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Abstract. This paper discusses the identification of the optimal partition of second order cone
optimization (SOCO). By giving definitions of two condition numbers which only dependent on the
SOCO problem itself, we derive some bounds on the magnitude of the blocks of variables along the
central path, and prove that the optimal partition B, N , R, and T for SOCO problems can be
identified along the central path when the barrier parameter µ is small enough. Then we generalize
the results to a specific neighborhood of the central path.
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1. Introduction . The notion of optimal partition is well known for linear op-
timization (LO) and linear complementarity problems (LCP). It is an important tool
both in identifying exact optimal solutions and in sensitivity analysis, see e.g., [10, 20].
Using a geometric approach, Yildirim [26] extends the concept of optimal partition to
general convex conic optimization, and [3] provides another algebraic definition of the
optimal partition B,N ,R, T for Second Order Cone Optimization (SOCO). However,
as pointed out in [23], the identification of the optimal partition along the central
path is still a missing element of the interior point methods (IPM) theory for SOCO.

The identification of optimal partition in IPMs methods is closely related to the
limiting behavior of the central path. The analyticity of the central path at the limit
has been studied extensively for LO, see, e.g., [1, 5, 7, 24]. The limiting behavior of
the central path for LCP as the barrier parameter µ → 0+ (where µ → 0+ means
that µ → 0, µ > 0) have been studied e.g., in [8, 19, 21, 22, 16]. For P∗(κ) LCPs, the
paper [8] proposed a strongly polynomial rounding procedure yielding a maximally
complementary solution. The properties of the central path for semidefinite optimiza-
tion (SDO) problems have been studied by e.g., by [4, 6, 12, 13, 15, 17, 18], where the
analyticity of the central path at zero are obtained when the strict complementarity
condition is satisfied. However, as pointed out in [23], the convergence properties
of the central path of SOCO, and the identification of the optimal partition are not
sufficiently studied yet for the general case.

This paper is organized as follows. In Section 2, we review some key results for
SOCO. In Section 3, after reviewing the definition of optimal partition for SOCO, we
first propose two condition numbers σ1, σ2, which are positive constants that depen-
dent only on the optimization problem. Then we derive quantitative results on the
magnitude of the variables along the central path, and prove that the optimal parti-
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tion B,N ,R, T , proposed by [3], can be identified exactly. In Section 4 we generalize
the results derived in Section 3 to the vicinity of the central path and show that if
(x, y, s) is given in an appropriate neighborhood of the central path (x(µ), y(µ), s(µ)),
with µ small enough, we also have a complete separation of the blocks of variables
according to the optimal partition. We conclude this paper with some remarks in
Section 5.

Notation: In this paper ‖ · ‖ denotes the Euclidean 2-norm in Rn, i.e., ‖x‖ =
√

x2
1 + · · ·+ x2

n for x ∈ Rn; xT s denotes the standard inner product for x, s ∈ Rn,
i.e., xT s =

∑n
i=1 xi si. As in MATLAB, we use “,” for stacking vectors and matrices

in a row, and use “;” for stacking them in a column. Subscript expressions involving
colons refer to portions of a vector or a matrix. For example, (a; b) = (aT, bT)T, and
x2:k = (x2, . . . , xk)

T, where “T” indicates the transpose of a vector or a matrix.

2. Preliminaries . SOCO has been studied extensively [14, 2] in the past two
decades. Theoretically, SOCO can be seen as a special case of SDO, see, e.g., [25, 2].
However, as pointed out in e.g., in [2], due to its broad applicability, its special struc-
ture, high efficiency of IPMs in computational practice, and its theoretical complexity
bound, SOCO is worth studying on its own right.

The convex cone

K = {x = (x1, . . . , xn) ∈ Rn | x1 ≥ ‖x2:n‖}

is referred to as a second-order cone (SOC), or Lorentz cone, or quadratic cone. It is
well known that the SOC is self-dual, i.e., we have K = K∗, where

K∗ = {s ∈ Rn | sTx ≥ 0, ∀x ∈ K}

is the dual cone of K. Denote Ki
q = {xi = (xi

1, . . . , x
i
ni
)T ∈ Rni | xi

1 ≥ ‖xi
2:ni

‖} for
i = 1, . . . , k. Then the standard form SOCO problem is as follows:

min
k
∑

i=1

(ci)Txi

s.t.
k
∑

i=1

Aixi = b,

xi ∈ Ki
q, i = 1, 2, . . . , k,

(2.1)

where b = (b1, . . . , bm)T ∈ Rm, Ai ∈ Rm×ni and ci = (ci1, c
i
2, . . . , c

i
ni
)T ∈ Rni for

i = 1, . . . , k. Since for every i = 1, 2, . . . , k, the set Ki
q is self-dual, i.e., we have

(Ki
q)

∗ = Ki
q, the corresponding dual of problem (2.1) is:

max bTy
s.t. (Ai)Ty + si = ci, i = 1, . . . , k,

si ∈ (Ki
q)

∗ = {si | si1 ≥ ‖si2:ni
‖}, i = 1, 2, . . . , k,

(2.2)

where y = (y1, . . . , ym)T ∈ Rm is the dual variable, and si = (si1, . . . , s
i
ni
)T ∈ Rni are

the slack variables for i = 1, 2, . . . , k.

For brevity let n = n1 + n2 + · · ·+ nk, and denote A = [A1, A2, . . . , Ak] ∈ Rm×n,
K = K1

q×K2
q×. . .×Kk

q , c = (c1; c2; . . . ; ck) = (c11, . . . , c
1
n1
, c21, . . . , c

2
n2
, . . . , ck1 , . . . , c

k
nk
)T,

and x = (x1;x2; . . . ;xk) = (x1
1, . . . , x

1
n1
, x2

1, . . . , x
2
n2
, . . . , xk

1 , . . . , x
k
nk
)T. By definition

K is the Cartesian product of several SOCs, hence K is also self-dual, i.e., we have
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K∗ = K. By x �K 0 (x ≻K 0), where x ∈ Rn, we mean that x ∈ K (x ∈ int(K)). Then
the SOCO problem (2.1) and its dual (2.2), analogous to LO, can also be written as

(P )
min cTx
s.t. Ax = b,

x �K 0.
(D)

max bTy
s.t. AT y + s = c,

s �K 0.
(2.3)

In order to analyze the properties of problem (2.3), the following two standard as-
sumptions are made.

Assumption 1. Matrix A = [A1, A2, . . . , Ak] ∈ Rm×n in (2.3) has full row rank,
i.e., rank(A) = m.

Assumption 2. Both the primal problem (P ) and the dual problem (D) in (2.3)
have strictly feasible solutions, i.e.,

∃x ∈ int(K) such that Ax = b

∃(y, s) ∈ Rm × int(K) such that AT y + s = c.

Assumption 1 is a technical one. It enforces a one-to-one correspondence between
y and s for dual solutions (y, s). Therefore, when the solution s is bounded, so is
the corresponding solution y. On the other hand, Assumption 2 is a Slater condition,
which is essential in the development of the theory of convex optimization.

Now let us introduce the customary notation in SOCO:

x ◦ s =
(

xTs
x1s2:n + s1x2:n

)

,

where x = (x1;x2:n) = (x1, x2 . . . , xn)
T and s = (s1; s2:n) = (s1, s2 . . . , sn)

T. For
x = (x1; . . . ;xk) ∈ K, s = (s1; . . . ; sk) ∈ K, where xi, si ∈ Ki

q for i = 1, . . . , k, define

x ◦ s = (x1 ◦ s1; . . . ;xk ◦ sk).

Denote F as the set of all primal-dual feasible points for (2.3), F∗ as the set of
all primal-dual optimal solutions for (2.3), i.e., we have

F = {(x, y, s) ∈ Rn×Rm ×Rn | x is feasible for the primal problem (P ) in (2.3),
(y, s) is feasible for the dual problem (D) in (2.3)}

F∗ = {(x, y, s) ∈ Rn×Rm ×Rn | x is optimal for the primal problem (P ) in (2.3),
(y, s) is optimal for the dual problem (D) in (2.3)}

Suppose that Kq is a second order cone. It is well known that for all x, s ∈ Kq,
we have xTs ≥ 0, and that xTs = 0 is equivalent to x ◦ s = 0. We have the following
results for the primal-dual pair of SOCO problems (2.3) (see, e.g., [14, 2]).

Theorem 2.1. Consider the SOCO problem (P ) and its dual (D) as in (2.3).

1. If (x, y, s) ∈ F , then the duality gap cTx− bTy = sTx ≥ 0.
2. If Assumption 2 is satisfied, then both the primal and the dual problems in

(2.3) have optimal solutions x∗, (y∗, s∗) and cTx∗ = bTy∗, i.e., the duality
gap (x∗)Ts∗ = 0, which is equivalent to x∗ ◦ s∗ = 0 for x∗ ∈ K and s∗ ∈ K.
Moreover, a point (x, y, s) ∈ F∗, if and only if

Ax = b, x ∈ K,
ATy + s = c, s ∈ K, y ∈ Rm,

x ◦ s = 0,
(2.4)

where x = (x1; . . . ;xk) ∈ K and s = (s1; . . . ; sk) ∈ K with xi, si ∈ Ki
q.
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3. If both Assumption 1 and Assumption 2 are satisfied, then the optimal solution
set F∗ of (2.3) is a nonempty and compact convex set.

