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Abstract

In this paper we present a multi-start approach to solve a determinant
maximization problem of an Integer matrix variable that has a constant
trace. In order $o enforce that elements of the matrix variable are integer,
we add & nonlinear repeller term to the objective function. To solve this
nonlinear optimization problem we implement our sequential conic trust
region based algorithm within a multi-start framework. Computational
results demonstrate the potential of our approach.

Keywords: determinant maximization, trust-region slgorithm, conic optimiza-
tion, multi-start framework )

1 Introduction

The determinant maximization problem can be considered as a generalization of
semidefinite programming (SDP). In addition to having SDP as a special case,
max-det problems also arise in many fields, including crystallography, data min-
ing, statistics, computational geometry, information and communication theory,
ete. For an extensive account of applications of max-det problems see [27] and
the references therein. Due to the theoretical and practical importance, the
max-det problem is a well studied problem, see [19, 22, 24, 27]. Also, there are
interior point methods (IPM) based softwares, e.g., SDPT3 [25] and MAXDET
[27], that can efficiently solve determinant optimization problems with linear
matrix inequality constraints.

In this paper we consider a determinant optimization problem for which a
matrix variable is integer and has a constant trace. We show that if we relax the
integrality constraints, the optimal solution of this problem is aiways a diagonal
matrix. More precisely, we show that the determinant of a positive definite
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matrix with constant trace is maximal for some diagonal matrix. In order to
enforce integrality constraints to the matrix variable in the relaxed problem, we
add a nponlinear term to the objective function that is known as the repeller
term, see [2]. To solve this nonlinear determinant maximization problem we
implement a seguential trust region algorithm. Since the sequential algorithm
converges locally, it is very important to choose a “good” starting point. Due
to the structure of the problem, it is not clear which feasible point should be
taken as an initial one. Therefore we set our sequential trust region algorithm
into a multi-start framework. '

Multi-start methods have recently turned out to be a very efficient tool for
global optimization, see e.g., [3, 6, 7, 18, 20, 26]. In general, as searching for
a global optimum a multi-start method restarts a local search procedure from
different initial points. While traditional multi-start algorithrs apply a local
search repeatedly to random feasible points, adaptive multi-start techniques use
more sophisticated constructions of initial points, see e.g., {3, 4, 6, 7, 20]. In the
latter approach, one explores information from the previous sampling poiuts, or
some properties of the feasible set in order to find “better” initial points. In our
multi-start procedure, we combine ideas from both approaches. Namely, we first
start our sequential algorithm from a randomly chosen feasible point. If a solu-
tion matrix obtaiced from the sequential algorithm does net satisfy integrality
coustraings, we apply the gradient ascent approach to all noninteger matrix ele-
ments in order to find a feasible point outside of a valley of the local optimum.
Since a so obtained matrix does not need to satisfy integrality constraints and
is not a local optimurm, we restart from that point our sequential algorithm. In
this way we further explore the neighborhood of the initial random point. We
repeat exchanging the sequential algorithm and the gradient ascent method till
there is no more improvement in the objective value, or some of the stopping
criteria are satisfied. After the described process siops, we restart the whole
procedure from a new random initial point. Finally, for the solution of the de-
terminant optimization problem we take the best integral solution among all
compuied local optimum. Although the multi-start techniques are used to solve
global optimization problems successfully, this is for the first time that they are
combined with an interior point solver for conic optimization.

To illustrate our approach, we use a determinant maximization model from
crystallography where one tends to maximize a determinant of the so called
Karle-Hauptman (KH) matrix [9, 11, 23]. We also verify computational results
obtained by our algorithm for randomly taken data matrices.

The paper is organized as follows. In the next section we present the de-
terminant optimization problem of our interest. In Section 3, we describe our
adaptive multi-start sequential conic-trust region algorithm and in Section 4 we
provide numerical results. Concluding remarks are give in Section 5.

Notation

The space of & x k symmetric matrices is denoted by Si, and the space of



k x k symmetric positive semidefinite matrices by 8. For 4, B € &, 4 = 0
{resp. A > 0) denctes positive semidefiniteness (resp. positive definiteness), and
A > 0 elementwise nonnegative matrix. We use tz(A4) to denote the trace of a
square matrix 4, diag(X) the vector of the diagonsal elements of matrix X, and
I, is the identity matrix of order n.

The Hadamard product of two matrices U = (us;) and V = {(vy;) of the same
size is denoted by U oV, where (U 6 V)i, = uy - vy for all 4, 4.

