74 p° — (h—oc 1
P (= St am = vl + (o 4 = 180))

o
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Third, fourth and fifth lines are obtained from using max{a,b} = 1/2(}b — af + (a + b)) and
min{a,b} = 1/2(—la — b + (b — a))s. Let §r, &7 Zr be the optimal solution to the minimization
problem 6 satisfying 0 < Zr < &r < g < O+ Ip, and f[}(IT) is the cost obtained from this

solution. We will analyze H(Ir) in two cases:

Case 1 ph + p5 > C + Ir. Then, depending on the value of & and gr the outer absolute value in
the fourth line simplifies to either |us + 3r — &) (if, §r < pl + &) or, | + 2 + g ~ Il

(if, g7 > pf + 7). In the first case,
H%”%“ET—ﬁTZLL%+2T+M;—ﬁT>O+IT"‘|"5TW@T>O

The first, inequality is obtained from using §r < p+2Z7, second equality is obtained using the
fact that pf. + p5 > C'+ Iy and the last inequality is obtained using Zr > 0 and gp < C+ Ip.
Thus in either case the function in the outer absolute value (on the fourth line) is positive.

Since 7 + p* + h — ac > 0 {from our first model assumption) Zr > 0 cannot be optimal.

Case 2 ph+ p5 < C'+ Ir. From the Case 1 discussion, it is sufficient to analyze the sign of p5 + Zr +
42 —gp. Depending on the value of §r, u§+Zr -+ pf ~ i can be positive, 0, or negative. When
it is positive Case 1 applies. When it is 0, H%(I;) becomes cjr + 0.5(n° +p° + h — ac)2r +
0.5(m° + p* — h+ ac){(p + p — §r). Since (n° +p° +h —ac) > 0 Zr > 0 can not be optimal.
When pf + Zr + pi — Jr is negative, then HA(Ir) becomes, cfr + (h — o) (§r — 185 — pip)-

Since h + ¢ - ac > 0 we can use {r > py + pF + Zr to have:
HY(Ir) > eyl + pz) + (b + ¢ — ac)zr

Thus, Zp > 0 cannot be optimal.

Corollary 3.1. ir =maz{Ip,min{i + p5, C + Ir}},

_ X ph 4 pd > I
mind g, 9r} Wb < hp LTI

Ur — pirp W+ ps <

{mam{@T ~ 15,0} ThApP 2w 4P’
T =
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Proof. Using the result of Proposition 3.1, we insert Zr = O into Problem 6. If g + 1f < I,
fir = Iy and Z7 = §r — pl. For the other conditions, we will analyze the cost-to-go function , in

four cases:

Case 1 pp > C+Ir and p > C+ Iy
min cyr + (mf + pP)max{ py + z7 — yr, 0}
+ (x° + p*)max{py — max{yr — i, 27}, 0}
+ (h — ac)max{0, max{yr — p, r} — pir}
mincyr + (. + o) (. + wp ~ yr) + (0° + p°) g — 2r)
= (nf + 9 )i + (e + p*)uy + in cyr — (wf +P7)yr + (vp + 97 = g — Pz
Third line is obtained by the fact that pb +zp —yr > 0 (since pf > C+ 1, 2 yr and 27 2 0),
max{yy — 27} = zr (since yp — ph < 0) leading to max{p$ — zr, 0} = p§ — o (since
o> C+Ir Zyr 2 o). The h - ae term becomes 0, since zp — pf < 0.
For the minimization problem in the last line, since n¥ + p* > ¢, the minimization leads to
gr = C + I, and if 7l + pP > 7 — p°, &g = 0, else Br = fr = C' + Ir.
Case 2 pf < C+ Iy and pu3 > C+ Iy
Jﬁij,},,cyT + (78 + pP)max{pf + 27 — yr, 0}
+ (m* + p*ymax{pf — max{yr — p7, xr}, 0}
+ (h — ac)max{0, max{yr — i, o7} — p7}
= ﬁiﬁl}cyg« + (78 4 p")max{ph + xr — yr, 0}
+ (7° + p*) (15 — min{p§, max{yr — uf, 2r}})
+ (h — ac)(max{yr — pb, zr} — min{ps, max{yr — ph, or}})
=(n% +p*)ug + min eyr — (7°+ p’)max{yr — pip, T}
+ (7 -+ pP)max{ph + 27 — yr, 0}
xé;;umlclr cyr — (7° + p*)max{yr — i, ) — (7% + pP)mind{yr — pp, 21}
+ (7f + PP)er
Third line is obtained by using the relation max{0,b — a} = b—min{a,b} with b = p and

a =max{yr — b, 27} for the (n* + p°) term, and with a = p% and b =max{yr — W, xp} for
T T T
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the (h — ac) term. (h — ac) term is canceled since min{pp, max{yr — pf., 2} }=max{ys —
ph, xp}. Last relation is obtained (after omitting the constant term) by using the relation
max{0,b — a} = b—min{a, b} with b = z, and a = Yr — /ﬁ%.. If m° 4+ p* > nf. 4 p” then last
relation is minimized at, & = C'+ I and Yr = C + I, else the solution is gp = C' + Iy and
&r € [0, G ~ uf).
Case 3 ply > C' + I and p3 < C + I
;ﬂ{aimzjlﬂcyq« + (7% + o) max{ 1 + z7 — yr, 0}
+ (7° + p )max{uy — max{yr — 1, 27}, 0}
+ (b — ac)max{0, max{yr ~ 1., zr} — ps}
= min cyr + (1} + P) (4 + o7~ yr) + (n° + p*)max{ps, — ap, 0}
+ (h — ac)max{0, zr — ps}
=+ ) o (w4 p*) s + min eyr ~ (wh+ pP)yr + (14 P + b — ac)er
— (7° +p° + h — ac)min{zy, %}
Above function is minimized at §r == O <+ Iy and Tp =0, (if 7% 4+ p? > 7° 4 p*) or G = 7
(if 7% + p* < 7° 4 p*).
Case 4 pf +ps < C 4 Iy
This part is straightforward. §ir = pf 4 u¢ and 47 € [0, #r — 1) There is no need to produce

more, since cost of carrying unit inventory h + ¢ — ac > 0.

