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Abstract

Increasing competition and volatile conditions in high-tech markets resuit in shortening
product life cycles with non-cyclic demand patterns. This study illustrates the use of a demand-
characterization approach that models the underlying shape of product demands in these mar-
kets, In the approach, & Bayesian-update procedure combines the demand projections obtained
from historical data with the short-term demand information provided from demand leading
indicators. The goal of the Bayesian procedure is 1o improve the accuracy and reduce the vari-
ation of historical-data-based demand projections. This paper discusses the impilementation
experience of the proposed approach at a semiconductor-manufacturing company; the key test
results are presented using product families introduced over the last few years with a comparison

to real-world benchmark demand forecasts.

Key Words: Bayesian forecasting; leading indicators; cumulative demand growth; short life-

cycle products; high-tech industry.

Introduction

The high-tech industry, including semiconductor and computer manufacturers, had an accelerated
growth in the mid-to-late 1990s; companies acquired advanced manufacturing and design capabil-
ities to supply leading-edge systems at competitive prices. The successive releases of operating
systems that required increasingly more hardware power fuelled the growth. However, the drop in
demand with a downturn in economic conditions in 2001 resulted in an industry-wide excess ca-
pacity, thus deferring companies’ investments in new resources. Moreover, the power of computing
systems continually exceeded that of software systems, enabling computers to run effectively with

existing software.

These market conditions led o the development of low-cost high-power systems. For

instance, in order to decrease power consumption and increase features of microprocessors, core



processors that included multiple processors of existing technologies were introduced. In order to
stay competitive, companies committed to the development of a major new processor every two
years as opposed to four or more years as in the 1990s. In addition, a minor architectural change
began to occur in the year following the introduction of each new processor. This rapid adoption

of technologies led to the shortening of product life cycles.

The rising complexity of the market, as well as the products, increases the challenge in
demand forecasting. Current forecasting practices in the industry are based on (1) collecting field
forecasts from all the regional markets that a company serves, then (2) aggregating the field forecasts
to global demand by product lines and by adjusting with additional economic and marketing factors.
The final forecast is approved and released by the se;nior management of the company and used as
the basis for capacity expansion and operational decisions. However, it is reported that there is
an industry-wide need for a systematic and repeatable approach to effective demand forecasting,
utilising all the accessible data and leading to less volatile, more accurate and timely responses to

market-significant events.

Aytac and Wu’s (2008) approach, along the lines of these objectives, provides a methodol-
ogy that characterises demand using multiple sources of information and quantifies the uncertainty
in demand estimates. High-tech products typically demonstrate a single-modal life-cycle pattern
with high volatility. In the proposed approach, the combined estimate of a number of life-cycle
growth models describes the cumulative demand. A Bayesian procedure aggregates different sources
of information that describe short-term demand characteristics. The aggregated information up-
dates the estimate of each growth mode!l projected from historical data. The procedure provides a
distributional characterization of demand with the objective of improving the accuracy and reduc-

ing the variability in this characterization.

The current study contributes to the practice of operational planning by illustrating the
use of this recently proposed demand-characterization methodology and by exploring a variety
of sources of short-term demand information. The implementation takes place within one main
product division of a major semiconductor-manufacturing company. However, the data is disguised
due o the confidentiality agreement with the company. The following discussion summarises the
methodology, introduces different sources of short-term demand information, demonstrates the

implementation experience and testing results, and concludes with future research directions.



Life-cycle demand characterization

A typical demand pattern of short life-cycle products follows a single-modal curve with growth,
maturity, and decline phases. The technological forecasting literature, which studies the diffusion
of innovations in a population, provides a large number of growth models to describe life-cycle
demand realizations observed in practice. A common approach in the literature is to characterise
cumulative demand. This mitigates the impact of short-term demand fluctuations on the quality
of parameter estimates and provides a useful means to separating the trend from the noise in the

data.

Technological growth models are, in general, based on the following characterization of
the diffusion rate of an innovation (Sultan et al, 1990):

dX(t)
dt

= g(t)[1 — X(t)]

where X(i) is the estimated cumulative sales at time ¢, and g(¢) represents the fraction of the
remaining expected life-cycle sales to realiée at time t. Different functional forms for g(t) lead to
different characterizations of the diffusion process. For instance, for the Bass model (Bass 1969}, a
pioneer in the technological forecasting research and one of the most widely used growth models,
g(t) = p+ gX(t), where the constants p and g are known as the coefficient of innovation and
coefficient of imitation, respectively. When the right-hand side of the equation is expanded, the
diffusion rate at any time t is expressed as the sum of the fraction of the buyers that are not
influenced by the previous buyers, p{l — X (¢)], and the fraction of the buyers that are influenced
by the previous buyers, ¢X (£){1 — X (¢)]. The solution to the differential equation is an S-shaped

cumulative curve.

