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Abstract In this paper we highlipht the relationships between multiobjective optimization
and parametric optimization that is used to solve such problems. Solution of a multiobjec-
tive problem is the set of Pareio efficient points, known in the literature as Pareto efficient
frontier or Pareto front. Pareto points ¢an be obtained by using either weighting the ob-
jectives or by g-constrained (hierarchical) method for solving multiobjective optimization
models. Using those methods we can fornwulate them as parametric optimization problems
and compute their efficient solution set numerically. We present a methodology for conic
quadratic optimization that aliows tracing the Pareto efficient frontier without discretization
of the objective space and without solving the corresponding optimization problem at each
discretization point,

Keywords Multiobjective optimization - Payametric optimization - Conic quadratic
optimization - Pareto front - Efficient frontier - Financial optimization

1 Introduction

Multicriteria decision making or multicriteria analysis is a complex process of finding the
best compromise among alternative decisions. A decision maker first describes the problem
based on relevant assumptions about the real world problem. Afier that, altermmative decisions
are generated and evaluated. Optimization serves as a tool for solving multicriteria analy-
sis problems when those problems are formulated as multiohjective optimization problems.
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Classical meaning of the word “optimization” refers to single-objective optimization, which
is & technique used for searching extremum of a fuaction. This term generally refers to math-
ematical problems where the goa! is 1o minimize (maximize) an objective function subject
10 some constraints, Depending on the nature and the form of the objective function and the
constraints, continaous optimization problems are classified to linear, quadratic, conic and
general nonlinear optimization problems.

Linear optimization (LQ) is a highly successful operations research model. Therefore,
it was natural to generalize the LO model to handle more general nonlinear relationships.
However, this gives rise to many difficulties suck as lack of strong duality, possible non-
convexity and consequently problems with global versus local optimums, fack of efficient
atgorithis and software, efc.

In the recent decade, a new class of convex optimization medels that deals with the prob-
lem of minimizing a linear function subject to an affine set intersected with a convex cone
has appeated. It is known as conic optimization. Although the conic optimization model
seems to be restrictive, any convex oplimization problem can be cast as a conic optimization
mode] and there are efficient sotution algorithms for many classes of conic models such as
conic guadsatic optimization (CQO) and conic linear optimization (CLO). While it sounds
counterintuitive, CQO is a sub-class of CLO. Conic optimization has many interesting appli-
cations in engineering, image processing, finance, evonomics, combinatorial optimization,
etc.

Conic linear optimization (CLOY) is the extension of LO to the classes of problems in-
volving mere general cones than the positive orthant. As our results heavily rely on duality
theory (for review of the topic consult {71}, we present both primal and dual formulations of
problems belonging to the CLO class. General form of CLO problem is:

Primal problem Dual problem
mxin{crx D Ax=b, x€ '} max{bTy : ATy+s=c, s€ X7, ()
X

where J# € R" is a closed, convex, pointed and solid cone, £ = {s € R" : s"x > G Vx €
S} is the dual cone of %7, 4 € R™, rank{4) = m, c € R", b € R™ are fixed date;
x,5 € B7, y € R are unknown vectors. Ofien x € % is also denoted as x > 0. Moreover,
X T pmeans x—y >y 0.

Examples of pointed convex closed cones include:

the nonnegative orthant:

RE == {xecR" : x>0},

{

the guadratic cone {also know as Lorentz cone, second order cone or ice-cream conek:

D=sy={xeR" : x 2 [xnll}.

the semidefinite cone:
S = X E R X =XT X 0,
— any linear transformation and finite direct product of such cones.

Each of the three “standard” cones 5, %5 and JE; are closed, convex and pointed cones
with nonempty interior. Moreover, each of these cones are self-dual, which means that the
dual cone %™ is equal to the original cone %", The same holds for any (finite) direct product
of such cones.



If x znd (y,s) are feasible for (1), then the weak duality property holds
Tx b y=xT5>0. )

The strong duality property ¢’ x = b7y does not always hoid for CLO problems. A sufficient
condition for strong duality is the primal-dual Slater condition, which requires the existence
of a feasibie solution pair x and {»,s) for (1) such that x € int%" and s € it 2™, In this
case, the primal-dual optimal set of solutions (x,,5) is

Ax = b, xe &,
ATyds =c, s € ™, €)]
xTs = 0.

System (3) is known as the optimality conditions.

Conic guadratic optimization (CQO) is the problem of minimizing a linear objective
function subject to the intersection of an affine set and the direct product of quadratic cones.
CQO is the sub-class of CLO and, consequentty, CQO problems are expressed in the form
of {1). More information on CLO and CQO problems, their properties and duality results
can be found in [?7]. The CQO problem subclasses described in this section include linear
optimization (LO), convex quadratic optimization (QO), quadratically constrained quadratic
optimization (QCQO) and second order conic optimization (SOCO). CLO, among others,
includes CQO and semidefinite optimization (SDO). In all these cases CLO problems can
be solved efficiently by Interior Point Methods (FFMs).

LO, QO and SOCO formulations are presented below and their parametric (multiobjec-
tive) counterparts are discussed in Section 3. We leave parametric semidefinite optimization
outside of this paper, even though there are some results available for this class of prob-
lems [?}. However, according to our best knowledge, there are no algorithis for parametric
semidefinite optimization that are implementation-ready and can be used in practice.

Linear optimization problems are formulated as:

Primal problem Dual problem
(LR mli:a{crx T Ax=b,x =0} {LD) meix{bry s ATy ds=c, 520}, “
! fore

where 4 € R rank{d} = m,ccR", b e R™, x,s eR", y e R™.
Convex quadratic optimization problems contain a convex guadratic term in the objec-
tive function:

Primal problem Dual problem
i oIyt LT Ty 1T
min o7+ 1 O mar by = 70 ©
{OP) stAdx=b {QD) st ATy+s—QOx= ¢
x>0 5> 0,

where ¢ € R is a symmetric positive semidefinite matrix.
In second order conic optimization problems the variables are restricted to lie in the
Lorentz cone leading to the following formulation:

Primal problem Dual problem
min ¢’ x max b7y
x e (6)
{SOCP) st dx=1b (SOCD) st ATyts=c

2l =10 s 2 sk I i= L,
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wherexw(x%,x%,_. xl x%,xz,...,x?' _x{,x‘;, xJ}TER"andSm(s},sé,...,sl 5?,

BRATTR 2 et TS Ay
honshyye st stk )T € R with n = ¥L.; n;. Second order cone constraints of the
type xi > llxd., |f are often written as (x}.¥') € J¢], where ¥’ = xj,,, or just (x} ) 247 0.

As(xl,. @) )T e (6l Y €087, (o, )T € ot and A = ) %
,%;2 X .0 X J@" we can also rewrite problem (8) in its shorter form (1). In the remainder
of the paper, cone £~ denotes the quadratic cone (direct product of linear cones % and
quadratic cones J¢;), unless otherwise specified.

In addition to LO and QO problems, SOCO also includes quadratically constrained
quadratic optimization (QCQO). Details about the QCQO problem formulation and its trans-
formation to SOCO formulation can be found in ?}.

LO, QO and SOCO problems presented in this section are single-objective convex op-
timization probiems, Most of real-life optimization problems are multiobjective i their na-
ture and in many cases those can be formulated as multiobjective LO, QO or SOCO prob-
lems. Theoretical background and solution technigues for multiobjective optimization are
discussed in Section 2. In that section we also highlight the relationships between multiob-
jective optimization and parametric optimization that is used to solve such problems. Para-
metric optimization algorithms for LO, QO and SOCO optimization problems is the subject
of Section 3, Extensions to other classes of optimization problems, e.g., convex non-linear
optimization, are briefly mentioned. Finally, we present financial applications of muitiob-
jective optimization and numerically solve three examples in Section: 4.

2 Multiohjective and Parametric Optimization

Let x be an n-dimensional vector of decision variables. The multiobjective optimization
problem, where the goal is to optimize a number of possibly conflicting objectives simulta-
neously, s formulated as:

i {733}, ). )} -
stxe

where f; i R” — R, i=1,...,k ave (possibly) conflicting objectives and 2 C R" is a feasible
region. Bach of the functions f; represent an athiibute or a decision criterion that serves the
base for the decision making process.

Maultiobjective optimization is a subclass of vecior optimization, where the vector-valued
objective function fo = {f1{x), f2(x),.... fi{x)} is optimized with respect to a proper convex
cone ¥ which defines preferences. When a vector optimization problem involves the cone
% = R, it is known as a mulficriteria or multiobjective optimization problem.

In this paper we consider convex multiobjective conic optimization problems and most of
the results hereafter are restricted to that problem class. Moreover, we also mention some of
the results available for general muitiobjective problems. Problem (7) is a convex multiobjec-
tive optimization problem if all the objective functions f),..., fi are convex, and the feasible
set £ is convex as well. For example, it can be defined as Q = {x 1 g;(x) £ 0, h;(x) =0},
where the inequality constraint functions g : B” =+ R, j=1,...,/ are convex and the equal-
ity constraint functions iyt R” — R, j = 1,...,m are affine. For LO, QO and SOCO prob-
lems the set of constraints can be writien as £2 = {x : Ax = b, x > » 0}, where ¢ is an
appropriate convex cone and Ax = b are the equality constraints with 4 € R™*" and b € R”™.
The set £2, is called the {feasibie region in the decision space or just the decisior space.



Definition 1 A vector x* € £ is Pareto optimal (or efficient solution) if there does not exist
another x € £} such that f;(x) < £i(x*) forall i =1,....k and f3{x} < f;(x*} for at least one
index j.