O

Proposition 3.2. Let j be the smallest period in {65+ 1,.., T} such that W <C+ILvie
{j.J+1,, T}, then 2, = 0¥i € {j — 1,4,..,T}.

Proof. The proposition states that on hand inventory is enough to satisfy both the primary and
secondary market demands , then there is no need to carry inventory into the future. The proof is
straightforward, and done by starting with the last period and using the results of Proposition 3.1
recursively. Then we have:

Go=pf +piVie 4,5 +1,..,7}

B =g — pf = Vi€ {j,j +1,..,T}

I

=k =0Yie{j—1,5,..T)
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O

When the capacity is binding at a given period, i might be still optimal to carry inventory and
increase the supply of the future period demands. These are the cross benefit cases. i.e. Cutting
primary market’s (secondary market’s) demand today to satisfy more secondary market (primary
market) demand tomorrow. Proposition 3.3 gives the conditions when switching is yields lower

costs,

Proposition 3.3. Let (4,7), (§ > 1) be a pair of two periods satisfying 1 + uf > C + I, e+ >
CH+I;. Assume an allocation satisfying y;—x; < Ky Xz < pf and Yi—; < ,u,?, t;—z; < pi. Then
a better allocation can be made if (mh+p?) + 3707 ofh < (2°+p%)ad " or (e +p°)+ 3770 ok <
(7 + p¥)ed ™ holds.

Proof. We will only show the case, cutting primary market supply at period i to increase secondary
market supply at period j improves cost. The other way follows exactly the same logic. The unit
cost of cutting primary market demand is 7?4+ pP, and cost carrying unit inventory for ¢ — j periods
is Zi;’;{l a*h. Note that production cost is not considered since, no extra production is made at 7.
Current benefit of supplying one more unit to the secondary market at period j is (7° + pad e If
the relation in the proposition holds, then one can reduce Y — x; (without affecting the secondary
market supply at period 4) and increase z; — z; (without affecting the primary market supply at

period 7) and reduce the overall cost. 1

Proposition 3.4. Suppose at current period i + pi <C+ L and pf; + 15, > C 4 Ly for some
1€{1,2,.,T~t}. [fe+Yyah < (nf, +pP)a or c+ Ys &fh < (10 4 p*)atthen sum of costs

Jrom i to T is reduced by carrying inventory for periods.

Proof. ¢+ Z;;E a’h is the cost of producing one more unit product today (without cutting supply
of the current demand) and carrying it for ¢ periods. (mb,; + "ot is the benefit obtained from
satisfying one more unit of primary product demand 4 periods later. If ¢+ Z;;f} ofh > (nf, +p")a
then carrying inventory for ¢ periods will not reduce the total cost at f. The same analogy applies
to the secondary product case. ]

Below, we propose our algorithm to solve CM’s primary market and secondary market Problem.
We first start with an initial solution, then improve the solution until no improvement can be

made. To improve the initial solution, we will not only check the periods where there is available
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production capacity, but also the periods where the capacity is binding. For the periods in which
the capacity is binding, by cutting low priced customer’s demand and reserving inventory, the CM
might be better off when she satisfies a higher priced customer’s demand in the future. We call this
action Swilching. After, switching the algorithm proceeds by checking the periods where there is
available production capacity.

The After Entry Algorithm

Step 1 Forallt e {¢*,t°+1,...,T}, assign 3, = max{l;, miﬁ{,uf +u, C+ L} ) I gl + pf < I, assign

. max{y, — uf,0} if, 7P +p7 > 75 4 p°
| min{ug, v} if, 77 +pP < 7+ p°

else, assign z; =y — pf. For all ¢, assign 2z, = max{z; — 45,0}

Step 2 Switching. Find all ¢ € {te, ¢ + 1, .y T} such that pf + uf > C + I and By i > Ui, — o,
OT U1, > Tiyi, — 2, fOr some 4 € {1,2,..T —t}. If no such ¢ is found go to Step 4, else put

them in a list and go to Step 3.

Step § 1f the list is empty go to Step 4, else pick the largest t, delete from the Hst. While, y, — 2, > 0

or &y — 2z > 0 find 4} according to:

i1
ig- =argmax{(n® + p*Yo¥ — (7 +p? + Z o’h)} Vi € {1,2,..T —t}
=0
subject to y, — x; > 0 and ,uffquig — Emw;g — Z4i3) > 0
-1
" :argmax{(wfﬁg + ol — (n° +p° + tz: odh)} Vi e {1,2,..T -t}
=0
subject to z; — z; > 0 and uf T (y;g — Zyp) >0

-1
¢ =argmax{max{(n® + p*)at" ~ (af + pP 4 > alh), (T i -+ PP)aft
F=0
&1
~ (7 +p°+ > oIR)}}
=0

If the function in the last argmax is negative or no 4 18 found, then go to the beginning of Step
3, else do the following; If the function in the last argmax is maximized by the first component,

then increase y;, (V4 € {t+1,....,t+i:}), z,; (V5 € {¢, e tig}) and 25 (V5 € £, E 455 — 1)
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Step 4

Step &

by min{y — xy, 18 iy = (Terip — 2i4a) ) If function in the last argmax is maximized by the
second component, then increase y;, (Vi € {t+1,...,t+14}), z; (Vj € {t +1, ot i —1})
and z; (Vj €4¢,...,t +if — 1) by min{z, — z, Fipir = Woriz — Teasg)}

Find all £ € {°,1° + 1, ..., T} such that pf + puf < C+ I, and Mok, T 15, > C + I, for some
kre{tt—t,t°—t+1,.., T~ t}. If there is no such ¢, end the algorithm, else put them in a
list and go to Step 5.

