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Abstract

We consider the logarithmic and the volumetric barrier functions used in interior point

methods. In the case of the logarithmic barrier function, the anaytic center of a level set

is the point at which the central path intersects that level set. We prove that this also

holds for the volumetric path. For the central path, it is also true that the analytic center

of the optimal level set is the limit point of the central path. The only known case where

this last property with the logarithmic barrier function fails occurs in case of semidefinite

optimization in the absence of strict complementarity. By an example we show that this

property does not hold even for a linear optimization problem in canonical form for the

volumetric path.

1 Introduction

Let P be a polyhedral set of the form P = {x : Ax ≥ b} where A ∈ R
m×n, b ∈ R

m and x ∈ R
n.

We assume that the feasible set P has a nonempty interior and is bounded. Boundedness

implies rank(A) = n and m > n. Let F (x) = −
∑m

i=1 log(a
T
i x− bi) be the logarithmic barrier

function, and H(x) = ∇2F (x) be the Hessian of F (x). As F (x) is a strictly convex function,

the Hessian H(x) is positive definite. Define V (x) = log det H(x). The function V (x) is

called the volumetric barrier function for x ∈ P and is known to be strictly convex as

well [8]. In [4] Atkinson and Vaidya introduces a cutting plane algorithm using the volumetric

barrier function. This algorithm is further improved in [1, 2]. Anstreicher([3]) extends the

volumetric barrier to the semidefinite case.

Given the linear optimization problem in the canonical form with c 6= 0 :

(LP) min cTx

s.t Ax ≥ b
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for µ > 0, consider the nonlinear optimization problem using the volumetric barrier function:

min cTx+ µV (x)

s.t Ax > b .
(1)

Let Gµ(x) = cTx+ µV (x) and x(µ) be the (unique) optimal solution of Gµ(x). The optimal

points x(µ) parameterized by µ form a differentiable path called the volumetric path. As

µ → 0, x(µ) converges to an optimal solution of (LP).

2 Properties of the volumetric path

In the next two propositions we prove certain fundamental properties of the volumetric path.

The next proposition deals with the monotonicity of the objective on the volumetric path [7].

Proposition 2.1. For µ1 < µ2, we have the following:

1. x(µ1) 6= x(µ2).

2. cTx(µ1) < cTx(µ2).

Proof.

1. Let µ1 < µ2 and suppose, to the contrary, that x(µ1) = x(µ2) = x̄. The first order

optimality conditions for (1) give

∇(cTx+ µ1V (x)) = 0 =⇒ c+ µ1∇V (x) = 0

∇(cTx+ µ1V (x)) = 0 =⇒ c+ µ2∇V (x) = 0,

that implies

∇V (x) =
−1

µ1
c =

−1

µ2
c,

which is a contradiction for c 6= 0.

2. Let x1 and x2 be the optimal solutions of Gµ1
and Gµ2

, respectively. Since Gµ is strictly

convex, for µ > 0, we have

Gµ1
(x1) < Gµ1

(x2)

Gµ2
(x2) < Gµ2

(x1),

which implies

cTx1 + µ1V (x1) < cTx2 + µ1V (x2) (2)

cTx2 + µ2V (x2) < cTx1 + µ2V (x1). (3)
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By multiplying the inequalities (2) by µ2, and (3) by µ1, respectively, and adding the

resulting inequalities, after cancellations one gets

µ2c
Tx1 + µ1c

Tx2 < µ2c
Tx2 + µ1c

Tx1,

which implies cTx1 < cTx2.

Next we examine the relationship between the points x(µ), µ > 0 on the volumetric path and

the so-called volumetric center of the level sets cTx = α.

Definition 2.2.

1. A level set Lα for (P) is the set {x ∈ R
n : cTx = α, Ax ≥ b}

2. The volumetric center x̂ of a (bounded) level set Lα is defined to be the (unique) mini-

mizer of the volumetric function V (x) over Lα.

Proposition 2.3. Let µ > 0 and x̂ = x(µ) be the optimal solution of (1) with cT x̂ = α for

some α. Then x̂ is the volumetric center of Lα.

