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Abstract

In this paper we introduce three new consistent estimators of the Hurst index for fractional Brownian
motion (fBm) using ergodic theory for stochastic processes. We derive closed form solutions that are
computationally faster than all methods know to the authors. These new estimators allow for the
estimation of the parameters of a fractional Wiener process with unknown and constant driff, scale
and Hurst index. Robustness of these estimators is also explored. Using Monte Carlo simulation, we
perform an empirical study of the ergodic estimators, Peng’s Variance of Residuals Method [10] and
Whittle’s approximate MLE [12, 1]. Our study demonstrates that the ergodic estimators outperform
Peng's method and are very competitive to Whittle’s estimates in terms of RMSE. We demonstrate the
versatility of the ergodic estimation techniques to accommodate different data structures; i.e. standard
fractional Brownian motion or a fractional Wiener process with unknown drifs and scale.

1 Introduction

Modeling with fractional Brownian motion (fBm) requires reliable estimation of the Hurst index. Applica-
tions in finance, biology or network flows often require both speed and accuracy in parameter estimation
for small samples in order to facilitate dynamic decision making and risk management. Fractional Brownian
motion’s weak derivative {or increments) with respect to time is known as fractional Gaussian noise (fGn).
The self-similar and stationary properties of fractional (Gaussian noise make the process a perfect candidate

for the use of ergodic theory to estimate parameters influencing the behavior of these models.
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Taqqu et al. [11] gives a summary of several previously proposed estimators of the Hurst index and
estimates their relative accuracy for large sample sizes via Monte-Carlo simulations. These estimators typ-
ically are derived using the properties of the behavior of the speciral density of {Bin, estiraated through
a periodogram. Other simpler methods take advantage of the asymptotic behavior of the process in the
time domain. The ergedic estimators of the Hurst index for fBm introduced in this paper are shown to be

competitive to the top performers in Tagqu’s paper in terms of both RMSE and computational time.

2 New Estimators for the Hurst Index

We start by estimating the Hurst index for fractional Brownian motion using an L? norm calculation. We
expand on this method by considering a more realistic model where the fractional Brownian motion process
(fBm) is subject to unknown scale and drift, Throughout this section we will use the notation {WF }:Y—_o to
represent a discrete realization of N + 1 observations of a fractional Brownian motion process with Hurst

index H.

Definition 1. Let 0 < H < 1. A standard fractional Brownian motion ([Bm) WH# = {W[}, is a centered

Gaussian process with the following properties:
1. W = 0 almost surely.
2. WH — WH is distributed as N (o, It — s;”‘*).
3. t — W is continuous almost surely.

By definition, {WH, — WH} £ N, (0, At2H), where At is a constant unit of time between W/, and W/,
Let X =< WH - WE WF - WH WF -wl,... Wi -WH_,, .- > and let f be any Borel function
with E [f (W§}] < co. Then,

N
5 20 F (Wl - WE) SB[ (W - W)
1==0)

converges almost surely (a.s.} since the fGn process, X, is ergodic and a stationary sequence ([14], 131-132).

2.1 Ergodic Theory and Hurst Index Estimation
Let us set f(x) = |x1k, k € B*. By ergodic theory and properties of {Gn, we have
N—1

i
N Z |Wi{i{1 ”*Wi.Hik - E[W{ as. (1)
i=0



and since the increments of fGn are Gaussian

ok/2p (L

r(z)

Note that the use of the k** moment for estimating the Hurst index is not the result of the maximum
likelihood estimation (MLE) formulations. Ergodic theory gives us no information about the bias of the
estimate. If we are given any realization of a fractional Brownian motion time series {Wi},, we can apply
ergodic theory to estimate the Hurst index by using the second moment of a normal distribution. Solving

for H, we obtain:
— 2
' log {% Ziiol (Wi{il - Wz'H) }
- 2log(At)

: (2)

Peltier [9] shows (through the use of box dimension analysis} that absolute moment estimators of the Hurst
index ali perform well. However the second moment yields the most accurate estimators in terms of RMSE. In
§4.1, we give numerical results in which we compare the “Second Moment” method to W hittle's approximate
MLE and Peng’s Variance of Residuals method. We empirically demonstrate that the ergodic estimator
using the second moment is superior to Whittle’s method in termns of RMSE and far better in terms of
computational time, however this method can only be used when the scale and location of the {Bm process

are known.

2.2 Parameter Estimation in a Fractional Wiener Process

Real world data does not follow a standard fBm model. In this section we derive methods to estimate the
Hurst index when the fBm is not standard, but is influenced by unknown scale and drift. Let {X.;}i;l be a
fractional Wiener process that is X; = pAt + o (WH, ~ WF). Since X; £ N; (uAt, o*(A1)*H), an estimate
of the drift u can be found using ergodic theory as

o & E [N (nAt, o2 (AL)2H
b= N X 2l 3)

We can use the location estimate to obtain a scaled fractional Gaussian noise process, X;— At = o (W, — W),
Tn the next sub-sections, we introduce new ergodic estimators of the the Hurst index when {Gn is influenced

by an unknown scale o.

2.2.1 Ratio of Second Moments Method

If fBm is only affected by a scale factor, the second moment converges by ergodic theory to o®(Af)*H:



N-—1
1 2
881=+% ;:a: o2 (Wi, - W) = (A, (4)

If we form stationary processes on disjoint sets of length 2A¢, then we can once again use the ergodic

second moment to define two estimates; one formed from the even increments and the other from the odd

increments:
_ 1 e 2 H H\Z | 2 oH
SSman ; o (WH , — W) =620, (5)
1 IN/2)-1 \
SSoddEm ; o (Wi, o~ Wi,) —c?(200)2H. (6)

To reduce the error of the o?(2A¢)%% estimate, and utilize all information available in the time series,
the even and odd estimates are averaged. Both the even and the odd estimators use the data set and thus
these two estimators have the same variance. Therefore, the average of theses two estimators reduces the

variance and bias:

SSeuen + SSodd

832% )

a2 (208)2H (7)

Notice that for a fractional Wiener process, the second moment estimator converges to

E[X?] = p2(A8% +2uitoR [WH, - W
+o%8 [(Wh, - wP)’] 8)
= 12 (AL + o (AP (9)

Additionally, when At is small p2(At)? < o%(At)2H | if i ~ 0. Therefore, when estimating E [X7?] with
gmall At, an estimate of @ may not be needed. In this situation the term p*(At)y? would contribute to the

error € of the estimate and we can proceed using equation 7 directly, where

E[X?] = ?(At)* + e (10)

Note that even if At < 1, as H increases the magnitude of o?{At)*# relative to the error ¢ becomes
closer. Taking a ratio of the two moments S5 {equation 4} and S8z (equation 7} the scaling and time

factors cancel and we obtain:



. log &
5% oty = ...-__(“1). (11)
55 2log(2)

This estimator of H is based on the ratio of two second moments, therefore we refer to this method as

the “Ratio method”. The Ratio method's estimate of H can be applied in equation 4 to estimate the scale

influence the fractional Wiener process, &:

88
(At)2H

g =

(12)

in §4.2 we show the results of Monte Carlo simulations of a fractional Wiener Process to evaiuate the
performance of the Ratio method estimator. It should be noted that application of this method on real data
requires filtering of any identifiable outliers or jumps, since a large jump will skew SS; and 582 and therefore
bias the estimation of the Hurst index. The Ratio method is sensitive to these types of anomalies in data,
as discussed in §3. The error in the Ratio method’s estimates of H and ¢ are highly correlated, which is
evident from the method used. The same kind of estimators can be derived using different combinations
of the higher moments in equation 1 to estimate the Hurst index for a fractional Wiener process. These

estimators can be shown to be equivalent to or worse than the Ratio method.