If the list is empty, end the algorithm else, pick the largest ¢, delete from the list and find iy

as follows:
if1
if" =argmax{o® (n? p +p7) —c— Yo} Vi € {t° —t,t° — £ 41,..,T — 1}
J=0
subject to 'U’fwf = (Ye42 ~ Tppap) >0
-1
i7" =argmax{a® (m]y s +p°) —c— Y odh} Vi§ € {t° —t,t° —t +1,..,T — £}
i=0
SUbjeCt to ’I‘Lf'}"\':f - (Q:t_H;g — Zt_{.l,gf) >0
i ~1
iy =argmax{max{o (F o +0P) —c— Z o’ h,
ki
J=0

-
%1

¥ (Wf+ig* +p°) —c— Z o’h}}
J=0

If the function in the last argmax is negative or no iy is found, then go to Step 4, else do
the following; If the function in the last argmax is maximized by the first component, then
increase y;, (V5 € {¢,...t +4f}), z; (Vi€ {t,...t+if ~1}) and z; (Vj € ¢, ...t 4+ 4, — 1) by
min{z? vir — Weriy — Tegaz), C + I — 4}, If the function in the last argmax is maximized by
the second component, then increase y;, (Vj € {t,..,t+4}), z; (V5 € {t, ...t + 4 — 1}) and
z (Viet, ., t+i —1) by min{,ufHE ~ (Tpgip = 2e4ar ), C + Iy — yi ).

Theorem 3.2. The after entry algorithm terminates after finite number of steps, and at termination

values of yi, z; and 2, are optimal. (i.e. §, %, 5,)

Proof. In Step 3, the size of the list can be at most T — 1. For every ¢ in the list, the algorithm

searches for a better allocation than the one assigned in Step 1. For a given t, the result of a search

22



can be either negative (when no 4} is found or cost cannot be improved for i}, or positive (when
i improves overall cost). In the first case, £ is removed and is not considered in this list, again. In
the second case, a better allocation is made (by reducing current allocation of one customer and
increasing future allocation of the other customer). After the allocation, either current allocation
of the customer becomes 0, or future allocation of the customer is at its demanded quantity. In the
latter case, algorithm searches for the next best i¥. Again, if the search for v} is positive, a better
allocation is made. At some point, algorithm will stop the search for next best 1;, since current
allocation for the customer will hit 0, and in this case other t’s in the list will be considered. After
switching step is done, the algorithm will search for cost improvements by producing more, and this
step proceeds exactly same as the improvement step in the primary market Algorithm. Hence, the
algorithm will end after finite number of steps.

To prove the optimality of the allocation, first we will prove that, if no ¢ is found in Step 4, then
the allocation is optimal. If the algorithm cannot find any £ at Step 4, then either P +us < C+1, vt,
or i + pf > C+ I Vt. In the first case, then Step ! assigns y, = max{l,, uf + pit, Ty ow oy — b
and z; = max{z; ~ p7,0}. If initial inventory Iy < uf + i, then yy = pf + uf, o4 =y, — yib = il
and z = 0. Then using Proposition 3.2, (using j=1), v, z; and z are optimal. If initial inventory
Iy > pf + 15, then algorithm imposes no production until all beginning inventory is used to satisfy
demand. One can never reduce costs acting otherwise, since all the demands can be satisfied from
that period, and carrying would incur extra positive holding cost. Thus, the allocation at Step
1 is optimal, when pf + puf < C' + I, Vt. The algorithm does not find any ¢ at Step 2, since all
the demands have been satisfied. In the second case, (1§ + 1§ > C + I, Vt) Step ! assigns all
ye = O+ I, z = 0, and selects z; depending on the profitability of the customers. However, this
allocation may or may not be optimal. Step 3, searches for a better allocation. In this case, all the
periods (except the terminal period) will be in the list. Because, the total supply is less than the
total demand aft each period. By going backwards, Step 3 checks whether cost can be decreased by
cutting the supply of one customer at that period and increasing the supply of the other customer
for all the future periods. If no such period is found then the current allocation is optimal for that
period. If a period is found, then a better allocation is made. This procedure repeats itself until no
improvement can be found for that period. Since, every period is checked, Step 3 produces optimal

cost-to-go functions for each period. When Step 8 ends no ¢ is found at Step 4, since Step & does
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not reduce production level of a given period. (Still each period use its capacity in full).

For all the other demand cases, every step of the algorithm will be executed. After the allocation
at the initial step, the algorithm Will search for switching. Step 3 checks only the periods that use
its capacity in full. Allocation after switching is at least as good as the allocation made in Step 1.
Since, the periods that have available capacity haven’t been checked, the algorithm performs this at
Step 4. Thus, all of the periods are checked by the algorithm, starting from the largest periods. O

In Theorem 3.2 we showed that the after entry algorithm yields optimal values of 4, &;, and 2,
vt € {t°,t* + 1,..., T}, hence we have HL(I?). Tn order to solve Problem 3, we need to determine
Uy and Ty ¥t € {1,2,...,1° — 1} to find ffﬁ_i(Ig), Iie considering the after entry cost to go function
ﬁfe (1f). Next, we show that by modifying Step 1, Step 4 and Step 5 of the After Entry Algorithm
we have the optimal CEC policy for the CM's Problem 3 and obtain TA/(ID).

3.2.2 Optimal CEC Policies

"The CM needs to find the optimal starting inventory level, Ji that is available to her once she enters
the secondary market. In order for that the CM needs to decide whether to carry extra inventory or
not to satisfy the primary and secondary market demands after the entry time. Below we propose
three minor modifications to the after entry algorithm. Theorem 3.3 shows the optimality of the
modified after entry algorithm for the CM’s problem 3.

