Industeial andg
Systems bogineering

Disjunctive Cuts for Non-Convex MINLP

Pietro Belotti
Lehigh University

Report: 09T-017

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP
PIETRO BELOTTI®

Absiract. Mixed-Integer Nonlinear Programming (MINLP) problernos present two
main challenges: the integrality of a subset of variables and non-convex (ponlinear)
objective function and constraints. Both types of non-convexity can be dealt with by
applying, explicitly or implicitly, disjunctions on both integer and continuous variables.

Severa] solution approaches obtain a mixed-integer linear programming relaxation
of the original problem, and rely on branch-and-cut technigues for solving the problem
to global optimality. In the MINLP context, using disjunctions for branching has been
subject to intense research, while the use of disjunctions as a means of generating valid
linear inequalities has attracted some attention only recently.

We describe a straightforward extension of a separation method for disjunctive cuis
that has shown to be very effective in Mixed-Integer Linear Programming (MILP). The
theoretical and implementation aspects are very close to the MILP case, and, as the
experimental results show, this extension obtains encouraging results in the MINLP
case even when a simpile separation method is used.

Key words. Disjunctions, Global Optimization, Couenne, Disjunctive cuts.

AMS{MOS) subject classifications. 90C5H7

1. Motivation: non-convex MINLP. Mixed integer nonlinear pro-
gramming is a powerful modeling tool for very generally defined problems
in optimization [23]. A MINLP problem is defined as foliows:

(Po) min [f(z)
st gi{z) €0 Vi=1,2...,m
£ <y <t Vi=1,2...,n
xiez'l‘XRn—"r’

where f:R™ — Rand g; : R™ — R, for all § = 1,2...,m, are in general
multivariate, non-convex functions, m i¢ the number of variables, and = is
the n-vector of variables. Throughout this paper, z will denote the variable
vector and z; its i-th component.,

We assume that f and all g;"s are factorable, Le., they can be computed
in a finite number of simple steps, starting with model variables and real
constants, using unary (e.g., log, exp, sin, cos, tan} and binary operators
(e.g., +,—,%,/,”). Notice that this framework, although very general,
excludes prollems whose constraints or objective function are, for example,
black-box functions or indefinite integrals such as the error function.

There are numerous applications of problem Py, in Chemical Engi-
neering [9, 17, 25], Finance [14], and Computational Biology [27, 28, 38],
to name only a few. Because general-purpose solvers for MINLP problems
malke no assumption besides factorable functions, this framework comprises

*Dept. of Industrial & Systems Engineering, Lehigh University, Bethlehem PA. Bmail:
belotti@iehigh.eda

2 PIETRO BELOTTI

several special cases that have been thoroughly studied, for example Mixed
Integer Linear Programming {MILP), Convex Optimization, and convex
MINLPs (i.e., MINLPs whose continuous relaxation is a convex nonlinear
program). For this reason, however, problems exhibiting some structure are
usually soived rauch more efficiently by a specialized solver, thus the mo-
tivation behind solving, with a general-purpose MINLP solver, & problem
in the form Pg s usually its lack of structure.

The difficulty of MINLPs resides in two types of non-convexity: the
integrality of a subset of variables and the fact that [and g; are non-
convex functions. Both types of non-convexity can be tackled by means
of digjunctions, either applying them as branching rules within a branch-
and-bound (BB) framework or by using them to obtain tighter relaxations.
Although cuts derived from disjunctions have been developed for MILP
decades ago, their extension to the nonlinear context is recent: non-convex
quadratic constraints have been used by [47, 46} to obtain disjunctive cuts
for Quadratically Constrained Quadratic Programming (QCQP). Our con-
tribution is an extension, to the MINLP context, of a very well-known
technique for generating disjunctive cuts for MILP problems. We present
experimental evidence that disjunctive cuts can have a significant positive
impact on the solution time of MINLP problems.

Exact solution methods for MINLP rely, in order to obtain valid lower
bounds, on reformulation and linearization techniques {50, 51j, which we
briefly introduce in Section 2 as their definition is essential to understanding
the type of disjunctions we use in this context. Section 3 describes the
general disjunctions arising from reformulating an MINLP, and their use
in separating disjunctive cuts is shown in Section 4,

A simple separation procedure, recalling the well-known CGLP pro-
cedure for MILP problems, is detailed in Section 5. This procedure has
been incorporated in COUENNE, a general-purpose, Open Source solver for
MINLP {7}, and has been tested on a set of publicly available non-convex
MINLP instances. These tests are presented in Section 6.

2, Exact solution methods for MINLP. Most MINLF solvers are
BB algorithms whose lower bounding technique uses a Linear Programming
(LP) relaxation constructed in two steps:

s reformulation: Po is transformed in an equivalent MINLP with ¢
new varisbles, a linear objective function, and a set of nonlinear
equality constraints;

e lLinearization: each of the newly added nonlinear constraints is re-
laxed by replacing it with a set of linear inequalities.

The interested reader can find more information in {50, 51]. Here we of-
fer a shortened version whose purpose is to understand the definition of
disjunctions given in Section 3.

In reformwlation, the expression trees of the objective function and
of all constraints of Py are decomposed so that each non-leal node of an

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP 3

expression tree, which is an operator of a finite set, is associated with a
new variable, usually called auailiery varioble. Reformulation yields the
following problem:

(P) min 2n4q
st xp=%c) k=n+ln+2...,n+g
L<o; <y t=1,2...,n+4¢g
reX

where X = Z7 x BR"™" x Z° x R97°, that is, g auxiliary variables are
introduced, ¢ of which are integral® and ¢ — s continuous. Each auxiliary
2y 15 associated with a function ¥x{z} which is from a set of binary and
unary operators {+,#, ", /,sin. cos,exp,log} and depends, in general, on
one or more of the variables @y, Tz - . ., Tr—1- As an example, the problem

min (z3)?
st. zilogas >4
102 2neZ

admits the following reformulation:

min s

s.t. x3 = logxa
&g = X1L3
x5 = (21)*
2y 20,20 22

o3 2 log2,24 24,25 20,25 € Z,

where the integrality of x5 derives from that of 21, of which x5 is a function,
and the lower bound on x3 is inferred from the lower bound on z3 and on
the fact that the Jogarithm is a monotone increasing function. The bound
on 74 is the right-hand side of the constraint of the original problem.

After reformulation, all nonlinear constraints of the problem are of the
form x; = 9;(z) for sl i = n 4 1,n+2 ... n+g, with J; an operator from
a well-defined set. It is then possible to linearize each such constraint by
applying operator-specific algorithms.

Let us consider, as an example, a constraint z; = ¥;{z) = (2;)? from
the reformulation, and the non-convex set § = {(xi,2;) £ S S 2y =
()%}, i.e., the bold curve in Figure 1(a). A convex (polyhedral) set con-
taining 8, depicted in Figure 1(b}, is obtained through a procedure based
on the function ¥{z) = x°* and the bounds on z;. We will not describe the
method(s) yielding such a convex set, as this is cut of the scope of this
work; the interested reader is referred again to [50, 51]. Suffice it to say
that this linear relaxation aims at approximating the convexr envelope of

1 The integrality of g, for k= n+1,n+2...,n+¢, is inferred from the associated
function ¥ and the integrality of its arguments.