The set of all Pareto optimal (or efficient) solutions x* € £ is called the Pareto optimal
(efficient solution) set Qg.

As values of the objective functions are used for making decisions by the decision maker,
it is conventional for multiobjective optimization to work in the space of the objective func-
tions, which is called the objective space. By mapping the feasibie region into the objective
space, we get!

Z={ze B i z= ((H{x), alx),.... /ilx)T ¥x € Q)}.

The set Z is the set of objective values of feasible points, if is refemred to as the set of
achievable objective values. Points in the achievable set Z can be ranked into efficient and
non-efficient points {see Figure 1) that leads to the definition of Pareto optimality.

Analogous definition of Pareto optimality can be stated for an objective vector z* € Z.
Equivalently, z* is Pareto optimal if the decision vector x* corresponding to it is Pareto
optimal [?].

Definition 2 For 2 given multiobjective problem (7) and Pareto optimal set Q, the Pareto
front is defined as:

Zn = 2" = (ile"), . Sl )T 15 € 2],

A set Zy of Pareto optimal (also called nondominated or efficient) solutions z* forms
the Paveto efficient frontier or Paveto front. The Pareto fromt, if k= 2, is also known as the
optimal frade-off curve and for k > 2 it is called the optimal trade-aff surface or the Pareto
efficient surface.

Solution methods are designed to help the decision maker to identify and choose a point
on the Pareto front. Identifying the whole frontier is computationally challenging, and ofien
it canmot be performed in reasonable time. Solution metheds for multiobjective optinnization
are divided into the following categories [?]:

- a priori methods are applied when the decision maker’s preferences are known a priory;
those include the vakue function method, lexicographic ordering and goal programming.

— iterative methods guide the decision maker to identify a new Pareto point from an exist-
ing one {or existing multiple points), the process is stopped when the decision maker is
satisfied with the actual efficient point.

- g posteriori methods are used to compute the Pareto fromt or some of its parts; those
methods are based on the idea of scalarization, namely transforming the multiobjective
optimization problem into a series of single-objective problems; a posteriori methods in-
clude weighting methods, the e-constrained method and retated scalarization techmiques.

Computing the Pareto front can be challenging as it does not posses known structuze in
most of the cases, and, consequently, discretization in the objective space is frequently used
to compute it. The problem is that discretization is computationally costly in higher dimen-
sions, and discretization is not guaranteed to produce all the (or desired) points on the Pareto
front.

It turns out that for some classes of multiobjective optimization problems the structure
of the efficient frontier can be identified. Those include multiobjective LO, QO and SOCC
oplimization problems. For those classes of problems, the Pareto efficient frontier can be



sub-divided into pieces (subsets} that have specific properties. These properties allow the
identification of each subsets of the frontier. The piece-wise structure of the Pareto front
also provides additional information for the decision maker.

Refore looking at the scalarization solution techniques for multiobjective optimization,
that allow us fo identify all nondominated (Pareto efficient) solutions, we need to introduce
a number of concepts and some theoretical results.

Definition 3 An objective vector z° € Z is weakly Pareto optimal if there does not exist
another decision vector z € Z such thatz; < zf foralii=1,.. k.

The set of weakly Pareto efficient (nondominated) vectors is denoted by Z,v. It follows
that Zy C Zyw . When unbounded trade-offs between objectives are not allowed, Pareto op-
timal solutions are called proper [?]. The set of properly efficient vectors is denoted as Zpy.

Both sets Zn (weak Pareto front) and Zy (Pareto front} are connected if the functions
f; are convex and the set £2 satisfies one of the following properties [?]:

— £2 is a compact, convex set;
— Qs aclosed, convex setand Vz £ Z, 2(z) = {x € £ : f(x) < z} is compact.

Let us denote by RE. = {z € R¥ : 2 > 0} the nonnegative orthant of R*. Consider the set:
.@fmZviwiRi m{zGRk:f;(x) <zpi=1,.. .k xe},

that consists of all values that are worse than or equal to some achievable objective value.
While the set Z of achievable obiective values need not be convex, the set & is convex,
when the multiobjective problem is convex [?].

Definition 4 A set Z € R¥ is called R% -convex if Z+RE is convex.

A point x € % is a minimal element with respect to componentwise inequality induced by
R if and only if {x— Ri )M% = x. The minimal elements of &7 are exactly the same as the
minimal elements of the set Z. This also means that any hyperplane tangent to the Pareto
efficient surface is a supporting hyperplane — the Pareto front is on one side of the hyperplane
[2]. It follows that the Pareto front must belong te the boundary of £ [?].

Proposition 1 Zy = (Z+RE), < bd(Z).

DIECISION SPACE OBJECTIVE SPACE
52
(fi {x1,%2) )
. al
&
I
i /T min fi A

Fig. 1: Mapping the Decision Space into the Objective Space.



When talking about convex multiobjective optimization problems, it is useful to think
of the Pareto front as a fonction, and not as a set. Under assumptions about convexity of
the functions f; and the set Q for bi-cbjective optimization problems (k = 2), the (weakly)
Pareto front is a convex function [?]. Unfortunately, when £ > 2 it is not the case even for
linear multiobjective optimization problems.

Most a posteriori methods for solving multiobjective optimization problems are based
on scalarization techniques. Let us consider the two most popular scalarization methods:

— weighting method;
— g-constraint method.

2.1 Weighting Method

The idea of the weighting method is 1o assign weights to each obiective function and op-
timize the weighted sum of the objectives. A multiobjective optimization problem can be
solved with the use of the weighting method by optimizing single-objective problems of the

type

k
min g{ wi fi(x) ®

stoxe 02,

where f; is linear, convex quadratic or second order conic function in our case, £ € R”
{convex), w; € R is the weight of the /-th objective, w; > 0,¥i= 1,...,k and EL] wy =},
Weights w; define the importance of each objectives. Due to the fact that each objectives
can be measured in different units, the objectives may have different magnitudes. Conse-
quently, for the weight to define the relative importance of objectives, all objectives should
be normalized first. Some of the normalization methods are discussed in {?]. As we intend
to compute the whole Pareto front, normalization is not required.

1t is known that the weighting method produces weakly efficient solutions when w; > 0
and efficient solutions if w; > 0 for all i = 1,...,k [?}. For convex multiobjective optimiza-
tion problems any Pareto optimal solution x* ¢an be found by the weighting method.

Let us denote by $(w,Z) = {2 € Z 1 £ = argmin,.;w’ z} the set of optimal points of Z
with respect 10 w. In addition, we define

ST = U #wa, Sy = U S (w, Z).

w0, T w1 w20, T, w1
AsZ is Rﬂ‘_-convex set in our case, we get [?]:
F(Z) = Ty CZn CFYZ) = Zun. ')

Tn addition, if 2 is the unique element of % (w,2) for some w > 0, then Z € Zy [?]. The fast
observation combined with (9), allows us identifying the whole (weak) Parete front with the
use of the weighting method,



2.2 e-Constrained Method

For itlustration purposes, we first consider a problem with two objective functions. Multi-
objective optimization can be based on ranking the objective functions in descending order
of importance. Each objective function is then minimized individually subject to a set of
additional constraints that do not allow the values of each of the higher ranked functions to
exceed a prescribed fraction of their optimal values obtained in the previous step. Suppose
that #; has higher rank than f;. We then solve

min{f>{x) 1 x € 2},
to find the optimal objective value /7. Next, we solve the problem

st alx) < (T+e)f5,
x €.

Imuitively, the hierarchical ranking method can be thought as saying “/> is more important
than f; and we do not want to sacrifice more than & percentage of the optimal value of f; to
improve f1.”

Considering the general case of £ objective functions and denoting the right-hand-side
term of the constraints on the objective functions’ values by g; = (1+g;) /7, we get the fol-
lowing single-objective optimization problem, which is known as the &-constrained method:

min f{x)
{MOC,) st fix) <, =10k f#E (16}
xe £

Every solution x* of the e-constrained problem (10) is weakly Pareto optimal [?], so
formulation {10) can be used to compute weak Pareto front Z.
Let x* solve (10) with ] = Si{x"), j # £ Then x* is Pareto optimal 2,7 if:

[} x* solves (10) forevery £=1,...,k;
2} x* is the unique solution of (10%;
3) Lin's conditions [?,?].

The third set of necessary and sufficient conditions for (strong) Pareto optimality of
optimal solutions is described in [?] based on the resuits of Lin [2,7]. Let us define

de() = min{ f{x) :x € £, f;{x) < g for each j # £},

The following theorem {?] establishes that x* is Pareto optimal if the optimal value of
(MOC,0) is strictly greater than fp(x™) for any e <er

Theorem t Let x* solve (10) with €] = fi(x*), j # €. Then x* is Pareto optimal solution if
and only if do(€) > 9p{e”) for all € such that £ < €* and for each € (10) has an optimal
solution with finite optimal value.

In many cases, conditions 2} and 3) can be verified to identify the Pareto front Zy. For
instance, the second condition holds when all the objective finctions f;{x) are strictly con-
vex. Condition 3) can be verified if function ¢p{€) is computed by parametric optimization
techniques, see Section 2.4.



2.3 Parametric Optimization

Optimization models typically contain two types of variables: those that can be changed,
controlled or influenced by the decision maker ave called parameters, the remaining ones
are the decision variables. Parameters arise because the inpui data of the problem is not
accurate or is changing over time. The main interest of sensitivity analysis is to determine
how known characteristics of the problem are changing by small periurbations of the data,
However, if we go farther from the current parameter value, not only the current properties
of the problem might not be valid, but also the problem may change significantly. Study of
this sitvation is referred to as parametric optimization,
Let us consider a general convex parametric optimization problem

o(A) =min{f(x,A) : x&.#(A), A€ A, (1n

with a parameter vector A and function f(x, A) that is convex in terms of x. Let ¢{A) be the
optimal value function and yw{A) is the optimal set map of (11}, and for our purpose

A ={xeX  glx) <A i=1,2,...,m}, (12)

where g; are reat-valued functions defined on X Observe that both (A} and (A} are two
point-to-get maps.