Modification to the After Entry Algorithm

L. In Step 1, additionally assign g, = max{l;, min{uf, C' + L}} and z, = max{y, — uf,0} for all
te{0,1,..t5~ 1},

2. In Step 2, include into the list all ¢ {1,2,...,#° — 1} such that ¢y > C + I, and Hivi, >

Titji — Zj, fOT some j; € {1,2,...,T — ¢}

3. In Step 4, include into the list all ¢ € {1,2,...,t°—1} such that < C+1I, and Moi, > CH Iy,
for some i, € {1,2, v t8=1~t1} or Mf+jt+u§+jt > Oy, for some j; € {£°—t, to~ i1, e T—1}

4. In Step 5, Change the domain to Vif € {1,2,..., T} for the search of 4*

Theorem 3.3. The modified after entry algorithm ends after finite number of steps and at termi-

nation values of y,, x; and z, are optimal Jor the CM’s planning horizon.
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Proof. Termination in finite number of steps is a direct result of Theorem 3.2. Also by Theorem
3.2, y¢, 2z and 2z are optimal for all ¢ e {t°,t* +1,..,T}. It only remains to show that Y and x,
are optimal for all ¢t € 1,2,..t¢ — 1}. The proof is similar to the proof of Theorem 3.2. We will
summarize here briefly. In Step I the we assign the myopic solution as the initial solution for all
t€1,2,..4° ~1}. There are only two possible ways to improve the myopic solution. First, with the
cross benefits case. The CM may benefit from lowering the current periods primary market demand
and build inventory for the unsatisfied secondary market demand, second the CM may benefit from
build up inventory for the future if there is ample capacity is the current period. The first type of
benefits are checked by the modifications done in Step 2 and the second types of benefits are checked
by the modification on Step 4 and Step 5. Since the algorithm proceeds backwards, each periodic
update done first in Step 9 and later in Step & yields the optimal solution for the periods. G

We showed that the modified entry algorithm solves the CM’s Problem 3. Next we present a

numerical example to illustrate the findings in this section.

3.3 Numerical Example

Consider that both the primary market and the secondary market demands are modeled by Bass
diffusion models with parameters; p = 0.025, ¢ = 0.37, k = 2, m = 1000 and v = 0.85. The
length of the planning horizon is T = 14 periods. The maximum capacity level is, C' = 75. The
fixed entry entry cost is K = $50. The primary product selling price at time t, 77 depends on the
quantity demanded at ¢. The specific relation ship os given by a? = ﬂi‘%:(#m and ¢ = 15. The
secondary product selling price is 7° = $2 per unit, and production cost is ¢ = $1 per unit per time
period. The penalty cost of overage demand is same for the primary and the secondary products
and p* = p* = $3 per unit per time period. Inventory holding cost h = $0.25 per unit per time
period. Initial inventory level, I; = 0. Periodic discount factor is & = 0.9. What is the optimal
levels of y, z; and 2z, and optimal cost if entry time is given ¢ = 2, {* = §7
Solution;

Table 2 summarize the demand and price relationship for the primary and secondary market
given problem parameters above. Note that the selling price of the secondary market is constant
throughout the period however the selling price of the primary market is changing in regard to the

quantity demanded from the primary market. According to the problem parameters given above,
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Table 2: Price and demand relationship for the primary and the secondary market, numerical
example

34.9 ¢ 0.0 34.9 0.0 1.95
47.6 | 0.0 82.5 0.0 1.53

62.5  20.7 | 145.0 29.7 1.23
78.4 | 404 | 2234 70.1 1.03
92.9 1 53.1| 316.3 123.3 | 0.89
102.7 | 66.7 | 419.0 189.9 | 0.82
105.3 1 78.9 | 524.3 2689 |0.81
99.9 | 87.3 | 624.2 356.2 | 0.84
88.1 | 89.5 | 712.3 4457 | 0.93
10| 72.8 | 84.9 | 7851 530.6 | 1.09
11| 57.0 | 749 | 8421 605.5 | 1.33
121 428 {6191 884.9 667.3 | 1.67
13 ] 31.1 [ 4841 916.0 7158 | 2.14
141 221 (3641 938.1 752.1 | 2.78

OGO =~ O O s WO BRI |tk

the secondary product is more profitable than the primary product in the middle of the planning
horizon and less profitable at the beginning and end of the planning horizon.

For ¢¢ = 2, the modified after entry algorithm produces the results summarized in Table 3.
According to this y, — x is the supply level for the primary product, z: — z is the supply level for
the secondary product and z is the level of inventory carried to the next period. The final cohumn
in Table 3 displays the optimal costs from period # through the end of horizon.

Figure 1 displays the optimal production and supply quantities when the entry time is ¢ = 2.
Note that, during the initial periods (periods 1 through 3) the on hand inventory is used to satisfy
the primary market demand. However, later the secondary product becomes more profitable and the
CM’s cuts primary products supply to satisfy more secondary product demand. (Period 6). Later
in the planning horizon the primary product becomes more profitable and this time CM lowers the
secondary product’s supply to be able to carry inventory to satisfy primary product demand in the
future.(Period 13)

For t° = 6, the modified after entry algorithm produces the results summarized in Table 4.
Figure 2 displays the optimal production and supply quantities when the entry time is t¢ = 6. Note
that, the cost to go function in period 9 through 14 is the same as cost to go functions for the same

periods when {° = 2. Since it is more profitable to satisfy the secondary market demand in the mid
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Table 3: Solution to numerical example of make-to-stock system when ¢ = 2
¢ Yy Ty Ze =2 | 2~z | Villy)
75 | 40.1 | 40.1 ] 349 0.0 578.1
115.1 | 67.5 | 67.5 | 47.6 0.0 623.7
142.5 18001 50.3| 625 29.7 | 672.0
1253 1 469 | 6.4 | 784 40.4 | 800.9
81.4 | B3.1| 0.0 | 283 53.1 | 984.0
75 | 706|394 44 66.7 | 940.9
78.9 | 789 0.0 0.0 78.9 | 785.5
75.0 | 75.0 | 0.0 0.0 75.0 | 613.9
75.0 | 750 | 0.0 0.0 75.0 | 391.5
10} 75.0 { 75.01 0.0 0.0 75.0 | 176.3
11 75.0 [ 749 0.0 0.1 74.9 3.6
121 75.0 | 619 0.0 13.1 61.9 |-102.3
13 ] 750 [ 439] 0.0 | 31.1 43.9 |-133.9
14 ] 384 {363 0.0 | 221 36.3 | -75.7