Now we give the definition of the central path. As in [2], we denote ek =
(1; 0; ...; 0) ∈ Rk, e = (en1

; en2
; . . . ; enk

), where “ ; ” is a concatenation operation
for vectors and matrices in columns. The central path for problem (2.3) is defined as
the set of solutions (x(µ), y(µ), s(µ)), where µ > 0, of the following system:

Ax = b, x ∈ K,
ATy + s = c, s ∈ K, y ∈ Rm,

x ◦ s = µe.
(2.5)

System (2.5) can be seen as a perturbation of system (2.4). We have the following
result (see, e.g., [14, 2, 9]):

Theorem 2.2. If both Assumption 1 and Assumption 2 are satisfied, we have:

1. For any µ > 0 system (2.5) has a unique solution (x(µ), y(µ), s(µ)). More-
over, we have xi(µ) ∈ int(Ki

q) and si(µ) ∈ int(Ki
q), for every i = 1, . . . , k.

2. For µ > 0, the sequence (x(µ), y(µ), s(µ)) defines a vector-valued analytical
function of µ.

3. The sequence (x(µ), y(µ), s(µ)) converges to a maximally complementary op-
timal solution (x∗, y∗, z∗) ∈ F∗ ⊂ Rn ×Rm × Rn of (2.3) as µ → 0+, where
µ → 0+ means that µ → 0 while µ > 0.

Theorem 2.2 tells us that the central path {(x(µ), y(µ), s(µ)) | µ > 0} is properly
defined, and for µ > 0 it is a smooth analytical curve in Rn×Rm×Rn. In this paper
we study the properties of the central path when µ → 0+. Unlike the case of Linear
Optimization (LO), the central path is not differentiable at zero for general SOCO
problems.

3. The identification of the optimal partition. The optimal partition for
the primal-dual SOCO problem pair (2.3) consists of four sets, which are defined in
[3] as (see also [23]):

B = {i | xi
1 > ‖xi

2:ni
‖ for a primal optimal solution x},

N = {i |si1 > ‖si2:ni
‖ for a dual optimal solution (y, s)},

R = {i |xi
1 = ‖xi

2:ni
‖ > 0, si1 = ‖si2:ni

‖ > 0
for a primal-dual optimal solution (x, y, s)},

T = {i |xi = si = 0; or xi = 0, si1 = ‖si2:ni
‖ > 0; or

xi
1 = ‖xi

2:ni
‖ > 0, si = 0 for all primal-dual optimal solutions (x, y, s)}.

It is obvious, due to the convexity of the optimal set, that the sets B,N ,R, and T
are disjoint and B ∪ N ∪R∪ T = {1, 2, . . . , k}.

In the following analysis, we will always assume that both Assumption 1 and
Assumption 2 are satisfied.

Lemma 3.1. For ∀i ∈ B ∪ N ∪R, we have:

1. If i ∈ B, we have si = 0 for ∀ (x, y, s) ∈ F∗.
2. If i ∈ N , we have xi = 0 for ∀ (x, y, s) ∈ F∗.
3. If i ∈ R, then for every (x, y, s) ∈ F∗, we can write:

xi = α

(

1
h

)

, si = β

(

1
−h

)

,
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where h =
xi
2:ni

‖xi
2:ni

‖
= − si

2:ni

‖si
2:ni

‖
∈ Rni−1 is a constant vector for all optimal

solutions (x, y, s) ∈ F∗ with ‖h‖ = 1, while α = xi
1 ≥ 0, β = si1 ≥ 0 may

change with the particular optimal solution (x, y, s) ∈ F∗.

Proof. By the optimality conditions (2.4) in Theorem 2.1, we know that for
∀ (x, y, s) ∈ F∗ and ∀ (x̄, ȳ, s̄) ∈ F∗, we have (xi)Ts̄i = 0 and (x̄i)Tsi = 0 for all
i = 1, 2, . . . , k, where x = (x1; . . . ;xk), s = (s1; . . . ; sk) with xi, x̄i, si, s̄i ∈ Ki

q ⊂ Rni

for i = 1, . . . , k.

1. Since i ∈ B, there exists some (x̄, ȳ, s̄) ∈ F∗ such that x̄i ∈ int(Ki
q), i.e.,

x̄i
1 > ‖x̄i

2:ni
‖ ≥ 0. Since for all (x, y, s) ∈ F∗, we have si1 ≥ ‖si2:ni

‖ and
(x̄i)Tsi = 0. By the Cauchy-Schwarz inequality we get

0 = (x̄i)Tsi = x̄i
1s

i
1 +

ni
∑

j=2

x̄i
js

i
j ≥ x̄i

1s
i
1 − ‖x̄i

2:ni
‖ ‖si2:ni

‖ ≥ 0. (3.1)

Therefore we have x̄i
1s

i
1 − ‖x̄i

2:ni
‖ ‖si2:ni

‖ = 0. Then, by si1 ≥ ‖si2:ni
‖ and

x̄i
1 > ‖x̄i

2:ni
‖, we get si1 = ‖si2:ni

‖ = 0, which is equivalent to si = 0.
2. In the same way as above we can get the desired result.
3. Since i ∈ R, by the definition of R, we know that there exists some (x̄, ȳ, s̄) ∈

F∗ such that x̄i
1 = ‖x̄i

2:ni
‖ > 0 and s̄i1 = ‖s̄i2:ni

‖ > 0. For ∀ (x, y, s) ∈ F∗,
we have xi

1 ≥ ‖xi
2:ni

‖, si1 ≥ ‖si2:ni
‖ and (x̄i)Tsi = 0. Then, by (3.1), we get

si1 = ‖si2:ni
‖ and

(x̄i
2:ni

)Tsi2:ni
= −‖x̄i

2:ni
‖ ‖si2:ni

‖.

By the equality conditions of the Cauchy-Schwarz inequality and ‖x̄i
2:ni

‖ > 0,

there exists some β̃ ≥ 0 such that si2:ni
= −β̃x̄i

2:ni
. Since ‖x̄i

2:ni
‖ = x̄i

1 >

0, ‖si2:ni
‖ = si1 ≥ 0, we get β̃ =

si
1

x̄i
1

≥ 0, and hence we have

si2:ni
= −β̃x̄i

2:ni
= − si1

x̄i
1

x̄i
2:ni

. (3.2)

Define

h =
x̄i
2:ni

‖x̄i
2:ni

‖ =
x̄i
2:ni

x̄i
1

.

By (3.2) we get

si =

(

si1
si2:ni

)

=
si1
x̄i
1

(

x̄i
1

−x̄i
2:ni

)

= si1

(

1
−h

)

= β

(

1
−h

)

,

where β = si1 ≥ 0 and h ∈ Rni−1 is a constant vector (which is independent
of (x, y, s)) with ‖h‖ = 1.
According to the optimality conditions, we have (x̄i)Ts̄i = 0, hence in the
same way as above we get

s̄i =
s̄i1
x̄i
1

(

x̄i
1

−x̄i
2:ni

)

= s̄i1

(

1
−h

)

.

5



Since (s̄i)Txi = 0, the same way we get

xi =
xi
1

s̄i1

(

s̄i1
−s̄i2:ni

)

= xi
1

(

1
h

)

= α

(

1
h

)

,

where α = xi
1 ≥ 0.

6

Denote bd(Ki
q) = {xi ∈ Ki

q | xi
1 = ‖x2:ni

‖ > 0}, and int(Ki
q) = {xi ∈ Ki

q | xi
1 >

‖x2:ni
‖}. Then each block xi may be in one of the following three states: xi ∈ int(Ki

q),

or xi ∈ bd(Ki
q), or xi = 0. According to Lemma 3.1, it is impossible to have both

xi ∈ int(Ki
q) and si ∈ int(Ki

q)∪bd(Ki
q), or both si ∈ int(Ki

q) and xi ∈ int(Ki
q)∪bd(Ki

q).

However, if we have x̄i = 0 and s̄i ∈ bd(Ki
q) ∪ {0}, or s̄i = 0 and x̄i ∈ bd(Ki

q) ∪ {0}
for some optimal solution (x̄, ȳ, s̄) ∈ F∗, then there may still exist some other optimal
solution (x, y, s) ∈ F∗ with xi ∈ bd(Ki

q) and si ∈ bd(Ki
q), and vice versa. Hence,

in such a case, we have i ∈ R, and so i /∈ T . Now, as pointed out in [23], we can
enumerate all the possible configurations for the primal-dual blocks of variables at
optimality. These configurations are listed in Table 3.1, where cases that are not
possible are indicated by “×”.

Table 3.1

Possible configurations for the ith blocks in an optimal solution.

H
H
H
H
H

si
xi

0 bd(Ki
q) int(Ki

q)

0 i ∈ T ∪ R i ∈ T ∪ R i ∈ B
bd(Ki

q) i ∈ T ∪ R i ∈ R ×
int(Ki

q) i ∈ N × ×

One can see that the set T is complementary to B ∪N ∪R by definition, and the
intersection of any pair of the three sets B,N ,R is empty by Lemma 3.1. Hence, as
in [3], we have the following result.

