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Abstract

The following question arises in stochastic programming: how can one ap-
proximate a noisy convex function with a convex quadratic function that is
optimal in some sense. Using several approaches for constructing convex ap-
proximations we present some optimization models yielding convex quadratic
regressions that are optimal approximations in Ly, Lo and Lz norm. Ex-
tensive numerical experiments to investigate the behaviour of the proposed
methods are also performed.

1 Introduction

Let f(x) : R* — R be a convex function whose values can be evaluated only with
some noise. Assume that for given points x;,i = 1,..., N, instead of the function
value f; = f(x),i = 1,..., N, we can compute unbiased estimates, i.e., only the
values ¢; = f; + g; are available, where the random variables e; are completely
independent with E(g;) = 0 and D?*(g;) = ¢%, ¢ = 1,...,N. This relationship
between the function value and its noisy approximation is denoted by f; ~ ;. The
noise in our problems arises because the function values are computed by simulation.
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The main question we consider in this paper is the following: given the values
X;, @i, % = 1,..., N, how can one determine an optimal quadratic approximation d{-)
to the function f(-}, where

d{x) = xTAx+bTx +¢

and A is an n X n symmetric positive definite matrix. In the sequel this problem
will be referred to as the quadratic regression problem.

This problem emerged while one of the authors constructed some numerical solu-
tion procedures, quite successful for solving two-stage problems [3, 5, 4], probabilis-
tic constrained problems, and mixed stochastic programming problems [2]. Prékopa
pointed out that the approximation used in these numerical procedures can be made
convex by semidefinite optimization. Convex approximation also occurs, e.g., in [12],
where the authors approximate convex density functions by convex, piecewise linear
functions. Further, the problem of quadratic regression arises in several statistical
problems, see [13] for some examples. It is also featured as one the applications of
seridefinite optimization in [1], but no numerical experiments are given.)

The paper is structured as follows. In Section 2 we give a short overview of the
method of successive regression approximations as applied to the two-stage problem
of stochastic programming together with a naive approach, used in previous solu-
tion algorithms. In Section 2.1 we present three approaches to solve the quadratic
regression problem, where the distance of the original function f(x) and the approx-
imating function d(x) is optimal in L;, Ly, and Ly-norm, respectively. Extensive
numerical experiments are presented in Section 3.

Throughout this paper we assume that the set Sy = {x;, p;}{*, of points and
noisy function values is available.

2 Stochastic programming and successive regres-
sion approximations

The successive regression approximation (SRA) algorithm for solving stochastic pro-
gramming problems is illustrated here by considering the application of SRA to one
of the basic models of stochastic programming, the two-stage problem. Quadratic
regressions may be very useful in this case. The first stage problem of the two-stage
stochastic programming model has the following form:

min ¢"x+E[Q(x, )]
Ax < b, (St1)
x > 0.



The recourse function 9(x, £) is defined as the optimal value of a linear programming
problem, the so called second stage problem:

Q(x,¢) = min q"y

Tx+ Wy =&, (St2)
y =0

Assume that the distribution function of the random vector ¢ is F((x} and E is its
support. Then the expected recourse function can be given as

Qx) = E(Q(x,£)) = / O(x, £)dF(¢). (2.1)

The function f described in the previous section is replaced now by Q(x). We assume
that only the right hand side vector £ of the second stage problem is random, while
all other quantities (A4, b, ¢, T, W) are deterministic. Furthermore we assume that all
linear programming problems involved can be solved with finife objective function
values (fixed and complete recourse problem). For description of results concerning
this stochastic programming model see |6, 8, 9, 101.

One of the main numerical difficulties in solving a two-stage problem is the
evaluation of the expected recourse function in (2.1). In some nonlinear optimization
algorithms we compute an approximate value of it by a Monte Carlo method [3, 5].

The SRA technique is applied the following way:

1. the computationally hard expected recourse function Q(x) is replaced with a
convex quadratic approximation d(x), which is optimal in some sense for the
given set of points and function values (the quadratic regression problem),

2. the resulting approximate problem is optimized, and

3. an optimal solution of the approximate problem and its “noisy” function value
are attached to the set of points and function values over which the convex
approximation is determined, and the procedure is repeated from the begin-
ning.