2 Determinant maximization problem

We consider the following determinant optimization problem

min - logdet{B o X) (1)
g5 (X)=a (2)
BeX =10 (3)

X €8, (4)

(5)

(&1

Tig Q{mlrl}? vz':j) 37&.73

where B € &,, B > 0 is a given matrix, and o > 0 is a giver number. By
relaxing constraints {5) to

a solution of the corresponding reiaxed problem is a scalar muitiple of the iden-
tity matrix. Namely, it follows from Hadamard inequality {12] that the deter-
minant of a positive definite matrix is maximized when the matrix is diagonal.
This was shown in [19], but in the sequel we provide another proof.

Lemma 1. Among the n xn positive definite matrices X with trace tr(X) = o,
the determinant 18 mazimized when X = %In,

Proof. The claim. follows from Hadamard’s inequality (see [12], pg. 477) and
from the fact that the optimuwm of the following convex optimization problem

e Th
min{——iog(H)\i): Z)\iua, )\i>0,i=1,...,n}
d=1

gz=1
is X = &[,. |
Lemms 1 further implies:

Lemma 2. Let B € 8., B = 0. Then, among the n x n positive definite
matrices X with constant trace tr{X) = o and s.t. Bo X = 0, the determinant
det{B o X} is marimized when X = Z[ .

Proof. Follows trivially from Lemma 1. ]



In order to enforce constraints (5} to the relaxed problem (1)-(4), (6) we

add to the objective function a repeller term. Namely, for every xy;, (¢ 5 J) we
introduce the following function ‘

Flzig) = ~log(aZ). M

Function f{) is convex on the intervals (~oc0,0) and {0, co}, and obtains large
values for |z} < 1, my; # 0. Thus, function f(-) acts as a repeller for the
off-diagonal elements of the matrix variable X that are atfracted to zero in the
optimization process. Similar attractor-repeller approach is applied in Anjos
and Vannelli [2], but their model does not contain linear matrix inequalities.
Qur aftractor-repeller SDP relaxation is

min —logdet(BoX) - ¥ log(m;?j)
i#i
st (X)) = o
BoX >0 (AR)
~lgmy; g1, Vi,j, i#]
X g8,

Note that i (AR) one can not require X » 0, since B does not nesd to be
positive definite. (AR) is a nonlinear semidefinite problem (NL-SDP) and there
are no solvers that can directly solve it. Therefore, we develop our own algorithm
for solving (AR) which is presented in the sequel.

The following lemrma is crucial for interpreting numerical results.

Lemma 3. Let X* be o solution to the problem (1)-(5) and the corresponding
objective be u* = —logdet(B o X*). Then, there are 2™ matvices equivalent to
X* for which the objective value is also p*.

Proof. Tt is clear that a value of the determinant of B o X does not change if
the i-th row and column of X* are multiplied by ~1. Also, the determinant of
B o X* does not change if two rows/column of X* are multiplied by ~1, etc.

O

3 A multi-start sequential algorithm

Qur aim is to solve the determinant problem {AR) by solving a sequence of
conie trust region subproblems within & muiti-start framework.

In Section 3.1 we derive a conic trust region subproblem from the nonlinear
attractor-repeller model (AR). In Section 3.2 the conic subproblem is integrated
into a sequential framework. Sequential methods for semidefinite programming
are analyzed and successfully apphed in [1, 8, 14]. In Subsection 3.3 we incor-
porate our sequential conic trust-region algorithm within a multi-start setting.
Multi-start algorithms are used for solving global optimization problems. To
date, in most of the multi-start approaches [3, 18, 20, 26], heuristics or gradient-
based solvers are used to solve the corresponding subproblems. To the best of



our knowledge, we are the first to implement an IPM solver within the multi-
start framework.

3.1 A conic trust region subproblem

The papers [13, 28, 20] present penalty-based and IPM algorithms for solving
nonlinear SDP and/or 8OCO problems, however there is no publicly available
software that can solve a determinant maximization nonlinear conic problem.
Therefore we develop our own solver for solving (AR). Since it is well known that
IPMs solve linear conic problemms efficiently {see e.g., [21, 25]), we introduce an
IPMs hased algorithm that solves the derived determinant optimization conic
trust region subproblem.

For a given point, the subproblem is derived in the following way. The
repelier term (7) in the objective of (AR) is expanded into Taylor series up to
order two about the given point, and a trust region around the given point is
added as a constraint.