Corollary 3.2. The four sets B,N ,R, T , defined by the optimal solution set
F∗, give a partition of the index set {1, . . . , k}

In order to derive bounds for the magnitude of the variables (x(µ), y(µ), s(µ))
along the central path as µ → 0+, for SOCO problems we define two condition
numbers σ1 and σ2 as follows:

σB = min
i∈B

max
(x,y,s)∈F∗

{xi
1 − ‖xi

2:ni
‖}, (3.3)

σN = min
i∈N

max
(x,y,s)∈F∗

{si1 − ‖sis:ni
‖}, (3.4)

σ1 = min{σB, σN}, (3.5)

σ2 = min
i∈R

max
(x,y,s)∈F∗

{xi
1 + si1 − ‖xi

s:ni
+ si2:ni

‖}. (3.6)

By Lemma 3.1 and definitions (3.3)–(3.5), we define

σ1 = min
i∈B∪N

max
(x,y,s)∈F∗

{xi
1 + si1 − ‖xi

2:ni
+ si2:ni

‖}. (3.7)

Observe, that the definitions of the two condition numbers σ1 and σ2 have the same
form, only that the index sets are different. When Assumptions 1 and 2 are satisfied,
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then the set of optimal solutions F∗ is nonempty, convex and compact. Thus, the two
condition numbers σ1 and σ2 are well defined, which is spelled out in the following
Lemma.

Lemma 3.3. The two condition numbers σ1 and σ2 are both positive constants,
i.e., we have σ1 > 0, and σ2 > 0.

Proof. By the compactness of F∗ and the definitions of σ1 and σ2, it is obvious
that they both are constants. Further, for ∀i ∈ B, there exists some (x̄, ȳ, s̄) ∈ F∗

such that x̄i
1 − ‖x̄i

2:ni
‖ > 0. Since by Theorem 2.1 F∗ is nonempty and compact, and

xi
1 − ‖xi

2:ni
‖ is a continuous function on the compact set F∗, there must exist some

(x̂, ŷ, ŝ) ∈ F∗ such that

σi
1 := max

(x,y,s)∈F∗

{xi
1 − ‖xi

2:ni
‖} = x̂i

1 − ‖x̂i
2:ni

‖ ≥ x̄i
1 − ‖x̄i

2:ni
‖ > 0.

Then by the finiteness of the set B we obtain σB = min
i∈B

σi
1 > 0. In the same way we

can prove σN > 0, and hence σ1 = min{σB, σN} > 0.

Similarly, for ∀i ∈ R, there exists some (x̄, ȳ, s̄) ∈ F∗ such that x̄i
1 = ‖x̄i

2:ni
‖ > 0

and s̄i1 = ‖s̄i2:ni
‖ > 0. Then by Lemma 3.1 we have

x̄i = x̄i
1

(

1
hi

)

, s̄i = s̄i1

(

1
−hi

)

,

where hi ∈ Rni−1 is a constant vector with ‖hi‖ = 1. So we have

x̄i
1 + s̄i1 − ‖x̄i

2:ni
+ s̄i2:ni

‖ = x̄i
1 + s̄i1 − |x̄i

1 − s̄i1| = 2min{x̄i
1, s̄

i
1} > 0.

In a similar way, using the compactness of F∗, the continuity of the function xi
1 +

si1 − ‖xi
2:ni

+ si2:ni
‖ on F∗, and the finiteness of the set R, we get that σ2 > 0.

Lemma 3.3 tells us that the two condition numbers σ1 and σ2 are well defined finite
positive values. By using σ1 and σ2, according to the optimal partition B, N , R and
T , we can derive some bounds for the variables along the central path of the SOCO
problem.

Theorem 3.4. Let µ > 0 and (x(µ), y(µ), s(µ)) be the corresponding point on
the central path which satisfies (2.5). Then we have

1. For ∀i ∈ B, we have

xi
1(µ) ≥ xi

1(µ)− ‖xi
2:ni

(µ)‖ >
σ1

2k
, and si1(µ) ≤

kµ

σ1
.

2. For ∀i ∈ N , we have

si1(µ) ≥ si1(µ)− ‖si2:ni
(µ)‖ >

σ1

2k
, and xi

1(µ) ≤
kµ

σ1
.

3. For ∀i ∈ R, we have

xi
1(µ) >

σ2

4k
, and si1(µ) >

σ2

4k
,

(xi
1(µ)− ‖xi

2:ni
(µ)‖) + (si1(µ)− ‖si2:ni

(µ)‖) ≤ 2kµ

σ2
.

In particular we have

2kµ

σ2
> xi

1(µ)− ‖xi
2:ni

(µ)‖, and
2kµ

σ2
> si1(µ) − ‖si2:ni

(µ)‖.
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4. For ∀i ∈ B ∪N we have

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ >
σ1

2k
.

For ∀i ∈ R we have

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ >
σ2

2k
.

For ∀i ∈ T , we have

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ → 0 as µ → 0+.

Proof. By (2.5) for any i ∈ {1, . . . , k} we have

xi(µ) ◦ si(µ) = µei = (µ, 0, . . . , 0)T, (3.8)

which is equivalent to:

si(µ) =

µ

(

xi
1(µ)

−xi
2:ni

(µ)

)

(xi
1(µ))

2 − ‖xi
2:ni

(µ)‖2 , (3.9)

or equivalently

xi(µ) =

µ

(

si1(µ))
−si2:ni

(µ)

)

(si1(µ))
2 − ‖si2:ni

(µ)‖2 . (3.10)

1. For ∀i ∈ B, by the definition of σ1 and the compactness of F∗, we can choose
some (x̄, ȳ, s̄) ∈ F∗ such that

x̄i
1 − ‖x̄i

2:ni
‖ ≥ σ1. (3.11)

Since both (x̄, ȳ, s̄) and (x(µ), y(µ), s(µ)) are primal-dual feasible, we get

(x̄− x(µ))T(s̄− s(µ)) = (x̄− x(µ))T(ATȳ −ATy(µ))

= (Ax̄−Ax(µ))T(ȳ − y) = (b − b)T(ȳ − y) = 0.

Therefore we have

x̄Ts̄+ x(µ)Ts(µ) = x̄Ts(µ) + x(µ)Ts̄. (3.12)

Since (x̄, ȳ, s̄) ∈ F∗, by the optimality conditions in Theorem 2.1 we have
x̄Ts̄ = 0. By formula (3.8) we have (xj(µ))Tsj(µ) = µ for j = 1, 2, . . . , k, and

hence x(µ)Ts(µ) =
∑k

j=1(x
j(µ))Tsj(µ) = kµ. Then by formula (3.12) we get

k
∑

j=1

[(x̄j)Tsj(µ) + (s̄j)Txj(µ)] = kµ. (3.13)

Since (x̄j)Tsj(µ) ≥ 0, (s̄j)Txj(µ) ≥ 0 and sj1(µ) > ‖sj2:ni
(µ)‖ for j = 1, . . . , k,

by formula (3.13), the Cauchy-Schwarz inequality and formula (3.11) we get:

kµ ≥ (x̄i)Tsi(µ) = x̄i
1s

i
1(µ) + (x̄i

2:ni
)Tsi2:ni

(µ)

≥ x̄i
1s

i
1(µ)− ‖x̄i

2:ni
‖ ‖si2:ni

(µ)‖ ≥ σ1s
i
1(µ).
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Hence we have

si1(µ) ≤
kµ

σ1
, ∀i ∈ B. (3.14)

By (3.9) and xi
1(µ) > ‖xi

2:ni
(µ)‖ we have

si1(µ) =
µxi

1(µ)

(xi
1(µ))

2 − ‖xi
2:ni

(µ)‖2

=
µ

xi
1(µ)− ‖xi

2:ni
(µ)‖

xi
1(µ)

xi
1(µ) + ‖xi

2:ni
(µ)‖

>
µ

xi
1(µ)− ‖xi

2:ni
(µ)‖

1

2
. (3.15)

Then by (3.14) and (3.15) we get

xi
1(µ)− ‖xi

2:ni
(µ)‖ >

1

2

µ

si1(µ)
≥ σ1

2k
,

and it is obvious that xi
1(µ)− ‖xi

2:ni
(µ)‖ ≤ xi

1(µ).
2. Analogously, by substituting xi(µ) for si(µ) and si(µ) for xi(µ) respectively,

we can get the desired result in the same way as above.
3. By the the definition of σ2 and the compactness of F∗, for all i ∈ R, we can

choose some (x̄, ȳ, s̄) ∈ F∗ such that

x̄i
1 + s̄i1 − ‖x̄i

2:ni
+ s̄i2:ni

‖ ≥ σ2. (3.16)

By Lemma 3.1 we have

x̄i = x̄i
1

(

1
hi

)

, s̄i = s̄i1

(

1
−hi

)

, (3.17)

where hi ∈ Rni−1 is a constant vector with ‖hi‖ = 1. So we have

x̄i
1 + s̄i1 − ‖x̄i

2:ni
+ s̄i2:ni

‖ = x̄i
1 + s̄i1 − |x̄i

1 − s̄i1| = 2min{x̄i
1, s̄

i
1}. (3.18)

Then by (3.16) and (3.18) we get

x̄i
1 ≥ σ2

2
, s̄i1 ≥ σ2

2
. (3.19)

By (3.8) we have

xi
1(µ)s

i
2:ni

(µ) + si1(µ)x
i
2:ni

(µ) = 0,

which, since xi
1(µ) > 0, is equivalent to:

si2:ni
(µ) = − si1(µ)

xi
1(µ)

xi
2:ni

(µ). (3.20)

Then by (3.13), (3.17), (3.19), ‖hi‖ = 1 and the Cauchy-Schwarz inequality
we derive

kµ ≥ (x̄i)Tsi(µ) + (s̄i)Txi(µ)

= x̄i
1(s

i
1(µ) + (si2:ni

(µ))Thi) + s̄i1(x
i
1(µ)− (xi

2:ni
(µ))Thi)

≥ x̄i
1(s

i
1(µ)− ‖si2:ni

‖) + s̄i1(x
i
1(µ)− ‖xi

2:ni
(µ)‖)

≥ σ2

2
(si1(µ)− ‖si2:ni

‖) + σ2

2
(xi

1(µ)− ‖xi
2:ni

(µ)‖). (3.21)
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So we get

2kµ

σ2
≥ (si1(µ)− ‖si2:ni

(µ)‖) + (xi
1(µ)− ‖xi

2:ni
(µ)‖).