Among the studies that fllustrate the use of diffusion mdcielling in practice, Kurawarwala
and Matsuo (1998} focus on life-cycle modelling combined with seasonality at a computer man-
ufacturer. In addition, Meade and Islam (1998) provide an extensive sﬁrvey of the 29 diffusion
models proposed in the technological forecasting literature; the performances of the individual and
combined model forecasts are compared using both simulated and real-life data sets for consumer
durables. Meade and Islam (2006) provide a more recent review of the literature and further explore

the issues related to multi-national and multi-generational diffusions of innovations.



Bayesian demand forecasting

In the proposed approach, a group of growth models characterise the baseline demand patterns.
A Bayesian procedure describes the projection of each model in probability distributions; the
combined projection of models is the final estimate of demand. This procedure improves the
uncertainty in the characterization of demand using short-term demand information. For this

purpose, the approach repeats the following procedure for each model.

Step 1 The projection of the growth model from historical data provides the prior information

for the Bayesian procedure {Figure 1a).

Step 2 Demand leading indicators are the sources of short-term demand information. The in-
formation from a leading indicator extends the historical demand data, and the model is
reestimated over the extended data. The collection of the projections from the data extended
with each leading indicator forms the sampling information for the estimate of the model

(Figure 1b).

Step 3 The Bayesian procedure updates the prior projection using the sampling information to

generate the posterior life-cycle demand projection (Figure lc).

For a more formal description of the procedure, let ©¢ represent the historical data of
the cumulative fraction of total demand realised over time T, te., ©p = {X{1),...,X(T)}. Given
O, in step 1, the Bayesian procedure produces the prior projection of each model (k = 1,..., K)

to predict the cumulative demand at time T 4+ M, ie., X{T + M}, as
Xp(T+ M|Op), k=1,...,K, M > 0.

Total variance of the prior estimate, o7, is equal to the sum of the variance of the model’s estimate
and variance of its estimation error. The former is calculated based on the explicit density approach
(Meade and Islam, 1995), where random sets of parameters are drawn from the probability distri-
butions of the parameter estimates; sample model estimates derived from each set of parameters
determine the variance. On the other hand, the latter component, variance of estimation error, is

approximated using the mean square error of estimation.

In the second step, each source of short-term demand information (f = 1, ...,m} provides

an estimate for the L-period future demand, i.e., {X(T+1),..., X(T++ L)}, and extends the available
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Figure 1: Bayesian update of the probability distribution of a growth model’s estimate

datato T+ L, ie, 6%“ - Lhe estimate of a growth model obtained from the extended data,
Xpi(T+ ML ) k=1,,K, j=1,..,m,

is a sample estimate for the model’s projection to be obtained with the actual data, @p.r. The
collection of the estimates with zll the leading indicators forms the sampling information. Further-
mere, the sum of the variance of leading-indicator-based estimates and variance of estimation error

determines the variance of sampling information, i.e., 72.

In the third step, assuming that normal distribution characterises the sampling and esti-
mation errors, the conjugate prior distribution is normally distributed (Press, 2003). Thereby, in
the Bayesian procedure with m leading-indicator-based sampling estimates that follow a Normal
distribution with mean X (T -+ M) and variance 72, where X (T + M) has prior normal distribu-
tion with mean )?k(T + M|®7) and variance ¢f, the posterior estimate of model k is normally
distributed as

Xe(T+ M) ~ Ny 08),  k=1,..,K
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The updated life-cycle demand projections are the posterior means, which are the weighted av-
erages of the prior life-cycle projections and sampling means, with the weights being inversely
proportional to their variances. As a measure of the quality of the additional demand information,
relative estimates of leading indicators determine the variance of sampling information and also
the extent of the update on the historical-data-based projections. Hence, depending on the qual-
ity of the additional information, this weighting scheme improves the accuracy and variability of
the estimates. Aytac and Wu {2008) further explore the impact of additional information on the

reduction of variability in the demand characterization.

