 Industrial and
Systerns Enginesring

Impact of Improved Forecasting on Operations

S. David Wu
Lehigh University

Mehmet O. Atan
Lehigh University

Report: 10T-005



Impact of Improved Forecasting on Operations

Mehmet O. Atan®S. David Wu'

Abstract

In this report, we aim to establish high-level tradeoffs between forecast accuracy and opera-
tional costs. We model a high-tech factory to investigate the optimal operational strategies that
should be employed under diverse scenarios of capacity and demand realizations. We derive the
relationship between forecast variance aned operational costs in closed form and show that ex-
pected operational costs increase with the increase of forecast variance. Findings suggest that
variance reduction techniques should be used in forecesting to obtain operational cost savings;
especially when cost parameters for supply overage and underage are higher,

1 Imtroduction

The volatility observed in the high-tech markets such as semiconductors often leads to various op-
erational difficulties. In existence of long lead-times and frequently changing demand signals, it is
challenging to maintain a prompt product supply. Avoiding shortages during ramp-up and matu-
rity stages of a product’s lifecycle is crucial to sustain a desired rate of adoption amongst potential
customers. Considering the expensive capacity costs, a satisfactory return on investment can only
be obtained by high utilization of facilities for a long period of time throughout the lifecycle and
by exploiting market sales to its full potential. Then again, over-production to prevent backorders
is also risky since (1) excess inventories diminish profits, and (2} re-allocation of this expensive ca-
pacity considering other critical products would have been beneficial. Consequently, technological
forecasting is critical to mitigate the risks instigated in these volatile markets.

To maintain competitiveness in high-tech markets, companies should adapt to fast advancing
technology, and continucusly deliver state-of-the-art products. Unfortunately, these efforts translate
to substantial research and development costs. In addition, manufacturing resources are extremely
expensive to build, and become quickly obsolete as new technology generations are introduced.

Therefore, efficient planning and execution of operations is key to sustaining the profitability.

*Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania, 18015,
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TP.C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, 18013,
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One of the important operational decisions of a bigh-tech manufacturer is the supply rate. Inac-
curate supply planning usually vields to both loss of revenues and significant increases in operational
costs. Demand forecast is the primary tool that a supply planner employs to determine the optimal
supply rate and accordingly build adequate production resources. However, there is always some
uncertainty inherent in these forecasts. Therefore, instead of using point forecasts, ranges of demand
scenarios can be considered to portray the uncertainty in a better way. Apparently, the narrower the
range of demand scenarios is, the easier the supply planner’s job should be. In the extreme case, if
demand was deterministic, supply planning would be trivial. Consequently, smaller forecast variance
is expected to lead to more efficient planning of supply.

Fortunately, to reduce the forecast variance, researchers have introduced many approaches in-
cluding but not limited to use of leading indicators, forecast combinations, etc. In this study, we
show that, independent of the approach that is taken to achieve, a reduction in forecast variance
yields to direct operational cost savings. The impact of lower forecast variance is amplified when
cost parameters are greater. We presurne that the benefit can only notably increase if we move from
a single product factory to a multi-product, mulfi-generation manufacturing model.

In the next section, we review the relevant high-tech forecasting and manufacturing literature.
In Section 3, we describe the particular high-tech manufacturing environment we deal with, model
the factory, and discuss optimal supply policies. Next, in Section 4, we demonstrate the impact of

forecast reduction on operational costs, which is followed by concluding remarks in Section 5.

2 Literature Review

Rapid innovation processes, expensive resources, and market competition are important characteris-
tics of high-tech industry. Manufacturers in this industry suffer from difficult capacity management
problems triggered by volatile customer demand, products with short lifecycles and frequent prod-
uct/technology transitions. Therefore, the capability of forecasting future market potential and rate
of adoption has made technology diffusion models a popular research topic.

Demand lifecycle for a technological product characteristically follows an S-shaped profile. Af-
ter market introduction, rate of product adoption goes through stages of ramp-up, maturity and
ramp-down, which should be sustained by uninterrupted supply for maximum sales. To character-
ize product demand lifecycles, a significant portion of the forecasting literature employ technology

diffusion models. Meade and Islam {1998) and Kumar and Kumar (1992) provide extensive surveys



of diffusion models that have been proposed by researchers to be used for technological forecasting.
These models differ in the percentage of adoption achieved when the peak diffusion rate is reached
as well as the steepness of growth and decline of the diffusion rate.