4 PIETRO BELOTTI

A omy o= () z; = (z:)* bozyo= ()

-

(a} Reformulated constraint {b) A linearization {c) A refined linsarization

Fig. 3. Linearizotion of constraint oy = (2:)3: the bold line in (o) represents the
non-convez set {(wi, &7) : £ < 2 S ui,my = (2:)°}, while the polyhedra in (b) ond (¢}
are ils linearizations for different bounds on x;.

S, ie., the tightest convex set containing S. Figure 1{c) shows that the
guality of the linearizatior highly depends on the bounds on the variable
z; upon branching on m; or after one of its bounds has been tightened,
the Hnearization can also be strengthened. Hence, applying a disjunction
through a branching rule may help improve the lower bound.

When applied to all nonlinear constraints appearing in the reformu-
lated problem, this step generates an LP relaxation of the original problem
Py, and therefore a valid lower bound. Also, if used as the bounding pro-
cedure in a BB algorithm, it allows to solve Py to optimality.

It is worth pointing out that most linearization methods obtain a poly-
hedral linearization that is more accurate near the variable bounds, which
is a desirable property, especially within a BB scheme: branching usually
oceurs where the linearization is poor, and branching far from the variable
bounds helps prevent creating two very unbalanced subtrees.

The reformulation procedure can be improved, for instance, by limiting
the number of new variables: an equality constraint f(x)+ex; +¢=0can
be translated into z; = —2(f(z) -+ ¢), hence avoiding the need of an extra

variable assigned t0 f(z) + az; +c.

The main weakness of the reformulation procedure is that the links
hetween variables are somewhat broken in order to obtain simpler functions
¥}, for linearization. Consider the convex constraint @f ~ 22122 + 2% < 1,
which is clearly equivalent to jxy — @] € 1 and may be writsen in linear
form as —1 < (z; — z3) < 1. A plain reformulation procedure will simply

DISIUNCTIVE CUTS FOR NON-CONVEX MINLP 5

decompose this constraint as

@3 =z}

T4 = E1X2

Ty = $%

Tg = @3 — 2L + Ty
zg <1

and introduce three non-convex constraints, thus making the reformula-
tion non-convex. A better solver would recognize, during reformulation,
the quadratic form structure, and then for instance provide a linearization
based on Quter Approximation {16}, thus giving a better lower bound.

In general, depending on the reformulation procedure, i.e., on the
solver’s ability to recognize special constraints or expression structures,
and depending even more on the set of operators for which a linearization
method is available, a tighter linearization and hence a better lower bound
can be obtained.

3. Disjunctions in MINLP. Disjunctions arise as a naturai mod-
eling tool in Mixed Integer Linear Programming: for an integer variable
z; and any integer a, the disjunction x; < e V 2 = a + 1 must hold for
any feasible solution. One of the purposes of such disjunctions is to obtain
some information on the convex hull of an MILP described as a system of
linear inequalities intersected with a set of disjunctions [2].

Consider the simple MILP in two variables depicted in Figure 2. Its
linear relaxation is described by the dark shaded area in Figure 2{a). If
both variables are constrained to be integer, the only two feasible points are
(0,0) and (1,1}. Applying the disjunction z; <0V z; 2 1 as a branching
rule obtains the two subproblems identified by the bold segments in Figure
2(b). However, by using the disjunction to obtain the convex hull of the
union of these two subproblems, or an inequality that separates the current
LP solution from said convex hull, the tighter LP relaxation shown in Figure
2(c) can be obtained, with a conseguens better lower bound.

There has been extensive research on how to efficiently add such in-
equalities, using a BB method coupled with a cut generating procedure
[4, B, 37}. Several generalizations can be introduced at the MILE Jevel: for
instance, rather than a disjunction on a single variable, one may think of
the more general disjunction 7z < my V 7z > wp -+ 1, where (7, 7o) € zZrl
and z € 7P is & vector of p integer variables. See [33] for a more com-
piete discussion on the use of disjunctions in MILP. We will not elaborate
on MILP disjunctions based on integer variables, and only anticipate that
they are used in a similar way in our MINLP framework.

In MINLP problems, disjunctions are created from the non-convex con-
straints z = ?x(z) that arise in the reformulation step. As pointed out in
the previous section, both types of non-convexities present in an MINLP,
i.e., nteger variables and nonlinear funciions, are relaxed to obtain a LP

6 PIETRO BELOTTI

(a) A binary program {b) Two subproblems (c} Their convex hull

Fia. 2. Applying o disjunction in o Mixed integer linear program.

relaxation that provides a valid lower bound. The optimal solution to the
LP relaxation, which we denote z*, may be infeasible for either the inte-
grality constraints or for at least one of the constraints of the reformulation,
z = Op{z). If z; is an integer varizble but the value zj is fractional, the
two resulting subproblems satisfy x; < |z7] and z; > [z}] respectively. If
x; 18 a continuous variable, it might be necessary to use a disjunction on
x; as llustrated in the following example.

Consider the function z; = 9;(2;) = 27 and the LP solution #* as in
Figure 3{(a). Clearly, (¢}, 27) lies in the linearization of z; = xf. We observe
that (zF,) is not necessarily a vertex of the linearization of #; = z? since
it is simply a projection of z* (which is itself a vertex of the LP relaxation)
onto the plane (x;,x;). Suppose also that zj > (2F)? (see Figure 3{a)). As
(z},23) is not separable with another linearization cut, the disjunction

{3.1) s <b; Vo omgzh;

must be applied, for some b € ¥, ug], for example as a branching rule.
Branching creates two subproblems satisfying «; £ b and z; > b re-
spectively, and admitting two linearizations, both excluding (xf,z}). The
use of disjunctions in MINLP, and especially the problem of finding the
most effective disjunction for branching, has been subject of research in
the past. Several techniques have heen proposed to select & branching vari-
able, such as Violation Transfer [29, 521, and to select the branching point
b [24, 29, 44, 48]. A generalization of the relinbility branching technigue
[1] to the MINLP case has been recently presented {8].

As shown in Figure 3(b), a portion of the solution space included by
the original relaxation can be eliminated by refining the linearization, i.e.,
by re-applying the linearization step to the subproblem. We observe that
this is a very important point of departure with MILP, where branching
alone, Le., without any other subproblem pre-processing, eliminates both
the fractional solution and a portion of the solution space. In MINLP, as
branching may occur on continuous variables, the disjunction (3.1) does not

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP 7

{a) Infeasible solution of a linearization (b} Linearizations of the subproblems

Fig. 3. Bronching on an MINLP disjunction, In (o), the shaded erec is the
linearization of the constraint w; = V;{m;) with @; € [£;,u;}, whereas ('cf,:r,;‘) is the
value of @y and xj in the optimum of the LF relazetion. In (b), a branching rule
divides the intervel {6, u;] to create two subproblems, with z; bounded by [€;,b;] and
[Bi, wq], respectively, and which admit twe new linearizations, the smaller shaded arcos.

eliminate any solution from the linearization, and an extra step is required
in order to ensure termination of a BB algorithm: a refined linearization
{see Figure 1(¢)) can be obtained, in both subproblems, that takes into
account the new bounds on x;.

Moreover, MINLP solvers typically apply bound reduction methods
[20, 36, 40] to eliminate suboptimal solutions. Several such reduction tech-
nigues have proven to make the BB more efficient, including those based
on the LP relaxation [12, 39, 49}, on the nonlinear constraints [13, 22, 34,
45, 48, 49, 53], or on the reduced costs of the LP relaxation {42, 43].

