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Abstract The perceptron and the von Neumann algorithms were developed to solve Linear Feasibility
Problems. In this paper, we investigate and reveal the duality relationship between these two algorithms.
The specific forms of Linear Feasibility Problems solved by the perceptron and the von Neumann al-
gorithms are a pair of alternative systems by the Farkas Lemma. A solution of one problem serves as
an infeasibility certificate of its alternative system. Further, we adapt an Approximate Farkas Lemma
to interpret the meaning of an approximate solution from its alternative perspective. The Approximate
Farkas Lemma also enables us to derive bounds for the distance to feasibility or infeasibility from ap-
proximate solutions of the alternative systems. Based on these observations, we interpret variants of the
perceptron algorithm as variants of the von Neumann algorithm, and vice-versa; as well as transit the
complexity results from one family to the other.

Keywords Linear feasibility problem · Perceptron algorithm · von Neumann algorithm · Duality · Ap-
proximate Farkas Lemma
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1 Introduction

Linear Optimization (LO) is the problem of minimizing or maximizing a linear objective function subject
to a system of linear inequalities and equations. The Linear Feasibility Problem (LFP) is to find a feasible
solution to a linear inequality system. Considering an LO problem with zero as its objective function,
then every feasible solution is optimal. From this point of view, the LFP is a special case of LO. On the
other hand, it is well known [2,16] that by the LO duality theorem, any LO problem can be transformed
to an equivalent LFP. LFPs can be written in various forms. In this paper, we consider two of them. The
first one is

AT y > 0, (1)

where matrix A ∈ Rm×n with its column vectors a1, a2, . . . , an ∈ Rm and y ∈ Rm. We assume that
‖ai‖2 = 1 for all i = 1, 2, . . . , n. This assumption is not changing the status of feasibility of problem (1).
The second form we consider is

Ax = 0, eTx = 1, x ≥ 0, (2)

where x ∈ Rn, e ∈ Rn is the vector of all one. Without loss of generality [1], we can assume that matrix
A has the same properties as in problem (1). Observe that problem (2) is a standard form of the LFP
with a convexity constraint [7]. Let conv(A) represent the convex hull of the points ai. If the origin
0 ∈ conv(A), then problem (2) is feasible and can be considered as a weighted center problem [7], i.e.,
the problem of assigning nonnegative weights xi to the points ai so that their weighted center of gravity
is the origin 0.

Several algorithms are proposed for solving LFPs [2, 16, 17], such as simplex methods [2, 17], ellipsoid
[12, 13] and interior point [16] methods, and variants of the perceptron [3, 4, 18] and the von Neumann
[5, 7] algorithms. All of these algorithms aim to find a feasible solution to an LO, or equivalently to a
LFP. They either deliver a feasible solution, or provide an evidence of infeasibility. Ellipsoid and interior
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point methods are polynomial time algorithms while the perceptron and the von Neumann algorithms
are not polynomial time [2, 12, 16, 17].

In this paper, we focus on the perceptron algorithm and the von Neumann algorithms. These two
algorithms solve LFPs in the forms of (1) and (2), respectively. Therefore, we also call problem (1) the
perceptron problem and problem (2) the von Neumann problem. By the Farkas Lemma, problems (1)
and (2) are alternative systems to each other; and consequently, the perceptron and the von Neumann
algorithms can be interpreted in a close duality relationship. This duality relationship allows us to transit
one algorithm as a variant of the other, as well as we can transit their complexity results. For instance,
the perceptron algorithm could be applied to an infeasible instance of problem (2), because its Farkas
alternative system is a feasible LFP in the form of (1). The discovery of this duality not only provides
a profound insight into both of the algorithms, but also results in new variants of the algorithms. In
particular, the duality relationship of the two algorithms can be used to detect unexpected infeasibility
caused by data error.