The most well-known, widely used and extended diffusion model is introduced by Bass (1969).
Bass model hypothesizes that potential adopters of a new technology consists of two groups. In-
novators are influenced by mass media and boost the initial demand, while imitators count on
word-of-mouth and drive the later demand. Innovation and hmitation effects are represented by two
separate parameters that together determine the shape of the model. Bass model was first tested on
consumer durable goods, and provided accurate predictions on timing and magnitude of peak sales.
Since then, this model has been revised to consider additional features of technology diffusion such
as pricing and advertisement, and used for diffusion forecasting in various markets including but not
limited to retail, education, pharmaceutics, high-tech and agriculture (Mahajan et al., 2001).

Although individual diffusion models have been successful in predicting demand for a wide va-
riety of produets in many industries mentioned above, they fail to provide accurate estimations for
high-tech demand of the recent years. Significant volatility in high-tech markets’ demand has encour-
aged researchers to develop more complex forecasting models, which focus on reducing the forecast
variability through use of advanced demand signals called leading indicators and combination of
multiple models’ intelligence. Wu et al. (2006) use several diffusion models and demand patterns
of leading indicator products to generate accurate forecasts in a custom semiconductor manufactur-
ing setting. Aytac and Wu (2008) present a theoretical demand characterization framework that
employs a Bayesian updating procedure to systematically reduce forecast variation. In Wu et al.
(2010), we use various dynamic market information as leading indicator of future microprocessor
demand in a semiconductor manufacturer. The implementation results in reduced forecasting errors
and forecasting effort, as well as significant cost savings.

To illustrate the impact of improved forecast accuracy (through reduced forecast variance), we
model a capacitated production system and investigate the relationship between operational costs
and supply policies that rely on the demand forecast. Since building the necessary manufacturing
resources takes significant time, high-tech companies have to rely on inventories for unaccounted
demand overages. Furthermore, underutilization of preduction capacity is not an option until well
into the maturity of the demand because the resources are too expensive to build. Consequently, the

planner has to balance the risks of having too little and too much manufacturing capacity.



Diffusion of a new technology under supply constraints has been an interesting research topic.
This literature consider the possibility that a manufacturer may not be able to satisfy customer
demand on time, especially if the product becomes popular very quickly as in the case of video game
consoles or high-tech mobile phones. Jain et al. {1991) consider supply constraints when the first
time the telephone technology was introduced. They assume that customers who do not get the
product wait in a queue until they are satisfied. Authors modify the Bass model to predict how
the diffusion pattern changes in existence of supply constraints. More recently, Ho et al. (2002)
present a make-to-stock model that a firm can build up inventory before market introduction to
satisfy customer demand. They decide on optimal capacity size, timing and inventory build-up using
a modified Bass model. This study shows that although delaying market introduction time may be
optimal, it is never optimal to delay satisfying the demand. Nevertheless, iﬁ a similar study, Kumar
and Swaminathan (2003) claim that fulfilling the demand to the maximal possible amount is not
always optimal. They introduce a heuristic, which delays demand filling to build up an inventory’
that prevents lost sales once selling is resumed.

In addition to demand, managing supply is also challenging in high-tech manufacturing such
as semiconductor industry. High-tech production systems usually operate at high utilization for
economic justification of costly resources. Multiple products competing for resources and a reen-
trant material flow that cycles through several bottleneck operations complicates the manufacturing
environment significantly. Consequently, realistic and detailed operational planning requires a com-
bination of complex simulation and mathematical programming models (Hung and Leachman, 1996).

Although we recognize the complexity of the high-tech manufacturing, our aim is not making
detailed operational decisions. We want to demonstrate the impact of efficient demand management
on high-tech supply. For this purpose we use a simpler yet sophisticated enough factory model. High-
tech manufacturing is fundamentally a queuing system that involves very high resource utilization.
Therefore, assumption of constant, exogenous production lead times would not be a realistic repre-
sentation considering the fact that lead times increase nonlinearly with the increase in utilization
(Hopp and Spearman, 2001). We incorporate load-dependent lead times into the model to obtain
an accurate congestion effect. Graves (1986) was first to present clearing functions that relate the
expected output of a manufacturing system to the expected work-in-progress inventory level over
a given period. Several different clearing functions have been proposed in literature. A simulation

study can be useful to determine the clearing function that best captures the specific system dynam-



ics (Orcun et al., 2006). To make detailed operational decisions, actual parameter values of clearing
functions are essential and can be estimated through simulation (Asmundsson et al., 2006). In our
model we use nonlinear saturating clearing functions, which were introduced by Karmarkar (1989)
and Srinivasen et al. (1988).