Another type of disjunction, and a procedure to derive valid cuts, has
been studied for quadratically constrained guadratic programs {QCQPs)
by [47, 46]. These problems can be reformulated as linear programs with
an extra non-convex constraint of the form ¥ = zz 7, where ¥ is an n x n
matrix of auxiliary variables and =z is the n-vector of variables. Such a con-
straint can be relaxed as Y~z = 0, thus reducing a QCQP to a (convex)
Semidefinite program, which yields good lower bounds [21, 41}, Heowever,
these SDP models are obtained from the original problem by relaxing the
non-convex constraint xz’ - ¥ = 0. In [47), disjunctive cuts are generated
from disjunctions derived from the nonlinear constraint (v’ 2)}* > v' Yu,
where vector v is obtained from the negative eigenvalues of the matbrix
#%' — Y, and (&,Y) is a solution to the relaxation. This procedure is
then modified [46] to generate cuts for the non-reformulated problem, thus
avoiding the need of the auxiliary matrix variable V.

Other classes of disjunctions are possible: an immediate example arises

8 PIETRO BELOTTI

from mathematical programs with complementarity constraints {MPCCs),
a modeling paradigm that finds numerous applications in industry [32}.
Complementarity constraints can be expressed in the form zz; = 0, which
is a special case of quadratic constraint, bui a plain reformulation of that
constraint would not fully expleit the equivalent disjunctive form w; =
0vz; = 0. It is therefore advisable for an MINLP solver tc recognize such
constraints and the corresponding disjunctions, as done for instance in {47].

4, Disjunctive cuts in non-convex MINLP. Agsume that the lin-
earization step produces, from a reformulation in the form P, an MILP
relaxation that we denote min{®,.4, : Az < g, <z < u,x € X'}, where
A e RE=0+) g e BRE, and K is the total number of linear inequalities
generated for all of the nonlinear constraints i = ¥x{z) of the reformu-
lation, while £ and u are the vectors of the lower and upper bouands on
both original and auxiliary variables. Finally, denote the feasible set of the
linear relaxation as LP = {z € R""7: Ax <a,£ <z <u}.

Consider again a disjunction z; < b; V@3 = bi. As pointed out in
the previous section, the disjunction alone does not eliminate any solution
from the union of the two resulting subproblems:

LP" = {z € LP : z; < b;}

LPY = {2 e LP : 2 > b},

because LP = LP* U LP®, while this does not hold for disjunctions on
integer variables, where LP strictly contains the union of the two sub-
problems. Therefore, let us suppose that LPY and LP® are strengthened
by appiying further linearization inequalities (See Figure 1(c)) or through
bound reduction. This will result in two tightened sets,

SLPY = {z ¢ LP : Bz < b},
SLPR = {z e LP: Cz < ¢},

where B € RE*(n+a) b ¢ RF' ¢ ¢ RE"™¥»+0) and ¢ € RY” are the

coefficient matrices and the right-hand side vectors of the inequalities (H'

of them for the left side, H” for the right side} that are added to refine or

strengthen LP after each side of the digjunction is taken, and that contain

the new bound on variable z; and, possibly, new bounds on other variables.
We re-write these two sets in a more convenient form:

SLP = {z e R"7: A’z < o'}
SLP® = {z e R™7: A%2 <"},

where
A a A a
' B ' b "o_ C "o c
A= N ¢ | A = 1| e = ¢
I U I %

DISIUNCTIVE CUTS FOR NON-CONVEX MINLP 9

50 as to include the initial linear constraints, the refined and strengthened
linearization, and the variable bounds in a more compact notation. We
denote as K’ (resp. K'') the number of rows of A’ (resp. A”) and the
number of elements of a’ (resp. a”).

As described by Balas [2], an inequality az < ag, where o« € R**¢ and
ap € R, is valid for the convex hul} of SLP" U SLPR if o and o satisfy:

a<u A, ap=u'd,
o i: ’t)TA”, ap = ,UTQ'H’

where u € R and v € RY ", Given relaxation LP and its optimal solution
z*, an automatic procedure for generating a cut of this type [4] consists
in finding proper values of u and v such that the corresponding cut is
maximally viclated. This is equivalent to solving the following L¥ problem:

max & ¥ —ag
st @ it A <90
o —yT A" <0
(41) [&7) —u' o = 0
oo —pla’ =0
ue 4v'e =1
w, U >0

where e is the vector with all components equal to one. This resembles
closely the Cut Generating Linear Problem (CGLP) introduced by Balas
et al. [4]. An optimal solution (more precisely, any solution with positive
objective value) provides a valid cut that is violated by the current solu-
tion z*. Iis main disadvantage is ils size: depending on the reformulation
and the linearization process, the LP relaxation found can be relatively
large compared with the number of variables and constraints of the origi-
nal problem P, and solving (4.1} might prove ineffective. Balas et al 3, 6]
present a method to implicitly solve the CGLP by clever pivot operations
on a slightly modified version of the original linear relaxation. It is worth
noting that, unlike the MILP case, here A" and A" differ for much more
than a single column, which makes the generalization of such a procedure to
MINLYP less straightforward. We are not aware of any such generalization.

4.1. An example. In order to clarify the importance of refined for-
mulations, bound reduction, and uitimately, of disjunctive cuts in the con-
text of MINLP, consider the following continuous non-convex NLP:

(Pg) min «?
st 2tz L

It is immediate to check that its feasible set is the non-convex union of in-
tervals (—o0, —1]U[+1, +00), and that its two global minima are {~1,+1}.

10 PIETRO BELOTTI

¥ts reformulation is as follows:

(REF) min w
st w==z?
y = z*
vzl

and it is apparent that reformulating breaks the link between the objective
function and the constraint, a link identified with veriable z. Iis tight-
est convex relaxation is obtained by simply replacing the equality with
inequality constraints:

(CR} min w
g w > x?
y > at
vzl

and its optiral solution is (z,w,y) = (0,0,1), whose value is w == 0 and
which is infeasible for REF and hence for P. Applying the disjunction
z € 0vzr > 0 yields two subproblems which admit the fellowing two
tightest relaxations:

(CRp) min{w:y>lwzaz?yzat e <0}
(CRg) min{w:yz1l,w>2zy>2 >0}

but both still admit the same optimal solution, {(x, w,y) = (0,0, 1}, Bound
reduction is crucial here for both subproblems, as it strengthens the bounds
on z using the lower bound on y. Indeed, 2 < 0 and 1 < y = z* imply
< ~1, and analogously z > 0 and 1 € y = 2? imply = > 1. Hence, the
relaxations of the two tightened subproblems are

(CRL) minf{w:y2lLw>2a*y>etz<-1}
(CRR) min{w:y>1,wz2y2zoto>+1}

and their optimal solutions are feasible for Pg and correspond to the two
global optime. {~1,-+1}. Hence, the problem is solved after branching on
the disjunction z < 0V z > 0. However, the nonlinear inequality z° > 1 is
valid for both CR; and CRpg as it is implied by < —1 in the former and
by z > 1 in the latter. Since w > z°, the (linear) disjunctive cut w > 1is
valid for both (CRY) and (CRY}). If added to (CR), a much better lower
bound is obtained which allows to solve the problem without branching.