Combined demand modelling

While it is difficult to select a single growth model that best describes the historical demand and
that generates the most accurate forecast, a final step that combines the projections of multiple
life-cycle growth models legitimises the approach. In the combination, model & is assigned the
weight g, that is inversely proportional to its variance:

'2
i/o;

—_— k=1,.,K.
K it ? k]
de=1 1/0}'2

Wi =

to obtain the forecast X
s /
e = Z Phlbys
k=1
This is a weighting scheme that minimises the variance of combined forecast (Dickinson, 1973).
Its effectiveness over individual model forecasts has been shown through several empirical studies

{c.f., Winkler and Makridakis, 1983; Timmermann, 2006). For an outline of the entire demand-

characterization approach, one can refer to Figure 2.

Iraportant to note are the studies that suggest Bayesian approaches to forecasting demand
over product life cycles. For instance, in Zhu and Thonemann (2004}, the Bass model characterises
demand, and a Bayesian procedure updates the distribution of its parameters using parameter

estimates from earlier product generations. In another study, Bewley and Griffiths (2001) compare
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Figure 2: Flow diagram outlining the demand-characterization approach

the Bayesian and classical forecasts for the logistic model using the diffusion of compact disks in
several countries. The main difference in the current study is the use of leading indicators to stretch

the window of information that is available to the demand planner.

Sources of short-term demand information

In different industries, a variety of information sources are available as early demand signals. For
instance, pre-season sales and initial point-of-sales data are informative in the fashion industry
(Fisher and Raman, 1996; Eppen and Iyer, 1997; Kim, 2003). Similarly, advanced bookings data
induced by the discounts offered for early commitments can signal the end-market demand in the

retail industry (Tang et al, 2004).

Human judgement is another source of information. In the apparel industry, for instance,
Fisher et al (1994) illustrate a forecasting process that gathers the opinions of a group of individuals

with expertise in business, forecasting, and marketing. The aim of this study is to provide accurate



demand forecasts and eliminate bias by aggregating input from different sources. Similarly, there
is a forecast-improvement project that takes place in the semiconductor-manufacturing company
based on the anonymity of its participants and providing incentives, with the opinion of each expert

being a candidate for a short-term demand scenario in the proposed modelling framework.

Of the products following similar demand patterns, those that are introduced earlier into
the market are potential additional sources of information. In Meixell and Wu (2001) and Wu et al
{2006), identification of these products is based on a cross-correlation analysis of their time-series
data. A comparable concept occurs with macroeconomic leading indicators, for which statistics
that measure the similarity of the turning points in the data series {Quinn and Mawdsley, 1996)

identify leading indicators.

Designing the implementation framework

This study tests the proposed demand-modelling approach using data from a major semiconductor
manufacturer. The analysis includes five successive generations of product families from one of the
company’s main product categories. The product families are referred to as A, B,C, D, E, and they
contain 34,82,24,19, and 26 products, respectively. The data is the monthly billing quantity over

a five-and-half-year time period.

For each product family, forecasting performance of the Bayesian-updated projection is
evaluated against that of the historical-data-based projection and a benchmark demand (BD)
forecast; specifically, BD is known as the best-exercised forecast in the company and is based on
the data-collection procedure described in the introduction. To test the approach, we designed a
study according to the selection of estimation period, forecast-validation period, life-cycle growth

models, and sources of short-term demand information as outlined helow.

First, comparison is performed at different stages of the demand life cycle as the estimation
period, in particular, when a product family is 6, 9, and 12 months into the market (ie, T =
6,9,12). These time periods are chosen to represent the early, mid, and late life-cycle stages. The
data shows that on the average less than 35% of the total sales is met when a product family is 9
months into its life cycle. Second, the total length of the forecast-validation pericd is the maximum

forecast horizon available for the BD forecast, typically covering 9 to 12 months. Moreover, a



number of validation periods that change in increments of three months (i.e., M = 3,6,9, and up
to 12 months) are tested in order to gain insights into the differences between the short-term and

long-term performances of the forecasts.

Third, seven models suggested by Meade and Islam (1998) as the best-performing models
characterise demand. The models have been selected among the 29 models from the literature based
on their fitting and forecasting performances across 3000 simulated and real data sets. Among these
models, the Simple Logistic and Mansfield are symmetric with respect to the fraction of $otal sales
realised when the peak sales rate is reached; the Gompertz and Floyd are non-symmetric; the

Weibull, Extended Logistie, and Cumulative Log-normal are flexible models.

Last, two groups of leading indicators are considered. The first group includes the earlier
products with similar demand patterns. In collaboration with the company’s demand-planning
team, the second group has been determined as the externally-given data from sources such as the
design-win data, data from other key product categories, and the company’s BD forecast. The

next section elaborates on the implementation experience along these two streams of information.