2.2.2 Quadrant Method

In this section we introduce an estimator which is more robust to outliers and jumps and which (unlike the

Ratio method) does not depend on o. Let us consider a fractional Wiener process with no drift (p=0),

X;=o (WH, -Wf). (13)

Note that the process {Xi}i‘\"-;i is mean zero. If the data set being analyzed has drift, an estimate of drift

will need to be made using equation 3.



Eflipse of Fractional Gaussian Noise

Two consecutive observations of fGn are normally distributed with Pearsor’s correlation coefficient p =
92H-1 . 1. A 2-D plot of consecutive random observations of fGn is shaped like an ellipse (or a circle when
H = 1/2) at a constant probability level. The Hurst index of the process (and the probability level) directly
dictates the length of the axes of the bi-variate normal distribution (see Figure 1). The shape of the ellipse
(or in this case the relative density in any particular quadrant of the 2-D plot) can be used to estimate
the Hurst index. The major axis of the ellipse is always at +Z with respect to the positive or negative
auto-correlation of the process, respectively.

Let us define a new process {Z;}{L, by

Zi = sgn (X;) sgn (Xina) ,

where sgn(z) = 1if 2 > 0, and sgn(z) = -1 if z < 0, and sgn(z) = 0 if z = (.
The signum function only sees sign and not magnitude of X;, therefore o does not affect the estimation
of H. To estimate the Hurst index we need to compute the expected value of the process Z;. This can be

accornplished using ergodic theory. Notice,

X: X
E[Z]=E = -—-i";L . (14}
VA X
Since { X} is a scaled fractional Gaussian noise, it is normally distributed with mean zero and variance

o2 APH | with correlation between X; and X1 given by p = 2281 . 1 therefore, the expected value

converges {o
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where D = (1 — p?).

Analyticaily, the expected value (equation 15) is the same as the probability that two consecutive obser-
vations of fractional Gaussian noise (X; and X,41) are in the same diagonal quadrants of a two dimensional
graph of X; verses X;+;. Each Z results in four outcomes. We refer to this technique as the “Quadraﬁt

method.” Equation 15 becomes,

E(Z] = P{X20Y20+P(X<0Y <0)

~PXZ0,Y<0)—-P(X<0Y 20} (16}
Utilizing the symmetiry of the two dimensicnal Gaussian distribution,

E{Z]=2+P(X 20Y 20)-2xP(X 20,Y <0). (17

. — L —_ Y
Let u = \/—ﬁandvm mthen,

E[Zs}:@f / e (2w t) gy gy, (18)
2 J oo oo [uliv]

and equation 17 becomes,

E(Z]=2VD[PU 20,V >0}~ P >0,V <0)]. {19)

The first term in equation 17 yields

1 * ~ wl(uZWZwu -{—w2)
PUZz0,Vz20 = »ﬁ;c-/ e ¥ e du du (20)
0 0
1 foo [w —1(u—vp)? (5P P ?)
o e e g7z 0 due 3\ 7 gy, 21
vamJo V2T J_yp 1)

Let z = u — vp, then



P(U >0,V= {]) e_%%dme_%(u2__p2v2)dv,

1 o o
=l =k
where @ ('Up) = P (N (U, 1) < 'U'p). Substituting y = vp,

2

PU>0V>0) = — /DO‘I)(y} e (55 ) gy,
0

Vanp
If
o3 1 2
0= [ o) )y
0
then,

) L (7 perterv i (5 g

do Var Ja
Substituting z = 3!;,
— oo T - 2
I'(a) = -—‘—\/2% ; e"x(az'{‘(“?g“))dx
1
Vor (a2 + (1-35-’3))
Therefore,
P ap
o) = mewmmsssesssesnes: grctan + O,
( ) Vg"r(l""pz) ( l—pz)

To solve for C we utilize equation 25 with « = 0§,
oo -
I(0) = [ %em%yz(lﬁ")dy.
0

Substituting = =y (l:_f?rz),

1(0) = Vor /me‘%“’zda: = I(0) = var_
2/ 554 Jo s /=L

(22)

(23)

(24)

(25)

(26)

(29)

(30)

(31)



Equating equation 25 and equation 29 with a = 0,

o= Y (32)
Ve
The function I{e) becomes,
P ap V2mp
I{a) = ————=—==gz arctan + . (33)
V2 (1 - p?) (\/(1—132)) 4/(1 - p?)

Substituting equation 33 into equation 24,

P(X>0Y>0=vD e Zh arctan £ S ‘ (34)
27/ 1 — p? W1 — p? 44/1 — o2

A similaz procedure can be used with minor changes to find the second term in equation 17 which can

be shown to be,

P(Xza,ym}:\/ﬁ[ (35)

—-1 P 1
e ZLCT + .
27r\/1——p2arc an(\/l—pz) 4\/1“",}92}

Substituting equation 34 and equation 35 and D into equation 17, the expected value of Z; is obtained,

This expected value can be used to estimate both the correlation and the Hurst index. Solving equation

36 for p we obtain estimates,

__ n(3B(2)
[tan® (£E[Z]) + 1]%

(37)

Since p = 2°¥~1 . | then we obtain the ergodic “Quadrant method” estimator for H,
P

1 g1
. J&Jﬂig@) +1

H= . (38)

Computationally, this algorithm is very fast and fairly accurate (see §4 for numerical results). The major
advantage of this method is that estimates are not largely affected by outliers, since the magnitude of the
observed values does not disproportionately influence the estimator. This means the Quadrant method is
robust to data that may not perfectly foliow a fractional Wiener process, see §3.3. An ergodic estimator of
H can also be derived using constant volume ellipscids for the function F[X;X;.1]. The derivation of this

statistic is very similar to the Quadrant method derivation, however it requires the use of a non-linear mixed



integer optimization method.