This simple example can be complicated arbitrarily by considering n
variables subject each to a non-convex constraint:

min Tl 23
st. x>l vi=1,2....n

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP 13

A standard BB implementation needs to branch on ali variables before
closing the gap between lower and upper bound, requiring an exponential
mumber of subproblems as all disjunctions have to be applied independently.
However, the set of disjunctive cuts w; > 1Vi = 1,2. .., n, where w; is the
variable associated with the expression z?, allow to close the gap very
quickly. Although this example uses a nonlinear convex envelope for the
problem and the subproblems, it can be shown that the same disjunctive
cut can be generated within a framework where linear relaxations are used.

A test with n = 100 has given the following resuit: with disjunctive
cuts generated at all nodes (at most 20 per node}, the problem was solved
to global optimality (the optimal solution has a value of 100) in 57 seconds
and 18 BB nodes on a Pentium M 2.0GHz laptop, 41 seconds of which were
spent in the generation of such cuts. Without disjunctive cuts, the solver
was stopped after two hours of computation, more than 319,000 active BB
nodes, and a lower bound of 14.

As a side note, one might expect a BB procedure to enforee ali disjunc-
tions as branching rules. Hence, at any node of depth d in the BB tree the
d disjunctions applied down to that level determine the bound to be equal
10 d. Because all optima have objective value equal to n, an exponential
number of nodes will have to be explored, so that the global lower bound
of the BB will increase as the logarithm of the number of nodes.

This example can be interpreted as follows: the decomposition of the
expression frees at the reformulation phase is foliowed by a linearization
that only takes into account, for each nonlinear constraint s = zd, of the
variables x; and y; only — this causes a bad lower bound as there is no
link between the lower bound on 7; and that on w;. The digjunctive cuts,
while still based on a poor-quality LP relaxation, have a more “global”
perspective of the problem, where the bound on y; implies a bound on wy.

5. A procedure to generate disjunctive cuts. The previous sec-
tion describes an MINLP extension of a procedure to generate maximally
violated disjunctive cuts, originally introduced for the MILP case [4]. The
procedure is sketched it in Table 1 and is further discussed below. It con-
sists of three steps: (i) select a disjunction; (ii) create two subproblems
by applying the disjunction; (iil) solve the CGLP to generate a cut valid
for both subproblems. Nonlinear extensions have appeared previously for
the QCQP case: the disjunctive cuts in [47, 46] are obtained by applying
the procedure to the disjunctions outlined in Section 3 for reformulations
of QCQPs and to disjunctions of the form (3.1), with b; = f—ﬂé—’h for all
variables appearing in bilinear terms.

Bronch-and-bound procedure. The MINLP solver is implemented as a
BB whose lower bounding method is based on the reformulation and lin-
earization steps as discussed in Section 2. An the beginning, the lineariza-
tion procedurc is run in order to obtain an initial MILP relaxation. At
each node of the BB, two cub generation procedures are used: one round

12 PIETRO BELOTTI

e e . — Tl
& =t Ty =€t

L

7 b

{a) Separable solution (b) Non-separable solution

FIg. 4. Separable and non-separable points. In (o), clthough the point is infeo-
sible for P, another round of lneerization cuts is preferred fo o disfunction (either
by branching or through o disjunctive cut), as much quicker to separate. [n (B), ne
refinement of the linear relozetion is possible, and a disfunction must be applied.

of cuts to refine the linear relaxation and one round of disjunctive cuts.

Culls to the disjunctive cut generator. While linearization cuts are sep-
arated quickly and hence are used throughout the BB, disjunctive cuts are
quite CPU-intensive as they require solving a large LP for each disjunction.
Therefore, in our setting, disjunctive cuts are only generated at BB nodes
of depth lesser than 10, and at most 20 disjunctions per node are analyzed.

“Separobility” of a nonlinear function. Disjunctions can help cut an LP
solution through branching or disjunctive cuts, but they are not the only
way to do so. Consider Rigure 4, where the components (z¥,z}) of the
LP solution associated with the nonlinear constraint z; = €7 are shown
in two cases: below and above the curve. In both cases, a disjunction
7 < bV m; = b; would create two BB nodes both excluding z*, and
analogously with the cerresponding disjunctive cut. However, the point in
Figure 4(a) can be cut simply by refining the LP relaxation, thus avoiding
the evaluation of a disjunction on x;. FEven if such a refinement is nat
carried out at the present BB node (for instance, because ihe maximum
number of separation rounds has been reached), it will be performed at
subsequent nodes or, if a disjunctive cut is chosen instead of branching,
at a subsequent call to the linearization cut separator. For this reason, a
digjunction is evaluated, for branching or for separating a disjunctive cut,
only if a refinement is not possible.

Disjunctions on integer variobles. Integer variable disjunctions z; <
{} |V z; 2 (7] are also used in this framework, as they may also lead 1o
two subproblems with refined relaxation and tightened bounds. Although
s much more efficient separation technique is available in the COIN-OR cut

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP 13

input: Linear relaxation, LP: (A4, a.f,u)
Optimal solution of LP: 2
A disjunction z; < b; Vay 2 b;
output: Coeflicients of digjunctive eut: {o, op)

1. Apply digjunction to LP
= gel subproblems LPY and LPR
2. Apply bound reduction and a round of inearization cuts

to both LP" and LP®
= get SLPY(4’, ') and SLPR(4”, 0")

3. Construct CGLP as in (4.1)
4. Solve CGLP, obtain (o, o)
5. Return {¢, ag)

TABLE 1

Procedure for generating a disjunctive cut for problem P.

generation library [31} for integer disjunctions, we were not able to plug in
the refinement and the bound reduction steps, therefore we have chosen to
gencrate this type of disjunctive cuts within our own procedure,

Rank of the generated inegqualities. Suppose a disjunctive cut ar < oo
for a disjunction on variable z; has been separated, and another disjunction
on variable z, is at hand. In the selting used in our tests, we do not add
o < g to the LP relaxation that will be used to generate the next cut, as
that would increase the rank of the cuts and possibly introduce numerical
errors. Although there is such an option in COUENNE, we did not test it
yet. This means, together with the maximum node depth of 10 mentioned
above, that the maximum rank of the culs we separate is 10.

Implementation details. The MINLFP solver framework of choice is
COUENNE? [7], an Open Source software package included in the Coin-OR
infrastructure [30]. It implements standard reformulation, linearization,
and bound reduction methods, as well as a reliabilify bronching scheme [8].

6. Experimental results. In order to assess the utility and effec-
tiveness of disjunctive cuts for MINLP, we have performed a battery of
tests on & set of 84 publicly available MINLP instances from the following
repositories:

o MacMINLP [26] and minlplib [11]: a collection of MINLP in-
stances, both convex and non-convex;

e nlonv: a collection of non-convex MINLPs®;

o MIQQP: Mixed-Integer quadratically constrained quadratic pro-
grams [35); model gpsi.mod was used;

o globallib: a collection of continuous NLP problems {19];

?See http://www, coin-or.org/Covenne
SIBM/CMU MINLP project, see http://egon. cheme.cmu. edu/ibn/page. btn

14 PIETRO BELOTTI

e boz(QP: continuous, non-convex, box-constrained quadratic prob-
lems; the smaller instances are from [54] and those with more than
60 variables are from [10];

e airCond, a 2D bin-packing problem for air conduct design {18].