So assuming that we already have N points and noisy function values in the set Sx
we look for an approximating function of the form

dN(X) = XTANX + b%x + cn, (2.2)

where Ay is symmetric and positive semidefinite. If we have determined the convex
approximation dy(x), then we are able to formulate Algorithm 2.1, a tentative
successive regression approximation algorithm for solving the two-stage problem.
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Algorithm 2.1 The SRA algorithm for two-stage problems
Input: A set of N points and function values Sy == {x;, ¢;} .
Let k=N
repeat
Compute (by semidefinite optimization, or otherwise) the constants Ay, by, cx
of the function d(x) from Sy.
Replace the original problem (St1) by an approximate one:

min c¥x -+ di(x),
X

Ax < b, (2.3)
x>0,

and denote an optimal solution of this approximate problem by Xp41.
Compute the noisy function value prp1 ~ Q(Xge1), and
add the new point x;,,1 and the function value ¢y, to the set Si:

Ske1 = Sp U {Xpa1, Pri1}-
Set b=k +1

until x; is “good enough”
OQutput: The constants Ag, by, cx of the quadratic approximation function dp(x).

From this algorithm one can see that there are two parts of the quadratic regres-
sion problem. First from the set Sy the values of Ax, by, cn of the initial convex
approximation are to be determined, then in each iteration we have to recompute
the same values over the extended set Sy.i, or use an updating procedure of the
values. In this paper we only consider the first problem.

In the first attempt to solve the quadratic regression problem we simply solved
the unconstrained optimization problem

N

min Y [ — du(x)) (2.4)

AN 1bN O F
=]

for the unknowns Ay,by,cy. The first order necessary conditions of optimality
yielded a large system of linear equations that could be solved. This algorithm
of solving the quadratic regression problem will be called the least-squares (LS)
approach. This method had some serious drawbacks:

e The system may be over or underdetermined. To remedy this a least-squares
approach was used.



e Matrix A is not guaranteed to be positive semidefinite, in particular, if the
points lie on an affine subspace (which is the case in our application, since
we work with feasible solutions of the first stage problem), or if they are ill-
conditioned.

¢ Even if the points are in general position and the function to approximate is
convex, the approximation computed from system (2.4) may not be convex,
see [1, Example 9.1] for an example.

e The presence of noise in the function values is not accounted for.

This experience leads us to force the convexity of the approximating quadratic
function explicitly.

2.1 Semidefinite optimization

The quadratic regression problem can be formulated as the following optimization
problem:

min
Ax0b.c

[0 — (x7 Ax +bTx; + C)]L“ , (2.5)

where ||-|| is some norm and for convenience the subscript N is dropped from co-
efficients of the approximating function. We consider three different norms. In
all of these problems the number of unknowns in A, b and c altogether is M =
n{n+ 1}/2+n+ 1, so for n = 100 this becomes M = 5151.

As in {1], there are three tractable choices for the norm:

2.1.1 L; minimum norm optimal convex approximation
Assuming the absolute value norm, the following problem has to be solved:

N

min Z (9 +97)

i1

1
goim(émx?Axi+bTxi+c)mﬁj"~19{,izl,...,N, (2.6)

9F, 97 >0, i=1,...,N,
Ax 0.

This is a pure semidefinite optimization problem, with 2N nonnegative variables
and N linear equalities.



2.1.2 L. minimum norm optimal convex approximation

If the norm in {2.5) is the maximum distance norm, then the optimal approximation
is a solution of the following problem:

min ¥
1 T T 3
— < ; — -2~xt-AXz-—§-b X +ec)l <9, 1=1,...,N, (2.7)
¥ >0,
Ax 0.
This problem is again pure semidefinite optimization, with 2N linear inequalities
and N nonnegative variables.
2.1.3 L, norm optimal convex approximation

Finally the least squares approximation can be derived as the solution of the prob-
lern:

N
min E 92
i=1

@ — (%X?Axi +blx; + c) =9, t=1,...,N, (2.8)
A0
An equivalent formulation of the previous problem can be given as:
min ¥
N
S
il
i
Wi — (ﬁx?AXi + blx; + c) =0, t=1,...,N, (2.9)
A0,

which is a mixed second-order—semidefinite optimization problem with only one
second-order cone and N linear equalities.

3 Numerical experiments

Some numerical problems have been solved to show the practical usefulness of these
approaches and to test their behaviour under different conditions. All of the tests
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were run on a dual core AMD Turion laptop with 4GB ram, under Windows Vista
(64 bit) using Matlab R2007b (also 64 bit).