Let X = {(Z:;) be the given point and hi; € IR be the displacement in #;; for
all 4,7, 1 5 . The conic trust region subproblem derived from (AR) is:

min —logdet(BoX) - 3 {log(ffj) + E&,‘hw - —f’g—hf;,]
st (X)) =a "
(BoX) >0
Tiy = e+ hyg, VLG 1F# S {ARtrust)
-1 L&y +hy €1, Vi i)
X8,
ST K2 < A2

G S

]

where A is the trust region radius. Note that for every fixed &, the following
function

. _ 2
Fhig) o= — (103(33‘%) + by - Th’?j>
acts as a vepeller for the small off diagonal elements. Since the trust region

constraint
2 2
Dohh <A
i,

is & second-order cone constraint (SOCQ), it follows that (ARicys:) is 2 nonlinear
determinant maximization SDP-SOCO problem. Therefore, in the remaining
part of the paper we refer to (ARguss) 88 the conic $rust region subproblem.
Note that if we have auy additional conic constraint i the original problem, we
can apply the same approach.



Remark 4. Ellipsoidal trust region could be olso used. The ellipsoid could be
defined as the “Dikin ellipsoid”:

hiz ?
- < A
Z (min{l—mmij,l—{-mj}) - A

1,7

3.2 A sequential trust region algorithm for solving (AR)

In this subsection we describe our trust region based algorithm that solves {AR)
by solving a sequence of conic trust region subproblems (ARyst). A variant of
our sequential trust region algorithm is successfully appiied in [1] for solving a
nonlinear SDP problem arising in magnetic resonance imaging. In the sequel we
describe our algorithm and present the corresponding pseude code in Figure 1.

Initialization step. As a storting point we take a symmetric random matrix
that is feasible for (AR). More precisely, a matrix X® € 8, whose elernents are
normally distributed random numbers from the interval (—1,1}, tr{X% = ¢,
(BoX") = 0. If the data matrix B has zero elements, then we set the cor-
responding elements of X° to zero as well. We specify the initial frust-region
radius to be A = 1,

General step. To describe a general step of the algorithm, we assume to have a
current feasible point X. At the current point, let

dety = -logdet(BoX)
detlmy = ~logdet(BoX) - 3 log(z%)
i
trusty = -logdet{BoX) %; [log(ifj) + %hij - z}?;hgj .
g

Optimization of (ARys) around the current point X and with respect to the
corresponding trust region rading A gives a new candidote point X = (),
%5 = &3 + hyy and the corresponding value of the objective function trustx.
Note that the diagonal elements in X are specified by ¢r(X) =, (Be X} » 0.
For the new candidate peint we also compute detLny and the trust region ratio
in the following way:

_ detLny —detLng 8)

T trusty —trusty (
Note that the closer the value of g is to one, the better approximation of (AR)
by the model (AR¢rust) is realized. A negative or very small g indicates a poor
approximation, and therefore the point is rejected and the trust region radius is
reduced as desczibed in (8). If a sufficient reduction in the objective function is
obtained at the candidate point, then that point is accepted as the next iterate
and the trust-region radius is expanded or kept the same, as specified below

ad, fe<r
A= e, o> {9}
A, otherwise.



In our compuiations we set ¢ = 0.2, ¢y = 0.95, r; = 0.2, rp = 1.5, The choice of
these parameters is made after extensive testing and benchmarking. For more
information on trust-region algorithms see e.g., [5].

Stopping criteria. There are several conditions for terminating Algorithm 1. We
stop the algorithm when the trust region becomes very small (< 107%), or too
large ( > 4AY). Another criterion is when after a pre-specified number of it-
erations there is no significant improvement with respect to the objective. We
stop the algorithm if dety < 1078, That means that at the current poiat X,
matrix B o X has at least one eigenvalue that is close to zero. More precisely,
this matrix is close to the boundary of the semidefiniie cone, and the values
detLnyg and trusty are Jarge which is due to the the repeller term in the ob-
jective. Note that in an optimal point, the values of trust x and def g are equal.

Remark 5. In vur elgorithm, we explore the foct that duta matriz B is sparse.
Namely, for By; = 0 we set X?j = 0 and do not compute corresponding displace-
ment hy; in any step of the algorithm. Therefore oll mutrices X computed by
Algorithm I have the same sparsity pattern. This results with fast compufations
for sparse problems.