Table 3 describes the parameters of each instance: number of variables
{var), of integer variables (fver), of constraints {con}, and of suxiliary vari-
ables (euz), or, in the notation used above: n, r, m, and ¢. The latter
parameter is a good indicator of the size of the LP relaxation, as it is
proportional to the number of linearization inequalities added.

We have conducted tests to compare two distinet branching technigues
with digjunctive cuts, in order to understand what combination is most
effective. The following four variants of COUENNE have been tested:

e v{: no disjunctive cuts, and the basic branching scheme br-plain
described in [8], Section 5.1;

e RB: no digjunctive cuts, and an extension of reliability branching
[1] to MINLP denoted int-br-rev in [8];

e DC: disjunctive cuts separated until depth 10 of the BB tree and
the br-plain branching scheme;

e DOHRE: disjunctive cuts separated until depth 10 of the BE tree
and reliability branching.

The latter variant, apart from being a combination of more sophisticated
methods, has a further advantage: since reliability branching is & method
to rank branching rules, disjunctive cuts are separated only on the most
promising disjunctions.

All tests were performed on a 2.66GHz processor with 64GB of RAM
memory and Linux kernel 2.6.29. COUENNE version 0.2, compiled with gec
4.4.0 was used. A time limit of two hours was set for all variants.

Table 2 summarizes our results by pointing out what variants per-
form better overall. For each variant, column “solved” reports the number
of instances solved by that variant before the time limit, while column
“hest time” reports the number of solved instances whose CPU time is
best among the four variants, or at most 10% greater than the best time.
An aznalogous measure is given in the third column, *best nodes,” for the
BB nodes. The last column, “best gap,” refers to instances that were not
solved by any of the variants, and reports for how many of these the variant
had the best gap, or within 10% of the best.

Although this gives a somewhat limited perspective, it shows that the
variants with disjunctive cuts, especially the one coupled with reliability
branching, have an edge over the remaining variants. They in fact allow
to solve more problems within the time limit, on average, and, even when
a problem is too difficult 1o solve, the remaining gap is sialler more cften
when using disjunctive cuts.

Tables 4 and 5 report in detail the comparison between the four vari-
ants of COUBNNE. If an algorithm solved an instance in less than two
hours, its CPU time in seconds is reported. Otherwise, the remaining gap

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP 15

<2h Unsolved
Variant | solved best time best nodes | best gap
v 26 12 11 31
RB 26 13 11 35
ol 35 8 13 29
DC+RB 39 20 29 37
TagLe 2

Swmmary of the comparison between the four variants. The first three columns are
on instances thal could be solved within the time limit of two hours, and report: the
number of instances solved {“solved”), the number of instonces for which the varient
obtnined the best CPU time or within the 10% of the best (“best time”), and analogously
for the number of BB nodes (“best nodes”™). The lust column, “best gap,” reporis the
number of instonces for which o variant obiained the best performance, or within 10%
of the best, in terms of the remaining gap.

is reported as the following function:

Zpest — Zlower

61 ap =
() sap Zhest — 0

where zpesy 15 the objective value of the best solution found by the four
algorithms, Ziowe: 15 the lower beund obtained by this algorithm, and zg is
the initial lower bound found by COUENNE, which is the same for all four
variants. If no feasible solution was found by any variant, the lower bound
is reported in brackets. The best performances are highlighted in bold.

Variants with disjunctive cuts seem to outperform the others, espe-
cially for the boxQ)P instances. For some instances, however, disjunctive
cuts only seem to slow down the execution of the BB as the CPU time
spent in separation does not produce any effective cut. The tradeoff be-
tween the effectivencss of the disjunctive cuts and the time spent generating
them suggests that a faster cut generation would increase the advantage.

We further emphasize this fact by showing the amount of time spent
by reliability branching and digiunctive cuts, which is included in the to-
tal CPU time reported. Tables 6 and 7 chow, for a subset of instances
for which branching time or separation time were relatively large (at least
500 seconds), the CPU time spent in both processes and the number of
resulting cuts or BB nodes. This selection of instances shows that, in cer-
tain cases, the benefit of disjunctive cuts is worth the CPU time spent in
the generation. This holds true especially for the bozQP instances, where
a large amount of time is spent in generating disjunctive cuts but where
these result in better bounds or CPU time. Again, the fact that the cur-
rent separation algorithm is rather simple suggests that a more efficient
implementation would obtain the same benefit in shorter time.

We alse graphically represent the performance of the four algorithms
using performance profiles [15]. Figure 5(a) depicts a comparison on the
CPTU time. This performance profile displays data about all instances that

16 PIETRO BELOTTI

could be solved in less than two hours by at least one of the varlants. Hence,
it also compares the quality of a variant in terms of number of instances
solved. Figure 5(b) is a performance profile on the number of nodes.

Figure 5{c) is a performance profile on the remaining gap, and reports
on all instances for which none of the variants could obtain the optimal
solution in two hours or less. Note that this is a slightty different version of
a performance profile: rather than the ratio between gaps, as required by
the definition of performance profile, this graph shows, for each algorithm,
the number of instances (plotted on the y axis) with remaining gap below
the corresponding entry on the z axis,

The three graphs show once again that, for the set of instances we
have considered, using both reliability branching and disjunctive cuts pays
off for both easy and difficelt MINLP instances. The former are solved in
shorter time, while for the latter we yield a better lower bound.

7. Concluding remarks. Disjunctive cuts are effective in MINLP
solvers as they are in MILP. Although they are generated from an LP
relaxation of & nen-convex MINLP, they can dramatically improve the lower
bound and hence the performance of & branch-and-bound method.

One disadvantage of the CGLP procedure, namely having to solve a
large LP in order to obtain one single cut, carries over to the MINLP case.
Some algorithms have been developed, for the MILP case, to overcome this
issue [3, 6]. It remains to be seen whether their extension to the MINLP
case can be as straightforward.

Acknowledgments. The anthor warmly thanks Frangois Margot for
all the useful discussions that led to the development of this work.

Part of this research was conducted while the author was a Postdoc-
toral Fellow at the Tepper School of Business, Carnegie Mellon University,
Pittsburgh PA.

REFERENCES

{1] T. AcuTERBERG, T. KOCH, AND A. MARTIN, Branching rules revisited, OR Letters,
33 (2005), pp. 42-54.

[2] B. BaLas, Disjunctive programming: Properties of the conves hull of feasible
points, Discrete Applied Mathematics, 89 (1998}, pp. 3~44. .

[3] E. BaLAS AND P. BonaMi, New variants of Lift-and-Project cut generation from
the LP tableaw: Open Source smplementation and lesting, in Integer Program-
ming and Combinaterial Optimization, vol. 4513 of Lecture Notes in Computer
Science, Springer Berlin/Hetdelberg, 2007, pp. 88-103.

[4] E. Bavas, S. Csria, anp G, CorNufions, 4 lift-end-project cutting plane al-
gorithm. for mized 0-1 programs, Mathematical Programming, 58 {1993},
Pp. 295-324.

[5] . Mized 0-1 programming by lift-and-project in o branch-and-cut fromewerk,
Management Science, 42 {1996}, pp. 1229-1246.

{6] E. BaLas aND M. PERREGAARD, A precise correspondence between lft-and-project
cuts, simple disjunctive cuts, end mived integer Gomory culs for §-1 pragram-
ming, Mathematical Programming, 94 (2003), pp. 221-245.