In the following sections we will briefly introduce the demand and supply models that we employ.

to investigate the impact of improved forecasting on operational costs.

3 Factory/Operations Analysis
3.1 The Factory Model

High-tech manufacturing such as semiconductors has very complex operational dynamics that is
notoriously challenging to model. There is an extensive literature focusing on realistic and de-
tailed modeling of such environment so that it is possible to make detailed operational decisions
{c.f.,(Asmundsson et al., 2006), {Ozcun et al., 2006)). Such model often involves complex stochastic
analysis and/or discrete simulation that attempt to capture the interconnection of key bottleneck
operations and reentrant flow of material, which is further complicated by the interaction of multiple
products competing for resources. The purpose of our factory/operational analysis is not intended
for operational decision making. Rather, we are interested in higher level trade-offs that are relevant
from a supply-demand analysis perspective, e.g., how does improvement in forecast accuracy affects
operational efficiency? Can we gquantify such impact in some way? In the following, we will describe
a factory model that is streamlined to capture the essence of trade-off we need for analysis at this
level, which is much simpler than a factory model used for detailed operational planning. In partic-
ular, we are interested in deriving clean theoretical insights that can be offered from straightforward
closed-form relationships.

We describe a generalized factory model, which can be, but not limited to a semiconductor
fabrication plant (fab). In this factory, overall capacity is a long-range planning activity that considers
expected technology advancement over the product lifecycle and is consistent with the company’s
technology release policy. First, we will assume that factory capacity is given and represents the
maximum possible output of the factory.

The factory is modeled to consider the congestion caused by the workload, which significantly
affects production lead times. A clearing function defines the relationship between the WIP level

and expected output rate for a factory. In our case, this relationship is nonlinear, and given by a



Concave Saturating Clearing Function (CSCF), as suggested by Karmarkar (1989):

C- W
§u= ks,
W, + K
where S; is the output level in period ¢, while W, denotes the WIP level during the same period. K
is the curvature parameter and C is the capacity, which are constant for the factory. This equation
captures the fact that the output level increases with WIP but at a decreasing rate since higher
utilization causes congestion in the factory (Asmundsson et al., 2006; Orcun et al., 2006). Typical

relationship between WIP, output rate, and capacity suggested by a CSCF is given in Figure 1.
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Figure 1: Output rate vs WIP

In Figure 2, we illustrate the interaction between the flow of material (thick arrows) and the
flow of information {thin arrows) in high-tech demand/supply model. The material flow begins with
raw material (e.g., wafer starts) relessing into the factory based on a certain inventory/production
policy, which produce output at a rate characterized by the CSCF; the factory output provides the
“supply” (S:) into the finished goods inventory, which in turn satisfies customer demands. The
information flow indicates that demand forecast, together with WIP and finished goods inventory
ievels, provide the basis for the inventory/production policy that release raw materials into the
factory. The fgure captures the basic relationship between the demand signal {demand forecast
derived from customer needs that trigger the production), the supply {output from the factory
as result of production), and the demand (the finished goods inventory delivered to the customer
to satisfy demand). This conceptual view helps us to link the demand/forecast analysis with the
factory /operations analysis. Note that the terms supply and demand are defined from the customer’s
perspective; when considering the factory perspective, it is more convenient to think of supply as

factory output. We will make this point clear throughout the analysis.
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Figure 2: Demand/Production/Inventory Model

3.2 Matching Supply and Demand

To streamline our analysis, we will first establish a few conditions, focusing on the scenarios most
relevant to the industry setting under investigation. We will focus our attention on a single product,
since this provides the most straightforward connection between the factory and the demand/forecast
analysis. Once the production starts, the following operational policies are employed: (1) Rununing
the factory at full capacity, and (2} keeping the output rate constant during ramp-up and maturity.
These are policies common in the semiconductor industry, because maintaining a high utilization
is important to obtain a satisfying return on investment, while maintaining a steady output rate
only requires a steady flow of wafer starts into the fab, making it easier to manage the nonlinear
relationship between WIP and output. Also, avoiding backorders is crucial during the phases of
ramp-up and maturity. Given the above policy, the factory will operate at the maximum output
level (i.e., maximum supply S for the customer).