3.3 An adaptive multi-start framework

Qur sequential trust-region algorithm has the following drawbacks. Algorithm
I, like most of the trust-region algorithms, force convergence to a local optima
from a remote starting point, and the computed optima does not have to satisfy
integrality conditions. The following two things can be done in order to improve
a local optima. First, is to further explore the neighborhood of the nonintegral
local optima by applying a gradient ascent approach. Second, if the local optima
is integer or there are no improvements in the neighborhood of the nonintegral
local optima, one can restart Algorithm I from a new randomly chosen start-
ing point. The best among the integral local solutions is considered to be the
solution of problem (1)-(3). In the remaining part of this section we describe
in more detail the gradient ascent and the multi-start approach of our adaptive
mulii-start framework. A pseudo code of cur adaptive multi-start algorithm is
is given in Figure 2.

The gradient ascent approach. Suppose that for a given initial feasible point,
Algorithm I returns matrix X that contains elements whose absolute values are
not equal to one. Since (B o X) has an eigenvalue that is very close to zero, we
backtrack from Algorithm [ to 2 point that is in the interior of the semidefinite
cone, say X. Now, we apply the method of steepest ascent (see e.g., [16]) to all
noninteger off-diagonal matrix elements of X while holding the integer elements
fixed. In the following lemma we derive the partial derivatives that are used in
the steepest ascent method.



Algorithm I

Input:
a starting point: X9
initial trust region radivs: A% = 1;
input parameters: 1 = 0.2, = 1.5,¢1 = 0.2, = 0.95;

begin
A — Ab
X — XY

while one of the stopping criterio is satisfied (see page 7)
solve (ARuyrust): Teburn trusty & (hy, Vi, 4, ¢ # )
new candidate point: @5 = Fi; + hej, Vi, 5, 1 F# 5
compute ¢ from (8);

ifp<r
A e Aoy
else
update A according to (9);
X e X
end
end
return X, trust ¢, detLing, det z;

end :

Figure 1: Sequential trust-region algorithumn.

Lemma 6. Let B,X € &, B=(by), B>0, X = (245) und = BoX. Then,

Bdet(C)
B

= dzkbk;det((?), (10)

where D = (di;) is the tnverse of c.

Proof. From the chain rule and the relations

&i%‘:?) = dgkdet(C) and g—w-;; = b

formula (10) follows. ]

We iterate the steepest ascent algorithm, while taking care that the abso-
lute value of each off-diagonal element does not exceed one, the current point
is feasible, and till no improvement in the objective. Note that when applying
the element-wise steepest ascent method, we move away the current point from
the local optimum that was computed by Algorithm I. Thus, by applying the
steepest ascent method we “climb the hill” in the neighborhood of the local

CLl



minirnum. Since after the element-wise steepest ascent aigorithm the computed
matrix does not have to have all :£1 elements and is not a local minimam, we
restart Algorithm I from that point. The algorithmn repeats this procedure until
a stopping criteria is satisfied, i.e., when an optimal integer point is found or if
there is no improvement in the objective after a prescribed number of steepest
ascent rounds. We call our algorithm aduptive since a randomly chosen starting
point is adapted by the steepest ascent method. For details on the steepest
ascent approach see Figure 2,

Multi-start approach. Our adaptive mul$i start algorithm attempts to find a
global minumum to problem (1)-(5) by restarting the conic trust-region al-
gorithm from multiple starting points. A starting point is a random feasible
matrix, or a matrix obtained from a local optimum from which the element-
wise steepest ascent algorithm is applied. Every computed integral solution is
stored, and among them the one that corresponds to the lowest objective value
is reported as a solution to problem {1)-(5). Note that larger number of runs,
increases the probability of finding a global solution.

For each datas matrix B, there are several equivalent matrices for which the
value of the objective function is the same, see Lemma 3. For an optimal poing
it is easy to identify all the equivalent optimal points, if needed.

4 Numerical results

In: this section we present our computational results on solving problem {1)-
(5) by our multi-start sequential algorithm. We first present numerical results
obtained by solving the maximum determinant problem that appears in crys-
tallography, and then present our results for randomly generated matrices.

We implement our multi-start sequential algorithm in MATLAB on a Pen-
tiwm IV, 3.4 GHz dual-core processor. To solve a sequence of conic trust region
subproblems we use the SDPT3 [25] software and the YALMIP [15] interface.
We restrict our search to 25 random point restarts, and for each restart to 7
local search loops.

Determinution of crystal structures using the Karle-Houptman matriz.