40

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP 7

T 40

i

50

G i basal | J
10 100 10° 10 10% 10° 16* 108
{a) CPU time (b} BB nodes

]

(12

oo nee Bemmeee - DC+REB
P FO— x DC
° ° « RB

L]

i]
0.2 0.4 0.6 0.8 1.0

(c) Remaining gap

¥1G, 5. Performance profiles for the four varianis of COUENKE.

P. BELOTTI, COUENNE: @ user’s menuel, tech. rep., Lehigh University, 2009.
P. BeroTri, J. LeE, L. Lmerr, F. MARGOT, AxD A. WACHTER, Branching and

bounds tightening technigues for non-convex MINLP, Optimization Methods
and Software, accepted (2000).

L. T. BIEGLER, I. B, GROSSMANN, ARD A. W. WESTERBERG, Sysiematic Methods

of Chemical Process Design, Prentice Hall, Upper Saddle River (NJ), 1997.

S. BuReR aKND D. VANDENBUSSCORE, Globally solving bot-constrained nonconves

M.

guadratic programs with semidefinite-based finite branch-and-bound, Comput.
Optim. Appl, 43 (2609), pp. 181-195,

R. Bussisck, A. 5 Duwp, and A, Mepravs, MINLPLb - @
collection of test mwdels for mized-integer nonlinear program-
ming, INFORMS Journal of Computing, 15 (2003), pp. 114-119.
http://www . gamsworld. org/minlp/minlplib/minipstat . htm,

A. CaPrARA AND M. LoCATELLI, Global eplimization problems and domedn reduc-

18

(23]
{14
(15}

16}

{7
{18]
f19]
261
(1]
[22]
(231

[24]

25}

26]

27]

28]

(29]

(30]
(31
[32]

(33]

PIETRO BELOTTI

tion strategies, Mathematical Programming, (2009).

E. CARRIZOSA, P. HANSEN, aND F. MESSINE, Improving interval enalysis bounds
by translations, Journal of Global Optimization, 29 {2004), pp. 157-172.

G, CorNUEIOLS AND R, FUTUNCU, Optimization Methods in Finance, Cambridge
University Press, Cambridge, 2006.

E. D. DoLaN anD J. J. MORE, Benchmorking optimization soffware with perfor-
mence profiles, Mathematical Programming, 91 (2002), pp. 203-213,

M. A. Duran AND . E. GROSSMANN, An culer-approzimation elgorithm for o
class of mized-integer nonlinear programs, Mathematical Programming, 36
(1988), pp. 307-339.

C. A. Froubas, Global optimization in design and control of chemical process
systems, Journal of Process Controel, 10 (2001), pp. 125-134.

A. FPUGENSCHUH AND L. SCHEWE, Solving e nonlinear mized-integer sheei mefal
design problem with linear approxzimotions, work in progress.

GAMS DeveLOPMENT Corp., Gamsworld global opiimizetion librory.
bitp://ww. gamsworld . org/glebal/globallib/globalstat . kim.

B. HaNSEN, Global Optimizetion Using Intervel Anolysis, Marcel Dekker, Inc.,
New York, 1992,

C. HELMBERG aND F. RenDL, Solving gquaedratic (0,1)-problems by semidefinite
programs and cutting plones, Math. Prog., 82 (1998), pp. 281-315.

J. Hookkr, Logic-based Methods for Optimization: Combining Optimization and
Constraint Satisfaction, Wiley, New York, 2000.

R. HorsT anp H, Tuy, Global Optimization: Determimistic Approaches, Springer
Verlag, Berlin, 1996,

B. KALANTARI anD J. B, ROSEN, An algorithm for global minimization of Unearly

constrained concave quadratic functions, Mathematics of Operations Research,
12 (1987), pp. 544561,

. KALLRATH, Solving planning and design problems in the process indusiry using
mixed integer and global optirmization, Annals of Operalions Research, 140
(2003), pp. 339-373.

S. LEYFFER, MacMINLP: AMPL collection of MINLPs.

bhttp://www-vnix.mes.anl.gov/ " leyffer/MacMINLP.

L. Lisgrry, C. LAVOR, AND N. MACULAN, A brench-end-prune algorithm for the
molecular distence geometry problem, International Transactions in Opera-
tional Research, 15 (2008), pp. 1-17.

L. Ligert1, C. Lavor, M. A. C. NAsCIMBENTO, AND N. MacuLan, Refermuletion
in mathematicol programming: an applicetion o guanium chemisiry, Discrete
Applied Mathematics, 157 (2009), pp. 1309-1318.

M. L. Liu, N. V. Sammsums, axp J. P. SHecrMan, Planning of chemical process
networks vie global concave minimizaiion, in Global Optimization in Engi-
neering Design, I. Grossmann, ed., Springer, Boston, 1996, pp. 195-230.

. Lovcee-HEmER, The Common Optimization INierface for Operations Re-
search, IBM Journal of Research and Development, 47 (2004), pp. 57-66.

R. Lougke-HEIMER, Cuf generation [brary. kttp://projects.cein-ox.org/Cgl,
2006,

Z. Q. Luo, J. 8. PanG, aND D, RALPH, Mathemetical Programming with Equilib-
riwm Constraints, Cambridge University Press, UK, 1986,

A. Mansaian anp T. K. RALPHS, Experiments with branching using general dis-
junctions, in Proceedings of the Eleventh INFORMS Computing Soclety Meet-
ing, 2009. To Appear.

F. Massing, Deterministic global optimiézation using interval eorstroint propage-
tion techniques, RAIRO-RO, 38 (2004), pp. 277-204,

H. MITTELMANN, A collection of mized integer quedratically constrained quadratic
prograins. http://plato.asu.edu/ftp/anpl.files/miqp_ampl.

R. E. MoORE, Mecthods and Applications of Intervel Anolysis, Siam, Philadelphia,
1679,

Gt

=~

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP 19

[37) J. H. Owen AND S, MEHROTRA, A digfunctive culting plane procedure for gen-
eral miged-integer linear progroms, Mathematical Programming, 89 (2001),
Dp. 437448,

[38] A. 'T. Puuurs anND J. B. RoseEN, A gquadratic assignment formulation of the
moleculor conformation problem, tech. rep., CSD, Univ. of Minnesota, 1998.

[39] 1. QuEsAaDA AND 1. E. GROSSMARN, Global optimization of bilinear process networks
and multicomponent flows, Computers & Chemical Engmeering, 19 {1995},
pp. 1219-1242.

[40] H. RATSCHEK AND J. ROKNE, Fntervel methods, in Handbook of Globat Optimiza-
tion, R. Horst and P. M. Pardalos, eds., vol. 1, Kluwer Academic Publishers,
Dordrecht, 1995, pp. TH1-828.

{43} T. RexpL AND R, Sommov, Bounds for the quodratic assignment problem using
the bundle method, Matheniatical Programming, 108 (2007), pp. 505-524.

{421 H. 8. Byoo anp N. V. Sannams, Global optimization of nonconver NLPs and
MINLPs with epplications in process design, Computers & Chemical Engi-
neering, 19 (1995}, pp. 551-5686,

{43} . A branch-end-reduce approsch to global optimization, Journal of Global
Optimization, § (3996}, pp. 107~138.
{44] . Global optimization of maltiplicative programs, Journal of Global Opti-

mization, 26 (2003), pp. 387-418.