Proof. Consider the following problems:

(§) min V (x) (§§) min cT x
µ

+ V (x)

s.t cTx = α s.t Ax > b.

Ax > b.

Let x̄ and x̂ be the optimal solutions of (§) and (§§), respectively. The first order optimality

conditions for (§) give

∇V (x̄) + λc = 0, cT x̄ = α , (4)

where λ is the (unique) Lagrange multiplier, and for (§§) give

c

µ
+∇V (x̂) = 0 . (5)

Since by assumption cT x̂ = α, x̂ satisfies (4) with the choice of λ = 1
µ
. Since (§) and (§§)

have unique optimal solutions, it follows that x̄ = x̂. This completes the proof.
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3 The limit of the volumetric path

Let x∗ = limµ→0 x(µ) be an optimal solution of (LP) with the corresponding optimal objective

value α∗ = cTx∗. From Proposition 2.3, one sees that as α decreases to α∗, the volumetric

centers of the level sets Lα∗ converge to x∗. Thus a natural question arises about whether x∗

is the volumetric center ofthe optimal level set Lα∗ . Observe that since certain constraints

have to be active in the optimal level set Lα∗ , the volumetric barrier function V (x) is not

defined on Lα∗ . Hence in order to define the volumetric center of Lα∗ , one needs to identify

the constraints that are inactive at x∗, i.e. the constraints which hold with strict inequality

in the relative interior of Lα∗ . Let I be the set of inactive constraints of Ax ≥ b in the

relative interior of the optimal level set Lα∗ . Let F (x) = −
∑

i∈I log(a
T
i x − bi) and V (x)

be defined accordingly. The volumetric center of the optimal level set Lα∗ is defined as the

unique minimizer of

min V (x)

s.t cTx = α∗

aTi x = bi, i /∈ I

aTi x > bi, i ∈ I

(6)

It is known that for the logarithmic barrier function, the central path converges to the analytic

center of the optimal level set [7]. In particular, for a linear optimization problem in the

standard form, the volumetric barrier function reduces to the logarithmic barrier function,

hence in this case the volumetric path converges to the volumetric center of the optimal level

set also. A natural question to ask is whether this extends to the problems in the form (LP).

As the following example illustrates, this fact fails to hold for (LP).

Example 3.1.

Let the rows of the matrix A ∈ R
5×2 be given by the vectors aT1 = (1, 0), aT2 = (−0.1,−1),

aT3 = (−1, 0), aT4 = (−0.1, 1), aT5 = (0, 1) with the objective vector cT = (0, 1) and

bT = (0,−1,−1, 0, 0.1). The optimal objective value is α∗ = 0.1.

For a polyhedral set of the form P = {x : Ax ≥ b}, the Hessian H(x) = ∇2F (x) of the

logarithmic barrier function is computed as H(x) =
∑m

i=1Hi(x), where

Hi(x) = aia
T
i /(a

T
i x− bi)

2 [8]. For our example m = 5 and

H1(x) =
1
x2

1

[

1 0

0 0

]

, H2(x) =
1

(1−0.1x1−x2)2

[

0.01 0.1

0.1 1

]

, H3(x) =
1

(1−x1)2

[

1 0

0 0

]

,

H4(x) =
1

(−0.1x1+x2)2

[

0.01 −0.1

−0.1 1

]

, H5(x) =
1

(x2−0.1)2

[

0 0

0 1

]

.

From Proposition 2.3, the volumetric path converges to

x∗ = lim
ǫ→0

x(ǫ)
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Figure 1: The volumetric center of the optimal level set is (0.37,0.1), while the volumetric path

converges to (0.44, 0.1).

where
x(ǫ) = arg min log det H(x)

x2 = 0.1 + ǫ

Now, log det H(x) is computed as

log[(60000ǫ4x21 − 60000ǫ4x1 + 30000ǫ4 − 64000ǫ3x21 + 64000ǫ3x1 − 32000ǫ3 + 600ǫ2x41
−1200ǫ2x31 + 26200ǫ2x21 − 25600ǫ2x1 + 12800ǫ2 + 160ǫx41 − 3200ǫx31 + 6080ǫx21
−4480ǫx1 + 1440ǫ+ 4x61 − 66x51 + 401x41 − 800x31 + 722x21 − 342x1 + 81)/

(ǫ2x21(x1 − 1)2(10ǫ− x1 + 1)2(10ǫ+ x1 − 9)2)] .