There is one major difference between these two algorithms. When problem (1) is feasible, the perceptron
algorithm obtains an exact feasible solution – which satisfies all the constraints – with finite number of
iterations. However, the von Neumann algorithm is a infinite algorithm. In finite number of iterations,
the solution returned is approximately feasible – the solution does not necessary strctly satisfy the equal-
ity constraint Ax = 0. In order to identify an exact solution to problem (2), Dantzig [6] proposed a
“bracketing” procedure: apply the von Neumann algorithm m+1 times to finding approximate solutions
to m+1 perturbations of problem (2) and then combine these approximate solutions to get an exact so-
lution to the original unperturbed problem. However in practice, this method cannot detect infeasibility,
and it fails if problem (2) is close to the boundary of feasibility and infeasibility [6].

When we obtain an approximate solution without any knowledge of the feasibility status of the problem,
we would like to explore the meaning of this approximate solution from the dual side and provide some
quantified information about the feasibility of the dual problem. Todd and Ye [21] derived Approximate
Farkas Lemmas from the gauge duality results of Freund [10], that are extensions of the Farkas Lemma
[2,16,17]. We adapt an Approximate Farkas Lemma to problems (1) and (2), The Lemma serves as a basis
of obtaining more meaningful information for the output of the algorithms. An ǫ-solution of problem (2)
implies that the distance of the corresponding problem (1) to infeasibility is no more than ǫ.

This paper is structured as follows. In Section 2, we review the perceptron and von Neumann algorithms,
and their complexity results. Then we analyze the duality relationship between these two algorithms and
discuss the use of Approximate Farkas Lemma in Section 3. In Section 4 and 5, we interpret variants
of the perceptron algorithm as variants of the von Neumann algorithm and the other way around. The
complexity results are also transferred from one family to the other. Finally, in Section 6 we state our
conclusions and suggest avenues for future work.

2 Preliminaries

For convenience, we first introduce the following notations.

The vector x(y) – Let ∆n be the unit simplex, i.e., ∆n = {x : x ≥ 0, ‖x‖1 = 1}. For y ∈ Rm, define
x(y) = argmin {yTAx |x ∈ ∆n}. Thus, we have Ax(y) = as, or equivalently x(y) = es if and only if
aTs y = min {aTi y | i = 1, · · · , n}. Observe that as and so x(y) are not necessarily unique.

The quantity ρ – A common feature of the perceptron and the von Neumann algorithms is that their
iteration complexity depends on a quantity ρ [3, 9], that quantifies how far the given instance is from
the boundary of infeasibility and feasibility. Given an LFP, we define the quantity ρ in general terms as
follows.

Definition 1. Given an LFP, if the problem is feasible, ρ is defined as the radius of the largest inscribed
ball contained in the feasible region. Otherwise, ρ measures the distance to feasibility.

If the problem is feasible (infeasible), the quantity ρ indicates how far the constraints can be shifted or
rotated so that the problem becomes infeasible (feasible). The larger ρ is, the harder to turn a feasible
(infeasible) problem to infeasible(feasible). Therefore, ρ can be seen as a measurement of the robustness of
feasibility or infeasibility. For different algorithms and problem forms, ρ has slightly different definitions.
We will discuss them in details in Section 3.2. In order to distinguish ρ in the different algorithms, we use
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ρp(A) to represent ρ in the perceptron algorithm and ρv(A) for the von Neumann algorithm. In Section
2.1 and 2.2, we discuss that the quantity ρ plays an essential role in the theoretical complexity of the
perceptron and von Neumann algorithms.

2.1 The Perceptron Algorithm

The Classical Perceptron Algorithm, used in machine learning [18], is designed to solve data classification
problems: Given a set of points with each point labeled as either positive or negative. The problem
is to find a separating hyperplane, which separates all positive points from the negative ones. By some
transformations [3,18] those problems lead to LFPs in the form of (1). The Classical Perceptron Algorithm
assumes that problem (1) is strictly feasible, it starts from the origin, and calls the classical perceptron
update at each iteration. The classical perceptron update finds a violated constraint and move the
current iterate y by one unit perpendicularly towards the violated constraint. The algorithm is described
as follows.