[45] N. V. Saumapis, Globel optimization and constraint satisfaction: the dranch-and-
reduce approach, in Global Optimization and Constraint Satisfaction, C. Bliek,
C. Jermann, and A. Neumaier, eds., vol, 2861 of Lecture Notes in Computer
Science, Springer, 2003, pp. 1-16.

[48] A. Saxena, P. Bowaml, anp J. Leg, Conver relavations of non-conver mized
integer quodrotically constrained programs: Projected formulutions, November
20068, Optimizationr Online.

, Disjunctive cuts for non-conven mived integer quadraticelly constrained
programs, in Proceedings of the 13th Integer Programming and Combinato-
rial Optimization Conference, A. Lodi, A. Panconesi, and G. Rinaldi, eds.,
vol. 5035 of Lecture Notes in Computer Science, 2008, pp. 17-33.

{48] J. P. SeECTMAN AND N. V. SABINIDIS, A finile algorithm for global minimization
of separable concave programs, Journal of Global Optimization, 12 (1998),
pp. 1-36.

{491 E. M. B. Smirh, On the Optimal Design of Continuous Processes, PhD thesis,
Impertal College of Science, Technology and Medicine, University of London,
Cet. 1996,

{50} E. M. B. Smits anD €. C. PANTELIDES, A symbolic reformalation/spotial branch-
and-bound algorithm for the global optimisation of nonconver MINLPs, Com-
puters & Chem. Bng., 23 {1959), pp. 457478,

{33] M. TawarMALANI AND N. V. SAEINIDIS, Convenification and globel optimization
in continuous and mized-integer nonlinear progremming: Theory, algorithms,
softwore and applications, vol. 65 of Nonconvex Optimization and Tts Appli-
cations, Kluwer Academic Publishers, Dordrecht, 2002.

. Global optimization of mized-integer nonlinewr programs: A theoretical and
computational study, Mathematical Programming, 99 (2004), pp. 563-591.

i53] P. Van HENTENRYCK, L. MICHEL, AND Y. DEVILLE, Numerica, o Modeling Lan-
guage for Global Optimization, MIT Press, Cambridge, MA, 1897,

[54] D. VANDENBUSSCHE AND G. L. NEMHAUSER, 4 branch-and-cul elgorithm for non-
convex guadratic programs with bom constraints, Math. Prog., 102 (2005},
pp. 559-575.

fe7]

52}

PIETRO BELOTTI

20

PRI DD UGD, PUB JBAL, SWWRIED 20uRYy ‘rog Buzpunocy v fig prumssuod fijue puv
snonurpued s drosf JPxoq ayp w seouwisuy dods uoupmuLLofal ayy 10 peyvuaual sapqpuon ALoyiEng fo daquinn Y} LTRT, puD 'snansggsues fo
LaqrunG Syl 0D, 'eajqpiia usbagur fo uasquinu oYy vy, ‘SSIGDIIDR O IBQUNY BYY 81 DA, ‘BOUDISUL YOTA LG SIS LNO UL PIST SIOUDISUT

& ATV,
82LE 0D T1-8L0-00Tds
¥6LE G2 8681 9618 gLaIer | 0ggz 00T 1-060-001ds
! e oge £9 0g1 108 pggsewt | 1¢2T 00T 1-920-001ds
1gec 1pgg-eoeds | L08y £V £12T AT198 guremst | ecoe 06 1-gL0-060ds
801 gluopwiLyy | 09T SI6T %82 €003 T0G1 | 1802 08 T-0S0-060ds
£68 gzoveds | GGG 1z 697 6IC Loostar | 2I0T 06 1-6Z0-060ds

€38 1-gg-ooeds @ﬁma g8c7 08 1-L0-080ds
£9 Luopunyy | s .l azer 08 T-080-080ds
Q07 QUOTWILT} ovRT GIZI 8% 286 omzmmmwon 684 0B 1-Gz0-0gods
GuOUILT) powyeequis § @eg1 (L T-GA0-0L0ds
L2ZT 0L 1-080-0L0ds
819 0L 1-4z0-0L0ds

Eﬁ 0687 0 OT0DPITR § PSS 09 T-0Z0-090ds

9701 oiL6dol 1 00FE 0DOT O 66GY O0gyswes | 920 0S¢ [-080-0g0ds

8677 THST 00F SERI aysem | BOOY O0OL O GB6T Q0FSIUL § 86F 08 T-0B0-0gods
e A e1 0% wdonp | 998z Z¥E O BT [seofur | 99 0% 1-0£0-020ds
122 9 11 81 gydo-np | 6697 ROPL O 7681 SI00MFE | 908 OF T-007-0p0ds
07 28 668 086 wiedol | 888 T 0 018 gIOOMYE | o124 oF 1-060-0%0ds
981 g8¢ DGL €68 cgaveds | $200 28T O 86 oguoBdred | gp9 0 1-080-0%0ds
LFL 6L 18 6.2 reayuos | JZ8F G460 9G¥L zooowre | 09% OF 1-040-0%0ds
6IT 10T 0% £8% wogoowds | 02T 008 0 682 Qopyswex | @iy OF [-090-0p0ds
907 §1Z @6 PG1 gqdgpordus | 92ZZ11 06 0 081 0goate | geE OF 1-0G0-0p0ds
907 21Z 76 91 groxdus | 1121 T 0 (1} 4L | g1 0F T-0R0-0R0ds
9pT 18T 58T 96T plojam | A81 8Lz 0 AL Losimy | pEz OF 1-0£0-0F0ds
217 8ST 808 TOV zeeyosd | 00BT 00F O 109 gopxrages | A8F 08 1-001-0g0ds
881 BT 8L 8T1 qdggordus | zg %8 0 001 £db | zoF 08 T-060-0g0ds
88T 261 &L 81 ggordus | 2221 % 0 0g gdb | gog 0 T-0R0-0g£0ds
88T 981 8¢ 111 qdutesel | 009 00F 0 66€ Qoguswed | 118 0§ 1-040-0g0ds
881 98T %% 111 weavl | BOOT O0F 0 66¥ QoTsaup | 97 O£ 1-090-Dgods

0 108 oD |

:H -007-020ds

8 % S suL‘\ i
Sl MW.WW&W ‘wuwwan ‘mﬁmwm ,.w....mww\»,]
Ha&.}.m JBA DUWIBEN]

xne uod .H,m.__rw Wﬂﬂ.mz

POIISUL UMOYS §T ‘STIYODLG U
‘punoq samoj 9y ‘uownios spqevaf B fo yovy eyy 07 enp pendwoo ag youuwo dvb Supurpwas Ay J7 Csinoy omg wayfv (T'g) dob Bununwas oy ‘sunoy
om) wuoyg Laposab ft ‘o douTISUL DY IRJ0S 0F UDYDY ‘SPUODIT W Dun NJD Y3 SPyND 1 Agud yousr spoyyoul uncf 3y) udsmiag uoswndulon)