3 Robustness of Hurst Index Estimators

The “Influence Curve” is a way to evaluate the sensitivity of an estimator to one contaminating point and
therefore understand the ‘Jocal robustness” of the estimators when the rest of the observations are assumed
to come from the true distribution (Huber [6], pp.14); {Gn is a Gaussian process with mean zero, variance

(AtY*H and covariance

A L
B0 = BT (i 1P i — g - 17 20~ 5

where At is a known constant and X; = W, ~ W/ . In this section we create and compare influence curves

i
for various estimators of the Hurst index. The influence curves JC (x, H) are generated with contaminating
values of 7 = k(AT | ke {~3,3] for H =0.1,...,0.9. Since the true distribution of the data is assumed
to be normally distributed, this is equivalent to the contaminating observation falling within an interval of
three sigma. The graphs are all generated with Af = 1/252 and a sample size n = 156, therefore we see

the influence of the 157%® observation. A summary of the sensitivity of the Hurst estimators to a single

contaminator x = 3 (At)H appears in Figure 2.

Figure 2: .
Contaminator |H=0:1 |H=02 |H=0.3 |H=0.4 [H=05 =06 |H=0.7 |H-05 |H=00
Zadhoment Methed- . . .
- gat® {-0.004] -0.004] -0.004 _-o.ml»c.ma ~0.004 ~0.004 _-0.0{}4| -0.004]
« aat? -0:004| -0.004] -0:004} -0.004] -0.004] -0.004] -0.004] -0.004] -0.004
Ratio Method
- apgt 1 0.026] 0.027] o:018] 0:011] 0:005]-0.001] -6.008) -0.010] -0.014
+ 381" o.038| 0.027] 0.013] 0.013] 0:005|-0.001] -0.008] -v.010] 0034
Cluadrant Method i 3
- 3art o008 0.002] 0.001] 0.001] 0:000]-0.001) -0.001] -0.001] -0.002
T o3| 0.002) 0.601) o.001] 0.006]-0.001} -0.001] -0.001) -0.002
whittle's Rethod : ‘ ] : .
- 3at® | o.055] 0.029 014! 0.005] 0.000]-0.005|-0.008] -0.014} -0.027
+2pt% o.060} 0.022| 6637 0.009) 0.001|-0.004] -0.000] 0.014} -0.027
peng's Variancs of Residuals Methed!
3R 0.073| 0.046| 0.026] 0.012| 0.003] -6.003] -0.007)-0.010] -0.012
+ 35" o.077} 0.0as| 0.029] e.015] 6.006]:0.001] -0.005] -0.008| -0.010

10



3.1 Influence Curve for the Second Moment Method

In the Second Moment method estimator, the addition of one extra term, x, in the series causes a change to

the estimation of the Hurst index of:

n{AtyEHn 122
log [W}

Huer = 2log{At) (39)

This gives the empirical influence function

2
1C(, H) = Hoss - Ho = K%Hz)lo{;;)@g =] (40)

Figure 3:

0™ Infiuence Function of Hurst Estimator (2™ Moment Method)
1 T T T T T

1C(x=kat H)
s L

1
o3

-5 H i
-3 -2 -1

FoR- TR

In Figure 3 we see that a contaminating point that is within three sigma of the true distribution has
a maximum influence of +421072 for all Hurst values. Given the scale, the influence curve for the Second

Moment method is relatively flat over a 3¢ range of values of x. Additionally, the maximum of the influence

curve occurs at a height of log ('ﬁ%l’) /2log {At) > 0, At < 1.

3.2 Influence Curve for the Ergodic Ratio of Second Moments Method

The influence curve for the Ratio method estimator is similar to the Second Moment method in that it is a
funetion of two Second Moments:

11



S5
log {ssf;n]

Hy = —tod
2log(2)

(41)

where

SSQ — Z?zmll (X’i-l-l + Xi)z

7o 1

n A2
SS],?’L s Eimln(xt) .

Since the influence curve is derived assuming that none of the {X;};_, deviate from the true distribution,
we know that §81, = a° (At)*~ and 88, = o? (248)*7~, Notice that 551 n Is the same as the ergodic

Second Moment method, and therefore if we add one more term in the sequence, x, then we have

1SSy + 2?

SSl,n+1 = ]

(42)

The term §853 n1: is the same as the ergodic Second Momernt method with half the sample rate, however
to compute the influence of the contaminator, z, we need to consider the location of this extra observation. If
the observation is at the beginning or the end of the sequence, it only affects the estimate in one term (notice
in the formula for Sz, that the terms X, and X, are only counted once, while all other X;, 2 <i<n -1
appear in two terms of (Xo; + Xz-)z. Therefore, to see the maximum influence of an additional observation,
we need to place the contaminating observation somewhere in between the first and last. Without loss of
generality, we can place it right before the last observation, giving the sequence {Xy,Xs  , Xno1,7, Xa}.

Therefore,

(n—2)882.m + (2 + Xpn-1)? + (X5 + z)°

SS?.,n+1 = n

Since X; and X,,1 come from the true distribution,
E [(¢ + Xno1)? + (Xn + 0)%] = 202 (A8)*F" + 222
In this framework z is treated as a constant, Therefore, since the estimator
E[SS2.n] = o2 (24A8)2H,

the expected influence of = has the form:

12



2AEYPH - 202 (AL)2HR + 272

IC(xz, H) = log K” : 1) ((n — 2)o¥(

no? (AL)2Hn 4 z2

When ¢ = 1, then we obtain the influence curves in Figure 4.

1 i=kat 1)

0.04

Figure 4:

influence Curve of Hurst Estimator (Ratio Method)
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Figure 4 shows that the Ratio method’s influence curve changes concavity when the process changes from

function of the statistic

The correlation of normals is then estimated by

further away from H = 0.5; more sensitivity occurs when the process has negative auto-correlation.