In parametric optimization, in addition to the optimal value function ¢(1), the opti-
mal solution set w(A) is considered as function of the parameter vector. Investigating their
behavior is the aim of parametric optimization.

Among many propetties defined for optimization models, the following two are im-
portant ones: unigueness of oprimal solution and stability. When there is a unigue optimal
solution for cach parameter, the solution set map is & real-valued map (as opposed fo set-
valued maps). Unigueness of aptimal soiution is often violated in practice, especially for
large-scale problems. For LO and QO problems it leads to degeneracy of optimal sclutions,
causing difficulties and ambiguiiies in post-optimality analysis {?]. Having multiple opti-
mal solutions converts the optimal solution map (o a point-to-set map. Continuous feasible
perurbation of the parameter imply continuous changes of the feasible set and the optimal
value function, The optimal value function describes the behavior of the objective function
regardless of the uniqueness of the optimal selution.

By stability we mean having some imporiant invariant properties of the preblem such
as continuity of the optimal value function or its differentiability. Even though the notion of
“stability” stands for many different properties, there are two main ones. In [?], it is used
for describing the serpicontinuity of the optimal value function as well as the stady of upper
Hausdorff semicontinuity of the optimal solution set, that is a set-vajued function in general.
This approach fo stability for QO has been also studied in [?]. Most probably optimal value
fumction has critical points. If a parameter value is not a critical point of the optimal value
function {or far enough from a critical point), it assures the decision-maker that this solution
is stable.

There is another notion, “critical region”, used in parametric optimization with numer-
ous meanings. In the LO literature it may refer to the region for parameter values where the
given optimal basis {rmight be degenerate and not unique) remains optimal [?]. In QO and
LO [?] it might alse refer to the region where the active consiraint set remains the same
[?]. Bt is worth mentioning that the existence of & strictly complementary optimal selution
is guaranteed in LO. Strictly complementary optimal selutions define the optimal partition
of the index set {Section 3.1). The optimal partition is unique for any LO problem, and it
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has direct refation to the behavior of the optimal value function. In parametric optimization,
one may be interested in studying the behavior of the optimal solution set, while one also
might want to investigate the behavior of the optimal value fonction. These differences lead
1o diverse results in the context of parametric optimization. Here, we consider stability and
critical regions in the context of optimal partition (see Section 3.1}

Recall that every convex optimization problem is associated with a Lagrangian dual op-
timization problem {see, e.g. [?]). The optimal objective function value of the dual problem
is a lower bound for the optimal value of the primal objective function value (weak duality
property). When these two optimal values are equal (strong duality), i.e., when the duality
gap is zero, then optimality is achieved. However, the strong duality property does not hold
in general, but when the primal optimization problem is convex and the Slater constraint
gualification holds, i.e., there exists a strictly feasible solution, strong duality is guaranteed.
In some special cases like LO, QO and SOCO, parameters in the right-hand side of the con-
straints are translated as parameters in the coefficients of the objective function of its dual
problem. This helps us to unify the analysis,

In this paper, we consider optimal partition invartancy for LO problems [?] and for QO
problems [?] as a criterion for analyzing the behavior of the optimal value function (see
Section 3.1). We also extend these definitions to SOCO problems.

2.4 Multiobjective Optimization via Paramefric Optimization

By now, the reader may have understood that multiobjective optimization problems are
closely related 1o, and can be represented as parametric optimization problems. Conse-
quently, we may use algorithms of parametric optimization to solve multiobjective optimiza-
tion problems and to compute the Pareto fronts. Before defining the relations between multi-
ohjective optimization and parametric optimization more formally, we mention that multiob-
jective LO, QO and, to some extent, SOCO problems can be efficiently solved by parametric
optimization algorithms. Parametric optimization techniques exist for wider classes of prob-
lems, but computational complexity may prevent using those directly to identify efficient
fronfiers.

The main idea of this paper is that we can sobve multiobjective optimization problems us-
ing parametric optimization techniques. A4 posteriori multiohjective optimization technigues
are based on parameterizing (scalarizing) the objective space and solving the resulting para-
meiric problem. Conseguently, parametric optimization algorithms can be utilized to solve
multiobjective optimization problems.

Based on the weighting method {8} and choosing the vector of weights as w= (41,...,
A1, 137 = 0, as w can be scaled by a positive constant, for the weighted objective function
¥ w;ifi(x), we can formulate the paramefric optimization problem with the A; parameters in
the objective function as

G(AL,. . ) = min AAK) .+ A i1 (0 4 f(x)

st x €L, (13)

for computing weakly Pareto optimal solutions, or {4, ..., 41)7 > 0 for computing Pareto
optimal solutions. Formulation (13) is known as the Lagrangian problem [?] and possesses
almest identical properties as the weighting problem (8).



11

Based on the e-constrained method {10) we can present the following parametric prob-

lem: )
¢len,. . g1) = min fi{x)
st filx)<e i=1,..,k-1 (14)
xe £,
whete g1,. .., &. are parameters in the right-hand-side of the constrainis. In this case, the

optimal vaiue function ¢{e;, ..., &-1) includes the Pareto front as a subset.

It is not hard to observe that the parametric problems (13) and (14) are equivalent to
(8) and {10), respectively, but they are just written in the forms used in the parametric op-
timization Hterature. The relationships between those formulations and their properties are
extensively studied in [?].

Algorithms and technigues developed for solving parametyic optimization problems are
described in Section 3. Note that the optimal value function ¢{g&) of problem (14) is the
boundary of the set & and the Pareto front is a subset of that boundary. These results are
illustrated by examples in Section 4.

2.5 Multiobjective and Parametric Quadratic Optimization

Results deseribed by now in Section 2 apply to general convex multiobjective optimization
probiems. In contrast, parametric optimization technigues discussed in this paper apply to
LO, QO and SOCO problems only. In this section we specialize the formulations presented
in Section 2.4 to the parametric optimization problem classes described in Section 3.

We define the multiobjective quadratic optimization problem as a convex. multiobjec-
tive problem with one convex guadratic objective function f; and & — I linear objectives
Flseeos Jem subject to linear constraints. For the multiobjective QO problem the weighted
sum formulation {13) specializes to

@Ay, ., Agoy) = min k;c{x—{—...+lk_1c,fw1x+%xrgx
st Ax = b (15)
x>0

and the g-constrained formulation (14) becomes

¢{er,...,E-1) = min 37 Ox
st efx<ei=1,.,k~]

Ax=b (16)
x>0

Parametric QO formulations (15) and (16} can be solved with algorithms developed in See-
tion 3. The uni-parametric case corresponds to an optimization problem with two objectives.
A bi-parametric QO algerithm allows solving multiobjective QO problems with three ob-
jectives. Multiobjective problems with more than three objectives require multi-paramefric
optimization technigues (see Section 3.4.1). Note that in formulations (15) and (16), param-
efers appear in the objective function and in the right-hand side of the constraints, respec-
tively.

Multiobjective QO problems are historically solved by technigues that approximate the
Pareto front [2,2]. An alternative approach is the parametric optimization discussed in this
paper. Examples of multiobjective QO problems appearing in finance are solved with para-
metric QO techniques in Section 4.
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If we allow for more than one convex quadratic objective in the multiobjective opti-
mization problem, formulations (15) and (16) become parametric QOCO. It happens due to
the fact that now quadratic funciions appear in the constraints as well. Parametric SOCO,
that inchudes parametric QCQO problems, is a more general class of problems. Preliminary
results for sobving parametric SOCO problems are described m Section 3.3. Properties of
multiobjective optimization problems with more than one convex quadratic objectives and
linear constraints are discussed in [?].

As we learned in this section, multiobjective optimization problems can be formufated
as parametric optimization problems. Some classes of multiobjective optimization problems
that include linear and convex quadratic optimization problems can be efficiently solved us-
ing parametric optimization algorithms. Parametric optimization allows not only computing
Pareto efficient frontiers (surfaces), but also identifying piece-wise structures of those fron-
tiers. Structuzal description of Pareto fronts gives functional form of each of its pieces and
thus helps decision makers to make better decisions.

3 Solving Parametric Optimization Problems

Utilizing different approaches for solving multiobjective optimization problems via para-
metric optimization (see Sections 2.4 and 2.5), we review methods and results of uni- and
bi-parametric LO, QO and SOCO problems in this section. Our methodology is based on
the notion of optimal partition and we study the behavior of the optimal value function that
conlains the Pareto front. To save space, all proofs are omitted, and we refer the interested
reader to [?] and the related publications listed there for more details.

3.1 Uni-parametric Linear and Convex Quadratic Optimization

The primal and dual sohutions sets of QO are denoted by 2.4 and 2, respectively. Ob-
serve that the QO problem reduces to a LO problem where = 0. For a primal-dual op-
timal solution {x*,y*,s5%), the complementarity property x” g% = 0 holds, that is equivalent
to x5 =0 for j & {$,2,...,n}. A strictly complementary optimal solution further satis-
fies = -+5* > 0. The existence of this kind of optimal solutions is true ouly for L.O, while
there is no guarantee to have strictly complementary optimal solution for any other class
of optimization problems. For QO and SOCO problems the existence of maximally com-
plementary optimal solution is proved. A primal-dual maximally complementary optimal
solution has the maximum number of positive components for both x and s. In this case the

optimal partition can be uniquely identified by:

B={j x>0 xc2F}

N omf s >0, (ns) € 2D}

F o= {12, ,n}\{H#UA).
As mentioned previously, for LO the set 7 is always empty.