In order to determine a crystal structure from a single crystal z—ray diffraction
experiment, one needs to solve a determinant optimization problem, see [9,
23]. To form this optimizaticn problem, it is necessary to construct a Karle-
Hauptman (KH) matrix [10, 23]. The KH matrix is a symmetric matrix that is
derived in the following way.

From the single crystal z—ray diffraction experiment one records M data
points that are associated with the Miller index Hy and diffraction intensity
Eg, >0 k=1,...,M. To construct a KH matrix 4 = (uy;) of order n < M,
a subset of n — 1 data points must be chosen. We assume w.l.g. that elersents



Algorithm IX

Input:
data matrix: B;

A=09
ko 1;
repeat for a given § of starting points
a radom starting point X°
start Algorithm I from X% return X, det g
br ¢ 1; '
if X is not integral
while br < the prescribed number of local searches
do steepest ascent for the noninteger elements
till one of the stopping criteria is satisfied (see page T)
Bij o Fij + - v(B o X)y; - det(B o X) Byy;
end
start Algorithm 1 from X: return X, dety
br - br-+1;
end
end s
if X c{~1,1}* & det{BoX) >0, then X;, —« X; k — k+1;en
end
X*= mkin{—-logdet(B o X}

Figure 2: The adaptive multi-start algorithm,

in the subset are numbered from 2 to n, and redefine

Hiyp=Hyp, k=2,...,n.

The diffraction intensities which are corresponding to the data points from the
subset of n — 1 elements, are used to generate the first row of the KH matrix in

the following way:

Qi =EH1& -exp(‘{.quH]k), k‘”‘_""‘gv"')nr

where ¢ is the imaginary unit, and ¢g,, an unknown variable, The expression
on the right hand side in (11) is known as & structure fuctor, and the unknown
variable as a phase of the structure factor. All diagonal elements in the KH

matrix are equal to the given value Fyg, Le.,

ok = Fogo, k=1,...,n.

10



The remaining elements of the KH matrix are generated in the following way
ag = Fg,, expls . ¢Ifkl): ksl k122, (13)
where
Hyg v= Hyy — Hig,

and ¢, is an unknown phase of the corresponding structure factor. In the
case that Hy, is not recorded Egr,, = 0, and therefore we set ap = 0.
For a KH matrix A the following properties [9, 23] are known:

1. A is Hermitian.

2. A is positive semidefinite.

3. det{d) >0ifn < M, det(A)=0ifn > M.
4

. The maximum-determinant rule holds: when a given KH matrix A of
order n, containing structure factors with known phases, is enlarged to a
KH matrix A of order n + 1 by adding a row and a column containing
elements with unknown phases, then

det(A) > det(4).

The last property is a consequence of the fact that the determinant of the KH
matrix is a special case of the Gram determinant, see [23].

It is proven in [23] that for a given KH matrix, whick contains structure
factors with uoknown phases, the most probably set of phases willi maximize
the determinant of the KH matrix. Therefore, unknown phases can be derived
from a soiution of the following optimization problem, see [11]:

min - logdet(A)
st. A=0

A:A(CbHH)
by, €027, ki=1,...,n k#I

(14)

where elements of A are of the form (11)-(13). In general, when a crystal struc-
ture is not specified, unknown phases ¢g,, can obtain any value from [0, 2x].
Here, we are interested in a centrosymmetric structure L.e., the structure for
which ¢g,, € {0,7}, ¥k,I. Note that in the view of (12), we can assign

¢m.,. =0, Yk (15)

Therefore, for this special case variables xy, which are defined in the following
woy

Tk =exp(t - du, ), Yk,
satisfy ziw € {~1,1}. After assigning Fp,, = Epo, for all &, wrt. (15), it
follows from (12)—(13) that am = Fm,ow, for all &, L.

11



Let A = (Eg,,) be a matrix of diffraction intensities. Then for a centrosym-
metric crystal structure and X = (x35) € Sp, 7y € {~1,1}, 2y = 1, it follows
that 4 = A o X. Therefore, an equivalent formulation to (14) is

min —logdet{4 o X)

st diag(X)=e
(AoX) =0 (16)
e € {~1,1}, kl=1,....n k#I

where e is the all ones vector,

Clearly, determinant optimization problem (18) is of the form of (1)-(5). In
our computations, we choose elements for the first row/colum of a KH matrix
such that the associated matrix A has large off-diagonal elements. This is a
standard practice in phase determination computations. The data matrix for-
mulated in this way does not have to be positive definite and might be very
sparse. However, Algorithm II can efficiently explore sparsity in the data ma-
trix, see Remark 5.