In the following, we investigate strategies that match the supply levels § with respect to cus-
tomer’s demand diffusion curve. Note that the analysis is applicable to any diffusion model, including
combined diffusion curves. The Bass model is used as an example throughout the section to demon-
strate that closed form solutions can be obtained.

Given the forecast for the diffusion of the new product ahead of its planned market introduction
time, an optimal supply policy can be adopted while taking the supply capacity and preproduction
option into account. The following analysis investigates the optimal supply policies under various
scenarios that are classified based on whether (1) diffusion (sales) of the product is constfained by

the supply, and (2) market introduction time is flexible.



3.2.1 Supply Constrained Diffusion:

When maximuin supply rate is less than the maximum rate of demand, the diffusion process is supply
constrained {Figure 3). In this scenario, peak demand rates that are faced during the maturity phase

of the diffusion process can only be met on time by the use of inventory buffers.
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Figure 3: Supply Constrained Diffusion

As shown in the figure, supply and demand curves intersect twice, at time points ¢; and {2. We
assume that £y denotes the end of maturity phase, and we focus our attention to diffusion until this
point. Let cumulative adoption by time ¢ is denoted by a technology diffusion model F (t). Then,
we can find closed form expressions for £1 and f2 in terms of diffusion parameters by solving the

equation:

where f(£) is the rate of demand diffusion at time ¢ (f(t) = dF(¢)/dt) and M is market potential.

For example, if demand follows the Bass model, then:

Sq2
{p+q)

o (; Mipo+0)? =2 SpaT A/ M2t )i -4 M(p(p+q))25m)
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The analysis of optimal supply strategy depends on whether the extra production into buffers during
(0,t)) is sufficient to prevent backorders later in maturity. We compare the production into inventory

(denoted by area A) and the excess of demand over supply (denoted by area B) to distinguish between



the possible cases, where they are calculated respectively as:

A=8-t1—M-F(t1), and
B=M:(F(tz) ~ F(t1)) ~ S (t2 1)

Case 1: A>B (M - F{ty) < § - ta)

When maximum output rate is realized starting with the planned introduction time (¢, = 0), the
inventory buffer established during ramp-up is sufficient to prevent backorders during maturity. We
recognize that maintaining the maximum output rate results in unnecessary inventory holding costs,
while decreasing the rate would be against production policy, which enforces maximum utilization
of costly fabrication facilities. Although production capacity cannot be expanded, we assume that
it is poésible to decrease it before the production starts by allocating some of the capacity to be
utilized for other purposes. In this way, inventory holding costs are reduced as well as efficient use
of production capacity ~which was clearly overestimated- is provided. We assume that capacity cost
is incurred long before start of the production, thus, there is no savings in terms of production costs
when the capacity is decreased. Consequently, the optimal supply policy is implied by the magnitude
of the capacity cut that minimizes inventory holding costs. Notice that according to CSCF, when
capacity is reduced by a certain ratio, output rate also decreases by the same ratio if WIP and

material release into factory are not altered.

Proposition 1. The optimal supply strotegy is to cut the production capacity at the beginning of
diffusion so that A = B. .

Proof. Without a capacity cut, production is maintained at maximum rate () until decreasing
demand rate hits S on tp. At this time, there are (A — B) units left in finished goods inventory. In
Figure 4, t. denotes the time point up to which the demand can be satisfied without backorders by
use of leftover inventory while producing at a lower rate, S (via reducing capacity).