The wni-parametric QO problem, with the parameter in the right-hand-side of the con-
straints, is defined as

(0P ¢(g) =min{c’ x+ %xTQx s Ax=b+elb, x>0}, (7
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with its dual as
(OD:) max{(b+eAb)Ty- %xTQx c ATy s Ox=0c,520,x20), (I8

where Ab € R is the fixed perturbing vector. The corresponding sets of feasible solutions
are denoted by 2., and 2%, and the optimal solution sets as 2} and 27, respec-
tively.

The optimal value function ¢(2) is a piecewise convex (linear when @ = 0) quadratic
function over its domain. Points where the optimal partition changes are referred to as tran-
sition points. These are precisely the points where the representation of the optimal value
function changes too. At these points, the optimal value functions fails to have first or sec-
ond order derivatives. As the number of &i-partitions of the index set is finite, there are a
finite number of quadratic pieces of the optimal value function.

To find the representation of the optimal value function on the {invartancy) intervals be-
tween two consequenl fransition points, we only need to have primal-dual optimal solutions
for two parameter values from that interval.

Theorem 2 For two values £ < & with identical optimal partition, the optimal partition is
the same for all € € [&1,&). Moreover, if (x',v',s') and (x%,)*,57) are maximally comple-
mentary primal-dual optimal solutions at €, and &, then the optimal value function can be
represented as

6(2) = $(0) + 228y + 3E2AH (7 ), (19)

where §{0) corresponds to the optimal valve of the unperturbed problem af &€ = 0 and
0€ g, el

Proof See [?), p. 6-21. 0

Observe that for the LO case, when the optimal partition is fixed then the dual optimal
solution set is invariant and consequently, the coefficient of the square term is zero, Thus,
the objective value function is linear. To find an invariancy interval one needs to solve two
auxiliary LO problems when a primal-dual optimal solution is available at an arbitrary pa-
rameter value in this interval. Let (v) denotes the support set of the vector v, i.e., the index
set of nonzero components of the vector v.

Theorem 3 Let x* € 287, and (x* y*,5%) € B} be given for arbifrary €. Let (g7, 8,)
denctes the invariancy interval that includes . Moveover, let T = {1,2,... ,n}\ (@)U
o(s*)). Then

g =min{e : Ax—gAb=b,x > 0, x5 = 0,17 = 0,
Ary-%—s——Qx:c,s >0,8Tx =057 = 0%,

g =mar{e s Ax—eAb=b,x 2 0,x1 5" =0, xp =0,
ATy 45— Ox=c,5> 0,57 %" = 0, 5y = 0}.

Proof See{?],p.6-26. ]
Remark 1 Tn case of LO, Theorem 3 reduces to solving the following simpler problems:

g =min{g : Ax—eAb=b,x> 0,z s =0},
&0 = maxie : Ax —elb = b x> 0,27 5" = 0).
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Observe that this interval might be unbounded from one side if the coiresponding auxiliary
LO problem is unbounded, and the interval is singleton (transition point}, when the given
optimal solution is maximally (strictly in LO case) complementary and then & = &,

Finding the left and right derivatives of the optimal value function at a transition point
requires the sofution of two LO problems, provided an arbitrary primal-dual optimal solution
is given at this point.

Theorem 4 With the notation of Theorem 3, let (x*,y*,5*) be a given optimal solution pair
at the specific transition point g. The left and right derivatives of the optimal value function
¢ (&) are given by the optimal values of the following optimization problems:

¢! =ming, {AB Y dx—edb == b,x > 0, st =0, xp =0,
Afymkstxz c, 520,57 =0, 57 = 0},

¢ = maxey {AD Y Ax—eb=b,x 2 0,x7s" = 0,37 =0,
ATyrs—Ox=c,520,87x" =0,57 =0}

Proof See(?], p.6-27. O
Remark 2 In case of LO, Theorem 4 reduces to solving the following simpler problems:

¢ = min {[_\bTy ATy rs=c, 520,57 % =0},
o) = max{AbTy: ATy +5=¢,520, 55 =0},

Observe that at a transition point ¢ or ¢} might be infinite as one of the associated
auxiliary LO problems might be unbounded. It is not possible 1o have both LO problems
in Theorem 4 feasible and unbounded, and they are both bounded and feasible when the
transition point is not an end point of the domain of the optimal value function. Moreover,
if £ is not a transition point, then ¢/, = ¢} which in this case is the derivative of the optimal
vaiue function.

We refer the interested reader to [?] for the results when, in case of parametric QO, per-
turbation exists in the linear term of the objective function. Results for the case, when both
the right-hand-side and the lingar term of the objestive function is pertutbed simultaneously
with the same parameter can be found in {?].

3.2 From Uni- to Bi-Parametric Optimizalion

Going from uni-parametric to bi-parametric optimization has different problem formula-
tions. One formulation of bi-parametric optimization is to have one of the parameters in
the right-hand-side of the constraints and the second one in the objective function data.
This point of view to bi-parametric optimization has been considered extensively in LO and
Qo 2,27

Another formulation is considering these two parameters either both in the right-hand-
side of the constraints, or both in the obiective function data. From now on, by bi-parametric
optimization, we mean having both parameters in the objective or both in the right-hand-side
data. Analogous to the previous discussion, we omit the LO problem as 2 special case, and
review the results for bi-parametric QO problem with parameters in the right-hand-side of
the constraints. The bi-parametric QO problem is defined as foliows:

(OP.3) ¢le,A)= rn);m{crx-{r %xTQx D Ax=beAD LA, x>0},
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and its dual as
{(OD: 1) Tﬁf{(h—}-e/_\bl + ALYy - %xTQx s ATy s —Ox=c, 52 0},

where A, AD® & R™ are the given perfurbing vectors. The case, when so-called criti-
cal regions are defined as regions where a given optimal basis remains optima} has been
discussed thoroughly in [?7]. As mentioned in the uni-parametric LO case, the invariancy
region where the optinal partition remains invariant, includes possibly exponentially many
critical regions. Moreover, on an invariancy region, the optimal value function has a specific
representation, and two disjoint regions correspond to two different representations of the
optimai vatue function. o multiobjective optimization, we are interested in the bebavior of
the optimal vatue function (as Pareto front) instead of the optimal sokutions set. Thus, we
investigate a technique for identifying all invariancy regions and describing the behavior of
the optimal value function for bi-paramefric optimization problens.

Let the optimal partition: be known for {&, 1) = {0,0}. The invariancy region that in-
chudes the origin is a (possibly unbounded) polyhedral convex set. This region is denoted
here as FE(AD', Ab*) and referred to as the actual invariancy region, To identify this
region, we refine the algorithmic approach used in [?]. The results and methodology is anal-
ogous to the case of bi-parametric QO [7].

3.2.1 Deftecting the Boundary of an Invariancy Region

Observe that an nvariancy region might be a singleton or a line segment. We refer to these
type of regions as frivial regions. In this section, we describe the tools to identify 2 non-
trivial invariancy region. Recall that for & = 4, the bi-paramefric QO problem reduces to uni-
parametric QO problem. This trivial observation suggests developing a method to convert
the bi-parametric QO problem into a series of uni-parametric QO problems, We start with
identifying points on the boundary of the invariancy region. To accomplish this, we select
the lines passing through the origin as

A= ie. (20)

For now, we assume that the slope 7 is positive. Substitoting (20) into the problem (QF, 1)
converts H into the following uni-parametric QO problem:

min{c’x + %xTQx 1 Ax=b+elb, x =0}, (21}

where Ad = Ab! +tAB, Now, we can solve two associated auxiliary LO problems from
Theorem 3 to identify the range of variation for paramefer & when equation {20) holds.
These two auxiliary LO problems are:

= mi N —gAb = @ = 0. X 4 =
£ er:;u)l}s{e Ax —eAb=b, x“:g____ 0, x4y =0, @
ATy 45— Ox~ADc=¢, 54 >0, sgus =0},

and
gy = g}%}g{e cAx—eAb=b, xfg;:% 0, x g7 =0, )
ATy 45 -0Ox—ADc=c¢,54 20, 5,0 =0},

where = (4, .4, 7} Is the optimal partition for e = A = 0.
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Fig. 2: Invariancy Region Exploration Algorithm for Bi-Parametric QO.

Now, we can summarize the procedure for identifying alf transition points (vertices)
and transition lines (edges) in an invariancy region. Let’s assume that we know an initial
inner point of the invariancy region and one of the edges (Figure 2(a) and (b) shows how
to find an inner point of the region). We are going to “shoot™ by selving sub-problem (22)
or (23) counter-clockwise from the initial point to identify each edge {see Figure 2(c-f)). As
we already know one of the edges, we exclude all the angles oty between the initial point
and the two vertices v; and v; of the kuown edge from the candidate angles to shoot. So,
we shoot in the angle vy — w2 plus in the small angles § and 2§ and identify the optimal
partition in the two points we get. Here we find the invariancy region boundary between the
vertex v, and the point we get when shooting in the angle 23, If the optimal partition is the
same for the points in the divections § and 23, we compute the vertices of this new edge
ey and verify if one of those correspond 1o a vertex of the previously known edge ¢;. If it
is not the case, then bisection is used to identify the missing edges between ¢ and e;. We
continue in this mamner until all edges of the invariancy region are identified.