3.3 Influence Curve for the Ergodic Quadrant Method

7. - Loie sg(Xi)sgn(Kies)

n-—-1

tan(Z75)

P = Vtar(ZT. )2+ 1

Lastly, the Hurst index is computed

13

long to short range dependence. The Ratio method has more sensitivity than the ergodic Second Moment

for all Hurst values. The contaminating point's influence on the estimator increases as the Hurst index get

Given the fractional Wiener process, {X;};.,, the Hurst index estimator using the Quadrant method is a

{45)

(46)



log(2)
2

log{2pn +2))

H, = ( (47)

In order to compute the influence curve, we need to understand the estimator T'. Once again to get the
maximum contribution of an additional observation, we need to place the observation between the first and

last X;. If we place the contaminating data point, z, in the sequence as before {X1,Xs ., X_1,2, Xn}:

(n — )Ty, + sgr{Xn1)sgn(z) + sgn(z)sgn{Xn)
7

Loy = (48)

The property of the signum function yields only three results, none of which are dependent on the
magnitude of the contaminant, but only on the sign of the new observation and the sign of the immediately
adiacent observations. This is because the Quadrant method attempts to find momentum in the time series.
The function, 7', looks for long term tendencies of the time series in & particular direction. The different

outcomes are given in the following matrix.

sgn{ Xp—1)sgn{z) -+ sgn{z)sgn{X,) z2>0 <0
Xi20,Xi41 20 141=2 | -1-1=-2
X2 0, X4 <0 l1—31=10 ~1+1=0
X; < 0, X541 2 0 141=0 | 1-1=0
Xy <0, X9 <0 wl ol =2 P41=2
Therefore,
—1)T—2 . -
-(%— with probability %
Tps1 = L’il“;_}& with probability 3 - (49)
(”"1ﬂT“+2 with probability §
If sl observations came from the true distribution, then
9 2H-1 _
BT = EArctan 2 ! (50)

\/1 — (22H-1 1)

Therefore we can substitute the frue statistic E [T for T}, to show the expected influence of the contami-
nating term, z, on H,,.1. Performing this substitution, the influence curve can either be constant (when the
contaminating point adds zero to the estimate of Tp1) or the curve is =+ a constant, with jumps left and

right of the center (when the contaminating point adds %2/ (n + 1) to the estimate of T 14).

14



Figure 5:

w107 Influence Curve when X +X__ =0 {Quadrant Methed) Infiuerice Gurve whan x>0, X +X =2 (Cuadrant Method}
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Note that the right graph in Figure 5 will always have an influence curve that jumps in the same pattern,
(down on one side and up on the other or vise-versa). The jump pattern depends on the sign of the
observations immediately adjacent to the contaminating point z. The analysis above shows that the short
range dependent process {H < 1} has much more sensitivity to the contaminating observation than the

long-memory process(H > 3).

Figure 6:

x40 influence Gurve of Hurst Estimator {Quadrant Method)
4 - Y

e H220), ]
— 0.2
e 0,3
H=0.4
e K205
e W06
e HR0.T
——H=08
———H=09

kAt 1y

1Ctx:

In figure 6 we can see the expected influence curve for the Quadrant method’s Hurst index estimator
shows the extreme robustness to the size of the contaminating point. The Quadrant method is the most

robust method discussed in this paper.

15



3.4 Influence Curve for the Whittle’s Approximate MLE and Peng’s Variance

of Residuals

Whittle’s approximate MLE is calcuiatgd by minimizing the log ratio of the Periodogram {caiculated
from data) and the theoretical Spectral density function for fGn. The computation of the Spectral density
function for fGn requires a truncated infinite sum (or linear approximation). Additionally, to calculate
the estimates of the Hurst index, we need to numerically optimize a convex objective function. Whittle's
objective function gives an estimator of the variance affecting the process, o%{A¢)?¥, at the optimal solution.
This is accomplished using the Golden Section method.

To compute the influence curve we need o understand the influence curve of the Periodogram, which
coupled with the optimization over the spectral density, complicates this calculation to an intractable degree
since it is necessary to compute the contribution of the contaminant, %, for all n/2 Fourier frequencies. We
have to resort to another way to evaluate the influence of z. One way to generate the influence curve is to

use Monte-Carlo simulation.

Figure T:
Influgnce Curve of Hurst Estimator (Whites Method)
b ' : Heot] | ;
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In Figure 7 we can see the average influence curve for Whittle's method. These curves were generated by
simulating 500 replications of fractional Gaussian generated noise using the Durbin-Levinson algorithm with
N = 156 observations. The Hurst index was then estimated via Whittle’s algorithm, then the observation
x was placed at position n/4. This created another sample with n == 157 observations, which was used to
estimate the Hurst index for the same z values used in the ergodic estimator influence curves. The estimated
value of H, for each replication was then subtracted from the estimate H,.., giving the influence curve.

These 500 replications for each H = 0.1,...,0.9 were then averaged for each value of x to produce the

16



average influence curves above. Whittle’s method does not appear to be locally robust for H < %, while it is
more robust when H > % While there does not seem to be any literature on the influence curve of Whittle’s

method, Taqqu [13] on page 724 recognizes that

it is a parametric model in that it assumes the spectral density of the series is know with the
exception of a few parameters, which are to be estimated. This assumption aliows for very precise
estimation when the series being examined fits the assumed model exactly. If, on the other hand,
the actual series is not of the exact form specified in the model, the parametric estimators may

give incorrect results.”

In his paper, Tagqu discusses different techniques that have been developed to robustify Whittle’s Approxi-
mate MLE. One such technique smooths out the higher frequencies in the data. The noise typically present
in real data occurs at higher frequencies. This noise can skew values spectral density function, resulting
in a biased Hurst index estimate. The fact that there are at least four different methods that have been
developed to robustify Whittle’s MLE, indicates that this estimator may not be robust enough for certain
real data sets. Tagqu [13] shows how each one of these robustified Whittle estimators changes for a given set
of Ethernet data. Our simulations indicated that on average, a given contaminating point results in slightly
worse deviations in Whittle’s Approximate MLE than the ergodic Ratio method for all Hurst index values
except H =0.3,0.4 and 0.5.

Peng’s Variance of Residuals method estimates the Hurst index from the errors of a linear regression on
a log of aggregated variance calculations. We perform a Monte-Carlo simulation in the same fashion as in
the influence curve for Whittle’s estimator.

Figure &:
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In Figure 8 we can see the average influence curve for Peng'’s Variance of Residuals method. Notice that
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this method is more robust {on average) to0 a single contaminating value when H > % Its influence curve
for these Hurst values is comparable to the Ratio method’s influence curve. When H < %, this method is

the least robust (on average) out of the estimators presented in this paper.

4 Numerical Results for Simulations

In this section, we compare via Monte Carlo simulation, the performance of the newly introduced ergodic
estimators of the Hurst index to Whittle’s approximate MLE and Peng’s Variance of Residuals estimators.
Tagqu et al. [11] presents an empirical study of many estimators of the Hurst index in the same fashion.
They show empirically that Whittle’s approximate MLE estimator is the best estimator (of those tested) in
terms of RMSE for a fBm time series. Their study indicates that Peng’s Variance of Residuals method is
the second best of the methods tested.