Algorithm 1. The Classical Perceptron Algorithm

Initialization Let y0 be the all-zero vector. k = 0.

While True Do

Let as = Ax(yk).

If aTs y
k > 0, STOP and return yk.

Else

yk+1 = yk + as,

k = k + 1.

End While

The perceptron algorithm has the following complexity result.

Theorem 2.1. [15] Assume that the LFP (1) is strictly feasible. Then in at most

⌈

1

ρp(A)2

⌉

iterations, the Perceptron Algorithm terminates with a feasible solution.

2.2 The von Neumann Algorithm

The von Neumann algorithm, published by Dantzig [5,7] in 1991, solves LFPs in the form of (2). Before
presenting the von Neumann algorithm, we need to define what an ǫ-approximate solution (or ǫ-solution
for short reference) of problem (2) is.

Definition 2. An x ∈ ∆n is called an ǫ-solution of problem (2) if ‖Ax‖ ≤ ǫ.

Algorithm 2. The von Neumann Algorithm

Initialization

Choose any x ∈ ∆n.

Let b0 = Ax0 and k = 0.

While ‖bk‖ ≥ ǫ Do

1. Find as which makes the largest angle with the vector bk, i.e., as = Ax(bk).
Let νk = aTs b

k.

2. If νk > 0, STOP, problem (2) is infeasible.
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3. Let es be the unit vector corresponding to index s. Let

λ =
1− νk

‖bk‖2 − 2νk + 1
,

xk+1 = λxk + (1− λ)es,

bk+1 = Axk+1,

k = k + 1.

End While

In Algorithm 2, the vector b is also called the residual at the current iterate. Dantzig assumed that
problem (2) is feasible and derived an upper bound for the computational complexity [7] as follows.

Theorem 2.2. [7] Let ǫ > 0 and assume that problem (2) is feasible. Then the von Neumann Algorithm
provides an ǫ-solution for problem (2) in at most

⌈

1

ǫ2

⌉

iterations.

Epelman and Freund [9] gave a different complexity analysis, and showed that when problem (2) is strictly
feasible or strictly infeasible, then the iteration complexity of the von Neumann algorithm is linear in
log(1/ǫ) and 1/ρv(A)

2.

Theorem 2.3. [9] Suppose that ρv(A) > 0 and let ǫ > 0.

1) If problem (2) is strictly feasible, then in at most

⌈

2

ρv(A)2
ln

1

ǫ

⌉

iterations, the von Neumann algorithm obtains an ǫ-solution of problem (2).

2) If problem (2) is strictly infeasible, then in at most

⌊

1

ρv(A)2

⌋

iterations a certificate of infeasibility is given by the von Neumann algorithm.

When problem (2) is feasible, both the complexity bounds proved by Dantzig (Theorem 2.2) and Epelman
and Freund (Theorem 2.3) are for obtaining an ǫ-approximate solution. Neither of them is dominant.
When ρv(A) is large, the complexity bound proved by Epelman and Freund is better. Otherwise, the one
by Dantzig is better.

Theoretically the von Neumann Algorithm does not provide an exact solution, it only converges to a
solution. Dantizig [6] proposed a “bracketing” procedure to identify an exact solution in finite number of
iterations. By applying the von Neumann Algorithm to m + 1 perturbed problems, m+ 1 approximate
solutions are generated. A weighted sum of these approximate solutions yields an exact solution to the
original unperturbed problem. This requires the solution of an (m+1)×(m+1) system of linear equations.
This procedure has the following complexity.

Theorem 2.4. [6] Suppose that problem (2) is strictly feasible. By applying the Dantzig’s “bracketing”
procedure, an exact feasible solution is found in

4(m+ 1)3

ρv(A)2

iterations.
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3 Duality

In this section, we first employ the Farkas Lemma to analyze the duality relationship between problem
(1) and problem (2). This observation provides the foundation for the duality between the perceptron
and the von Neumann algorithms. Then we extend the definition of the quantity ρ to infeasible problems
and give ρ meaningful explanations for different problems. At last, we propose to utilize an Approximate
Farkas Lemma to interpret an approximate solution from its dual perspective.