3.2.2 Transition from an Invariancy Region lo the Adjacent Invariancy Regions

The first step of the algorithm is to determine the bounding box for the values of &. Due
to the fact that € is the parameter appearing in the constraints, the problem (QF; ) may
become infeasible for large or small £ values. Determining the bounding box is done as in
mazny computational geometry algorithms [2,?]. To find the range of £ where the parametric
problem (OF, ;) is feasible, we solve the following problem starting from the iitial point

{%0,80): 1
min{cix+ é—erx D Ax=b4+eAb 4 AW, x 2 0} (24)
Solving problem (24) gives the values of e, and &y that (see Figure 3(a)) are the lowes

and the upper feasibility bounds for the bi-parametric problem (QF; ). Observe that we
may have either Eyg, = —o0 OF Epay = oo,
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Fig. 3: The Initialization of the Bi-Parametric QO Algorithm.

After identifving the feasibility bounds in the “g — A” plane, we choose gy, 7 o= or
Emax 7 . Let & = gy, and the optimal partition at the point {0, &nin} 1§ Mnin = {Famin, «Hains
Froin)- Then we can solve problems in Theorem 3 with the optimal partition @ = Gy, and
A AR replaced by Eqin AD” to identify the edge on the line € = gy, (see Figure 3(b)). If the
point {4y, £nin) 18 a singleton, we find the invariancy interval to the right from it. Now, we
have an edge of one of the invariancy regions and we can get an initial inner point of that
invariancy region selecting a point on the edge and utilizing Algorithm 6.3 from [?], Using
that initial inner point, we can identify the first non-trivial invariancy region including all of
its edges and vertices as described in subsection 3.2.1 {see Figure 3(c)).

To enumerate all invariancy regions in the bounding box, we use concepts and tools
[2,7] from computational geometry. The algorithm that we are going 1o present possess
some similarities with polygon subdivision of the space and planar graphs. Our algorithm
is essentially the subdivision of the bounding box into convex polyhedrons that can be un-
bounded.

The geometric objects involved in the given problem are vertices, edges and cells (faces),
see Figure 4. Cells correspond to the non-trivial invariancy regions. Edges and vertices are
trivial invariancy regions, each edge connects two vertices. It is important to notice that celis
can be unbounded if the corresponding invariancy region is unbounded. That is why we need
to extend the representation of the vertex to allow incorporating the information that the
verlex can represent the virtuai endpoint of the unbounded edge if the corresponding cell is
wnbounded. For instance, edge | in Figure 4 is unbounded, so in addition to its first endpoint
v, we add another virtual endpoint being any point on the edge except vi. Consequently,
each vertex need to be represented not only by its coordinates (x,y), but also by the third
coordinate z thal indicates if it is & virtual vertex and the corresponding edge is unbounded.
Another note to make is that the optimal partition may not be unique for each vertex or
edge. First, at every virtual vertex, the optimal partition is the same as on the corresponding
edge. Second, we may have situations when the optimal partition is the same on the incident
edges and vertices if those are on the same line {edges 2; and e7 and vertex va have the same
optimal partition in Figore 4),

To enumerate all imvariancy regions we use two queues that store indices of the cells that
are already investigated and to be processed. At the start of the algosithm, the first cel! enters
the to-be-processed quene and the queue of completed cells is empty (¢ is entering the to-
be-processed queue in Figure 4). After that, we identify the cell ¢; including ali faces and
vertices starting from the known edge e) and moving counter-clockwise (note that the virtual
vertices corresponding 1o the unbounded edges are not shown in Figure 4). We continue in
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Fig. 4; Bi-Parametzic QO — Computational Geomeiry Problem Representation.

that manner until to-be-processed queue is empty and we have identified all the invariancy
regions.

Data: The CQO optimization problem and A, Ab*

Result: Optimal partitions on all invartancy intervals, optimal value fuaction
Initialization: compute bounding box in the “g — A” plane and compute inner point
in one of the invariancy regions;

while not all invariancy regions are enumerated do

run sub-algorithm to compute alt edges and vertices of the current invariancy
region;

add all unexplored regions corresponding to each edge to the to-be-processed
queue and move the current region to the queue of completed region indices;
if to-be-processed queue of the unexploved regions is not empty then

puli out the first region from the to-be-processed queue;

compule an inner point of the new region;

else

retarn the data structure with al} the invariancy regions, corresponding
optima} partitions and optimal value function;

end

endd

Algorithm 1: Algorithm for Enumerating All Invariancy Regions

Algorithm 1 runs in linear time in the output size (the constant C-n is 3). But, by the
nature of the parametric problem, the number of vertices, edges and faces can be exponential
in the input size. In our experiences worst case does not happen in practise very often though.

Remark 3 Similar to uni-parametric case, it is casy to verify that the optimal value function
on an invariancy interval is a quadratic fanction in terms of the two parameters £ and A, and
it fails to have first or second directional derivatives passing the boundary of an invariancy
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region. Morcover, the optimal value function is a convex piccewise guadratic function on
the “g — A" plane.

Remark 4 As we already mentioned, considering Q = { reduces a QO problem to a LO
problem. Consequently, the outlined Algorithm 1 works for LO problems without any mod-
ifications. In bi-parametric 1O case, the optimal value function is a piecewise linear function
in two parameters £ and A, and it fails to have directional derivative passing 4 transition line
separating two adjacent invariancy regions.

3.3 Discussions on Parametric Second-Order Conic Optimization

Parametric SOCQO is a natural extension of parametric analysis for 1.0 and QO. As we point
out in Section 2.5, parametric SOCO allows solving multiobjective quadratic optimization
problems with more than one quadratic objective, The optimal basis approach to parametric
optimization in LO cannof be directly generalized to parametric optimization in SOCO [?].
in contrast, it is promising to generalize the aptimal partition appreach of parametric LO
and QO 10 SOCO. We describe ideas and preliminary results related to parametric SOCO in
this section.

The standard form SOCO problem is defined in Section 1. Primat problem {SOCP)
and dual problem (SOCD) are specified by equation (6). Before defining parametric SOCO
formally, we describe the geometry of second-order (quadratic) cones. An extensive review
of SOCO problems can be found in [?].

Unlike LO and QO, in SOCO we work with blocks of primal and dual variables, see
the definition of (SOCP) and (SOCD} problems in Section 1. Those primal-dual blocks
(x, s, i=1,...,7 of variables compose the decision vectors of SOCO problems x = (x!,...,
T and s = (s1,...,5")7, where x',5' € R". We also refer to cone .# as a second-order
cone when it is & product cone JE = 260 x ... x T, where & € S, i= 1,1 As a
linear cone ;' is & one-dimensional quadratic cone ‘%;" (x} = 0), we treat linear variables
as one-dimensional blocks. As before, £ is the dual cone of J7.

The bi-parametric SOCO problem in primal and dual form is expressed as:

¢(2,A) = min 7 x

(SOCP; 1) st Ax = b4+ eAb 4+ AAOB? (25)
x e,
and
max (b+eAb + ANy
(SOCD, ) st A y+s=c (26)
§E ™,

where 4 € B™*", rank{4) = m, c € R", b € B"™ are fixed data; x.5s € R” and y € R™ are
unknown vectors; A,& € R are the perturbation parameters. Note that constraints x € ¢
and s € £ are replaced by x| > |ix),, [t and s > [ish, Il i =1,....J for computational
pUrposes.

Algebraic representation of the optimal partition for SOCO problems is required for
computational purposes. It will allow identification of invariancy intervals for parametric
SOCO problems.

Yildizim [?] has introduced an aptimal partition concept for conic optimization, He took
a geometric approach in defining the optimal partition while using an algebraic approach is
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necessary for algorithm design. Although, the geometric approach has the advantage of be-
ing independent from the representation of the undetlying optimization problem, it has some
deficiencies. The major difficulty is extracting the optimal partition from a high-dimensional
geometric object and, consequently, it is inconvenient for rumerical calculations. In contrast,
the algebraic approach is directly applicable for numerical implementation.

More recent study [?] provided the definition of the optimal partition that can be adapted
1o algebraic approach. We describe the details and compare the definitions of the optimal
partition for SOCO in [?] (its algebraic form) and [?] in this section. Before defining the
optimal partition for SOCO formally, we introduce the necessary concepts and nolation,
The interior and boundary of second-order cones are defined as follows.

Definition 5 The interior of second-order cone ¥, € R” is
it g = {x & Mg 1 x> [xaall}.
Definition 6 The boundary of second-order cone J£; € R” without the origin 0 is
bdotg = {x € Ky 1 x) = |x2all, x# 0}.
Assuming strong duality, the aptimality conditions for SOCQO problems are:
Ax—b=0,x& X,

ATy +s—c=0,5€ 4,
xos =0,
where the muhiplication opera%ion "is defined asx o s = (x' os',...,x 05') and ¥ 0 5 =
(ST, syl +shad, o, xdst, +sld )T
Strict complementanty for SOCO problems [?] is defined as x’ 05" = 0 and &/ 45l @
int }f;,‘ i=1,...,1. Interior point methods for SGCO produce maximally complementary

solutions that maximize the number of strictly complementary blocks 7.
With respect (o its cone % each block x' can be in one of three states:

- block ' is in the interior of ¢
it ;= {21 & A 25 > a1 .
—~ block x' is on the boundary of £
bd./é” {xe ?f’ x = lixb,, [landx’ £ 0},
- block x' equals 0: ,
x' =0,

The same results are valid for the dual blocks of variables s e (e )*. As sccond-order
cones are self-dual ¥ = ™, we are going to denote both primal and dual cones by ¥ in
the remainder of this chapter.