3.1 Modelling

The numerical examples were solved with SeDuMi [11], version 1.2, available from
http://sedumi.ie.lehigh.edu. To facilitate modelling we used the modelling
language Yalmip [7] to model the problems with the following lines code:

Avar=sdpvar (n,n);
bvar=sdpvar(n,1);
cvar=sdpvar(1);

F=get (Avar>=0);
0BJ=norm{phi_x~(dot (x,Avar*x)}’+x’*bvar+cvar),p);
options=sdpsettings(’solver’,’sedumi’,’verbose’,0);

sclvesdp (F,0BJ,options);

Recall that n is the dimension of the space and N is the number of points. The value
of p was 1, 2 or co. Yalmip then transforms the problem into the standard input
format used by SeDuMi. This transformation takes relatively little time compared
to the solution of the problem afterwards. We have also tested the simple least
squares approach with iterative refinement for better accuracy.

3.2 'Test sets
The following test cases were generated:

Cube Points are generated in general position. Uniform distribution over the unit-
cube was used.

Ball Points are generated in general position. Uniform distribution over the unit-
ball was used.

Ball-noisy Like the previous example, but a small percentage of the components
of the vectors are zeroed out.

Degenerate The points span a lower dimensional subspace. The dimension of the
subspace is roughly half of the dimension of the space.

Ill-conditioned The points span the full space, but they are ill-conditioned. These
are generated from the degenerate test cases by a small perturbation of the
points.



We started the problem exposition in this paper with applying the SRA method to
the two-stage stochastic programming problem. This iterative technique generally
produces a degenerate set of points, since the points produced during the iteration
procedure are feasible solutions of the first stage, thus if among the inequalities
Ax < b we have some equations, or near to the optimum some conditions are active,
then degeneracy is certain. To counteract this feature during the SHA procedure
we produced points by small perturbations of the feasible points of the first stage,
too. This is why the degenerate and ill-conditioned sets of points are important in
our application. Degenerate sets of points appear in using SRA for probabilistic
and mixed stochastic programming problems as well, because of the same reasons
described above.

The function to approximate is a convex quadratic function in each case. We
used three different functions:

General A randomly generated positive semidefinite quadratic function. It may be
close to being indefinite.

Definite A randomly generated convex quadratic function plus the norm function,
thus this function is always strictly convex.

Deficient A convex, but not strictly convex quadratic function, thus matrix A is
rank-deficient. An optional parameter controls the rank of A.

In all of the cases we have also varied the number of data points and the amount
of noise added to the function values.

3.3 Results
3.3.1 General comments

As expected, the simple linear approximation fails miserably if there are too few
data points. On the other hand, if it works, it is the fastest method.

There is an important observation here. If the linear approximation returns a
non-convex quadratic function, then in the norm-optimization problems the seridef-
initeness constraint will be active (otherwise we could have ignored it), meaning the
function we get will be convex, but not strictly convex, i. e., matrix A will be pos-
itive semidefinite, but not positive definite. Now, due to numerical problems and
rounding inaccuracies, the result we get from an algorithm may be slightly indefi-
nite, the smallest eigenvalue can be around —107°. To counter this we need to use
a constraint such as A > ol with some o > 0 or add a smail regularization term 87
to A to force A to be positive definite.



3.3.2 Solution quality

It is particularly tricky to measure the quality of the solutions. Obviously, if A is not
positive semidefinite, then the approximation failed, but as we explained above, this
may be a normal occurrence. Comparing against the original quadratic function
only makes sense if the approximation is unique, in which case all the methods
would return the same result. The presence of noise in the sample values introduces
another challenge. Also, there is a more philosophical observation here. In practical
applications, it only makes sense to use a convex quadratic approximation if the
function to approximate is (nearly) convex.

The advantage of norm-minimization approaches is that their accuracy can be
controlled. To compensate for this, iterative refinement (3 iterations) was used to
improve the accuracy of the least-squares solution.

For these reasons we focus on the computational behaviour of the algorithms
instead of the solution quality. As we will see, this is a valid approach in our
application.