Comparable products as demand leading indicators

Earlier generations of products with similar demand patterns are potential leading indicators. Their
identification is based on the correlation analysis between the time-series data of the product family
and that of the potential leading indicator (Wu et al, 2006); the regressed time-series data of a
selected leading indicator extends the time-series data of the product family by two months (L = 2).
This analysis is for the product families B, , and D. Forecast errors are reported in terms of mean
absolute percentage error (M AFPE), that is, the average value of the absolute percentage deviation

of the forecasts, F\(T+ h), from the actual data X (T + k) over the validation period (h = 1,..., M):

MM P(T 4+ R) - X(T + 1)

MAPE = X(T + R)

Table 1 summarises the average forecasting errors of the updated life-cycle projections
(i.e., posterior LC) against the benchmsark demand forecasts (i.e., BD forecast) and historical-
data-based projections {i.e., prior LC) over the three product families. The results show that it
is possible to obtain significant improvement in the accuracy of forecasts through the Bayesian

procedure, with the change in the performances being in the range of [—0.77%, 35.05%]. On the



average, the most significant improvement is achieved at the early life-cycle stage when smaller
amount of data is available; however, there is no notable difference in the short-term and long-term
forecasting performances. In addition, as opposed to the prior projections, the posterior projections

produce forecasts comparable to the BD forecast, in particular, when forecasting longer into the

future.

Table 1: Accuracy of forecasts in terms of MAPE (Product families B, C, D)

Life-Cycle Forecast Forecast Horizon

Stage Type M=3 M=6 M=9 M=10,11,12

T=6 BD forecast  11.92% 11.79% 12.14% 12.34%
Prior LC 17.650% 20.73% 21.24% 20.60%
Posterior LC  11.35% 9.76%  8.46% 9.03%

T=9 BD forecast  1.43% 3.61%  5.68% 6.96%
Prior LC 4.26% 6.67%  6.40% 5.52%
Posterior LC  2.09%  3.55%  3.39% 3.38%

T =12 BD forecast  2.35%  4.07%  543% 6.56%
Prior LC 3.95% 363% 3.34% 3.60%
Posterior LC  2.25%  2.49%  2.93% 3.02%

The variability in sampling information determines the extent of change in the prior esti-
mates. As the results indicate, in case that a consistent set of leading indicators is used, forecast
improvement occurs; otherwise, there is no significant change. This confirms the claim that the

proposed approach aims to improve on the historical-data-based estimates.

Sensitivity of the estimates to total market size

The proposed procedure projects the cum&i&ti.ve proportion of demand that is realised over time.
Hence, the raw data of the billing quantity needs to be expressed in terms of cumulative proportions.
This requires an estimate of the total billing guantity {u), which is also referred to as the total
market size. The above results assume that 4 is known a priori; hence, the following analysis

purports to examine the sensitivity of the results o .
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Figure 3: Sensitivity of the Bayesian estimates to total market size as compared to the benchmark
(BD) forecast, the estimate of market size deviating from its true value by [-20%,+20%].

Figure 3 summarises the change in M APE of the posterior forecasts when the estimate
of i deviates from its true value by an amount within the range of [~20%, 20%]}, in increments of
10%. The results are the deviations of the forecast errors from those obtained with the true value
of 1 over the entire validation horizon. For instance, at the early life-cycle stage, underforecasting
1 by 20% results in an average forecast error that is 4.18% more than the forecast error with the

true vaiue of u.

Across all the product families, with & 10% deviation in g, the change in forecasting
performances is less than 4%; with a 20% deviation, it is less than 10%. The change is larger
as a product family progresses into its life cycle; however, a more accurate estimate of p becomes
available as more historical data sccumulates, reducing the risk associated with misforecasting u. In
addition, when compared to the benchmark forecast, the posterior projections produce comparable

estimates, particularly at the early and mid life-cycle stages.
Variability in demand projections
Another dimension of forecast evaluation is the measure of its variability in demand characteriza-

tion. Accordingly, Table 2 presents the change in the standard deviations of the combined forecasts

11



with the Bayesian update, where there is an improvement of at least 25% over the entire validation

horizon.