The optimal partition for SOCO has four sets, so it is a 4-partition & = {#, 4, %, .7)
of the index set {1,2,...,J}. The four subsets are defined in {?] as:

B o= {ix) > xh, e i11t%f) for 2 primal optimal solution x },
A = {i1s) > shy, | (5 € int ) for a dual optimal solution (.5) },
#o={ix £0#S (X Ebd%?' and s' & bdij")
for a primal-dual optimat solution {x,»,5) },
I =i =s5=0 o5 EOandstiad‘%i, or 5 = 0 and x' € bd 7
for a primal-dual optimal solution (x,3,5) }.
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Now we can state al} possible configurations for primat-dual blocks of varzables at op-
timality, those are summarized in Table | and serve as a basis for defining the optimal
partition. Cases that are not geometrically possible, as those do not satisfy the optimality
conditions, are shown as “x” in Table 1.

Table 1: Optimal Partition for SOCO.

~ 0 bd 7 | int o
5 q q
0 ied icd ic#

bd ied | iek X

int .)f; ie N x X

For the set # of the optimal partition it holds that x' # 0 % s', and those blocks x/
and 5’ lie on the boundary of ¢ (i.e., x| = x5, || # 0 and analogous relation holds for
the dual). Let (x,7.5) be a maximally complementary solution of problems (SOCP) and
(SOCD) defined by (6), then as X’ o5’ = 0 we have

Yelof i az0},

Si € {ﬁ(ﬂ:"x‘é:n;) : ﬁ 2 0}'

is equivalent to the primal and dual blocks befonging to orthogenal boundary rays of the
cone .
We can replace the definition of the set 4 of the optimal partition by:

BE) ={6,3) AF A 025, Fefad a>0}, s e {Ba],~%,): B =0}
for a primal-dual optimal solution {x,y.s) }.

Based on the results of Yildirim [?], we can alternatively define the optimal partition in
algebraic form as @ = (#,.V,#{x), 7). The difference from the definition of 7 is that
for primal-dual boundary blocks, it holds that x' € a specific boundary ray of %] and s’ &
the orthogonal boundary ray of %, instead of ' € bd 7 and s' & bd ;.

Comparing the twe definitions of the optimal partition, 7 and 7, it is worth to mention
a coupie of differences. When the optimal partition is defined as m, it partitions the index set
{1,2,..., I} of the blocks of variables. Consequently, it directly extends the definition of the
optimal pastition for QO (see Section 3.1) by adding the additional set & that corresponds to
primal-dual optimal sclutions being on the boundary of the cone, i.e., the case that does not
exist for QO. In contrast, when the optimal partition is defined as m,, it partitions not only
the index set {1,2,...,1}, but aiso the space, as the set #(x) includes both indices of the
blocks / and vectors X' that define specific boundary rays. Definition of the optimal partition
7, is similar to the definition of the optimal partition for semidefinite optimization (SDO)
iz [?], which partitions the space and not the index set. Note that the real meaning of the
partition set % (x) is that primal and dual vectors should be on the boundary of the cone and
belong to a specific ray on that boundary. If the optimal solution stays on the boundary, but
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moves to another boundary ray when the problem (SOCP) 1s perturbed, the optimal pastition
7, changes, while 7 remains invariant,

Lets us consider the bi-parametric SQOCO problem (25)-(26). We assume that the un-
perturbed problem (SOCP; ), where A = € = 0, has non-empty primal and dual optimal
solution sets and strong duality holds for it, i.e., the duality gap is zero. For now, we use the
definition 7. of the optimatl partition.

Similar o parametric QO in Section 3.2, we can transform the bi-parametric SOCO
problem into a series of uni-parametric problems. For simplicity, let us assign A = £. More-
over, let (x*,v*,5*) be a maximally complementary optimal sclution for £ = ¢ with the op-
timal partition % = (&, A, #{x*), &), the endpoints of the invariancy interval containing
€ can be computed as:

g = min s {eg:dx~ (A + AV = b, xguy € HKgug,xe =0, xg = 0xp, 0 20,
NN S

A:ry%w‘q:: ¢ ST € %A’U.‘ﬁ”ssﬁ = 0, S = ﬂszjg’u ﬁ > 0})

£y = max s {e:Ax— (DB + AP = b, xgu9 € Hpug, %0 =0, Xz = Oxg, @ =0,
£y5.8,

AT)’"?'S =y S AT € ‘;(%Uyss.%’ = 0: Sg = BS;{?’ ﬁ = 0}1

where g, o is the Cartesian product of the cones g%fq" suchthati € HU.F, Xy o 1s de-
fined analogously. Proof of this result for computing & and &, can be found in Theorem 4.1
in {?]. Alternatively, the constraints of the problems above can be completely rewritten in
fermas of the solution set instead of the index set, i.e., constraints {xgyz € %, x 0 =0, xg =
Xy, o > 0} can be written as {x € J#', xo5™ =0}.

The optimization problems for computing the endpoints & and &, of the current invari-
ancy interval are SOCO optimization problems due to the fact that constraints of the form
xg = Oz, 0 2 0 are linear (the invariancy interval can be a singieton, unlike in the QO
case). In confrast, if we use the definition of the optimal partition 7, constraints xg € bd %
are non-linear and are not second-order cone representable.

The results obtained by Yildirim [?] for the simultaneous perturbation case in conic
optimization and by using the geometric definition of the optimal partition are directly linked
to our findings. In his paper, Yildirim proved that the optimal value function is quadratic on
the current invariancy interval. Although Yildirim’s and our results are very interesting in the
light of extending the parametric optimization techniques to SOCO problems, the obstacles,
discussed in the remaining of this section, prevent direct mapping of them to algorithm
design and implementation.

Unlike for parameiric 1O and QO problems, the optimal partition z. for SOCO may
change continuously, that poses difficulties for identifying all invariancy intervals for para-
metric SQOCO. For the intervals of the parameter £, where the optimal partition 7, is not
changing continuously, the optimal value function is quadeatic {see Proposition 5.1 in [?]).
Another way to say it, for parametric SOCO we can have a continuam of changing tran-
sition points until we find an invariancy interval. In general, the optimal vatue function is
piecewise-guadratic and it is quadratic on every invariancy interval. For the intervals, where
the optimal partition changes continuously, we obtain the regions of non-linearity of ¢{z)
and there is no known way of describing ¢{£) completely on those intervals.

The intervals where the optimal partition . changes continuously, represent a curve on
the boundary of the quadratic cone. Similarly, if the optimal partition is defined as 7, the in-
tervals with 42 # 0 represent a curve on the quadratic cone surface, Characterization of those
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curves and finding a computable description of them will allow identifying all invariancy in-
tervals and computing the optimal value function. While those curves are conjectured to
have hyperbolic shape, there no results characterizing those curves that we are aware of. To
get a computational algorithm for parametric SOCO, this characterization is a missing ingre-
dient. Another remaining open problem is to find a rounding procedure for SOCO problems
to identify exact optimal solutions.

Alporithms for computing the optimal value function ¢(e,4) for parametric SOCO
problems are subject of future research as there are no algorithms for parametric SOCO
optimization. Invariancy regions corresponding to the definition of the optimal partition 7
are illustrated by an exampie in Section 4.3. That example also highiights the difficulties
that arise during bi-parametric SOCQ.

3.4 Parametric Optimization: Extensions
3.4.1 Multi-Parametric Optimization

In this section we discuss how ideas from uni- and bi-parametric optimization in Sections 3.1
and 3.2 extend to multi-parametric case. Some multi-parametric results exist for LO and QO
from the optimal basis invariancy [?] and optimal partition invariancy [?]. Bi-parametric
optimization algorithm from Section 3.2 can be extended to multi-parametric case as well.

We would like to mention some differences of our algorithmic approach to parametric
QO optimization in Section 3.2 and the algorithm described in [?] which is implemented in
[7]. First, in our study we allow simultaneous perfurbation in the right-hand-side of the con-
straints and the linear ferm of the objective function with different parameters, while in [?]
and related publications oaly pertesbation in cither the right-hand-side or the linear term of
the objective is considered. Second, in [?] the authors define a critical region as the region
of parameters where active constrainis remain active. As the result, an important precon-
dition for analysis in [?] is the requirement for either making non-degeneracy assumption
or exploiting special tools for handling degeneracy, while, our algorithm does not require
any non-degeneracy assumptions. Finally, the algorithm for parametric guadratic optimiza-
tion described in [7] uses a different parameter space exploration strategy than ours. Their
recursive algorithm identifies a first critical {invariancy) region, and after that reverses the
defining hyperplanes one by one in a systematic process to get a subdivision of the comple-
ment set. The regions in the subdivision are explored recursively. As the result, each critical
(invariancy) region can be split among many regions and, consequently, alf the parts has to
be detecied, Thus, each of the potentially exponential number of invariancy regions may be
split among exponential number of regions, which makes their algorithm computationaily
expensive.

3.4.2 Noplinear Parametric Optimization

Let us consider convex nen-linear parametric problem (11). When continuity of the func-
tions g;(x, A) for all {x, 1) and the convexity of these functions on R” for all A € A are added
to the solution sef {12), one can derjve stronger resulis (see Section 3.2 in [?]).

This is the case we encounter in multiparametric LO and QO problems in some sense.
With these assumptions, .4 is Hausdorfl upper semi-continuous at Ay if M{Ay) is bounded
and an xg € X exists such that g(xp) < Ao (g(x) = (21{x), ... &= (x))7 and A is an m-vector)
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(see Theorem 3.3.1 in [?]). It means that xq must be an interior point of the parametric
solution set (12).