3.1 Alternative Systems

Recall that conv(A) represents the convex hull of the points ai. Assume that problem (1) is feasible and
y is a feasible solution. In this case, the hyperplane with normal vector y separates conv(A) from the
origin, what implies that problem (2) is infeasible. Conversely, if problem (2) is infeasible, then there
exists at least one separating hyperplane that can separate conv(A) from the origin. In other words, there
exists a vector y such that AT y > 0, which means problem (1) is feasible. Therefore, problem (1) and
problem (2) are a pair of alternative systems. This conclusion can also be verified by the Farkas Lemma
[2, 16, 17]. According to the Farkas Lemma, the alternative system of problem (2) is

AT y + eη ≥ 0
η < 0.

(3)

Problem (3) can equivalently be written as AT y > 0, which is the form of problem (1). Thus, problems (1)
and (2) are alternative systems to each other, i.e., exactly one of them is solvable. Since the perceptron
and the von Neumann algorithms solve problems (1) and (2) respectively, the duality relationship between
these two problems leads to a duality between the two algorithms.

3.2 The Quantity ρ

Section 2 gives a general definition of the quantity ρ. In this section, we discuss its special forms for the
different problem forms in the different algorithms. The Classical Perceptron Algorithm shown in Section
2.1 assumes that problem (1) is strictly feasible. Thus, ρ is only defined for feasible problems in [8]. In
order to make the discussions about the duality complete, we extend the definition of ρ to infeasible cases.

Definition 3. Consider the LFP (1).

1. If problem (1) is feasible [8], then the quantity ρp(A) is the radius of the largest inscribed ball that
fits in the feasible region, and the center of the ball is on the unit sphere. It is calculated by

ρp(A) = max
‖y‖=1

min
i

{aTi y}. (4)

2. If problem (1) is infeasible, then ρp(A) is the distance to feasibility, i.e.,

ρp(A) = min
‖y‖=1

max
i

{−aTi y}. (5)

Note that when problem (1) is feasible, ρp(A) > 0 if and only if it is strictly feasible. On the other hand,
the specific ρ for problem (2) in the von Neumann algorithm is defined as follows.

Definition 4. [9] The quantity ρ is the distance from the origin to the boundary ∂(conv(A)) of the
feasible set conv(A), i.e.,

ρv(A) = inf{‖h‖ : h ∈ ∂(conv(A))}. (6)

Definition 4 also defines quantity ρv(A) with two different meanings depending on the feasibility or
infeasibility of problem (2).

1. If problem (2) is feasible, then ρv(A) is the radius of the largest inscribed ball in conv(A) centered
at the origin. It can be calculated [14] by

ρv(A) = min
‖y‖=1

max
i

{−aTi y}. (7)
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When problem (2) is feasible but not strictly feasible, i.e., the origin is on the boundary of conv(A),
then ρv(A) = 0.

2. If problem (2) is infeasible, then ρv(A) is the distance from the origin to conv(A), i.e., ρv(A) is the
radius of the largest separating ball centered at the origin. It can be calculated as

ρv(A) = max
‖y‖=1

min
i

{aTi y}. (8)

Comparing (4), (5), (7), and (8), it is easy to see that when problem (2) is infeasible (feasible), the
quantity ρ is computed in the same way as the one when problem (1) is feasible (infeasible). This
observation originates from the alternative systems relationship of these two problems.

3.3 Interpreting Approximate Solutions

Instead of providing an exact feasible solution as the perceptron algorithm does, the von Neumann
algorithm returns an ǫ-solution when it terminates in a finite number of iterations. Analogously, the
Modified Perceptron Algorithm [4] – a variant of the perceptron algorithm – returns a σ-feasible solution
when the perceptron problem (1) is close to the boundary of feasibility and infeasibility. A σ-feasible
solution is also an approximate solution which we will discuss later. When ǫ or σ is a fixed number,
an ǫ-solution or a σ-feasible solution is not sufficient to draw a firm conclusion about feasibility of the
problem. In these two sections, our goal is to give some interpretations of these two approximate solutions
from their alternative perspective and answer the following questions.