3.3.3 Solution time

Tables 1 and 2 contain some typical running times for test problems of different
sizes.

n| N| LS| I-norm | 2-norm | inf-norm
2 6 0.001 0.335 0.330 0.307
4 15 0.001 0.346 0.342 0.314
& 45 0.005 0.396 0.389 0.375
16| 153 0.086 1.079 (}.684 0.983
32| 561 4.534 36.031 12.403 28.35h
64 | 2145 253.607 | 2019.720 | 680.395 | 1681.470
70 | 2556 448.088 m 1166.570 m
75 | 2926 652.571 Im 1591.130 m
80 | 3321 938.302 I m m
85 | 3741 || 1902.000 I m m
90 | 4186 || 2623.000 m m In
45 | 4656 || 3879.000 m m m

Table 1: Running times (in seconds) on problems of different sizes, when n is in-
creasing and N is set such that we have just enough points. m derotes “Out of
memory”

As expected, the least-squares approach is the fastest — if it works. Also, its
performance is very predictable, as it reduces to solving a linear system. Exploiting
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[n] N LS | I-norm | 2-norm | inf-norm |
321 561 4.535 1 36.030 | 12.401 25.355
321 1000 5344} 61.986 | 15.812 41.040
32 | 1500 7.705 1 109.679 | 25.110 56.383
32 | 2000 8770 | 102,197 | 36.493 75.811
32 | 2500 8.942 | 290.672 | 42.012 97.306
32 | 3000 § 10.899 | 439.208 | 52.648 | 114.929

Table 2: Running times (in seconds) on problems of different sizes, when n is fixed
and N is increasing.

sparsity in the data is quite immediate. Overall, all four approaches are much less
sensitive to the increase of the number of points, than the increase of the dimension.
Among the norm-optimization approaches the 2-norm minimization behaves better
than the other two. This is probably due to the fact that it results in the smallest
model, as it does not have linear inequalities. This explains both the low memory
requirement and the fast execution.

3.3.4 Problem sizes

It is obvious from the solution times that the approaches differ in what size of
problems they can handle. Moreover, the memory requirements further limit the
size of tractable problems. We have discussed briefly that out of the three norm-
minimization approaches, the 2-norm results in the smallest model and uses the
less memory. This is of course much more than the memory requirement of the
least-squares approach, which can solve problems up to n = 250 on a modern PC.

3.3.5 Datasets

We tested all four methods on all five datasets. We choose n = 10 and N = 66.
The quadratic functions in this experiment were strictly convex. As all the methods
yielded a very good representation error, we measured solution quality in terms of
the convexity of the approximation. As we discussed earlier, interior-point methods
sometimes return slightly indefinite results, which can be countered easily by adding
a small diagonal matrix to A. We accepted a solution if the smallest eigenvalue of
A was not less than —10-% We have also tried other thresholds, ranging from
—107% to ~1072, but it had only a minor effect on the overall percentages, since the
function to approximate was strictly convex. As a comparison, the success rate of
the least-squares approach on the fourth dataset dropped to 17% if we required the
smallest eigenvalue to be nonnegative. Table 3 summarizes the results.
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|  Dataset LS | 1-norm | 2-norm | inf-norm |
Cube 100% 100% 100% 100%
Ball 100% 100% 100% 100%
Ball-noisy 100% | 100% | 100% 100%
Degenerate A% | 100% | 100% 100%
Ill-conditioned || <0.01% | 100% | 100% 100%

Table 3: Success rates for problems from different datasets. The size of the problems
is fixed, n = 10, N = 66. The fourth datasets contains points in a lower dimensional
subspace, while the fifth one is a perturbed version of that. The table is based on
1000 runs.

All four methods are quite reliable if the data points span the whole space and
are well-poised. On the other hand, the least-squares method struggles to yield a
convex approximator if the points are in a lower dimensional space. This is not
surprising, as in that case the best “quadratic” approximation is a linear function,
apart from some rounding error, which may make the approximation indefinite. This
might be circumvented by finding the subspace spanned by the points and applying
the least-squares procedure in that subspace. The ill-conditioned sets, however, pose
a bigger challenge, and the least-squares approximation is rarely convex. This is a
direct consequence of the geometry of the problem.