Since si1(µ)− ‖si2:ni
(µ)‖ > 0 and xi

1(µ)− ‖xi
2:ni

(µ) > 0, we get

2kµ

σ2
> xi

1(µ)− ‖xi
2:ni

‖, 2kµ

σ2
> si1(µ)− ‖si2:ni

‖. (3.22)

Then by (3.15) and (3.22) we have

si1(µ) ≥
µ

2(xi
1(µ)− ‖xi

2:ni
(µ)‖) >

σ2

4k
.

Analogously, by (3.10) and si1(µ) > ‖si2:ni
(µ)‖ we have

xi
1(µ) =

µsi1(µ)

(si1(µ))
2 − ‖si2:ni

(µ)‖2

=
µ

si1(µ)− ‖si2:ni
(µ)‖

si1(µ)

si1(µ) + ‖si2:ni
(µ)‖

>
µ

si1(µ)− ‖si2:ni
(µ)‖

1

2
. (3.23)

Then by (3.22) and (3.23) we get

xi
1(µ) ≥

µ

2(si1(µ)− ‖si2:ni
(µ)‖) >

σ2

4k
.

4. Now by the results in item 1 of this theorem, for all i ∈ B we have

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖
≥ xi

1(µ) + si1(µ)− (‖xi
2:ni

(µ)‖ + ‖si2:ni
(µ)‖)

> xi
1(µ) − ‖xi

2:ni
(µ)‖ ≥ σ1

2k
. (3.24)

Similarly for all i ∈ N we have

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖
≥ xi

1(µ) + si1(µ)− (‖xi
2:ni

(µ)‖ + ‖si2:ni
(µ)‖)

> si1(µ)− ‖si2:ni
(µ)‖ ≥ σ1

2k
. (3.25)

Then by (3.24)–(3.25), for all i ∈ B ∪N we have

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ >
σ1

2k
,

For all i ∈ R, by (3.20) and the results in item 3 of this theorem, we have

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖

= xi
1(µ) + si1(µ)−

∣

∣

∣

∣

1− si1(µ)

xi
1(µ)

∣

∣

∣

∣

‖xi
2:ni

(µ)‖

≥ xi
1(µ) + si1(µ)−

∣

∣

∣

∣

1− si1(µ)

xi
1(µ)

∣

∣

∣

∣

xi
1(µ)

≥ 2min{xi
1(µ), s

i
1(µ)} >

σ2

2k
. (3.26)
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By Theorem 2.2, we know that for all i ∈ T , we have either xi(µ) → 0
and si(µ) → 0, or xi(µ) → 0 and si1(µ) − si2:ni

(µ) → 0, or si(µ) → 0 and
xi
1(µ)− xi

2:ni
(µ) → 0 as µ → 0+. So we get

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ → 0 as µ → 0+. (3.27)

By Theorem 3.4, we get the following known result as a corollary.

Corollary 3.5. The central path (x(µ), y(µ), s(µ)) of SOCO problem (2.3)
converges to a maximally complementary optimal solution (x̄, ȳ, s̄).

Proof. By Theorem 2.2 we have (x(µ), y(µ), s(µ)) → (x̄, ȳ, s̄) ∈ F∗ as µ → 0+.
Then by Theorem 3.4 for all i ∈ B we have x̄i

1 − ‖x̄i
2:ni

‖ ≥ σ1

2k > 0 and s̄i = 0; for
all i ∈ N we have s̄i1 − ‖s̄i2:ni

‖ ≥ σ1

2k > 0 and x̄i = 0; and for all i ∈ R we have
x̄i
1 + s̄i1 − ‖x̄i

2:ni
+ s̄i2:ni

‖ ≥ σ2

2k . So we get x̄i + s̄i ∈ int(Ki
q) for all i ∈ B ∪ N ∪ R,

which maximize the number of strictly complementary blocks.

According to Theorem 3.4, we can identify the partition of the four sets B, N , R
and T as µ → 0+. By (3.24)–(3.26), for all i ∈ B ∪ N ∪R we have

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ > min
{σ1

2k
,
σ2

2k

}

,

and according to formula (3.27), for all i ∈ T we have xi
1(µ) + si1(µ) − ‖xi

2:ni
(µ) +

si2:ni
(µ)‖ → 0 as µ → 0+. Therefore, if we choose µ so small that xi

1(µ) + si1(µ) −
‖xi

2:ni
(µ) + si2:ni

(µ)‖ < min{σ1

2k ,
σ2

2k} for all i ∈ T , we can separate T from B ∪N ∪R.
After that, according to the results of Theorem 3.4, we can separate B,N ,R when µ
is so small that

kµ

σ1
< min

{σ1

2k
,
σ2

4k

}

, and max

{

kµ

σ1
,
2kµ

σ2

}

<
σ1

2k
,

which is equivalent to

µ < min

{

σ2
1

2k2
,
σ1σ2

4k2

}

.

In order to derive bounds for the ith block in the central path with i ∈ T , we
need the following result, which is presented as Theorem 2.4 in [11].

Theorem 3.6. For i = 1, . . . ,m, let gi(x) : Rn → R be quadratic functions.
Suppose that the set S = {x ∈ Rn | g1(x) ≤ 0, g2(x) ≤ 0, . . . , gm(x) ≤ 0} is nonempty.
Then for every scalar ρ > 0, there exist positive scalars τ and γ such that

dist(x,S) ≤ τ‖[g(x)]+‖γ , ∀x ∈ Rn satisfying ‖x‖ ≤ ρ,

where dist(x,S) is the Euclidean distance from the vector x to the set S, and [g(x)]+ =
(max{g1(x), 0},max{g2(x), 0}, . . . ,max{gm(x), 0}).

Denote the central path as z(µ) = (x(µ), y(µ), s(µ)). By Theorem 3.6, we can get
the following estimation for the central path.

Theorem 3.7. Suppose 0 < µ < M , where M is any positive constant. Then
there exist two constants τ > 0 and γ > 0 such that

dist(z(µ),F∗) ≤ τµγ ,
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where z(µ) = (x(µ), y(µ), s(µ)) is a point on the central path satisfying system (2.5),
and F∗ is the set of primal-dual optimal solutions.

Proof. Since the second order cone constraint x1 ≥ ‖x2:n‖ is equivalent to the
following quadratic constraints

x2
1 −

n
∑

i=2

x2
i ≥ 0 and x1 ≥ 0.

We know that every functions gi(z), where z = (x, y, s) ∈ Rn ×Rm ×Rn, in systems
(2.4) and (2.5) are quadratic, and the solution set of system (2.4) is F∗. By Theorem
2.1 the set F∗ is nonempty. By the convergence and the analyticity properties of
the central path z(µ) in Theorem 2.2, we know that the set {z(µ) | 0 < µ < M} is
bounded, i.e., for 0 < µ < M there exists a constant ρM > 0 such that ‖z(µ)‖ ≤ ρM .
By system (2.5), where every equality is counted as two inequalities, we have

‖[g(x)]+‖ =

√

√

√

√

2k
∑

i=1

µ2 =
√
2kµ.

Then by Theorem 3.6 we get the desired result.

Using Theorem 3.7, for i ∈ T we derive the following estimates for the ith block
of variables on the central path.

Theorem 3.8. Suppose 0 < µ < M, i ∈ T and (xi(µ), yi(µ), si(µ)) is the ith

block of variables on the central path (x(µ), y(µ), s(µ)). Define

τ ix = max
(x,y,s)∈F∗

xi
1, τ is = max

(x,y,s)∈F∗

si1.

Then there exist constants τ1 > 0, τ2 > 0, and γ > 0 such that

1. If τ ix = τ is = 0, we have xi = si = 0 for ∀ (x, y, s) ∈ F∗, and

τ2µ
1−γ ≤ xi

1(µ)− ‖xi
2:ni

(µ)‖ ≤ xi
1(µ) ≤ τ1µ

γ ,

τ2µ
1−γ ≤ si1(µ)− ‖si2:ni

(µ)‖ ≤ si1(µ) ≤ τ1µ
γ .