Tagqu generated 50 sample paths of fGn each with a sample size of N = 10,000 for H = 0.5,0.6,0.7,0.8,0.9
using Monte Carlo simulation (Durbin-Levinson algorithm). He computed the sample mean, sample variance
and RMSE of the Hurst index estimators for each technigue. Using the Durbin Levinson algorithm, we simu-
late 500 sample paths of {Gn with length N = 10,000 and A¢ = 1/252. We extend the analysis for processes
with both short range (H < 1/2) and long range dependence (H > 1/2) by simulating H = 0.1,0.2,...,0.9
using Matlab@®. For each H = 0.1,0.2,...,0.9 we used the method of common random numbers with the
same seed 1o generate 500 x 10,000 i.i.d. standard normal random variates for each set of paths. We in-
creased the nurmber of sample paths (compared to Tagqu et al. [11]) in order to increase the accuracy of our
estimates of Root Mean Square Error (RMSE) and allow for the identification of significant differences in
the estimators (see §4.2).

We implemented Whittle's algorithm using the spectral density approximadion described by Ledesma
and Liu [7], and use n = 500 terms in the linear approximation of the spectral density at each Fourler
frequency. We found that even though Ledesma and Liu recommend n = 200 terms, at least n = 500
terms are needed in the linear approximation are needed due to of the slow convergence rate of the spectral
density when H € {0,0.3). Ledesma’s recommendation was for H > 1/2. A Golden Section search algorithm
is used to find the global maximum of Whittle’s approximate MLE with a termination tolerance of 10~%
for the accuracy of the Hurst index estimate. The Golden Section method is initialized to search for the
optimum on H € [0, 11 The ergodic algorithms do not require optimization and therefore are not constrained
numerically on H € [0,1]. Peng’s Variance of Residuals method is implemented for a minimum of 50 bleck
sizes. Regression is performed on block sizes between [10%%,10%7]. The median of residuals at each block

size is used in the Hurst index estimator.
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All computations were done using a Dell Optiplex 7585 running Windows 7 with a 2.66 GHz Intel Core 2
Duo and 3326MB of RAM . The total time to compute all 4500 {500 pashs by 9 Hurst index values) estimates

of the Hurst index for different sample sizes are shown in Figure 9.

Figure 9:
Run Fimels)
whittie variance Ergodi:c‘ Ergodic: |Ergodic

N tol=16", n=500] tol=10"", n=200|Residuals| 2nd Moment| Ratio Quadrant
39 152.0 516 12.4] o.o00]  o.o00] 0.600]
78 158,8 57.4 38,7 sooo|]  oo1s]  e.000]
156 1763 725 882 0.016 0016  0.015
512| 222.2 1143 93.0 G016 0124 0.092
625} 367.0 2495 1108 0.047 0234 0156
11950 855.7 7192l 7538 61091 o468 0344
2500 2658.7 awrig| k44 0.218]  o0as2]  oent
5000 9307.5 9100:1] 10559 o421  1sa1] 1342
10000 357710 35559.6] 1879.5 o883 3837  2.683

The power of closed-form representation of the efgodic estimators of the Hurst index can be seen by the
magnitude of difference in computational time for all nine sirnulations; ergodic estimators take seconds or less
while for large data sets Whittle’s approximate MLE can take tens of hours. Whittle’s lengthy computational
time is primarily due to the re-computation of the speciral density function for each iteration of H in the
optimization algorithm. Simple algorithms like the Variance of Residuals method can also be seen to take

significantly more computational time than the ergodic methods.

4.1 Empirical Performance of Estimators

In this section we analyze the behavior of the estimators as the length of the fBm time-series is reduced,
giving insight into the convergence rate. Difference analysis is used to demonstrate which estimators are
more accurate. We provide a comparison of the various estimators for the 500 sample paths of fractional
Brownian motion. Appendix I shows comparisons of the Hurst index estimators from the 500 x 9 simulated
fBm paths via box-plots. The boxes represent the inter-quartile range (75 percent of the estimates fall in
this range). The lines inside the boxes indicate the mean of the non-outlier peints. The plus signs show
outiier points, which are defined by values greater than the ‘whiskers’ length which is 1.5 times the distance

outside the inter-quartile range.
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Figure 10:
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Figure 10 shows a comparison of each method for N = 10, 000 data points in each time-series. In Appendix
111, we provide a breakdown of the sample bias (Bias(H ,HY = mean (H - H )) and sample variance of the

estimators since

RMSE(H) = \[Var(f1) + (Bias(H, A))*. (51)

The ergodic estimators have similar performance to each other in that they have little bias for H €
[0.1,0.8] and increased bias for H values closer to 0.9. The ergodic estimates have the least standard
deviation for H € [0.5,0.7] and higher deviation as H — 1. On the other hand, the Whittle estimates seem
to underestimate the Hurst index on average, with more error as H -+ 0. This is due to the slow convergence
rate of the spectral density function. I the linear approximation of the spectral density is changed to include
more terms, the accuracy of the estimators at H = 0.1 will improve slightly because of the slow convergence
rate of the spectral density function, however this comes at the cost of computational time. We found that
as H — 0, the number of terms needed in the approximation of the spectral density explodes. However,
setting » = 500 or more seerns to have little affect on the convergence of the Hurst estimators when H > 0.2,
Whittle's standard deviation increases as H becomes larger.

The simulation results show that the ergodic estimates are less biased for all values of H when compared
to Whittle's estimates. It should be noted that while the Second moment method shows superior performance
to all other methods, it assumes that the drift and scale affecting the fBm process are known. The other
methods do not require this information to estimate the Hurst index. In the other methods the drift 4 =0
and a scale o = 1. These paramters are assumed to be unknown in the estimation of the Hurst index. The
Quadrant method gives accurate estimates, however they are not as accurate as the Ratic method.

In the next sub-section we will see that the Quadrant method outperforms the Variance of Residuals
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method for almost all sample sizes and almost all Hurst index values, however it is not as accurate as Whittle’s
approximate MLE. We also demonstrate that the Ratio method is comparable to Whittle’s approximate MLE

on smaller sample sizes for central values of the Hurst index.

4.2 Difference Analysis and Numerical Convergence of Hurst Index Estimators

We use the various estimators discussed in this paper to estimate the Hurst index on the simulated paths of

fGn and then compare the estimator’s absolite deviation using the paired t-test. If we let,

D = guerage Uffl o H A etual} — If}z ~ H Actual ] (52)
0% =Var [}31 ~ Hactual: — If?z — Hgctual ] (53)

The confidence interval on the statistic D can be shown to be approximately,

DiO"Dt%,N—l- (54)
We use equation 54 to construct 99% confidence interval for testing the null hypothesis
Ho: i — | - |-
H : iﬁlei ” 11312 -H}

The resulis of the analysis can be seen below in Figure 11. The inclusion of zero in the confidence interval

indicates that there is no significant difference in the estimators.