Moreover, for X = R”, if . (1) is nonempty for all & € A and .#{A) be affine sub-
space, then 4 is Hausdorff-continuous at Ay (see Theorem 3.3.3.2 in [?3). This Is the case
we have in multiparametric 1O and QO problems when perturbation occurs in the right-
hand-side of constrainis.

4 Multiobjective Optimization Applications and Examples

In this section we present examples of multiobjective optimization problems that can be
formulated and solved via parametric optimization. Multichjective optimization problems
arise in many areas including engineering (maxintize vehicle speed and maximize its safety),
finance (maximize profit and minimize risk), environmental economics (maximize profit
and minimize environmental impact) and health care (kill tumor and spare heatthy tissues).
Examples described in this chapter are financial optimization problems from the area of risk
manageruent and portfolio selection. For examples of multiobjective optimization problems
appearing in engineering we refer the reader to consuit a vast literature on multi-disciplinary
design [?1. Health care applications include Intensity Modulated Radiation Therapy (IMRT)
planning for cancer freatment among others, For instance, a multiobjective knear IMRT
problem is studied in [?], where the authors formulate an optimization problem with three
objectives and compute an approximation of Pareto efficient surface.

Tn portfolio optimization, the goal of investors is to obtain optimal returns in all mar-
ket environments when risk is involved in every investment, borrowing, lending and project
planning activity. From the multicriteria analysis point of view, investors need to determine
what fraction of their wealth to invest in which asset in order to maximize the total return
and minimize the total risk of their portfolio. There are many risk measures used for quan-
titative evaluation of portfolio risk including variance, portfolio beta, Value-at-Risk (VaR)
and expected shortfall (CVaR) among others. In addition to risk measures, there are portfolio
performance indicators: expected market retum, expected credit loss, price eamnings ratio,
etc. The most famous porifolio management model that involves a risk-return tradeoff is the
mean-variance portfolio oplimization problem intreduced by Markowitz [?]. The conflicting
objectives in the Markowitz model are minimizing portfolio variance (risk) and maximizing
expected return.

Multiobjective optimization is a natural tool for portfolio selection models as those
involve minimizing onc or several risk measures, and maximizing a number of portfolio
performance indicators. We describe three variants of multiobjective portfolio optimization
problems and their corresponding parametric formulations:

1. Parameiric LO (three Linear objectives) in Section 4.1.

2. Pazametric QO {two linear objectives and one quadratic objective) in Section 4.2.

3. Parametric SOCO (one linear objective, one quadratic objective and one second-order
conic objective) in Section 4.3,

4.1 Portfolio Selection with Multiple Linecar Objectives

Here, we discuss the multiobjective portfolio selection problem, where the objective func-
tions are lirear. Those models are rooted in the Capital Asset Pricing Model (CAPM), where
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the risk measure of an asset or portfolio is given by its beta coefficient. CAPM is the equi-
librium version of mean-variance theory. Due to measuring risk in terms of the beta coeffi-
cients, the objective function in the risk minimization problem is lincar in portfolio weights.
In [?] a decision 1ool for the selection of stock portfohios based on multiobjective 1O is
described. Linear objective functions of the problem are the return, price eamings ratio, vol-
ume of transactions, dividend yield, increase in profits and risk, which is expressed as the
linear function of betas. The authors apply portfolio selection to a set of fifty-two stocks
from the Athens Stock Exchange. We are going to briefly describe their model including ob-
jective functions and constraints and compute the Pareto front for three out of six objectives
considered in [?]. Readers interested in full details of the formulation and data for the model
may consult [?1.

The decision variables in portfolio selection problems are the portfolio weights x;, i =
1,....N, where N is the total number of assets available for invesiment. Portfolio weights
define a proportion of total wealth (or total budget) invested in the corresponding stock. Asa
matter of convenience, sum of portfolic weights is normalized to one 2?; ;% = 1. Denoting
by #; the expected market return of an asset 7, allows us to compute the portfolic market
return as rp = 2’,)-\;] rix ==

The beta coefficient  is a relative measure of systematic (non-diversifiable) risk, it
reflects the tendency of an asset to move with the market. As beta measures correlation with

the market portfolio, it is calculated as 3; = CO:&':.‘;";” , where ry is the asset  retum and s
is the return of the market portfolio. If f; < 1 then asset / has less systematic risk than the

overall market and the opposite holds for §; > 1. As a result, portfolio risk minimization can
be expressed as the linear function of asset weights, namely {min, 87x}.

Among the other six objectives that are considered in{?7] is maximizing returm
{max,r"x} and minimizing Price Earmings Ratio (P/E} {min,d7x}. The Price Earnings
Ratio d; for each stock is computed as share price in the stock market at time period ¢ divided
by earnings per share at period 7 — 1. We could have computed the Pareto efficient surface
for more than three objectives here, but we restrict our atéention to only those three due to
well known difficulties with visualizing surfaces in more than 3 dimensions. Denoting the
three objectives as /1 = ~rTx, 3 = BTx and fi = d7x, we obtain the following parametric
optimization problem:

min —r x4 24 Blx+Aad x
sl x€ 0,
where €2 in [?] is the sct of linear constraints that includes no-short-sales restriction x > 0;
upper Hmits for the capital allocations x; < w;, 79 1,...,52; specific preferences for some
stocks of the form x; 2> /;; and the constraints on betas of the form that portion vy of the
capital will be allocated to stocks with B € {B;, B2} that are expressed as ¥,c7x; = y. Note
that maximizing ¥ x is equivalent to minimizing —r* x.

The parametric optimization problem that follows from the £-constrained multiobjective

formulation is the following:

@7

b

niurn -rx
st BTx4n =g
dTX+I2 = £ (28)
Zixi=1
z,'&_[l',‘ = (.2
x20,r20,

where #;, 2 are the slack variables used to convert the linear inequality constrains into equal-
ity constraints and £ = (g1,£)7 is the vector of parameters. We have used a subset of the
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Fig. 5: The Optimal Value Function for the Parametric Linear Portfolio Optimization
Problem.

constraints x € £2 from [?] for the ease of exposition and included the ne short-sales con-
straint x > 0 and the constraint ¥.;x; = 0.2 stating that 20% of capital is allocated to stocks
with a beta coefficient less than 0.5, Formulation (28) is parametric LO problem with two
parameters in the right-hand-side of the constraints.

The optimal value function for problem (28} is shown in Figure 5. We can use the op-
timal partition for the variables £; and 7, to determine the Pareto-efficient surface. For the
invariancy regions corresponding to Pareto-efficient solutions, /1 € .4 and 1; € .47, meaning
that those variables belong to the subset 4 of the optimal partition. The invariancy regions
cotresponding 10 the Pareto efiicient solutions are shown in Figure 6(b} and the Pareto front
is depicted in Figure 6(a). The Pareto front is a plecewise linear function, The knowledge of
invariancy intervals and oplimal value function on those intervals gives us the structure of
the Pareto front.

4.2 Mean-Variance Optimization with Market Risk and Transaction Cost

The Markowitz mean-variance model is commonty used in practice in the presence of mar-
ket risk. From an optinization perspective, minimizing variance requires solving a QO prob-
lem. Denoting a vector of expected market returns by r as before and a variance-covariance
matrix of returns by @, the mean-variance portfolio optimization problem is formulated as a
QO problem where the objectives are to maximize the expected portfolio return {max, 7 x}
and 1o minimize variance {min,x’ Ox}. The multiobjective optimization problem can be
formulated as the weighted sum problem

min, —Ar7x+ %xr Ox

stxef, (29)
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Fig. 6: The Pareto Front for the Multiobjective Linear Portfolio Optimization Problem (a)
and the Invariancy Regions Corresponding to It (b).

or as the g-constrained problem

min, %xTQx
st —Tx<e, (30)
X E 82,

where €2 is the set of linear constraints on portfolio weights,

A portfolio may incur transaction cost associated with esch trading, Denoting the linear
transaction cost by £;, we add the third objective of minimizing the frading cost £7x of a
portfolio to the mean-variance portfolio optimization problems (29)-(30).

‘We use a small portfolio optimization problem to illustzate the multiobjective optimiza-
tion methodology. The problem data is presented in Tables 2 and 3. Table 2 shows expected
market returns per unit transaction: cost for 8 securities, as well as thetr weights in the initial
portfolio xy.

We put non-negativity bounds x > ¢ on the weighis disallowing short-sales and optimize
three objectives:

1) minimize the variance of returns;
2) maximize expected market retun;
3) minimize transaction cost.

Moreover, we also need to add 2 constraint that makes the sum of the weights equal to one.
Thus, the multiobjective porifolio optimization probiem looks like:

min f; (x) = ~rTx, fo(x) = £, f(x} = LxT Ox
8.8 Fxp =1, (1)
X; > 0V
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Table 2; Portfolio Data for Mean-Variance Optimization with Market Risk and Transaction
Cost.