2. If τ ix > 0, we have si = 0 for ∀ (x, y, s) ∈ F∗, i.e., we have τ is = 0 and

τ2µ
1−γ ≤ xi

1(µ)− ‖xi
2:ni

(µ)‖ ≤ τ1µ
γ ,

τ2µ ≤ si1(µ)− ‖si2:ni
(µ)‖ ≤ τ1µ

γ , τ2µ
1−γ ≤ si1(µ) ≤ τ1µ

γ .

3. If τ is > 0, we have xi = 0 for ∀ (x, y, s) ∈ F∗, i.e., we have τ ix = 0 and

τ2µ
1−γ ≤ si1(µ)− ‖si2:ni

(µ)‖ ≤ τ1µ
γ ,

τ2µ ≤ xi
1(µ)− ‖xi

2:ni
(µ)‖ ≤ τ1µ

γ , τ2µ
1−γ ≤ xi

1(µ) ≤ τ1µ
γ .

Moreover, we have 0 < γ ≤ 1
2 , and there exists a constant τ3 > 0 such that for all

i ∈ T we have

τ2µ
1−γ ≤ xi

1(µ) + si1(µ) − ‖xi
2:ni

(µ) + si2:ni
(µ)‖ ≤ τ3µ

γ .
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Proof. By Theorem 3.7 there exist constants τ > 0 and γ > 0 such that

dist(z(µ),F∗) ≤ τµγ .

Since F∗ is compact, there exists (x̄, ȳ, s̄) ∈ F∗ such that

dist(z(µ),F∗) =
√

‖x(µ)− x̄‖2 + ‖y(µ)− ȳ‖2 + ‖s(µ)− s̄‖2.

By the above two inequalities we get

‖xi(µ)− x̄i‖ ≤ τµγ , ‖si(µ)− s̄i‖ ≤ τµγ , ∀i = 1, 2, . . . , k. (3.28)

By the proof of Theorem 3.7 we know that there exists a constant ρM > 0 such that
‖z(µ)‖ ≤ ρM for all 0 < µ < M . In the following analysis, we assume i ∈ T and let

τ1 =
√
2τ > 0, τ2 = min

{

1

3τ
,

1

2ρM

}

> 0.

1. If τ ix = τ is = 0, then by the definition of τ ix and τ is we have xi
1 = si1 = 0 for

all (x, y, s) ∈ F∗. Since xi
1 ≥ ‖xi

2:ni
‖ and si1 ≥ ‖si2:ni

‖, we get xi = si = 0 for
all (x, y, s) ∈ F∗. Hence in formula (3.28) we have x̄i = s̄i = 0, and thus

‖xi(µ)‖ ≤ τµγ , ‖si(µ)‖ ≤ τµγ . (3.29)

Then by (3.15) and (3.29) we have

xi
1(µ)− ‖xi

2:ni
(µ)‖ ≥ 1

2

µ

si1(µ)
≥ 1

2

µ

‖si(µ)‖ ≥ 1

2τ
µ1−γ .

Since τ1 =
√
2τ > τ, τ2 ≤ 1

3τ < 1
2τ , by the above formula and (3.29) we get

τ2µ
1−γ ≤ xi

1(µ)− ‖xi
2:ni

(µ)‖ ≤ xi
1(µ) ≤ ‖xi(µ)‖ ≤ τ1µ

γ .

In the similar way as above we can get

τ2µ
1−γ ≤ si1(µ)− ‖si2:ni

(µ)‖ ≤ si1(µ) ≤ τ1µ
γ .

2. Suppose τ ix > 0. Since F∗ is compact, there exists an (x̂, ŷ, ŝ) ∈ F∗ such that
x̂i
1 = τ ix > 0, ‖x̂i

2:ni
‖ = x̂i

1 > 0 and ŝi = 0 by the definition of T . The proof is
by contradiction. If τ is 6= 0, then we have τ is > 0. Therefore there also exist
an (x̃, ỹ, s̃) ∈ F∗ such that s̃i1 = τ is > 0, ‖s̃i2:ni

‖ = s̃i1 > 0, and x̃i = 0. Since
F∗ is convex, we have

(x̆, y̆, s̆) =
1

2
(x̂, ŷ, ŝ) +

1

2
(x̃, ỹ, s̃) ∈ F∗.

On the other hand, we have

x̆i
1 =

x̂i
1 + x̃i

1

2
=

x̂i
1

2
> 0, s̆i1 =

ŝi1 + s̃i1
2

=
s̃i1
2

> 0,

which means i ∈ R, that is in contradiction with i ∈ T . Therefore we must
have τ is = 0, which means si = 0 for all (x, y, s) ∈ F∗. So we have s̄i = 0 in
(3.28), and we get

‖si(µ)‖ ≤ τµγ . (3.30)
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Then by (3.15) and (3.30) we obtain

xi
1(µ)− ‖xi

2:ni
(µ)‖ ≥ 1

2

µ

si1(µ)
≥ 1

2

µ

‖si(µ)‖ ≥ 1

2c
µ1−γ . (3.31)

Since x̄i
1 = ‖x̄i

2:ni
‖ for i ∈ T , by (3.28) we get

xi
1(µ)− ‖xi

2:ni
(µ)‖ = (xi

1(µ)− x̄i
1) + (‖x̄i

2:ni
‖ − ‖xi

2:ni
(µ)‖)

≤ |xi
1(µ)− x̄i

1|+ ‖x̄i
2:ni

− xi
2:ni

(µ)‖
≤

√
2‖xi(µ)− x̄i‖ ≤

√
2τµγ . (3.32)

Then by (3.15) and (3.32) we obtain

si1(µ) ≥
µ

xi
1(µ)− ‖xi

2:ni
(µ)‖

1

2
≥ 1

3c
µ1−γ . (3.33)

Symmetrically by (3.23) and xi
1(µ) ≤ ‖xi(µ)‖ ≤ ‖z(µ)‖ ≤ ρM we get:

si1(µ) − ‖si2:ni
(µ)‖ ≥ µ

xi
1(µ)

1

2
≥ 1

2ρM
µ. (3.34)

Since τ1 =
√
2τ, τ2 ≤ 1

3τ < 1
2τ , τ2 ≤ 1

2ρM
and si1(µ) ≤ ‖si(µ)‖, by formulae

(3.30)–(3.34) we have

τ2µ
1−γ ≤ xi

1(µ)− ‖xi
2:ni

(µ)‖ ≤ τ1µ
γ ,

τ2µ ≤ si1(µ)− ‖si2:ni
(µ)‖ ≤ τ1µ

γ , τ2µ
1−γ ≤ si1(µ) ≤ τ1µ

γ .

3. Symmetrically, by substituting xi(µ) for si(µ) and si(µ) for xi(µ), respec-
tively, we can derive the desired result in the same way as we did in item
2.

By the results as above, we get τ1µ
γ ≥ τ2µ

1−γ for 0 < µ < M . Let µ → 0+, we
get γ ≤ 1− γ. Combined with γ > 0 we obtain 0 < γ ≤ 1

2 .

According to the results of items 1–3, only three cases may appear for i ∈ T , i.e.,
either τ ix = τ is = 0, or τ ix > 0 and τ is = 0, or τ ix = 0 and τ is > 0. By the results of items
1–3, for any one of the three cases, we always have either τ2µ

1−γ ≤ xi
1(µ)−‖xi

2:ni
(µ)‖

or τ2µ
1−γ ≤ si1(µ)− ‖si2:ni

(µ)‖. Thus, for all i ∈ T we have

τ2µ
1−γ ≤ max{xi

1(µ)− ‖xi
2:ni

(µ)‖, si1(µ)− ‖si2:ni
(µ)‖}

≤ (xi
1(µ)− ‖xi

2:ni
(µ)‖) + (si1(µ)− ‖si2:ni

(µ)‖)
≤ xi

1(µ) + si1(µ)− ‖xi
2:ni

(µ) + si2:ni
(µ)‖ (3.35)

If τ ix = τ is = 0, we have xi
1(µ) ≤ τ1µ

γ and si1(µ) ≤ τ1µ
γ . So we get

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ ≤ xi
1(µ) + si1(µ) ≤ 2τ1µ

γ . (3.36)

If τ ix > 0 and τ is = 0, we have xi
1(µ)−‖xi

2:ni
(µ)‖ ≤ τ1µ

γ and si1(µ) ≤ τ1µ
γ . So we get

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ ≤xi
1(µ) + si1(µ)− (‖xi

2:ni
(µ)‖ − ‖si2:ni

(µ)‖)
=xi

1(µ)− ‖xi
2:ni

(µ)‖ + si1(µ) + ‖si2:ni
(µ)‖

≤xi
1(µ)− ‖xi

2:ni
(µ)‖ + 2si1(µ) ≤ 3τ1µ

γ . (3.37)
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If τ is > 0 and τ ix = 0, we have si1(µ)−‖si2:ni
(µ)‖ ≤ τ1µ

γ and xi
1(µ) ≤ τ1µ

γ . So we get

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ ≤xi
1(µ) + si1(µ)− (‖si2:ni

(µ)‖ − ‖xi
2:ni

(µ)‖)
=si1(µ)− ‖si2:ni

(µ)‖ + xi
1(µ) + ‖xi

2:ni
(µ)‖

≤si1(µ)− ‖si2:ni
(µ)‖ + 2xi

1(µ) ≤ 3τ1µ
γ . (3.38)

Let τ3 = 3τ1, then by (3.36)–(3.38) we have

xi
1(µ) + si1(µ)− ‖xi

2:ni
(µ) + si2:ni

(µ)‖ ≤ τ3µ
γ , ∀i ∈ T .