Figure 11:
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The analysis in Figure 11 {left) indicates for N = 10,000 that the Ratio method’s estimates of H are
significantly better than Whittle’s estimates on average when H = 0.1, and that there is no significant
difference between the estimators for H = 0.6,0.7. Whittle’s approximate MLE’s estimates are slightly
better than the Ratio’s estimates for the H values between 0.2 and 0.6 and significantly better for 0.8
and 0.9. Furthermore in Figure 11 (right), the Quadrant method is shown to be statistically significantly
more accurate than the Variance of Residuals method for all Hurst index values except for H = 0.9, where
there is no statistical difference. The superiority of the Quadrant method when compared to the Variance
of Residuals method is fairly consistent as sample size is decreased (see Appendix II). In Figure 12, the

difference analysis is expanded to estimates when the sample size (V) is reduced for the Ratio and Whittle

estimators.
Figure 12:
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Figure 12 shows the difference analysis for Whittle and Ratio method sample paths with N = 156 (left)
and 39 (right). The analysis indicates that the Ratio method produces more accurate estimates on average
for H {in terms of RMSE) than Whittle’s method for H > 0.6 and equivalent for H = 0.5 when N = 39
and 156. When N is increased to N = 625, the Ratio method still yields estimates that are not significantly
different than Whittle’s estimates for values of H = 0.6,0.7 and 0.8. It is not until N = 1,250 that Ratio
performs similarly to Figure 11 and falls behind Whittle's approximate MLE. Full details of the difference
analysis can be found in Appendix II. The results in Appendix I have also be confirmed via the Wilcoxon
signed-rank test.

The superior performance of the ergodic estimators for small sample size is a result of the convergence
rate of the estimators. Whittle’s approximate MLI converges at a rate of v'N (Taqqu et al. 13]) . Figure

13 provides a simulation based comparison of the numerical convergence rates of the RMSE.
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Figure 13:
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Figure 13 (above) compares the convergence rates for selected H values. Notice that the Ratio method
performs similar to Whittle, while the Quadrant method requires N > 78 when H > 0.8. Full details can
be found in Appendix III. Notice that the convergence rate for highly auto-correlated processes (H = 0.2
andH = 0.8) are significantly slower for the ergodic methods. The Ratio method performs similarly to
Whittle’s method for H = 0.6 and 0.7.

5 Conclusion

In this paper we have introduced three new methods of estimating the Hurst index using ergedic theory.
These methods have been shown to be comparable in performance to leading estimators in terms of RMSE.
Our empirical analysis shows the robustness and computational speed of the ergodic estimators. The Second
Moment method can be used for estimating the Hurst index when there is known location and scale. This

method has been shown to be equivalent to or more accurate than Whittle's approximate MLE with a
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computational speed 10% faster due to its simplicity. We have shown that the Ratic and Quadrant methods
are consistent and competitive estimators of the Hurst index for fractional Wiener processes. The Ratio
method becomes comparable to Whittle’s estimator for H > 1/2 index for small sample sets (N < 156 data
points), while the Quadrant method is robust and still outperforms most methods available. All methods
introduced are statistically equivalent to or better than Peng’s Variance of Residuals method (for most values
of the Hurst index), the second best method reported in Tagqu et al. [11].

The primary advantage of the ergodic estimators introduced in shis paper is the availability of a closed-
form solution for estimating the Hurst index. Methods like Whittle’s approximate MLE require optimization
algorithms which can take significant time to calculate. Simpler methods sacrifice accuracy for speed. The
ergodic Ratio and Second Moment estimators have speed and simplicity with little sacrifice of accuracy. Ad-
ditionally, the ergodic estimators show superior relative performance on small sample sizes. These properties
are important in such fields as finance (Willinger et al. [15]) and network flow, where fractional Brownian
motion models are being used, and reliable and fast estimates of the Hurst index are needed for decision

making using small sample sizes.
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Appendix 111

Estimated Root Mean Squate Error Paths=500
Technigue H=0.1 |H=0.2 |H=0.3 [H=0.4 [H=0.5 i{H=0.6 [H=07 [H«08 |H=0.9
N=1G,000

var of Res 0.033] 0.026| 6.022 G.021] C.OXL G022 0.0231 0.024) 0.025
Whittle 0.020| 0.007| 0.006 0.006 G.006 ©.006] 0.007{ 0.007) 0.007]
Second Moment | 0.601] 0001 ¢.001| 0.001] G001 G.001] 6.002] 0004 0.018
Ratio .01 0.003 0.008| o.008] 0.O07| 0007 0007 0011 0020
Cuadrant {.618] 0015 6.014) 0.012| 0.081] 0010 G010| 0013 0.024
WS, G000

Var of Res 0.034] 0.627| 6025 Q.026| 0.027| 0.029| 0.031 0.033] 0.035
Whittle 00261 0.609 0083 0.008 0008 0.009] 0.009) 6.005 0.009
Second Moment | 0.002| 0.602] 0.082| 0.602] 0,002 0.002] 0.602| 6.006] 0.021
Ratio 0.63| 0012 0.012) 0.611 L.OI0| 0.005 0008 0.014f G.023
Quadrant ¢.021 0020 0.618] 0.017] C.015] 0.614] 0034 00161 0.028
N=2,360

var of Res 0.085| 0.03G] 0.03¢] 0.032] 0,035] 0.088] 0.041] 0.085| 0.047
Whittle 0.020| 0,011 0.012] 0.012| 0.013] 0.013] 0.014] 0.014| 6.014
Second Moment | 0,008 0.003 0.003( 0002 0.002] 0.003| 0.003| 0.007| 0.021
Ratic 0019 0.018| 0.017| 0.016] 0.015| 0.014| 0.013| 0.017 0.026]
Quadrant 0.03L 0025 0028 0026 0023 0.021 0015 0.621) 9.030
M=1,250

var of Res (LO37 0.086] 0.040| 0.045] 0.050| 0.054| 0.058; 0.062] 0.063)
whittle 4,021 0085 0.015; 0.0860 0.017 0.0:18 0018 0.018 0.018)
Second Moment | 0,004 0.004] 0.004i 0.003] G.003 0.004] 0.004] 0.009) 0.026
Ratio G.027 0025 0.0238 0.023 0.018 0.038] 0.018 0022 0.031
Quadrant 0.045| 0.042] 0.038] 0.0834] 0.0291 G.026{ (0.025] 0.028] 0.037]
N=625

Var of Res 0,047 0045 0.054] 0.062| CO7L] G075 0.0861 0.093| 0.10%
Wwhittte 4,026 06.023 0.024] 0.0256| 06.027]| 0.028F .029] 0029 0.029
Sacond Moment | ¢.006| G006 (.005| 0.005| 0.005{ C.005i G.007| 0.0 0,030
Ratic 0.040 0,038 0.038] 0033 0.033| 0.028] G027 0030 0.037
Quadrant 0.063| 6.060] 0.056 0,051 0046 0.041] G.040| 0.040] 0.049
N=R12