OO0~ S U ds O B

Figure 1: Solution to numerical example of make-to-stock system when ¢ = 2
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Table 4: Solution to numerical example of make-to-stock system when ¢ = 6
i Yt T Zp |\ YT | T — 2 Vil(ly)
75 40.1 | 40.1 | 34.9 0.0 652.5
1151 | 675 | 67.5| 476 0.0 706.4
1425 | 80.0 | 80.0| 62.5 0.0 763.9
1253 93.6 {936 | 31.7 0.0 828.8
12811 53.1 {531 75.0 0.0 725.0
128.1 | 123.7 1 57.1 | 4.4 66.7 | T67.3
1321 91.2 {123 | 408 789 | 5778
87.3 | 87.3 | 0.0 0.0 87.3 | 552.5
9| 75.0 | 75.0 | 0.0 0.0 75.0 | 391.5
100 75.0 | 75.0 | 0.0 0.0 75.0 | 176.3
11| 75.0 | 749 | 0.0 0.1 74.9 3.6
121 750 | 61.9 | 0.0 | 13.1 61.9 {-102.3
131 750 | 439 | 0.0 | 31.1 43.9 1-133.9
14| 584 | 36.3 | 0.0 | 221 36.3 | -75.7

GO ~F O O = QO B

periods, the CM carries inventory in the first periods to satisfy the secondary market demand in
the middle periods. The primary market demand is only satisfied myopically when it is not optimal

to carry the inventory for the secondary market. As seen from the Table 4 costs are higher when

entry is at t* = 6.

3.4 Discussion

In this section, we formulated and solved a typical contract manufacturer’s production and capacity
allocation problem in make-to-stock systems. The solution methodology is developed for two prod-
ucts or two families of products, where the production capacity could be used for these products
interchangeably. We extend the results of Kumar and Swaminathan (2003) [20] into two products

case, and in addition to their results we have the following contributions;

e 1t is not optimal to build up inventory (capacity) for the same product type in the expense of
current demand, however it may be optimal to build up inventory for the other product group
in the expense of current demand. That is the CM would benefit from shifting allocation to

satisfy more profitable product in the future.

» Myopic policy is only optimal when the value of capacity expansion by building up inventory

is not compensate the cost of capacity expansion. i.e. there is no cross benefits opportunity
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Figure 2: Solution to numerical example of make-to-stock system when € = 6
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and production capacity is binding throughout the planning horizon.

o We developed a decision tool that can be used in a wide range of descriptive demand rela-
tionships between two product families. The techniques used to develop the decision tool can

be easily extend to more than two product situations
s We demonstrated the applicability of the proposed solution with numerical examples

One drawback of the developed solution technique is that it does not account the stochasticity
of the demand models for each market. However, the limitations could easily be diminished by
sampling from the the primary and secondary market’s demand distribution and take the weighted
average of the optimal decisions for each sample. The approach is widely used in stochastic pro-
gramming literature and recent theoretical and and empirical evidence show that accurate answer
to the true problem can be obtained by surprisingly few number of sample sizes. [19)]

Next, we formulate and solve the contract manufacturers’ capacity allocation problem for the

make-to-order systems.
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4 Capacity Rationing for Make-to-Order Systems

Make-to-Order manufacturing systems in high-tech industries are observed in variety of settings.
If depreciation rates are high or life cycles are short Make-to-Order manufacturing system could
be utilized. There might also be physical constraints, or regulations that prevent stocking piles of
inventory. In these situations, products are manufactured (or assembled) as the demand is observed.

In this section, we will address the allocation problem of a contract manufacturer among two
products or product families, when the products are highly differentiated. Similar to the research
questions posed in the previous section we would like to find an allocation level when the CM knows
the entry date for a secondary market. However, the allocation scheme in this setting will be fixed
due to inability to substitute the same capacity for each product groups. Hence the allocation
problem in this section will be addressed from a tactical planning level. We will provide optimal
allocation schemes for any entry time and demonstrate our findings with rumerical examples. Next,

we state the assumptions of the problem and formulate our model.

4.1 Problem Setting and Assumptions

A high-tech with finite capacity currently uses her entire capacity to satisfy demands of a customer
group, referred as the primary market. The CM anticipates a certain time point, referred as entry
time, at which a certain group of customers’ demand will be available for a different product she
has to produce. We call the second type product as the secondary product and its market as the
secondary market. The primary and the secondary products are highly differentiated and same
production facilities or precesses cannot be used to produce these products. The CM’s maximum
production rate, ¢ is fixed and each type of product require one unit of capacity for production.
Demands of each product is described with life cycle growth models and observed continuously.
The CM uses expected demand distribution for the planning purposes of her capacity allocation
levels. The expected demand rates for primary and secondary product at time ¢ is represented
as, dP(t) and d*(t), respectively. The relationship between the two demand models are described
as d°(t) = dP(t — &), where § is a lag parameter. Both the primary and secondary markets have
the same potential customer bases. For the modeling simplicity, we assume that d® (t} -+ d*(i) has a

unique maximum, which inserts an upper bound on §. (See Appendix B). The length of the planning

30



horizon is T'. The planning horizon is long enough to observe the increasing and diminishing patterns
of both type of demand curves. Let t* be the time point at which the maximum demand rate of
the primary product is expected. Then the maximum demand rate of the secondary product is
expected to be observed at £* + ¢.

Unit selling price for the primary and secondary products are fixed and represented by #? and #*
respectively. Also, there is a fixed penalty cost rate, p? and p® for unsatisfied primary and secondary
product demands. Before the known entry time, ¢¢ the CM’s uses her production capacity to serve
primary market demand. Knowing the fixed entry time, ¢* she wants to determine an allocation
level to minimize costs over the planning horizon. The allocation level to be determined, g for
the primary product will be fixed throughout the planning horizon. The remaining portion of the
capacity ¢—g would be used to satisfy the secondary market demand until the end of T. We assume
that ¢ < dP(t) + d*(t) is satisfied for some time in the planning horizon, otherwise there would no
need for an allocation decision. Table b summarizes the notation that will be used for this problem.