• How to derive meaningful information from these approximate solutions?

• What conclusion can be drawn about the feasibility status of the problems?

The duality relationship discussed in Section 3.1 is directly derived from the Farkas Lemma. The two
problems (1) and (2) are a pair of alternative systems and therefore, exactly one of them is solvable. Recall
that both the Classical Perceptron and the von Neumann algorithms are non-polynomial algorithms.
When the problems are close to the boundary of feasibility and infeasibility, both the classical perceptron
and von Neumann algorithms are inefficient. It takes exponentially many iterations for the algorithms
to obtain a clear answer about solvability of the problems. Therefore, we would like that some variants
of the algorithms could provide an approximate solution, or some indications of approximate feasibility
or infeasibility. Due to the alternative system relationship between problems (1) and (2), a proof of
infeasibility for one problem can be given by a solution to the other one. We are interested in exploring
approximate solutions to this pair of alternative systems and their interpretations for their alternative
systems. We first discuss σ-feasible solutions. They are defined as follows [4].

Definition 5. A vector y is a σ-feasible solution (or σ-solution for short reference) to problem (1) if
AT ȳ ≥ −σe, where σ is a small positive number.

According to the Definition 5, a σ-solution allows slight violations to the constraints in problem (1); and
thus it is an approximate solution. Recall that we analyze the meaning of the quantity ρ in Section 3.2.
From Definition 4, we obtain the following theorem.

Theorem 3.1. The following two statements are equivalent.

(a) The perceptron problem (1) has a σ-solution.

(b) There is no ball in conv(A) centered at the origin with radius larger than σ.

This theorem can be derived directly from the definition of the largest inscribed ball in conv(A) (7). The-
orem 3.1 shows that a σ-feasible solution to the perceptron problem (1) indicates that the corresponding
von Neumann problem (2) is either infeasible, or if it is feasible then it is close to infeasibility. As a
result, we define a σ-solution as a σ-infeasibility certificate for the von Neumann problem (2).

Definition 6. A vector y is a σ-infeasibility certificate for the von Neumann problem (2) if AT ȳ ≥ −σe.

By combining Theorem 3.1 and Definition 6, the following corollary can be derived.

Corollary 1. A σ-infeasibility certificate indicates that the von Neumann problem (2) is either infeasible
or feasible with ρv(A) ≤ σ.
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3.4 Near Infeasibility and the Approximate Farkas Lemma

In the previous section, we interpret a σ-feasible solution to the preceptron problem (1) as a σ-infeasibility
certificate of the von Neumann problem (2). In this section, we explore whether we can obtain an
analogous result about an ǫ-solution. Our major tool is the Approximate Farkas Lemma [21].

Approximate Farkas lemmas are derived by Todd and Ye [21] from the general gauge duality results of
Freund [10]. These lemmas are extensions of the Farkas Lemma [17] and quantify how certain approximate
feasible solutions to a system of inequalities indicate infeasibility, or almost infeasibility of the alternative
system of inequalities. In order to adapt the Approximate Farkas Lemma, we first transfer a strictly
feasible problems (1) to an optimization problem. Consider the following optimization problem