Combining this inequality with formula (3.35) we have the desired result.

Considering the analysis presented in Theorem 3.8, we can see that those blocks
yield the most challenge whose indices are in the set T . Three cases may occur for
every block i ∈ T : either τ ix = τ is = 0, or τ ix > 0 and τ is = 0, or τ ix = 0 and τ is > 0. In
each situations, the block (xi(µ), yi(µ), si(µ)) of the central path with i ∈ T has its
own properties. There are similarities, but notable differences too.

We summarize the results of Theorem 3.4 and Theorem 3.8 in Table 3.2, where
∆i

x(µ) = xi
1(µ) − ‖xi

2:ni
(µ)‖, ∆i

s(µ) = si1(µ) − ‖si2:ni
(µ)‖, ∆i

xs(µ) = xi
1(µ) + si1(µ) −

‖xi
2:ni

(µ)+si2:ni
(µ)‖, and τ1, τ2, τ3, γ are positive constants with 0 < γ ≤ 1

2 . Cases 1–3
correspond to the three cases “τ ix = τ is = 0”, “τ ix > 0, τ is = 0,” and “τ ix = 0, τ is > 0”,
respectively for i ∈ T . Observe, that only one case is possible for every block i), and
“\” indicates that we do not have enough information for that item.

Table 3.2

Local bounds for the central path

B N R
T

Case 1 Case 2 Case 3

xi
1(µ) ≥ σ1

2k ≤ kµ
σ1

≥ σ2

4k

≥ τ2µ
1−γ

≤ τ1µ
γ \ ≥ τ2µ

1−γ

≤ τ1µ
γ

si1(µ) ≤ kµ
σ1

≥ σ1

2k ≥ σ2

4k

≥ τ2µ
1−γ

≤ τ1µ
γ

≥ τ2µ
1−γ

≤ τ1µ
γ \

∆i
x(µ) ≥ σ1

2k ≤ kµ
σ1

≤ 2kµ
σ2

≥ τ2µ
1−γ

≤ τ1µ
γ

≥ τ2µ
1−γ

≤ τ1µ
γ

≥ τ2µ
≤ τ1µ

γ

∆i
s(µ) ≤ kµ

σ1

≥ σ1

2k ≤ 2kµ
σ2

≥ τ2µ
1−γ

≤ τ1µ
γ

≥ τ2µ
≤ τ1µ

γ
≥ τ2µ

1−γ

≤ τ1µ
γ

∆i
xs(µ) ≥ σ1

2k ≥ σ1

2k ≥ σ2

2k τ2µ
1−γ ≤ ∆i

xs(µ) ≤ τ3µ
γ

We may look at the results listed in Table 3.2 horizontally or vertically. If we
look horizontally, we can see that if µ is so small that

kµ

σ1
< min

{σ1

2k
,
σ2

4k

}

, max

{

kµ

σ1
,
2kµ

σ2

}

<
σ1

2k

and

τ3µ
γ < min

{σ1

2k
,
σ2

2k

}

,
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then we can have a complete separation of the blocks of variables. By the above
inequalities we get

µ < min

{

σ2
1

2k2
,
σ1σ2

4k2
,

{

min

{

σ1

2kτ3
,

σ2

2kτ3

}}
1

γ

}

. (3.39)

Therefore, if we choose a positive µ such that (3.39) holds, then we can determine the
optimal partition (B,N ,R, T ) for SOCO.

We can see that Table 3.2 is somewhat complicated. The complexity is mainly
caused by the set T . In fact, if T = ∅ and µ is small enough, we can identify the
three sets B,N ,R by comparing the results listed in Table 3.2, without using the two
condition numbers σ1 and σ2 explicitly.

On the other hand, by looking at the results of Table 3.2 vertically, if µ is so small
that kµ

σ1

< σ1

2k and 2kµ
σ2

< σ2

4k , i.e., if

µ < min

{

σ2
1

2k2
,
σ2
2

8k2

}

, (3.40)

we have

xi
1(µ) ≥ xi

1(µ)− ‖xi
2:ni

(µ)‖ ≥ σ1

2k

>
kµ

σ1
≥ si1(µ) ≥ si1(µ)− ‖si2:ni

(µ)‖, ∀i ∈ B

xi
1(µ)− ‖xi

2:ni
(µ)‖ ≤ xi

1(µ) ≤
kµ

σ1

<
σ1

2k
≤ si1(µ) − ‖si2:ni

(µ)‖ ≤ si1(µ), ∀i ∈ N

xi
1(µ)− ‖xi

2:ni
(µ)‖ ≤ 2kµ

σ2
<

σ2

4k
≤ si1(µ), ∀i ∈ R

si1(µ)− ‖si2:ni
(µ)‖ ≤ 2kµ

σ2
<

σ2

4k
≤ xi

1(µ), ∀i ∈ R.

Therefore, when T = ∅ and µ is so small that (3.40) holds, we will have i ∈ B if and
only if xi

1(µ)−‖xi
2:ni

(µ)‖ > si1(µ), which implies si1(µ)−‖si2:ni
(µ)‖ < xi

1(µ)), and i ∈
N if and only if si1(µ)−‖si2:ni

(µ)‖ > xi
1(µ) (which implies xi

1(µ)−‖xi
2:ni

(µ)‖ < si1(µ)),
and i ∈ R if and only if both xi

1(µ)−‖xi
2:ni

(µ)‖ < si1(µ) and si1(µ)−‖si2:ni
(µ)‖ < xi

1(µ).

However, in practice we may not assume that we can calculate points on the
central path exactly. Therefore, in the next section we deal with the case when a
point z = (x, y, s) is in the vicinity of the central path z(µ) = (x(µ), y(µ), s(µ)). We
show that if a point z is in an appropriate neighborhood of the central path z(µ) and
µ is small enough, then we also have a complete separation of blocks of variables into
the four sets B,N ,R and T , which constitute the optimal partition.

4. Generalizations for approximate centers. In this section we generalize
the results of the previous section to the situation, where a point z = (x, y, s) is in a
specific neighborhood of the central path z(µ). Denote

F0 = {z = (x, y, s) | (x, y, s) ∈ F , x ∈ int(K), s ∈ int(K)}.
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On the central path (xi)Tsi = µ > 0 and xi
1s

i
2:ni

+ si1x
i
2:ni

= 0 for all i = 1, . . . , k.
Therefore the following two parameters are introduced to measure the centrality of a
point z = (x, y, s) ∈ F0:

δc(z) =
max
i∈J

(xi)Tsi

min
i∈J

(xi)Tsi
, ηc(z) = max

i∈J

‖xi
1s

i
2:ni

+ si1x
i
2:ni

‖
(xi)Tsi

, (4.1)

where J = {1, . . . , k}.
Now we can generalize the results of Theorem 3.4 and Theorem 3.8 to points in

the vicinity of the central path.

Theorem 4.1. Let z = (x, y, s) ∈ F0 and denote µ =

kP
i=1

(xi)Tsi

k
. If δc(z) ≤ τ for

some τ > 1 and ηc(z) ≤ θ for some 0 < θ < 1, then one has

1. For all i ∈ B, we have

xi
1 ≥ xi

1 − ‖xi
2:ni

‖ >
(1− θ)σ1

2kτ
, si1 ≤ kµ

σ1
.

2. For all i ∈ N , we have

si1 ≥ si1 − ‖si2:ni
‖ >

(1− θ)σ1

2kτ
, xi

1 ≤ kµ

σ1
.

3. For all i ∈ R, we have

xi
1 >

(1− θ)σ2

4kτ
, si1 >

(1− θ)σ2

4kτ
,

(xi
1 − ‖xi

2:ni
‖) + (si1 − ‖si2:ni

‖) ≤ 2kµ

σ2
.

In particular, we have

xi
1 − ‖xi

2:ni
‖ <

2kµ

σ2
and si1 − ‖si2:ni

‖ <
2kµ

σ2
.

4. For i ∈ T , let C > 0 and M > 0 be two positive constants, and define

FM,C = {z = (x, y, s) ∈ F0 | ∃ 0 < µ ≤ M such that ‖z − z(µ)‖ ≤ C},
where z(µ) is a point on the central path of (2.3). Suppose z ∈ FM,C , then
there exist constants τ1 > 0, τ2 > 0 and 1

2 ≥ γ > 0 such that:
(a) In case of τ ix = τ is = 0, we have

1− θ

τ
τ2µ

1−γ ≤ xi
1 − ‖xi

2:ni
‖ ≤ xi

1 ≤ τ1µ
γ ,

1− θ

τ
τ2µ

1−γ ≤ si1 − ‖si2:ni
‖ ≤ si1 ≤ τ1µ

γ .