Note that inventory level is zero at t,, and there is a unique pair S, £, that satisfies this condition.
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Figure 4: Case 1: A> B

To find 8, te, numerically solve:

M F(t) =58 ty+ (te~t3) - §

M'f(te):g

The maximum capacity that can be cut at the beginning of the diffusion is constrained by the
“pno backorders” policy, and provided by the relationship A = B (M -F(tgmm) = S’mm-tgmm). Notice
that t» changes when the rate of supply is different. Besides these two extreme strategies that employ
either maximum or no rate change, we should also consider other scenarios that differ in magnitude

of the rate reduction. To achieve a fair comparison of strategies, we consider that the supply policies

are run for the same period of time, until ¢, with zero leftover inventory.

Casea: A>B, nocut Casel: A>B,cutto$ i Casec: A=B, max cut

t, t
Figure 5: Cases of capacity adjustment
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We illustrate these cases that differ in the amount of initial capacity cut in Figure 5. Case a
represents no cut, Case ¢ refers to the maximum cut (down to Sminy and Case b illustrates a cut
between the two extremes (S™" < & < §). In all three cases, the capacity is reduced to output 5
before reaching t.. The timing of this reduction is such that there are no inventories left at .. There

are also no backorders in any of the cases.

4 Cumulative Demand and Supply
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Figure 6: Cumulative supply corresponding to all scenarios

Capacity costs are incurred when they are built, so they are not relevant at this point. As
illustrated in the cumulative chart {Figure 6), the inventory holding costs are the lowest when
A = B in Case ¢, since it is the closest a supply curve can be to the demand profile without having
backorders. Consequently, the optimal strategy is to reduce the initial capacity as much as possible
without causing backorders. We can explicitly describe the required smount of capacity cut (Solve

M - F(ty) = § - t3), and numerical solutions are easy to obtain.

Case 2: B>A (M- F(tz) > S - tg)

When sales start on the planned market introduction time (¢, = 0), the excess production (A) in
(0,t1) is not sufficient to fill excess demand (B) during maturity. To prevent backorders, production

should start earlier than planned since capacity expansion is not possible (Figure 7).

Proposition 2. The optimal supply policy is to start production £, = ﬁﬂ%m periods before the

start of diffusion.
Proof. Latest production start time without backorders satisfies A’ = B, where A’ is the production

11
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Figure 7: Case 2: Preproduction

into inveﬁtory in (—tp, t1):
(tp+tg) °S=M-F(tg)

After rearranging the terms, we get &, = M—Iﬂ%ﬂ Note that, if production starts any earlier

than —t,, unnecessary inventory holding costs would have incurred.
It is also possible to satisfy demand on time if production starts even earlier, outputting at a
lower supply rate. However, i is not the optimal strategy since inventory costs would be higher. We

investigate this scenario in Proposition 3, while considering the limited preproduction case.
Next, we consider some special cases that can be faced under this scenario.

i. Spectal Case 1: Limited preproduction (i, < z)

Under this scenario, preproduction cannot start earlier than a certain time point —z. Remember

that preproduction is necessary to meet demand on time.

Special Case 1.1: A’ > B (M -F(t2) < S+ (z+t2))

If preproduction starts earlier than 2 periods before the start of diffusion while running at the
initial supply rate S, there will be inventories left at the end of maturity, since 4’ > B (Figure
8a). It is possible to prevent inventories at t2 while avoiding backorders by reducing the production

capacity, by delaying the start of production, or by using a combination of the two.
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Proposition 3. Keeping the initial supply level constent and delaying start of production until

A" = B is the optimal strategy.

Proof. Figure 8b and Figure 8c illustrate pure strategies of reduced capacity and delaying produe-
tion, respectively, until A’ = B. Figure 9 clearly illustrates using cumulative supply demand curves
that delaying production provides lower inventories. Note that a strategy, which uses a combination
of production delay and capacity decrease corresponds to a cumulative supply curve in between the
curves for the two pure strategies, since the production start time and slope of the cumulative supply

line would be between the values of those for the pure strategies.

Cumulative Demand and Supply

Figure 9: Special Case 1.1 - Cumulative chart

Special Case 1.2: B > A (M- F(t2) > 8- (x+t2))

In this case, it is impossible to avoid backorders even if the full capacity production starts z
periods earlier than start of the diffusion, since A’ < B (Figure 10)

To fill the backorders caused by the difference B — A’, production continues at full capacity even
after #. Since the backorder cost is significant, filling backorders as quickly as possible is the optimal

policy. Factory outputs at full capacity until either all backorder during ramp-up is met (A'+C'=B)

13
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Figure 10: Special Case 1.2

or WIP is equal to the remaining demand potential plus backorders. If the latter is reached first,

material release into factory should be stopped.