Var of Res 0.057] 0.061| 0.068| 0.077| 0086 0.094] G102 6309 0.116
whittie 0.023] 0.031| 0.034| 0.036| 0.038| 6.03% G.040| 0.040{ 0.038
Second Moment | 0.603 0.008| 0.008| 0.008| 0.007| 0.008| 6.010] .0i6{ 0.034
Ratior 0.058] 0.055| 0.051| 0.047| 0.043| 0.040| 0.03%] £.040] 0.045
Quadrarnt 0.082] 0.088| 0.080| 0.070| 0.065| 0.057| 0.050| 6.049] 0.053
N=156

Var of Res 0.077] 0.080| 5.088| 0.098| 0.30% 0.121| 0,133 G.144] G153
Whittie .037] 0.044| 0.048] 0.051] 0053 0.055 0057 0.057F G.056
Second Moment | 0.012] 0.011] 0.011] 0.010] 0.030 0.010; 0012 G018 G.039
Ratio 8.076] 0.0711 0.066] 0.061] 0058 0.052] 00581 0.053] 0.056
Quadrant {.118] 0.109] 0.163] 0.097] 0.089] 0.080] 0.072] 0.067] 0.066
Ne7R

Var of Res {.128] 0.126] 0.132] 0,341} 0.153] 0.165] 0.175] 0.184| 0.193
whittle 0048 0681 0.088] 0.573] 0077 0.673] 0.08¢] 0.073| 0.080
Second Moment | 0.016| 0.015] 0.015] 0.614] 0.014] 0.015{ 0.018| 0.026| 0.047
Ratio 0.106| 0.100{ 0.0%4] 0.088{ 0.082] 0,076] 0.072| 0.070| 0.U71
Quadrant 0.194| 0174} 0.158 0151 0.130] 0.113] 0.160| 0.08%] 0.774)
N3

Var of Res ¢,232| 0229 0.23%] 0.237 0248 0.258] 0.268| 0.273] 0.230
whitile 0.084| 0.102| 0,115 0.324| 0.131| 0.135| 0.136) 0.133| 0.133}
Second Moment§ 0.023 0.022| 0.023] 0.02G| 0.01%| 0.024) 0.024| 0.623 0.054)
Ratio 0.161] 0.152| 0.143| 0,134 0324 0114 0.105| 0.101) 0.096
Quadrant 0.289] 0,271 0.238| 0.225] 0.190| 0.16% 0.147; 0.364] 1.365
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Fatimated Standard Deviation Paths=508
Technique H=0.1 |H=0.2 |H=0.3 |H=0.4 [H=0.5 [H=0.6 [H=0.7 |H=0.8 [H=0.9
=10,000
Var of Res 0.006| 0.00% 0.012] 0015 0017 G.019] 0.021) 0.022] 0.023
Whittle 0,005 ©0.005| 0.006| 0.006] 0.006{ 0.008 0.007| 0.007] 0.007
Second Moment | G.001| 0.001 o.001 0001 0001 6001 0.082) 0.004] 0.018
Ratic 0.010| 0,009 0.008| 0.008| 0.007] 0.OG7] 0087 0.011) 0020
Quadrant G.016| 0.014| 0.018| 0012 0.011] 0.010| 0.010| 0013 0.024
1§=5,000
Var of Res 0.007 0012 6017 0,020 00241 0.027| 0.030| 0.032] 0.024
Wwhittle 4.007| 0007 0003 4.008 G009 0009 0.00%) 0008 0.003
Second Moment | 0.002{ 0002 0.002] 2.002] 0.002F 0002 0002 0006 0021
Ratic 0.0131 0.012) 0012 0014 0.010] 0.00%) 0008 00314 0.022
Quadrant 0.021) 0.820f 0.018) 0017 0.015] G034 0.014] ODi6) 0.028
N=2,500
var of Res 06111 00181 0.024) 0.02% G.033| 0037 0.040{ 0.043] 0045
Whittle 00101 0.011{ 0.012] 0.012| ©0.013| 0.013] 0.034] 0.014] 0.014
Second Moment | 0.0603] 0.603| 0.003] 0.002| 6.002| 0.003] 0.003] 0.007 0.020
Ratic 0015 0018 0.017] 0.016) 0.015| G.014] 00130 0016 0.024
Quadrant 0038 06.028| G028 0.026) 0.023| 0023 0019 G023 (.030
N=1,2.30
Var of Res 0.015| 0.026| 0.034] 0.042] 0.048] (.053] 0.057| 0.062) 0.066
Wwhittle 0.0 0014 6015 04616 0.617] 0.018| 0.018| 0.018| 0.018
Second Moment | 0.004| 0.004] 0.004| 0.003] 0.003| 0.004] 0.004| 0.008| G.025
Ratio 0.027] 0025 0023 0025 0.019] 6.018| £.018| 6.022| G.029
(adrant 0045 00421 0038 0.034] 0.029 6.026| 0.035| 6.025| 0.026
N=525
var of Res 0.022| 0,036] 0.048] 0.058] 0.G58] Q.076| 0.083) 0091 0.658
Whittie 0.021| 0.022] 0.024] 0.626] 0.027 G.028| 0.028] 0029 0.028
Second Moment | G.006] 0.006F 0005 0.005; 0.085] G.003) 0.607] 0,012 0.630
Ratio 0.040; 0.038] 0.036] 0.083] 0.031] G.028] 0.027 0.029 {.034§
Quadant 0,063 0.060f 0.056] 0.050] 0.086] 0.041] 0,040 0.040] 0.044]
MN=312
Var of Res G087 00437 0.056] 0.068] 0.078) 4087 0.095] 0.102; 0.109
Whittle G.028; 0033 0.034; 0,036 0038 0.639] 0.040] 00401 0.037]
Second Moment | G009 0.008] 0.0080 0.008| 0.007| 0.008] 0.010] 0.016] 0.033
Ratio .038; 0.055| G.05:F 0.047 0.043| Q.040{ 0.038] 0.03% 0041
Quadrant G.0%2; 0.088] G.0R0; 0.070| 0.065 0.657) 0.050] 0.042] 0.052
N=156
Var of Res 0.028] 0.056 0.073] 0,087| 0.101] 0.114| 0.128] 0.137| 0.146
‘Whittle G.037: 0.044] 0.048; 0.051| 0.053| 0.035; 0.0958| 0.053| O.{48
Second Moment | G.0I2{ G.011] 0.01i! 0.010| 0,010| 0,010] 0.012] 0.01% 0.038
Ratio 0.076! 0.071] G.066] 0061 0.056] 0.052] 04051 0.032) 0,051
Quadrant G.118] ©.103| 0.303] 0,097 0,08% 00806 0072 0067 0065
N=78
Var of Res ¢.055] 0075 c6.094] 0111 0329 0.148| 0.156| G.165| 0,174
Whittla 00461 9.061| C.068| 0.073| 0.077 0.078| 0078 04074 0.063
Second Moment | G.016] 6.015| 0.015| 0.014) 0.014| 0.015| 0.018| 0.026] 0.045
Ratic G105 6,100 0094 0.088| 0081 0.076) 0.072| 0.088] 0.063
Quadrant G189 0172 o158 0150 0.130{ 0.113| 0.09%| 0.08%| 0.766
N=39
var of Res G.120| 0142 0.163| 0.1B4| 0.204] 0.223) 0.238] 0.234] 0,268
Wwhittle 0073 0101 0.115] 0124 0.130] 0.3133 0.133] 0.3125) 0.130
Second Moment | 0,023 0.022] 0.021| 0020 0.01% 0020 0024 0.033 0053
Ratic 0161 0.152] 0.143| 0.134 0.124] 0.314] 0.105] 0.097 (.086
Quadran G287 0270 0.237| 6.224] G.190; 0.169] 0.147] 0.362{ 1.315
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Estimated Bias Paths=500
Technigue Hedhl |Hef2 [HoD3 1H=D.4 |H=0.5 [H=0.6 |H=0.7 |H=0.8 H=0.9
N=10,000