(b) In case of τ ix > 0 and τ is = 0, we have

1− θ

τ
τ2µ

1−γ ≤ xi
1 − ‖xi

2:ni
‖ ≤ τ1µ

γ ,

1− θ

τ
τ2µ ≤ si1 − ‖si2:ni

‖ ≤ τ1µ
γ ,

1− θ

τ
τ2µ

1−γ ≤ si1 ≤ τ1µ
γ .
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(c) In case of τ is > 0 and τ ix = 0, we have

1− θ

τ
τ2µ

1−γ ≤ si1 − ‖si2:ni
‖ ≤ τ1µ

γ ,

1− θ

τ
τ2µ ≤ xi

1 − ‖xi
2:ni

‖ ≤ τ1µ
γ ,

1− θ

τ
τ2µ

1−γ ≤ xi
1 ≤ τ1µ

γ .

5. For all i ∈ B ∪ N we have

xi
1 + si1 − ‖xi

2:ni
+ si2:ni

‖ >
(1 − θ)σ1

2kτ
.

For all i ∈ R we have

xi
1 + si1 − ‖xi

2:ni
+ si2:ni

‖ >
(1− θ)2σ2

2kτ
.

Finally, there exists a constant τ3 > 0 such that for all i ∈ T ,

τ2µ
1−γ ≤ xi

1 + si1 − ‖xi
2:ni

+ si2:ni
‖ ≤ τ3µ

γ .

Proof. Let

ti := (xi)Tsi ≡ xi
1s

i
1 + (xi

2:ni
)Tsi2:ni

, (4.2)

εi := xi
1s

i
2:ni

+ si1x
i
2:ni

, (4.3)

τ1 = min{ti | i = 1, . . . , k}, τ2 = max{ti | i = 1, . . . , k}. (4.4)

Then, using these quantities and the definition of µ, δc(z) and ηc(z), we have

0 < τ2 ≤ ττ1, ‖εi‖ ≤ θti, ∀i = 1, . . . , k, (4.5)

0 < τ1 ≤ ti ≤ τ2, ∀i = 1, . . . , k, (4.6)

τ1 ≤ µ ≤ τ2, (4.7)

where the last inequality follows from the inequalities kτ1 ≤ kµ =
k
∑

i=1

ti ≤ kτ2. Then,

by equation (4.3) we get

si2:ni
= − si1

xi
1

xi
2:ni

+
εi

xi
1

or xi
2:ni

= −xi
1

si1
si2:ni

+
εi

si1
. (4.8)

By substituting (4.8) into (4.2) we have

si1 = xi
1











ti
(xi

1)
2 − ‖xi

2:ni
‖2 −

(

xi
2:ni

xi
1

)T

εi

(xi
1)

2 − ‖xi
2:ni

‖2











(4.9)

or xi
1 = si1











ti
(si1)

2 − ‖si2:ni
‖2 −

(

si
2:ni

si
1

)T

εi

(si1)
2 − ‖si2:ni

‖2











. (4.10)
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1. For all i ∈ B, just as in the proof of Theorem 3.4, formulae (3.11)–(3.14)
still hold with xi(µ) and si(µ) replaced by xi and si, respectively. Because

(x, y, s) ∈ F0, by definition we have
∑k

i=1(x
i)Tsi = kµ. By (4.9), (4.5), and

xi
1 > ‖xi

2:ni
‖, formula (3.15) is changed into

si1 = xi
1











ti
(xi

1)
2 − ‖xi

2:ni
‖2 −

(

xi
2:ni

xi
1

)T

εi

(xi
1)

2 − ‖xi
2:ni

‖2











≥ xi
1

(

ti
(xi

1)
2 − ‖xi

2:ni
‖2 − θti

(xi
1)

2 − ‖xi
2:ni

‖2
)

=
(1 − θ)ti

xi
1 − ‖xi

2:ni
‖

xi
1

xi
1 + ‖xi

2:ni
‖ >

(1− θ)ti
xi
1 − ‖xi

2:ni
‖
1

2
. (4.11)

Then by (3.14), where si1(µ) is replaced by si1, (4.11), and formulae (4.5)–(4.7)
we obtain

xi
1 − ‖xi

2:ni
‖ >

(1− θ)ti
si1

1

2
≥ (1− θ)σ1τ1

2kµ
≥ (1− θ)σ1

2kτ
.

2. Symmetrically, by respectively substituting xi by si and si by xi we can get
the desired result in the same way as above.

3. For all i ∈ R, formulae (3.16)–(3.19) in the proof of Theorem 3.4 still hold.
Therefore, (3.21) also holds with xi(µ) and si(µ) replaced by xi and si, re-
spectively. Thus we have

(si1 − ‖si2:ni
‖) + (xi

1 − ‖xi
2:ni

‖) ≤ 2kµ

σ2
.

Then by si1 − ‖si2:ni
‖ > 0 and xi

1 − ‖xi
2:ni

‖ > 0 we get

xi
1 − ‖xi

2:ni
‖ <

2kµ

σ2
and si1 − ‖si2:ni

‖ <
2kµ

σ2
. (4.12)

On the other hand, by (4.2), (4.5), (4.8), xi
1 > ‖xi

2:ni
‖ and the Cauchy-

Schwarz inequality we get

ti = (xi)Tsi = xi
1s

i
1 + (xi

2:ni
)Tsi2:ni

= xi
1s

i
1 −

si1
xi
1

‖xi
2:ni

‖2 + (εi)Txi
2:ni

xi
1

≤ si1
xi
1

((xi
1)

2 − ‖xi
2:ni

‖2) + θti

= si1
xi
1 + ‖xi

2:ni
‖

xi
1

(xi
1 − ‖xi

2:ni
‖) + θti

≤ 2si1(x
i
1 − ‖xi

2:ni
‖) + θti. (4.13)

Then by (4.12), (4.13) and formulae (4.5)–(4.7) we obtain

si1 ≥ (1 − θ)ti
2(xi

1 − ‖xi
2:ni

‖) >
(1 − θ)σ2ti

4kµ
≥ (1− θ)σ2τ1

4kτ2
≥ (1− θ)σ2

4kτ
.
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Analogously, we can get

xi
1 >

(1− θ)σ2

4kτ
.

4. For all i ∈ T , we first show that Theorem 3.7 still holds for z = (x, y, s) ∈
FM,C . By the definition of FM,C , there exists a 0 < µ ≤ M such that
‖z− z(µ)‖ ≤ C. Therefore, the set of points in he vicinity of the central path
z = (x, y, s) ∈ FM,C is also bounded by the boundedness of the central path
when 0 < µ ≤ M , i.e., there exists ρM > 0 such that ‖z‖ ≤ ρM . Then by
(4.2) and (4.3) we get (where every equality is counted as two inequalities)

‖[g(x)]+‖ =

√

√

√

√

k
∑

i=1

2(t2i + ‖εi‖2) ≤

√

√

√

√2(1 + θ2)

k
∑

i=1

t2i ≤
√

2(1 + θ2)kµ.

Therefore, by Theorem 3.6 there exist constants c > 0 and γ > 0 such that

dist(z,F∗) ≤ τµγ .

Hence, there exists some (x̄, ȳ, s̄) ∈ F∗ such that

‖xi − x̄i‖ ≤ τµγ , ‖si − s̄i‖ ≤ τµγ , ∀i = 1, 2, . . . , k. (4.14)

In the following analysis, constants τ1 and τ2 are the same as the ones defined
in the proof of Theorem 3.8.
(a) In case of τ ix = τ is = 0, we have xi = si = 0 for all (x, y, s) ∈ F∗ as

pointed out in the proof of Theorem 3.8. Therefore, in formula (4.14)
we have x̄i = s̄i = 0, and so we get

‖xi‖ ≤ τµγ , ‖si‖ ≤ τµγ . (4.15)

Then, by (4.11), (4.15), and formulae (4.5)–(4.7) we obtain

xi
1 − ‖xi

2:ni
‖ ≥ (1− θ)ti

si1

1

2
≥ (1− θ)µ1−γτ1

2cµ
≥ (1− θ)

2cτ
µ1−γ . (4.16)

By (4.10), si1 > ‖si2:ni
‖, and (4.5) we get

xi
1 = si1











ti
(si1)

2 − ‖si2:ni
‖2 −

(

si
2:ni

si
1

)T

εi

(si1)
2 − ‖si2:ni

‖2











≥ si1

(

ti
(si1)

2 − ‖si2:ni
‖2 − θti

(si1)
2 − ‖si2:ni

‖2
)

=
(1− θ)ti

si1 − ‖si2:ni
‖

si1
si1 + ‖si2:ni

‖ ≥ (1− θ)ti
si1 − ‖si2:ni

‖
1

2
. (4.17)

In the same way, by (4.17), (4.15), and formulae (4.5)–(4.7) we obtain

si1 − ‖si2:ni
‖ ≥ (1 − θ)ti

xi
1

1

2
≥ (1− θ)µ1−γτ1

2cµ
≥ (1 − θ)

2cτ
µ1−γ . (4.18)

20



Then, by (4.15), (4.16), (4.18), and the definitions of τ1 and τ2 we have

1− θ

τ
τ2µ

1−γ ≤ xi
1 − ‖xi

2:ni
‖ ≤ xi

1 ≤ ‖xi‖ ≤ τ1µ
γ ,

1− θ

τ
τ2µ

1−γ ≤ si1 − ‖si2:ni
‖ ≤ si1 ≤ ‖si‖ ≤ τ1µ

γ .