. Special Case 2: Initially constrained diffusion (S < f(0})

Under this scenario, supply rate is less than the demand rate throughout ramp-up and maturity.
Therefore, preproduction is required to meet demand on time. The optimal strategy is equivalent
to that in Case 2. If preproduction cannot start early enough to build sufficient inventory to meet
demand on time, the optimal strategy is trivial and similar to the Special Case 1.2, in which the

supply tries to catch up with the backorders.
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Figure 11: Special Case 2

Next, we briefly discuss the case of unconstrained diffusion.
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3.2.2 Unconstrained Diffusion:

In this case, demand realization is extremely lower than the rate that capacity is planned for. Best
option is to allocate some of this expensive capacity for other purposes and continue as a constrained
diffusion case. Problem is similar to supply constrained Cage 2, in which the optimal strategy that

minimizes inventory holding costs is to decrease the supply level at time zero to obtain A = B.

Figure 12: Unconstrained Diffusion

After analyzing the optimal supply strategies during ramp-up and maturity, we now look into

the end of life phase and corresponding optimal ramp-down strategies.
3.2.3 Ramp-Down Strategy

During the end of life phase, backorders and inventories are not considered significant costs. There-
fore, a more dynamic, short-term planning activity that is based on a period-to-period demand
forecasts is emploved. As the demand rate decreases, the supply level can be manipulated by de-
creasing the WIP level. Under this strategy, we can determine the amount of required wafer starts

in closed form using the following steps:
1. In period £, required supply level is equal to the demand in that period.
S;=M (F(t) - F(t —1))

2. WIP level that would provide the required output can be determined by CSCF:

K-S
Wt“’c-st

3. Then, required amount of releases (R) into factory is found by using the balance equation:

Ry =Wy W1+ 85
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To summarize, the release into factory in period t — 1 is given by:

_KMA(FO-PE-1) L C-Wi

Re-1 = C—M-(F{t)-F{t-1)) Wi+ K

where W;_; is WIP level at the beginning of period ¢ — 1 and known to the planner.

For instance, if Bass model is used to characterize the demand process, W; is derived to be the
following term:

WMp (mqe“"(.p’i“’?)(t"""l) -+ e”’“‘(p'i"‘?)tp e qe‘(?'!'Q)t — e"(p’*‘g}(t"l)p) K

. _ _ Mp(_qg—(p+q)(t—1}+g—(p+q)tp+qe—(ﬂ+4)t_e—{p+q)(!-—1)p)
(p + ge (P‘?‘Q)f) (p + ge (p+a)(t 1)) (C + (p+qe"(1’+°}‘)(p+qe—(1"*"‘1')“"1))

‘When remaining market potential is equal to WIP level at any time, the material release into
factory stops, and WIP is output according to CSCF until all demand is satisfied in order to prevent
leftover items at the end of diffusion. The optimal supply strategies that we presented will be useful

in the next section, which demonstrates the impact of better forecasts on operational efficiency.

4 Impact of Forecasting on Operations

In this section, we aim to illustrate that reduction of forecast variance would yield to decrease of
operational costs in the factory. Recall that we assume an operating policy that avoids backorders
during ramp-up and maturity while producing at full capacity in a steady rate. Therefore, for any
given demand diffusion profile, there is a corresponding optimal supply level that satisfies this policy.

Although point estimates are used widely in practice, accuracy of such forecasts is rarely perfect
when obtained using diffusion models with inherent uncertainty. The uncertainty that originates from
the nonlinearity of model fitting and the errors in parameter estimation is expected to be passed on
10 the projection of the lifecycle model. Therefore, representing forecasts in terms of ranges instead
of a single point has been useful for planning purposes.