Table 2: Improvement in the variability of the combined estimates with the Bayesian update

Product Life-Cycle Stage

Family T=6 T=9 T=12

B,C, D 38.10% 31.58% 44.44%
E 28.57% 55.56% 50.00%

External sources of information as demand leading indicators

The projection of a product family’s design-win dasa, sales data from another main.product cat-
egory, and the BD forecast are the sources of short-term demand information. The first source,
design-win data, oceurs when a customer sgrees to integrate one of the company’s products at the
design stage prior to the product’s launch; and the customer submits an initial estimate of total
order quantity in addition to the timing of market entry. The total quantity is then projected into
monthly figures by the company’s demand-planning team. In the present study, a regression anal-
ysis between the monthly projections of the design-win data and the actual demand data realised
by the time of forecasting provides a means to debiasing the design-win data. In this section, the
analysis is for the product family F since its design-win data is known to be reliable due to a recent

improvement in the company’s data-management system.

The second source of information is a related product within another major product cat-
egory of the company. It is less costly and shipped a few months ahead by means of cheaper
modes of transportation. Through historical data analysis, it has been confirmed that a debiasing
procedure similar to that of the design-win data provides unbiased estimates of short-term demand
information. Finally, the last source of information is the company’s B forecast, which aggregates

the knowledge of a group of individuals in demand planning.

Forecasting Performance
With the inclusion of external sources of information, at the early life-cycle stage, the posterior
projection performs better than the BD forecast and the prior projection by about 8% and 3%,

respectively, with an improving long-term forecasting performance {Table 3). On the other hand,

12



at the later stages, the performances of all the forecasts are comparable, with a value of M APE

of less than 5%.

Table 3: Accuracy of forecasts in terms of MAPE (Product family F)

Life-Cycle Forecast Forecast Horizon

Stage Type M=3 M=6 M=9 M=12

T=6 BD forecast 13.76% 16.37% 20.46% o
Prior LC 14.05% 12.14%  9.24% -
Posterior LC 11.36% 9.53%  6.96% -

T=9 BD forecast  5.07% 5.64% 4.66%  4.06%
Prior L.C 1.20% 244% 2.26% 1.87%

Posterior LC  2.00% 3.19% 2.91% 2.43%
T=12 BD forecast  0.60% 1.17% 1.56% 1.41%
Prior LC 1.68% 1.08%  1.04% 0.96%
Posterior LC  046% 084% 1.15% 1.05%

Similar to the other product families, at T = 6, the projections with inaccurate estimates
of p by 10% and 20% remain within the neighbourhood that deviates by less than 4% and 7% in
MAPE from the cumulative projections obtained with the accurate estimate of y, respectively;
the outperformance over the benchmark forecast is preserved (Figures 4). However, as the product
family progresses into its life cycle, the sensitivity of the results is comparatively higher. In partic-
ular, at T = 12, an inaccurate estimation of u by 20% results in an M APF that is approximately
12% higher for the cumulative projections. The most likely reason is that for this product family
a larger volume of total sales occurs prior to 12 months into its life cycle, however, also reducing

the possibility of a large deviation from the true market size.

Conclusion

The Bayesian modelling framework characterises demand by combining information from histor-
ical data and different sources of short-term demand information. The model updates the long-

term demand projections using short-term demand information with the objective of improving
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Figure 4: Sensitivity of the Bayesian estimates to total market size as compared to the benchmark
(BD) forecast, the estimate of market size deviating from its true value by [-20%,+20%].

the accuracy and uncertainty in the characterization of demand. The methodology serves as an
information-aggregation mechanism by allowing the integration of different information sources,
including human judgement. This case study validates its applicability using real-world demand

data over multiple years.

The results of the study indicate that it is possible to obtain significant improvement over
the historical-data-hased estimates. In addition, the outperformance of the updated forecasts over
the benchmark forecasts is prominent, specifically at the early and mid life-cycle stages. On the
other hand, the sensitivity of the projections to the estimate of total market size is higher at the
later stages; however, a more accurate estimate becomes available as the historical data accrues.
The overall results indicate that the proposed demand-characterization approach will provide an
invaluable input to the forecasting processes for short life-cycle products, particularly in the high-

tech industry.

This study makes a contribution by illustrating the use of a new forecasting methodology
for short life-cycle products. Improved demand uncertainty, as important as forecast accuracy, has

implications for operational decision-making in a capital-intensive business environment. However,
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when the proposed methodology is to be implemented as an integrated part of a forecasting system,
its use in the first few months of product introduction will require different sources of prior infor-
mation. For this purpose, a multi-generational analysis of product transitions can be performed to
study whether the ramp rates of successive generations of technologies provide a beneficial source

of information.
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