(b) In case of τ ix > 0 and τ is = 0, we have s̄i = 0 in (4.14), and we get

‖si‖ ≤ τµγ . (4.19)

Then in the same way as above we can see that formula (4.16) still holds,
and so does formula (3.32), where xi(µ) is replaced by xi, i.e., we have

(1− θ)

2cτ
µ1−γ ≤ xi

1 − ‖xi
2:ni

‖ ≤
√
2τµγ . (4.20)

Then by (3.32), (4.11), and formulae (4.5)–(4.7) we get

si1 >
(1− θ)ti

xi
1 − ‖xi

2:ni
‖
1

2
≥ (1− θ)ti

2
√
2τµγ

≥ (1− θ)

2
√
2ττ

µ1−γ . (4.21)

By xi
1 ≤ ‖xi‖ ≤ ‖z‖ ≤ ρM , (4.17) and formulae (4.5)–(4.7) we get

si1 − ‖si2:ni
‖ >

(1− θ)ti
2xi

1

≥ (1− θ)ti
2ρM

≥ (1 − θ)µ

2ρMτ
(4.22)

Thus, by using (4.19)–(4.22) and the definitions of τ1 and τ2 we obtain

1− θ

τ
τ2µ

1−γ ≤ xi
1 − ‖xi

2:ni
‖ ≤ τ1µ

γ ,

1− θ

τ
τ2µ ≤ si1 − ‖si2:ni

‖ ≤ ‖si‖ ≤ τ1µ
γ ,

1− θ

τ
τ2µ

1−γ ≤ si1 ≤ ‖si‖ ≤ τ1µ
γ .

(c) Symmetrically by substituting xi for si and si for xi, respectively, we
can get the desired result in the same way as we do in last item.

By γ > 0 and τ1µ
γ ≥ 1−θ

τ
τ2µ

1−γ for all 0 < µ < M , we get 1
2 ≥ γ > 0.

5. The same way as we in the proof of Theorem 3.4, for all i ∈ B ∪ N we have

xi
1 + si1 − ‖xi

2:ni
+ si2:ni

‖
≥ xi

1 + si1 − (‖xi
2:ni

‖+ ‖si2:ni
‖)

≥ max{xi
1 − ‖xi

2:ni
‖, si1 − ‖si2:ni

‖} ≥ (1− θ)σ1

2kτ
. (4.23)

By (4.2), (4.5), xi
1 > ‖xi

2:ni
‖, si1 > ‖si2:ni

‖, and the Cauchy-Schwarz inequal-
ity, we get

ti ≤ θ(xi)Tsi ≤ θ(xi
1s

i
1 + ‖xi

2:ni
‖ ‖si2:ni

‖) ≤ 2xi
1s

i
1, ∀i = 1, . . . , k. (4.24)

21



For all i ∈ R, we have two cases: xi
1 ≥ si1 and xi

1 < si1. In the case when
xi
1 ≥ si1, by (4.5), (4.8), (4.24), and the results in item 3 we have

xi
1 + si1 − ‖xi

2:ni
+ si2:ni

‖

= xi
1 + si1 −

∥

∥

∥

∥

(

1− si1
xi
1

)

xi
2:ni

+
εi

xi
1

∥

∥

∥

∥

≥ xi
1 + si1 −

∣

∣

∣

∣

1− si1
xi
1

∣

∣

∣

∣

xi
1 −

θti
xi
1

≥ 2si1 − 2θsi1 ≥ (1− θ)2σ2

2kτ
. (4.25)

In the case when xi
1 < si1, in the same way as above we get

xi
1 + si1 − ‖xi

2:ni
+ si2:ni

‖

= xi
1 + si1 −

∥

∥

∥

∥

(

1− xi
1

si1

)

si2:ni
+

εi

si1

∥

∥

∥

∥

≥ xi
1 + si1 −

∣

∣

∣

∣

1− xi
1

si1

∣

∣

∣

∣

si1 −
θti
si1

≥ 2xi
1 − 2θxi

1 ≥ (1− θ)2σ2

2kτ
. (4.26)

Therefore for all i ∈ R, by (4.25) and (4.26) we have

xi
1 + si1 − ‖xi

2:ni
+ si2:ni

‖ ≥ (1− θ)2σ2

2kτ
.

For all i ∈ T , in the same way as in the derivation of (3.35)–(3.38), where
xi(µ) and si(µ) are replaced by xi and si respectively, we can get

1− θ

τ
τ2µ

1−γ ≤ xi
1 + si1 − ‖xi

2:ni
+ si2:ni

‖ ≤ τ3µ
γ , ∀i ∈ T .

Now we summarize the results of Theorem 4.1 in Table 4.1, where ω1 = 1−θ
τ

, ω2 =
(1−θ)2

τ
, and other symbols’ meanings are the same as that in Table 3.2, where xi(µ)

and si(µ) are replaced by xi and si respectively.

The results listed in Table 4.1 imply that if µ is so small that

kµ

σ1
< ω1 min

{σ1

2k
,
σ2

4k

}

, max

{

kµ

σ1
,
2kµ

σ2

}

< ω1
σ1

2k

and

τ3µ
γ < min

{

ω1
σ1

2k
, ω2

σ2

2k

}

,

then we can have a complete separation of the blocks of variables. Thus, we have

µ < min

{

ω1σ
2
1

2k2
,
ω1σ1σ2

4k2
,

{

min{ω1σ1

2kτ3
,
ω2σ2

2kτ3
}
}

1

γ

}

. (4.27)
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Table 4.1

Local bounds in the vicinity of the central path

B N R
T

Case 1 Case 2 Case 3

xi
1 ≥ ω1

σ1

2k ≤ kµ
σ1

≥ ω1
σ2

4k

≥ ω1τ2µ
1−γ

≤ τ1µ
γ \ ≥ ω1τ2µ

1−γ

≤ τ1µ
γ

si1 ≤ kµ
σ1

≥ ω1
σ1

2k ≥ ω1
σ2

4k

≥ ω1τ2µ
1−γ

≤ τ1µ
γ

≥ ω1τ2µ
1−γ

≤ τ1µ
γ \

∆i
x ≥ ω1

σ1

2k ≤ kµ
σ1

≤ 2kµ
σ2

≥ ω1τ2µ
1−γ

≤ τ1µ
γ

≥ ω1τ2µ
1−γ

≤ τ1µ
γ

≥ ω1τ2µ
≤ τ1µ

γ

∆i
s ≤ kµ

σ1

≥ ω1
σ1

2k ≤ 2kµ
σ2

≥ ω1τ2µ
1−γ

≤ τ1µ
γ

≥ ω1τ2µ
≤ τ1µ

γ
≥ ω1τ2µ

1−γ

≤ τ1µ
γ

∆i
xs ≥ ω1

σ1

2k ≥ ω1
σ1

2k ≥ ω2
σ2

2k ω1τ2µ
1−γ ≤ ∆i

xs ≤ τ3µ
γ

Therefore if we choose a positive µ such that (4.27) holds, then we can identify the
optimal partition (B,N ,R, T ) in the vicinity of of the central path for SOCO.

When T = ∅, in the same way as in the previous section, by utilizing the results
listed in Table 4.1 vertically, if µ is so small that kµ

σ1

< ω1
σ1

2k and 2kµ
σ2

< ω1
σ2

4k , i.e.,

µ < ω1min

{

σ2
1

2k2
,
σ2
2

8k2

}

, (4.28)

we have i ∈ B if and only if xi
1 − ‖xi

2:ni
‖ > si1, which implies si1 − ‖si2:ni

‖ < xi
1; we

have i ∈ N if and only if si1 − ‖si2:ni
‖ > xi

1, which implies xi
1 − ‖xi

2:ni
‖ < si1; and we

have i ∈ R if and only if both xi
1 − ‖xi

2:ni
‖ < si1 and si1 − ‖si2:ni

‖ < xi
1.

5. Conclusions. In this paper we discuss the identification of the optimal parti-
tion B, N , R and T for SOCO. By defining two condition numbers, which are positive
constants only depending on the SOCO problem itself, we prove that sufficiently close
to optimality, the optimal partition can be identified along the central path. Then we
generalize the results to the vicinity of central path, i.e., close to optimality we can
separate the blocks of variables according to the optimal partition in a neighborhood
of the central path. The results in this paper may facilitate to design more efficient
algorithms for SOCO. By the polynomial complexity of path-following interior point
algorithms for SOCO, we can see that the complexity for finding the optimal partition
B, N , R and T for SOCO is also polynomial.

Further, the results presented in this paper indicate that the properties of those
blocks of variables whose index is in the set T are the most complicated. The variable
blocks with index in B, N or R are simpler and easier to analyze. As indicated in
Theorem 3.8, three situations may occur for the blocks with index in T ,. So far we
were unable to give an exact estimation for the convergence order γ for blocks i with
i ∈ T in Theorem 4.1. This is a challenging question that deserve further studies.
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