The uncertainty in the estimate of a future realization of the random variable is described by
a prediction interval. Meade and Islam (1995) provide a detailed discussion about determining the
prediction intervals, and introduce several methods to estimate the forecast error such as bootstrap-

ping, explicit density, and approximated variance approaches. At time T, a 100 {1 — a) % prediction
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interval for T-periods-ahead demand, X (T + 7), provided by diffusion model k is given as:
X (T +7|0(T)) & koo - O

where kq /s is the random variable that describes the forecast error. The prediction intervals for the

forecast obtained by a diffusion model are illustrated in Figure 13.
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Figure 13: Prediction intervals

Since there is an uncertainty associated with future demand realizations {Figure 13), the forecast
can take any shape between the prediction limits rather than having a single set of values. The

supply level should account for all possible demand realizations between these limits.
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Figure 14: Demand realization and supply plan
In Figure 14, we illustrate the range of optimal supply levels corresponding to possible realizations
of demand diffusion between the prediction limits. The lowest and highest possible supply levels are

denoted by S, and Sk, respectively. The planner’s problem is to minimize the operational costs by

determining the supply level Y, given the range of possible demand diffusion realizations.
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We will use cumulative demand and supply figures to reduce the computational difficulties caused
by noncumulative transcendental diffusion functions. Notice that for each demand scenario {a par-
ticular diffusion profile}, there is a corresponding implied optimal supply rate, denoted by §*. We
assume that S* is Uniformly distributed in {S),, Sh:), between the lowest and highest possible optimal

supply levels, according to the prediction interval.
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Figure 15: Supply shortage

Consequently, the planner should build a supply rate Y between (S, Sk;). For any diffusion
realization that requires a supply level lower than ¥ (§ < V), the planner incurs an overage cost.
This can be considered as the cost of underutilization of expensive equipment or opportunity cost.
On the other hand, if diffusion realization requires a higher supply level than Y {§ > Y}, part of
the customer demand is backordered or lost; amount of which is equal to the preproduction quantity
that would have avoided backorders (shaded area in Figure 15). The underage is penalized per unit

demand not satisfied on time, exact quantity of which can be computed using the following formula:
Yo (tp+ 6a(Y)) = 8- £3(8,Y) + Y - (t2(Y) ~ 13(5, 7))

where #3(5,Y} is the time point for optimal supply case that rate S should be reduced to rate ¥ for

the inventory to be zero at t2(Y). Then, the backorder quantity is calculated as:
Yoty =(5-Y) (S, Y)

Next, we show that tighter prediction intervals that are provided by lower forecast variance lead

to less operational costs,

Proposition 4. Exzpected operational costs decrease as forecast variance decreases (i.e., the predic-

tion intervals get tighter, Sp; — Sio decreases).
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Proof. The expected operational costs can be written as follows:

e [Twves 2 asic / TSV (8 Y) a8,
. 8+ e—d 8 4+ C, - — V) - t3(S,
° Szo( ) Shi = Sto Y s ) Shi ~ Sto

where C, and C,, are overage and underage costs, respectively. The first term represents the cost of
capacity that goes unused. The second term is the cost of backorders in case of a supply shortage.
Although €3(8,Y) is variable with respect to the value of ¥, the change in its value is insignificant
inside the prediction intervals when the diffusion curve is steep. Therefore, approximation of this
term as a constant should not have any implications on our analysis. Let Cy, = Cy - 3(S,Y). Then,

the expected total cost is:

____(Z___
- Slo

Co

. (Y?/2 — Sp,Y + S5 /2) +
[

(S2,/2 — SpiY + Y?2/2) (1)

The optimal supply rate is found after differentiating the above term with respect to Y, than solving

it for zero:
c, Cu
D - (Y Slo) Shz Slo (Y Sh’b) Sh’!, SI,O
w SzoC - Smc
Y Cot Cu

Plugging Y™ in equation 1, we get the expected total cost:

We may conclude that the expected total operating cost increases proportionally to the increase
in the difference Sk; ~ Sp,. This difference decreases as forecast variance decreases and prediction
intervals get tighter. To sum up, a decrease in prediction intervals via methods that reduce forecast
variance translates into a direct decrease in expected operational costs. More importantly, as the

costs C, and C,, increase, the impact of forecast variance to operating cost will sharply increase.
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5 Conclusions

In this chapter, we modeled the factory of a high-tech manufacturer to gain theoretical insights on
the relationship between supply and demand. In particular, we investigated the optimal high-level
operational strategies that are employed under diverse scenarios of capacity and demand realizations.
Later, we used these strategies to illustrate the impact of forecasting activities on operational costs.