21

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP

¥ auavy,

UFT6 %P6 BI96 %EA8 1-GLO-00Tds

%966 %TE6 U066 UT'CE QLI | %0'B8 %LER %G0B %F63 T-080-001ds
8769 YLPC BLEG 008 PEZERWL | RB'0P %O8F %0'Q.L %96l T-cgo-Doids
%R'86 %L66 WOD0T %T66 uremst | %L T8 %PLS %EFE U8TFE 1-6L0-060ds
(grero) (s6L0) {2820} (1820) AL | %OLL YUFLL %PES %6'E8 1-080-060ds
%00/, %66 UG UL LgosTul | 926tp7 %08 %L6Y %URY 1-420-060ds
%567 . ‘Z1 SON[BAL | %7 I8 %0T8 %WL'BS %698 1-CL0-080ds
e ., i D UFTL %TTL %EIS %918 1-050-080ds
%366 %0007 %O000T %¥'9% 2GNFSesor | IPET S Phd %SHY %UPES [-5T0-080ds
51 %SFT %00 UTT pounsesyuAs | %804 %L0L %G6L %VI8 1-gL0-0.0ds
%68 U0 %80 %TF LPPOTRSD | 94eey o4Pr0f %T0L %E69 1-020-0L0ds
L . i ves TBTT Y0y WIOP 1-0o0-0L0ds
6202 971Z 8E8T Fads) oTo0IR | RE 9¢ £66 %21 1-020-D90ds
%0766 %FLE %6'G6 WELB goguses | 40°LT %8EE UEAS %SLe 1-080-030ds
%80T %S0T %LG %LS 00PsIa[| TEY 6991 YERT %Y6T T-0F0-050ds
YETFE %TTES %YT0 %9TY ISeaJUL | 6T 18 108 yoe 1-0£0-050¢s
%4588 UGER WO'E’ %0ER SINORMe | %9'L %POT %EDP %LTP T-00T-0p0ds
9L €T YULET ULET %LET BIOORIER | %L T %64 YFTY . %TIF T-060-0v0ds
{zoz) {eozr) (zozy (goe) pguoBiod | 8869 %¥0o UFOF %968 T-080-DF0ds
o {® {0 (0) Z00OPI¥e | D6OT oFLT %SIE %YL 1-040-0vods
%808 BIFS U6TL BLES Q0FYsWIED | OFET L0%0 %E9E UPBE T-090-0p0ds
{ogce) {o'ege) (pgoe) (vgce) 0%°°1 | 048 e0s %78 %EPr 1-050-0%0ds
%RIT YEFPL %2TT %PTI 14k | 0% £6¢ %Te %TE 1-0F0-0POds
Z1 01T Fra ¥IT Aoxng | g 6 0o P2, 1-0£0-0¥0ds
£5 28 .8 £g pogxmuIyes | peol 6972 %SIT %6ET 1T-00T-0gods
%6°¢ 248G %8G %99 gdb | 918 G69 70971 16%% 1-060-0g0ds
%GOT BRET BETT %STL zdb | zpeT 90¥v1 WLOT %BLeT 1-080-0g0ds
%LTY %EBL WITY %L6L noZusSEE? | T2 6211 %PT WYE T-0L0-0£0ds
%95 oFaT %96 %00 0011 | OST £0¢ PO8T GZ6T 1-000-0£0ds

6 4 19

gH-+-Da

22

PIETRO BELOTTI

Name

“waterz T51% 58.7% 73.2%
raverm 16 23 74 66
ravemphb 18 24 55 42
enpro56 39 26 156 76
enprobhéph 55 24 301 81
esched? 2.2% 3.9% 1.2% 3.6%
waterd 55.2% 52.0% 44.2% 51.3%
enprodd 58 37 204 114
enpro48ph 45 41 201 126
spaceZba (116.4) (107.2) (107.3) (100.1)
contvar 91.1% 90.2% 91.1% 89.9%
space2’ {(98.0) {96.7) (97.1) (177.8)
lopYTicx 93.0% 79.6% 93.9% 39.3%
du-opth 73 170 251 159
du-opt 87 270 136 262
waste (255.4) (439.3) (273.7) (2816)
lop§7ic {(2543.5) (2532.8) (2539.4) (2556.7)
apw {0) (20482) (0) (20482)
R S : TR 2

v RB

DC

DC+RB

..

“irimlond 23 4 133 24
trimlon5 48.1% 46 35.6% 142
trimlon® (16.17) (18.69) (16.18) (18.52)
trimlon? 88.1% 60.5% 89.8% 74.3%
space-25-1 (142) (636) (75.0) (69.6)
space-25 {98.4) (89.8) (96.3) {91.9)

(16.1) (18.5)
(6.5¢-+6) (65016

“airCond

187

876

T1471

TABLE 5

Comporison between the four methods. Each entry is either the CPU time, in
seconds, taken to solue the instance or, if greaier than two hours, the remaining gap
(6.1) after two hours.

DISJUNCTIVE CUTS FOR NON-CONVEX MINLP

23

oG DCH-RB

Name tor nodes | feep cuts | feep cuts thy nodes

G o 2 e

60-1 8 340k 3k
sp040-070-1 10 277k 2042 56 277k
sp40-080-1 4 174k 14831 95 4k
sp(40-090-1 58 136k 14604 115 3k
spl40-100-1 17 178% 11859 126 2k
spl50-050-1 12 289k 11114 127 6k
sp070-025-1 38 308k 921 28 308k
sp070-050-1 38 80k 3622 477 80k
sp070-075-1 81 26k 1089 46 26k
sp080-025-1 27 222k 1154 28 222k
sp080-050-1 66 35k 1746 85 35k
sp080-075-1 119 4k 615 32 4k
sp0980-025-1 32 170 3044 500 170k
sp090-050-1 86 26k 838 37 26k
sp090-075-1 154 4k 250 8 4k
sp100-025-1 54 80k 2372 659 80k
spl00-050-1 140 4k 733 34 4k
spl00-075-1 272 35k 302 3 ‘
Iats100 6084 dk 6 4647 3k
camsh?200 6242 10k 2645 4192 ok
qp2 214 62k 1662 444, 41k
ap3 1298 803k 644 3272 484k
qpl 189 63k 1736 240 45k
alech) 5677 45k 68 768 45%
carnsh400 3494 33k 1263 560 53k
arkiG002 6834 53k 181 B277 53k
arki019 5761 53k 36 3812 53k
arki00ib 2442 2k 106 2412 2k
infeasl 1306 2k | 1495 45 131 1397 2k
Ints400 457 2k | 4767 1 0 373 2k
camsh&00 5001 23k | 3671 188 100 3172 23k

TABLE 6

Clomparisor. of time spent in the separation of disjunctive cuts {teep) ond in relia-
bility branching (tuy). Also reported is the number of nodes { “nodes”) and of disjunctive

cuts generated (“culs”).

24

PIETRO BELOTTI

DC-+RB

tsep CULS tor

571

imiscO7 2131 1404
ibcl 167 46
iswath2 52 5
imasg284 700 381

1eilD76

" contvar

21 4706

space2’ 272 1051k | 2133 706 178 300 311
lop9Ticx 6540 14k | 1342 353 | 4226 2603 2649
waste 5204 13k [7090 7i5 .| 6934 253 82
lop9Tic 3178 11k | 4556 25 | 6734 147 3547

34 0 8367

ey ' el
trimloné 8500 62k 58 50 558 2640 5044
trimloni2 8432 62k 58 80 562 2649 5041
] 960-i 0 49

airCond

Tk |

293 1736

TABLE 7

(Continued) Comparison of time spent in the separation. of disjunctive cuts (tsep)
and in reliability branching (ty.). Alse reported is the number of nodes (“nodes”) and
of disjunctive culs generated [“cuts”).