For a given entry time, CM’s cost minimizing problem can be stated as:
te te
C(t*) = min ~ Wp/ min{e, & {u)}du —I—‘pp/ (dP(u) — )" du
4 0 0

i /tT (ﬂpmm{q, d(u)} + n*min{c — g, ds(u)}) du

4

+ f T (pp(dp(w = @) dut+p*(d°(u) - (e~ q>)+)d“

e

subject to g<c

The first two terms measures the profits from the primary product before the entry time and
is irrelevant in optimization problem. The terms in second line are the revenues obtained from
both products after the entry and the terms in the third lines are the penalty costs of unsatisfied
demands.

Before the analysis of Problem 7 we will introduce a formal definition for the time periods where
the allocated capacity is binding for the two demands. Let the small and the large roots of equation
d*(t) + dP(t) = c be ty and tg respectively. The production capacity ¢ is more than the total
demand, d*(f) + d”(t) during [0,%.), binding during [t., ] and again the production capacity os
more than the total demand during (¢, T]. If entry time is after t.5, the allocation decision, g is

trivial.
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Table 5: Summary of notation for Make-to-Order system capacity modeling

Notation | Description

dr(t}y | Instantaneous primary market demand at time ¢
ds(t) Instantaneous secondary market demand at time ¢

T Length of the planning horizon

)

¢

P

Time lag between the primary and the secondary demand
CM’s maximum production capacity rate
Penalty cost paid for each unit of primary market demand over the

capacity

Pt Penalty cost paid for each unit of secondary market demand over the
capacity

P Unit selling price for the primary product

i Unit selling price for the secondary product

q CM'’s decision of allocation level

Similarly, let ¢, and t,; be the small and the large roots of dP(t) = ¢, and {,; and t,, be the
small and the large roots of d°(t) = ¢ ~ ¢. The range [ty tys] represents the duration where the
primary product demand is more than the allocated capacity ¢. So if the given entry time ¢ < ¢,
then the CM would pay per unit penalty cost, p?, for the primary product during [t,1, %] If the
entry time satisfied 4,1 < 1® < t,, upon entry the CM would pay per unit penalty cost for the
primary product during [t®,{,2]. The same argument applies to the secondary product. The range
[ts1,ts2) represents the duration where the secondary product demand is more than the allocated
capacity ¢ —q. If the given entry time satisfies ¢ < £y, the CM would pay per unit penalty cost for
the secondary product during [te, %], but if the entry time lies in this range, then the CM would
pay the penalty cost during [t°, ).

For a given entry time if the CM increases ¢, then ¢, — ¢, would decrease and t,, — 51 would
increase. If the CM sets g too high, then there is less opportunity to utilize from the secondary
market demand. If the CM sets ¢ too low, then the CM might loose unnecessary primary product
demand. The CM’s problem is to find the right balance between the two market. Figure 3 represents

the trade of between setting the allocation level too high and too small.
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Figure 3: The tradeoff between setting the allocation level too high and too low

4.2 Model Analysis

If we use the property (b —a,0)* = b — min{a, b} in Equation 7 and eliminate the constant terms,

the reduced form of the objective function becomes:

T T

() — q)Fdu+ (n° + p°) [ (&(w) — (c — g))*du )

o 1€

min(w® + p") /
q

tB
The value of the integrals above depend on the primary and secondary market demand properties

at the entry time. Below Propositions 4.1-4.4 summarize the properties of the optimal allocation

level for a given entry time and demand relations.

Proposition 4.1. If both the primary and secondary market demands are decreasing in ite, T then
the optimal value of q satisfies (7P -+ pP)(ty — t°) = (7° + p*)(te — t°). Furthermore, q satisfying

this property is unique.
Proof. If both demands are decreasing in [t¢, ] then Equation 8 becomes
min(a? +5) (DP(tya) = DP(#) = alty — 1)) + (7° -+ p°)(D*(t2) — D*(1%) ~ (¢ - )2 — £9))

If we take the first derivative of the objective function with respect to ¢:

Ot o Ot o
P VAYES2 pe _ JTTRE _ 8
= (7" + p d (tzﬂ) Bq q Bq (tPQ t°))
ats2 8t32
4+ (7° 4+ P ) (¥ (tsa) = — {c = q)2 4 {tyg — 1°
(w4 p°) (@ (t2) 52 = (= @) 507 o+ (2= 1)

= = (17 + p7)(t2 — 1) + (77 4 p°) (B2 — £°)
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Since dP(t,5) = ¢ and d*(t,) = ¢ — ¢, the terms containing 8—;%2— and the terms containing %-g% cancel

cach other. If we take the second derivative of the objective function with respect to g, we have:

ot
P PQ_ sy ts2
— (7P + pP) qﬂ( +p)aq > 0

since %!;3 is negative and 36'522 is positive, the objective function is convex in g. If ¢ = dP(t°) then
the first order derivative is positive and if ¢ = ¢ — d*(t¢) < dP(¢°) the first order derivative is
negative, Since the objective function is convex in ¢ there exists a unique level of ¢ that satisfies

(7P 4 pP) (Ep2 — t°) = (7° + p°)(ts2 — 1°), which is optimal by the first order condition. 0O

Proposition 4.2. If either one of the following is true then the optimal g satisfies (77 + pP) (£, —

tp1) = (7° + p°)(ts — °). Furthermore the q satisfying this property is unique
(a) ° € [ter, ] and 2(n? + pP)(t* — 1) > (x° + p*)(t2, — t°)
(b) t° € [0,ta) and (nP + pP)(t2, — log) > 2(m® + p*)(t* + & — #€)

where 3, is the large root of d°(t) = c — dP(1°), and t°

ol tpn 07€ the small and the large roots of
dP(t) = c — d*(t°).