We derive the relationship between forecast variance and operational costs in closed form. We
show that expected operational costs increase with the increase of forecast variance. In addition,
the impact of forecast variance is amplified when supply overage and underage cost parameters are
higher. Consequently, the variance reduction methods should be used in forecasting process since
they lead to operational cost savings.

In our analysis, we considered a single product factory and simple operational strategies to
achieve high-level tradeofls between forecast accuracy and operational costs. However, in reality,
high-tech manufacturing involves multiple products being manufactured using common resources, as
well as simultaneous ramp-up and ramp-down of different product generations. In such environment,
operational impact of one product’s forecast affects operational decisions regarding other products
that share the production resources. Understanding the relationship between systemwide operational
costs and individual products’ forecasts’ accuracy is an intriguing research direction.

Although it is a significantly difficult task, considering a multi product factory model should lead
to more realistic supply strategies with short term volatilities. Notice that in this case, the clearing
function deals with a WIP consisting of multiple product types, each at a different point in their
demand lifecycles. In addition, manufacturing lead time of a certain product type depends also on
the amount of other product types in process. Investigating the demand-supply tradeoffs in such a

more comprehensive setting should be a challenging yet promising research direction.

References

Asmundsson, J., R. L. Rardin, R. Uszsoy. 2006. Tractable nonlinear production planning models for
semiconductor wafer fabrication facilities. IEEE Transactions on Semiconductor Manufacturing

19(1) 95-111.

Aytac, B., §. D. Wu. 2008. Characterization of demand for short-lifecycle technology products. Tech.
rep., ISE Dept. Lehigh University, Bethlehem, PA.

20



Bass, F. M. 1869. A new product growth model for consumer durables. Management Science 15{5)
215-227.

Graves, 8. C. 1986. A tactical planning model for a job shop. Operations Research 34(4) 522-533.

Ho, T. H., S. Savin, C. Terwiesch. 2002. Managing Demand and Sales Dynamics in New Product
Diffusion Under Supply Constraint. Management Science 48(2) 187-206.

Hopp, W. J,, M. L. Spearman. 2001. Factory Physics. Irwin.

Hung, Y.-F., R. C. Leachman. 1996. A production planning methodology for semiconductor manu-
facturing based on iterative simulation and linear programming calculations. IEEE Transactions

on Semiconductor Manufacturing 9(2) 257-269.

Jain, D., V. Mahajan, E. Muller. 1991. Innovation diffusion in the presence of supply restrictions.

Marketing Science 10(1) 83-90.

Karmarkar, U. S. 1989, Capacity loading and release planning with work-in-progress (WIP) and

leadtimes. Journal of Manufacturing and Operations Management 2 105-123.

Kumar, 8., J. M. Swaminathan. 2003. Diffusion of Innovations under Supply Constraints. Operations

Research 51(6) 866-879.

Kumear, U., V. Kumar. 1992. Technological innovation diffusion: The proliferation of substitution

models and easing the user’s dilemma. [EFE T. Eng. Manage. 39(2) 158-168.

Mahajan, V., E. Muller, F. M. Bass. 2001, New-product diffusion meodels: A review and directions
for research. Journaol of Maorketing 54 1-26.

Meade, N., T. Islam. 1995. Prediction intervals for growth curve forecasts. Journal of Forecasting

14 413-430.

Meade, N., T. Islam. 1998. Technological forecasting ~ Model selection, model stability, and com-
bining models. Management Seience 44(8) 1115-1130.

Orcun, 8., R. Uzsoy, K. Kempf. 2006. Using system dynamics simulations to compare capacity models
for production planning. WSC °06: Proceedings of the 38th conference on Winter simulation.

Winter Simulation Conference, 1855-1862.

21



Srinivasan, A., M. Carey, T. E. Morton. 1988. Resource pricing and aggregate scheduling in manu-

facturing systems. GSIA working papers, Carnegie Mellon University, Tepper School of Business.

Wu, 8. D, B. Aytac, R. T. Berger, C. A. Armbruster. 2006. Managing Short-Lifecycle Technology
Products for Agere Systems. Interfaces 36{3) 234-247.

Wu, 8. D., K. G. Kempf, M. O. Atan, B. Aytac, A. Mishra, S. A. Shirodkar. 2010. Extending bass

for improved forecasting at Intel. To appear in Intfer faces.

22