Let h(x1, ǫ) = log(ǫ2det H(x)). Clearly for ǫ > 0 fixed, the minimizer of the function

log det H(x) is the same as the minimizer of h(x1, ǫ). Note that
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lim
ǫ→0

h(x1, ǫ) = log
(4x61 − 66x51 + 401x41 − 800x31 + 722x21 − 342x1 + 81)

x21(x1 − 1)4(x1 − 9)2

= log
(4x41 − 58x31 + 281x21 − 180x1 + 81)

x21(x1 − 1)2(x1 − 9)2

Denote this limit by g(x1). We will argue that the first coordinate of the limit point of the

volumetric path x∗ = limǫ→0 x(ǫ) is the minimizer of g(x1).

First the unique minimizer of g(x1) can be computed as x∗ = 0.44248. Let gn(x1) =

h(x1,
1
n
). We will show that limn→∞ arg min gn(x1) = x∗. Suppose by contradiction that

limn→∞ arg min gn(x1) = x̄ 6= x∗ for some x̄. Choose an interval [a, b] ⊆ [0, 1] contain-

ing x∗ such that x̄ /∈ [a, b]. Since g(x1) has minimum at x∗, one can choose an ǫ with

0 < ǫ < min{g(a)−g(x∗)
2 , g(b)−g(x∗)

2 }. Since gn(x1) converges uniformly to g(x1) on the compact

interval [a, b], there exists a numberN ∈ N such that n ≥ N implies g(x)−ǫ < gn(x) < g(x)+ǫ

for all x ∈ [a, b]. For n ≥ N we have,

gn(x
∗) < g(x∗) + ǫ < g(a)− ǫ < gn(a)

gn(x
∗) < g(x∗) + ǫ < g(b)− ǫ < gn(b)

(7)

Fix n ≥ N . If gn(x1) has a minimizer x not in [a, b], (7) would imply that the points

gn(a), gn(b), gn(x
∗) and gn(x) contradict the convexity property of gn(x1). This shows that

for any n ≥ N , the unique minimizer of gn(x1) must lie in the interval [a, b]. Hence this

would be a contradiction to the assumption that limn→∞ arg min gn(x1) = x̄ /∈ [a, b]. Thus

we obtain limn→∞ arg min gn(x1) = x∗ = 0.44248 as the limit point of the volumetric path.

On the other hand, at the optimal objective value α∗ = 0.1 the constraint a5 is active, and

the volumetric center of the optimal level set defined by (6) is the unique solution of

min log det H(x)

x2 = 0.1,
(8)

where H(x) =
∑4

i=1Hi(x). The optimal solution of (8) is computed as

x = (0.37087, 0.1), whose first coordinate is not equal to x∗. Thus this counterexample

demonstrates that the limit of the volumetric path is not necessarily the volumetric center of

the optimal level set.
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4 Conclusion

In this article, we investigate certain properties of the volumetric path for a linear optimiza-

tion problem (LP) in the standard dual form. These properties are all known to be true for

the logarithmic barrier function. We show that the objective function is monotone on the

volumetric path . Next we prove that the intersection of the volumetric path with a level set

is the volumetric center of that level set. While for the logaritmic barrier function, the limit

of the central path is known to be the analytic center of the optimal level set, this property

does not hold for the case of semidefinite optimization when strict complementarity fails to

hold [5, 6]. The main result of the article is that the above property fails to hold for the

volumetric barrier function even for linear programs. Thus we conclude that the limit of the

volumetric path is not necessarily the volumetric center of the optimal set even for the case

of linear optimization where strict complementarity always holds.
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