Proof. If either one of the above cases is true then Equation 8 becomes:
mqiﬁ(ﬂ"p + ) (D (tpe) — DP(tp) — qltpe — tp1)) + (7 + ") (D (te2) — D°(1°) ~ (e = q)(ts2 — t°))

If we take the first derivative of the objective function with respect to g

ot Ot M ot
(ﬂ—p __]_pp)(dp( :P2) agz dp(tpl) 821 - q( 822 - 62’1) - (tpg - tiﬁl))
atsg atsZ

+ (7 + PN (ts2) 3 (¢~ Q)Fé_ + (ts2 — 1))
= = (¥ + PP ) (tpe — tp1) + (7° 4 %) (b2 — t°)

Since dP(tyy) = dP(ty) = q and d*(tm) = ¢ ~ g, the terms containing %’3, %1 and the terms
P P By ' Og

containing %&éﬁ cancel each other. If we take the second derivative of the objective function with

respect to g, we have:
Oty Oty

8¢ g
8 3%1

since &2 a is negative, 5o~ and %& are positive, the objective function is convex in ¢. If ¢ = d?(¢*)

a tsQ

~ (" + pP)( )+(ﬂs+p5)a—q~ >0

then the first order derivative is positive and if g = ¢~ d*(t*) < dP(¢*) the first order derivative is
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negative. Since the objective function is convex in g there exists a unique level of ¢ that satisfies

(7P + ") (tpp — tp1) = (7® + p*)(Ese — °) which is optimal by the first order condition. a

Proposition 4.3. If either one of the following is true, then the optimal ¢ satisfies (n? + pP)(t,5 —
t°) = (7 + p°)(ts2 — ts1). Furthermore the g satisfying this equation s unique

(a) 1 € [te, t* + 6] and (aP + pP)(15, — t¢) < 2(n° + p*) (" + & — 1°)
(b) € 0,8} and 2(n? + pP)(t* — £°) < (1° +p°) (82, — 15,)

where 15,15, are the small and the large roots of d°(t) = ¢ — d¥(t°), and %, is the large root of

dP(t) = ¢ — d*(t%).
Proof. If either one of the above cases is true then Equation 8 becomes:
H;in(i’f““ + 0P)(D¥(tp2) — DP(t°) — qltpe — 1°)) + (7% + p*)(D*(tea) — D*(ta1) — (¢ = @) (Fs2 — ta1))

If we take the first derivative of the objective function with respect to ¢:

ot Ot
:}(WP +pp)(dp(tp2)622 - qa_zz - (t:o2 o te))
8t32 6tsl a1552 87531

+(7° + )& (t:2)

()52~ (e (F2 = 5D + (ta 1)

Oq
)+ {7® 4+ P )tz — te1)

s (4 )t —
Since dF (ty3) = q and d*(ts) = d*(t;;) = ¢ ~ g, the terms containing %?;—2, and the terms containing
%’fﬁf and %t;l cancel each other. If we take the second derivative of the objective function with

respect to g, we have:

Oty Oty Otg
(P + ) A+ (P + ) (2= - =) > 0
( pp)aq + ( p)(aq aq)
since 6_33”;; and %—;—1 are negative, and %ﬂéﬁ is positive, the objective function is convex in ¢. If

g = ¢ — d°(t°) then the first order derivative is negative and if g = dP(¢°) the first order derivative
is positive. Since the objective function is convex in g there exists a unique level of ¢ that satisfies

(72 + pP) (Lpg — 1%) = (7® + p*)(ts2 — s1) Which is optimal by the first order condition. [

Proposition 4.4. If both of the following is true, then the optimal q satisfies (7P + pP)(tpg — 1) =
(m* 4+ p°) (e — ts1). Furthermore the q satisfying this equation is unique

() 1 € [0,ta) and (x? + pP)(tS, — 15,) < 2(x° + p) (£ + 6 — t°)
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(b) t* € [0,2) and 2(n? + pP)(t* — 1°) > (n° + p°) (% — £51)

where t7,,12, are the small and the large roots of dP(t) = ¢ — d*(¢%), and 12,45, are the small and

the large roots of d°(t) = ¢ — dP(t°).
Proof. If both of the above cases is true then Equation 8 becomes
min{r? +p°) (DP (tyz) — D7 (tpr) — atpe — 1)) + (7" + P YD (ts2) — D*(tar) — (¢ — @)tz — 1))

If we take the first derivative of the objective function with respect to g;

ot Ot ot ot
=(n” +Pp)(dp(tp2)**5gg — & pi)a—zl - Q(”‘é{f - a—;ﬂ) = (tp2 — 1))
Oty Ots Ot Oty

+ ()@ () — ) G2~ (o= (G2 = 52) + (b — )
= — (7P + 0P ) (b2 — tp1) + (7° + D°)(tsa —~ t41)
Since dP(tp) = dP(ty) = ¢ and d*(ts) = d°(¢s) = ¢~ g, the terms containing “2 at”z and atpl , and the

terms containing 85;2 and 6—53% cancel each other. If we take the second derwatlve of the objective

function with respect to ¢, we have;

Oz Oty dta Ot

(P )G = ) + () (5 -

) >0

. at
since 67’2 and 2 are negative, and a—*ﬂ and at”i are positive, the objective function is convex in

g Ifg=c— ds(te) then the first order derlvatlve 1s negative and if ¢ = ¢ — dP(¢%) the first order
derivative is positive. Since the objective function is convex in ¢ there exists a unique level of g that
satisfies (72 + pP)(ty2 — tp1) = (7° + p°)(tes — Ls1) which is optimal by the first order condition. [

Table 7 summarizes the optimality conditions for each entry time and demand price relationship
described in Proposition 4.1 through Proposition 4.4. At optimality, marginal earning from the
primary market at level ¢ is equal to marginal loss from the secondary market during planning

horizon,
Remark 4.1. As 7° +p* — 00, ¢ — 0, and as 77 + P — 00, ¢ — ¢ — 0

Theorem 4.1. The conditions defining the optimal level of q in Propositions 4.1-4.4 are mutually

exclusive and exhaustive.
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Table 6: Proof of Theorem 4.1
Code | Stands for

A t* € [0,tq)
AT TR € [, 4 6)

a 2(P + pP)(t* mte) > (m° + p°) (82, — 1°)

ot 2P PPt — %) < (7 +p° )(te —t°)

b (7P + pP) (s — 151) > 2(n® + p*) (¢ + § — t°)
b7t | (7P PP (2, - t;’;l) <2(m +p° )t + 8 — 19)

e=a"l | (1 4 pP)(te, ~ t°) < 2n® +p)(t*+5—te)

d | 2m PP — ) < (7 po) (%, — 88))
d”t [ 2mP 4P =) > (nf + pt )(tiz—til)

e
P
e
P

Proof. The optimality conditions in the second column of Table 7 applies to entry times that
satisfy ¢© < f.5. Because after during [, 7] the CM’s capacity is more than enough to satisfy both
the primary and the secondary market demand. Coding the conditions with simple letters will be
helpful to prove our claim. Table 6 summarizes the code of the conditions in Table 7.