3.3.6 Different functions

So far all the tests have been run on generic quadratic functions. To better un-
derstand the strengths and weaknesses of the four approaches we tested them with
strictly positive definite and rank-deficient quadratic functions. Once again, we
checked if the smallest eigenvalue of A is greater than —107%. The results are sum-
marized in Table 4.

| Function LS | 1-norm | 2-norm | inf-norm |

General || 100% | 100% | 100% 100%
Definite | 100% | 100% | 100% 100%
Deficient || 97% | 100% 100% 100%

Table 4: Success rates on problems with different functions over points distributed
on the unit ball. The size of the problems is fixed, n = 10, N = 66. The table is
based on 1000 runs.

The points were distributed uniformly over the unit ball. As expected, the rank-
deficient functions posed some challenge to the least-squares method, but overall, it
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performed quite well. We have to add that the least~squares method almost never
returned a convex approximation, some very small eigenvalues were always present,
and in 3% of the cases, some of these eigenvalues were more negative than ~107°.
The generic and the strictly convex quadratic functions were handled without any
difficulty by all the methods.

3.3.7 Noise-tolerance

To test the noise-tolerance of the methods we chose the combination of a strictly
convex quadratic function over a full-dimensional, well-poised dataset. We added
a normally distributed relative noise to the function values. In this experiment we
made sure that the number of data points is greater than what would be needed to
uniquely define a gquadratic function, otherwise a perfect fit could be found for the
perturbed problem. The results are summarized in Table 5.

\ o | LS |lnorm]|2-norm |infnorm |
0.000 | 100% 100% 100% 100%
0.001 § 99.34% | 100% 100% 100%
0.002 || 97.04% | 100% 100% 100%
0.004 || 92.51% | 100% 100% 100%
0.008 || 91.14% | 100% 100% 100%
0.016 || 81.64% | 100% 100% 100%
0.032 || 76.74% | 100% 100% 100%
0.064 || 70.34% | 100% 100% 100%
0.128 || 65.50% | 100% 100% 100%
0.256 || 52.48% | 100% 100% 100%

Table 5: Success rates for problems with added noise. The size of the problems is
fixed, n = 3, N = 15. The last row represents a 25% noise/signal ratio. The table
is based on 1000 runs.

As the noise increases, the best quadratic approximator to the perturbed problem
is becoming nonconvex, thus the least-squares method will struggle to find a convex
approximation. The norm-minimization methods do not exhibit this problem.

As a second test, we looked at the noise-filtering effect of the methods. In
other words, as the noise is increasing, how far the approximation will be from the
true coefficients of the quadratic function. We measured the distance in 2-norm,
and consequently used only the 2-norm minimization approach. The results are in
Table 6.

Only the instances where the minimum eigenvalue of A was greater than —10~°
were included in the calculations. We can see that the 2-norm minimization has
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c [ LS | 2-norm |
0.000 | 6.2443 x 10" | 6.4069 x 10~
0.001 || 1.0687 x 10~2 | 1.0626 x 1072
0.002 || 2.1039 x 1072 | 2.1193 x 102
0.004 || 4.0060 x 102 | 4.0791 x 102
0.008 | 8.2280 x 1072 | 8.1017 x 10~?
0.016 || 1.5711 x 10™Y | 1.5625 x 10™*
0.032 | 3.3460 x 10~ | 3.3080 x 1072
0.064 | 6.2072 x 10~ | 5.9699 x 107?
0.128 || 1.2723 x 10° | 1.2312 x 10°
0.256 | 2.3891 x 10° | 2.2555 x 10°

Table 6: The noise-filtering effect of the methods. The difference between the true
coefficients and the approximations to the noisy problems, measured in 2-norm. The
table is based on 1000 runs.

a slightly better noise-filtering effect, even though we did not use any regulariza-
tion. The advantage becomes more pronounced as the noise increases. We can also
conclude (see the first row) that the least-squares approach achieves slightly better
accuracy in recovering the quadratic function for the unperturbed problem.

4 Conclusions

As we can see, the least-squares approximation works well only if the data points are
well-poised, the quadratic function is strictly convex and the noise is fairly small.
Problems arising from our application rarely fall into this category, as they are
numerically degenerate and may have too much noise in them. In these cases the
convexity of the approximation has to be enforced explicitly using one of the three
raethods discussed in this paper.

Our numerical experiments indicate that the most efficient method in terms of
solution time and memory usage is the Lo-norm approximation, which leads to a
mixed second-order—semidefinite optimization problem. Our models are solvable on
a modern computer for up to N = 3000 points in an n = 50 dimensional space,
which are practically useful problem sizes.
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