var of Res 0032 0.024] 0.018) 0.045] 0.012 0.030| 5.008| 4.009% 0.008
Whittle -(L038( -0.065] -0.003; -0.001] -0.001] -0,001] -0.001| -6.00% -0.001
Second Moment ] G000 00001 0.0001 0000 0.000; 0.000| 0.000] ©.000; 0.002
Ratio GO 0.0004 Q.000] 0,000 0.000] (.000| 0.000{ 0.000) -0.004
Quadrant 003 0.001] 0.001] 0.000| 0.000] 0000 0.000| 0.000] -G.00%]
N=3,000

var of Res ¢.033| 0.024] 0.018] 0.015] 0.033] 0012 O.010{ 0.010| (009
whitile -0.018| -0.085{ -0.002| -0.001] -0.001] -0.001| -0.601| -0.001) -0.003
Second Moment | G.000] 0.000] 0.000]{ €.000! 0.000] 0.000] 0.060] 0.000] .003
Ratip (.000; 0.000{ 0.000{ -6.001] -0.001] -0.601] -0.601| -0.002| -C,005
Quadrant 4.000; 0.000{ 0.000| ©.000} -0.001] -0.002{ -0.001] -0.001| -0,002
N=2,500

var of Res ¢.033; 00251 0.018| 0.0151 0.0137 0011 0.010f 0.£10| G009
Whitthe 1,017 ~0.004] -0.001| £.006] Q000 0.000] 0.850) 0.000] -6.00]
second Moment] 00008 0.000| 0.000| 0000 0.0001 0.000 0.000| 0.001] 0.006
Ratio GO0k 0,000 0.000] €.006) 0.000] 0.000f -0.601] -0.003| -G.010
Quadrant <0003 0,001 0.000| -0001] -G,001] 0,000] -0.001| -0.0G2| -0.006)
BN=1,250

var of Res G.034] 0.028| 0021 8017 0013] 0.013] 0013 G013] 0.014)
Whittle -0.015{ -0.003| 0.000 ©.000| 0.000| .00 0.000( 0000 -0.001
Second Moment | 6.000] 0.000] 0.000| 0,000 G.000| 0000 0.000| 0001 0.205
Ratio 6.0001 0.008| 0.000{ 0.000| 5.000| GOGH -0.00% -0003] -0,61))
Quadrant -0,004 0.000| 0.000{ 0.000| 0.001] 6002 0001 -0.001] -5.008
N=825

Var of Res 0,034 0027 0.623] 0.020] 0.019| 06.01%| 0.020] 0.022| 0.02§
whistle ~O0L7| -0.008| -0.063] -0.0063| -0.004| -0.004| -0.004{ -0.004| -0.005
Second Moment | €000 G.008 0.00Gf 0.000] D.000{ 0.000] 0.000) 0.001| D.0G5
Ratio 0001 C.000] -0.001] -0.001] -0.602| -06.0623] -0.004] -0.005| -0.013
Quadrant -0.002| -G.002] -0.004] -0.005] -0.006] -0.603| -0.005] -0.005| -0.004!
N=312

var of Res Q.050| 0043 0.039 0.6360 0.035] G.035] 0036 0.038) 0.039
whittla 0007 0008 00021 000621 0.001] 6.000] ~0.00% -0.003] -0.010
Second Moment | 0.001| G000 0.060] 0.660] 0.C00| 0.600 0.000 0.002] 0.009
Ratio Q005 G004 0063 00021 0.002] 0.0001 -0.002 -0.008| -0.018
Quadrant 0.000| -0.002| -0.081 0.600] G.000] ~0.001| 0.000; -0.004) -0,009
N=155

Var of Res 0.067| G056 00489 0.045) 0.643] 0.842] 0.0431 (L.044| 0.045
whittle -0,001| 0.008| -0.001 -0.003] -0.606] ~0.668] -G.01%; -0.046| -0.029
Second Moment | 0.000| C.000{ 0.00G] 0.000] 0.000| 0.600] 0G.00% 0.002] 0005
Ratio 0.002| 0.000| -0.001} -0.602] -0.004| -0.805{ -0.007] -0.013| -0.024
Cuadrant -0.005| G.000] -0.002{ -0.005] -0.002| 0.800 -0.004) -0.006| -0.012
N=78

Var of Reg a.115| 6.02) 0.0%2] 0.086{ 0.083] 0.08l] 0.082| 0.082]{ 0.082
whittle 0.012 G006 0.002] -0.002 -0.007] -0.011] -0,018] -0.028] -0.049
Second Moment | 0.001| CG.OO0H 0001} 0003 0.001] 0.00L 0.001] 0.003 0.012
Ratio -0,011| -G.00%; -0.008{ -0.007] -0.006{ -0.606] -0.008) -0,016{ -0.021
Quadrant -0,044( -¢.028] -0.018] -0.612{ -0.006| 0.607; -0.007| -G.005] -0.106
N=3%

Var of Ras 0,199 G180 0,163] 0.)14% 0.139] 0130 0.121]| 0.114{ 0.1i12
Wwhittle a.029| 00347 0.003 -0.003; -0.010¢ -0.019; -0.030( -0.047 -0.075
Second Moment | 0.000] 6.0001 -0.081 -0.001; -0.001] 00051 -0.000] (.00 0.010
Ratio 0.004| 0.003] 0.000 -0.802! -0.005] -0.0101 -0,016] -0,026{ -0.041
Quadrant -0.036| -6.029; -0,018] -0.613; 0,005 -0.807; -0.006| -0.034{ -0.36%
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