According to this in Table 7 we have A™'a, Ab, A™lc = A %™, Ad, Ab~'d"L. Tt is easy to see
that these conditions are mutually exclusive and exhaustive. J

We demonstrated that for any demand and capacity relation there exist & unique optimal al-
location level g. At optimal level of ¢ marginal cost of per unit allocation guantity is equal to its

marginal benefit. Below we demonstrate our findings with a numerical example.

4.3 Numerical Example

Consider that the both the primary market and the secondary market demand are modeled by
logistics curves with parameters; ¢ = 200, b =1, § = 2 and m = 1000. The maximum capacity
level is, ¢ = 300. The per unit penalty cost of overshooting the primary market demand and the
secondary market demand are the same and p? = p® = $8. The selling price of the primary product
is 77 = 1 and the selling price of the secondary product is 7° = 2. What would be the CM’s optimal
allocation level for an entry time ¢ = 0, £ = 2, {* = 4, * = 6, t* = 87

Solution: If we solve the equation dP(t) ++ d®(t) = ¢, we obtain t,; = 4.74 and teo = 7.85. For each
entry time given we need to find which of the demand price conditions hold in Table 7 and set the
g accordingly. Table 8 summarizes the optimal allocation level and the optimal cost for each entry

time.
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e For ¢* = 0 and #* = 2, t° <t and the conditions in the last row of Table 7 holds. If we set
¢ =142.5 and ¢ — ¢ = 157.5 we have (77 + p){t,2 — ty1) = (7° + 0°)(fs2 — t51) and an optima)
cost of C(0) = C(2) = $1086.23.

o For ¢ = 4, t* <ty and the conditions in the third row of Table 7 hold. If we set g = 134.2
and ¢ — ¢ = 165.8 we have (7P + p?)(t,2 — t°) = (7° + p*)(tsr — ts1) and an optimal cost of
C(4) = $1103.80.

o For i = 6, 1° € (fy,t* + §) and the conditions in the third row of Table 7 hold. If we set
g =80.2 and ¢ — ¢ = 219.8 we have (7 + pP)(t, — ) = (1° + p*) (tsp — ts1) and an optimal
cost of C'(4) = ~§734.45.

o For £* = §, ¢ > 1, and there is no need to allocate the capacity because the capacity is more
than the sum of the primary and the secondary market demands at any time. The optimal
cost is C{8) = —1146.3

Figure 4.3 illustrate the CM’s cost function in allocation level, g for the given entry times above.
As proved in previous sections the CM’s cost function is convex in the allocation level ¢. For
this specific example, late entry vields lower costs to the CM due to the high penalty costs of
unsatisfied demands. Also, the optimal costs are more sensitive to the later entry times rather than

the early entry times. The cost function is constant for 4 = 8 because the ¢ > tes and allocation

is meaningless.

4.4 Discussion

In this section, we formulated and solved a typical contract manufacturer’s capacity allocation
problem in make-to-order systems. The solution for the allocation level is described for two products
or two families of products, where the products are highly differentiated and the same capacity
cannot be used for these products interchangeably. We modeled the problem as a fixed capacity
allocation problem, and showed that for any entry time there exists a fixed allocation level of the
capacity. The conditions on the optimal allocation level changes with the entry time and according
to demand capacity relations during after entry planning horizon. For any entry time the optimal

allocation level is found at the point where marginal revenue of supplying one more unit capacity
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Figure 4: CM’s cost function in ¢ for varying entry times

!

3000 -

1500 -

300

-1500

to primary market is equal to the marginal cost of diminishing the secondary market’s allocation
by one unit. The model developed in this section addresses the contract manufacturer’s allocation
problem at a tactical level. The results could be used to determine a size of manufacturing facility
to be built or dividing a facility into two parts to use them in meeting demands of two distinet

products.

5 Conclusions

As is typical in the high-tech environments, the contract manufacturers faces a dynamic and volatile
market. On the other hand, utilization of the production capacity is very critical in profitability
of the contract manufacturing business and it requires an extensive time frame and high level of
capital investment to build up production capacity. By planning capacity level and its allocation
among multiple product groups carefully, the contract manufacturers can advance among their
competitors. In this chapter, we proposed methodologies and solution techniques for high-tech
contract manufacturers to plan on their allocation decisions in Make-to-Stock and Make-to-Order

settings. In Section 3:
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» We developed an algorithm which generates the optimal production and capacity allocation
levels periodically over the planning horizon. The systems anticipates the entry time of a
secondary market and depending on the model parameters, directs the contract manufacturers

to build up capacity or not for the future

» The algorithm considers the cross benefits cases and analyzing the discounted future price of

the products determines the current supply and inventory levels

¢ 'The algorithm can be applied in a wide range of descriptive demand capacity relationships

and the algorithm provides solutions from the operational planning perspective

In Section 4:

e We show the conditions to find the optimal fixed allocation level among the two products in

a continuous time environment.

e The optimal allocation level is at the point where marginal revenue of supplying one more
unit capacity to primary market is equal to the marginal cost of diminishing the secondary

market’s allocation by one unit.

 The solution can be applied in a wide range of descriptive demand capacity relationships and it

addresses the contract manufacturing allocation problem from a tactical planning perspective.

We demonstrated the techniques in Section 3 and 4 with numerical examples.
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