Iz Table 1 we present computational results obtained by solving problem
(16) where matrix of diffraction intensities A,, n = 11,...,19 is rescaled so
that its diagonal elements are all ones. In the first column of Table 1 the orders
of the KH matrices A, = A, 0 X,, n = 11,...,19 are listed, and in the second
column the corresponding determinant values det(ﬁn o X,) are given, where
X, € {=1,11*%" is a solution of (16) computed by Algorithm II,

The elements of matrix A;; are derived as described earlier, and X1, is
computed by our algorithm. Matrix A;2 is obtained from 4;; by adding the
12th row and column as specified by {13), and with respect to the new data
point for which @; 12 = Fg, ,,. Further, by Algorithm 11 we only compute those
elements of X5 that are corresponding to the 12th row/column and remaining
ones are fixed values from X1, Matrix A3 is obtained from Ay in the similar
way, etc.

The results show that when the size of the KH matrix increases, the cor-
responding determinant value decreases. This is a well known property of K
matrices (see property 4 on page 11). It is also known (see [23]) that when the
order of the KH matrix increases, the corresponding determinant values con-
verge to zero. Qur numerical results show that the determinant values decrease
almost linearly with the order of the KH matrix.

There are two reasons for computing determinant values for matrices only
up to order 19. First, is that the quality of a solution computed by our al-
gorithm very likely deteriorate with the size of the problem (see the following
two paragraphs). Second, is that the main objective in current erystallography
packages such as CRUNCH [8] is to - maximize the determinant for a number of
small matrices until encugh phase determination is available to compose a full
density function.

12



ER det(4,) |

11 0.025575
12 0.018151
13 0.010703
14 ] . 0.005099
15 0.001850
16 0.000358
17 0.000027
18 | . (.000003
19 | 3.044749e-607

Table 1: Changes in the det{A,) with respect to n.

Compulational resulls for randomly chosen data motrices. We have tested the
quality of the solution obtained by Algorithm II for problem {1}-{5), where
data matrix B, is a randomly chosen matrizx of order n, and we also take
o = n, For each n = 6,7,8 we formulate 10 data matrices B, for which we
compute a solution to problem (1)-(5) by our algorithm. We compare these 16
solutions with an optimal solution of the underlined problem that is obtained
by exhausting search i.e., by evaluating the determinant values for all feasible
{~1, 1}"*™ matrices. The results are as follows.

For problems where the matrix variable is of order 7 or less, we obtain an
optimal solution after a few rounds of Algorithm I, ie., after restarting the
algorithin from several starting points. For problems of size 8 we obtain a
solution that has on average a value that is at least 85% of the optimal value
of the problemr. In order to compute an optimal solution for the problem of
order 8, we need about 6.5 hours on our PC. Note that for n = 8 there are
268,435, 456 symmetric matrices with {--1,1} elements. Since it is intractable
to verify determinant values for all symmetric {—1, 1} matrices of order n > 9
and find an optimal solution of problem (1)~(5), we can not estimate the quality
of our bounds for larger problems.

5 Concluding Remarks

In this paper we combine a sequential conic trust region and a multi-start ap-
proach in order to solve the determinant optimization problem with an integral
matrix variable. This is for the first time, to the best of our knowledge, that
these two approaches are combined. Further, a crucial idea for computing an
integrai solution matrix is the repeller term that is added to the objective fune-
tion. The role of this term is to act as a repeller for the matrix elements that
are attracted to zero in the relaxed problem. Although we are not the first to
use & repeller term (see [2]), we are the first to use it in the conic framework.
We test our algorithiun on a problem that arises in crystallography. To demon-

13



strate the difficulty of finding the maximal determinant of an integral matrix,
we recall that identifying the maximal determinant of a {-1, 1} matrix of order
19 is an open problem 17

We believe that the approach described in this paper can be used for solving
the maximal determinant problem with integer variables, when there are no
restrictions to the matrix variable. The main difference between our problem
and its generalization is that the latter one does not require positive definiteness
of the matrix variable. One way to overcome this difficulty is to impose the
positive definite constraint $o the Gram matrix that corresponds to the matrix
variable. Due to the expected difficulties such as additional nonlinear constraints
and/or enlarged size of the problem, we leave resolving those issues for future
research.
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