Security xg  r==E{Market Return) £ = (Transaction Cost)

1 0 0.095069 0.009830
2 G.44 0.091222 G.005527
3 0.18 0.140161 0.004001
4 0 0.050358 0.001988
5 0 0.079741 0.006252
& 0.18 0.034916 0.000099
7 0.13 0.119318 0.00375%
8 0.07 0.115011 0.007334

Table 3: The Return Covariance Matrix @ for Mean-Variance Optimization with Market
Risk and Transaction Cost,

Security H Z 3 4 5 6 7 8

1 0002812 0002705  -0.001199  £.000745  -0.000064  0.001035  -0.000336  0.000178
2 0.002705 0015664 -0.003000  0.001761 0002282 0007129 0.000596  -0.003398
3 5001199 -0.003000  0.008842  -0.000155 0003912 0.001424  0.001183  -0.00171i¢
4 0000745  0.001761  -0.000155  0.002824  0.001043  0.003874  0.000225  -0.001521
5 0080064 -0.002282  0.003912  0.003043  G.007213  -0.001946  4.001722 0001199
[
7
8

0.001035 0007129 0001424 0003874 0001946 0.013193 0001925 -0.004506
0.000336 6000596 0001183 0.000225  §.001722  (.001925 Q002303 -0.000213
0.000178 -0.003398  -0.0017I0 -0.001521  €.001199  -0.004506 0000213 0.006288

We solve problem (31} as a parametric problem corresponding to the g-constraint mul-
tiobjective formulation:

misn LT Ox
xi *

s.t—rlx4n =g

fo+Iz = &2 (32)
Z,‘ij ]\
x>0, 120,

where 11, & are the slack variables used to convert the linear ineguality constrains into equal-
ity constraimts and £ = {&1,£)7 is the vector of parameters.

The optimal value function for problem (32} is shown in Figure 7 and the corresponding
invariancy regions — in Figure 8(8). We can utilize the optimal pastition for the variables £
and £ to determine the Pareto efficient surface. For the invariancy regions corresponding to
Pareto efficient solutions, f) # & and t; # 9, meaning that those variables do not belong
to the subset & of the optimal partition. The ivariancy regions corresponding to Pareto
efficient solutions are shown in Figure 8(b) and the Pareto front is depicted in Figure 9,

Invariancy regions have a very infuitive interpretation for portfolio managers and finan-
cial analysts as inside each invariancy region ihe portfolio composition is fixed. By fixed
composilion we mean that the pool of assets included in the pertfolio remains unchanged
while asset weights can vary. For instance, on the invarfancy region my in Figure 8(b) the
optimal partition is A A BEN FBIH./A which means that the portfolio is composed of
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Fig. 7: The Optimal Value Function for the Mean-Variance Portfolio Problem in the Presence
of Transaction Cost.

securities 3, 4, 6 and 7. The functional form of the Pareto front on the mvariancy region
is f3 5 0.1~ 0.4/ ~23.7f + 134/ + 11999.4/2 — 621.911 f>.

4.3 Robust Mcean-Variance Optimization

One of the common criticisms of mean-vartance optimization is its sensitivity to return esti-
mates. As the consequence of that fact, small changes in the return estimates can result in big
shifts of the portfolio wetghts x. One of the solutions to this problem is robust optimization,
which incorporates uncertainties into the optimization problem. For a review of the robust
optimization apphied to portfolio management we refer the reader to {?].

We consider a variant of robust portfolio selection problems proposed by Ceria and
Stubbs {?]. In their model, instead of the uncertainty set being given in terms of bounds,
they use clipsoidal uncertainty sets. In [?] the authors assume that only r, the vector of
estimated expected refumns, is uncertzin in the Markowitz model (29). In order to cousider
the worst case of problem (29), it was assumed that the vector of frue expecied returns r is
normally distributed and lies in the eflipsoidal set:

fr—ATe Y r-i < <,

where F is an estimate of the expected return, @ is covariance matrix of the estimates of ex-
pected returns with probability 1, and k% = y&{1 — 1) with 3 being the inverse cumulative
distribution function of the chi-squared distribution with N degrees of freedom.

Let £ be the optimal portfolic on the estimated frontier for a given target risk level.
Then, the worst case (maximal difference between the estimated expected return and the
actual expected retum) of the estimated expected retumns with the given portfolio £ can be
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Fig. 9: The Pareto Efficient Surface for the Mean-Variance Portfolio Optimization Problem
with Transaction Cost.

formulated as:
max {# 78
Pt e ) (33)
st. r =AY e r—f <«
As derived in [?], by solving problem (33) we get that the optimal objective value (7 - Ml
is x| @122} So, the true expected return of the portfolio can be expressed as r7# = #7¢ ~

x|@'/23].
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Table 4: Expected Returns and Standard Deviations with Correlations = 20% for Robust
Mean-Variance Optimization, Optimal Weights for Two Portfolios.

Security rl ¥ o] Security  Portfolio A Portfolio B
Assetl  7.15% 7.16%  20% Asset ] 38.1% 84.3%
Asset?2  7.16% 7.15%  24% Asset 2 69.1% 18.7%
Asset3  7.00% 7.00%  28% Asset 3 0.0% 0.0%

Now, problem {29) becomes a robust portfolio selection problem

mine —AF X+ %—xTQx + @2y, (34)
st xe

Problem (34) is SOCO problem, moreover, it is & parametric optimization problem, We solve
an instance of problem {34) rewriting its formulation as:

min —# x4 x|/ 2xf 4+ AxT Qx
st ST k=1 (35)
20,

where 7 is the vector of expected returns, @ is the covariance matrix of estimated expected
returns, {J is the covariance matrix of returns, x is the estimation error aversion, and A is the
risk aversion.

Formulation (35) is a parametric SCCO problem with two parameters x and A, Prelim-
inary results on parametric SOCO are discussed in Section 3.3, If we look at it in the multi-
objective sense, it is the problem of maximizing expected retwn, minimizing risk {(variance
of retums) and minimizing estimation error for the expected return. The problem formula-
tion emphasizes the differences between the true, the estimated, and the actual Markowitz
efficient frontiers [?].

Te demonstrate the influence that sensitivities in the retwm estimates can potentially
have on the portfolio selection, Ceria [?] presented a simple portfolio consisting of three
assets. Table 4 shows expected returns for the two estimates and standard deviations for the
asscts. As Tabic 4 also shows, completely different portfolio weights can be obtained while
optimizing the portfolio with expected retum estimates ! and 2, Taking ! as the estimate
of the expected returns, we solve the multiobjective problem (33) to find all possibie trade-
offs between the three objectives — maximizing expected return, minimizing variance and
minimizing estimation error,

As xTOx < 0 (Q = RRT) and |©'2x)| = VxT@x < 03, we can rewrite problem (35)
in the form:

min —# x4+ Ay + Ay

5L fax=1
x>0

@ilzxwu =0 (36)
Rlx—ve=10

(b’o,i{) € ';{q-, (V{},li) € ng:

where parameters 4) > 0 and A > 0 and JZ; 15 the second-order cone. Parametric problem
(36) represents the weighting method for multiobjective opitnization.
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Fig, 10: The Invariancy Regions for the Robust Mean-Variance Portfolio Optimization
Problem.

Formulating the parametric problem corresponding to the e-constrained methed for mul-
tiobjective oplimization we get:

min ~#7 x
st w1
x>0
Oy gi=10
Rlx—v=20 BT
Hy = £y
Vo = &2

(uo,u) € Sy, (vo,v) € K

where parameters € > 0 and £ 2> 0, and @ is the identity matrex.

The optimal value function of the parametric SOCO formulation (37) with parameters
(€1,£2) in the constraints is shown in Figure 11. The corresponding invariancy regions are
presented by Figure 10. To identify the invariancy regions that correspond to Pareto efficient
solutions we need to restrict our atiention to the regions where the second order conic blocks
v and v belong to the subsets 2 or 7 of the optimal partition. Those invariancy regions and
the corresponding Pareto efficient surface is shown in Figure 12,

5 Conclusions and Future Directions

In this paper we considered techniques for solving multiobjective optimization problems
and their paramnetric counterparts, By formulating and solving multiohjective optimization
problems as parametric optimization problems we bridged the gap between the two fields
and unified the theory and practice of multiobjective and parametric optimization, Some
classes of multiobjective oplimizaiion problems thet include linear, convex quadratic and
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Fig. 11: The Optimal Value Function for the Robust Mean-Variance Portfolio Optimization
Problem.
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potentially second-order conic optimization probiems can be efficiently solved using para-
metric optimization algorithms. In particular, parametric optimization techniques described
in this paper give us a practical tool for solving multiobjective quadratic optimization prob-
lems. Parametric optimization allows not only computing Pareto fronts (efficient surfaces),
but also identifying piece-wise structure of those surfaces. Structural description of Pareto
fronts gives functional form of each of its pieces and thus helps decision makers to make
better decisions.

Even though some techniques exist for solving convex non-linear parametric problems,
those are not widely used. So, solving multiobjective convex non-lincar probiems in prac-
tice is one of the hot research areas. If a multiobjective problem is non-convex {i.e, mixed
mteger), different approximations can be used allowing tracing Pareto efficient frontier with
parametric optimization [?].

Integration of paramefric optimization technigues that use optimal bases, optimal set
invariancy and optimal partition invariancy into a unified framework remains to be done.
There are many publications that address different aspects of parametric optimization, but
there is no stody that puts those techniques together and describe how well those perform for
different classes of optimization problems. Additional work has to be done on classifying
nultiobjective optimization problems for which the Pareto efficient frontier has identifiable
strocture.

Implementing parametric optinzization into optimization software packages remains one
of the challenges. Unfortunately, available software for parametric optimization is very lim-
ited. Commercial optimization packages such as CPLEX [?} and MOSEK [?] include basic
sensitivity analysis for LO that is based on an optimal basis. MOSEK is the only package that
provides optimal partition based sensitivity analysis for LO as an experimental feature. As
parametric optimization is the generalization of sensitivity analysis, techniques for identify-
ing invaziancy and stability regions have to be implemented on the top of sensitivity anal-
ysis avajlable in those packapes. Experimentation with active-set based multi-parametric
optimization for LO and QO can be performed with MPT (Multi-Parametric Toolbox for
MATLAR) [?] and this toolbox can be called from the YALMIP modeling environment {?].
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