αỹ = min ‖ỹ‖
s.t. AT ỹ ≥ e,

(9)

where ỹ ∈ Rm, matrix A has the same definition as in problem (1), and αỹ denote the optimal value.
This optimization problem is to find a feasible solution to inequality system AT ỹ ≥ e with the shortest
length. Comparing problem (9) and problem (1), any feasible solution to problem (9) is also a feasible
solution to problem (1). On the other hand, if y∗ is a strictly feasible solution to problem (1), i.e., all

coordinates of AT y∗ > 0, then ỹ∗ = y∗

(y∗)TAx(y∗)
is a feasible solution to problem (9), where (y∗)TAx(y∗)

gives the value of the smallest coordinate of AT y∗. Thus, feasibility of problem (9) is equivalent to strict
feasibility of problem (1). When problem (1) is strictly feasible, we can put a ball into the feasible region
of AT y > 0. If the radius of the ball is fixed to 1, then αỹ measures the minimal distance from the center
of this unit ball to the origin. Recall that ρp(A) measures the radius of the largest ball in the feasible
region with its center on the unit sphere. The closer problem (1) is to infeasibility, the narrower the
feasible region is, the smaller ρp(A) is, and the further the unit ball is from the origin, i.e., the larger
αỹ is. Thus, αỹ can be seen as another measure of the robustness of problem (1). The following result
highlights the geometrical relationship between αỹ and ρp(A):

αỹ =
1

ρp(A)
. (10)

By adapting the Approximate Farkas Lemma [21] to our problem, we obtain:

Lemma 1. (Approximate Farkas Lemma) Consider the optimization problems

(GP) : αỹ = min
{

‖ỹ‖ | AT ỹ ≥ e
}

, and

(GD) : βb = min
{

‖b‖ | Ax = b, eTx = 1, x ≥ 0
}

.

Then αỹβb = 1.

The special case 0 · (+∞) is interpreted as 1. It is easy to see that problem (GD) is a perturbed variant of
problem (2). When problem (1) is strictly feasible, then βb gives the minimal distance between the origin
and conv(A), which is the radius ρv(A) of the largest ball defined by (8) that measures the infeasibility of
problem (2). In other words, βb indicates the minimum correction needed to make problem (2) feasible.
By Lemma 1 and (10), we have βb = 1

αỹ
= ρp(A). Therefore, the Approximate Farkas Lemma verifies

that ρp(A) for a feasible perceptron problem (1) is the same as ρv(A) for the corresponding infeasible
von Neumann problem (2). Thus, any feasible solution to problem (GP) is an infeasibility certificate of
problem (2), and thus it gives a lower bound for the distance to feasibility.

On the other hand, if problem (2) is feasible, then any of its feasible solutions is an optimal solution to
the optimization problem (GD) with βb = 0. Then, according to the Approximate Farkas Lemma we
have αỹ = +∞. This implies that problem (GP) is infeasible, and so Lemma 1 reduces to the original
Farkas Lemma. In this case, problem (1) is either infeasible, or feasible but not strictly feasible.

We have the following theorem which utilizes the Approximate Farkas Lemma in giving interpretation to
approximate solutions.

Theorem 3.2. The following three statements are equivalent.

(a) The von Neumann problem (2) has an ǫ-solution.
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(b) A unit ball cannot be put closer than 1/ǫ to the origin in the feasible region of problem (1).

(c) There is no ball in the feasible region of problem (1) centered on the unit sphere with radius larger
than ǫ.

Proof. Problem (2) has an ǫ-solution x′ such that β′
b = ‖b′‖ = ‖Ax′‖ ≤ ǫ, if and only if βb ≤ β′

b ≤ ǫ. By
Lemma 1, this holds if and only if 1

ǫ
≤ 1

βb
= αỹ. The inequality 1

ǫ
≤ αỹ holds if and only if

∄ỹ such that ‖ỹ‖ <
1

ǫ
and AT ỹ ≥ e. (11)

By scaling, (11) is equivalent to

∄y such that ‖y‖ ≤ 1 and AT y > ǫe. (12)

Statement (11) is the same as statement (b). By the definition of ρp(A), statement (12) indicates that
ρp(A) ≤ ǫ. Thus, statements (a), (b), and (c) are equivalent.

Theorem 3.2 shows that an ǫ-solution to the von Neumann problem (2) implies that the corresponding
perceptron problem (1) is either infeasible, or if it is feasible then it is close to infeasibility. Therefore,
we define such an ǫ-solution as an ǫ-infeasibility certificate for problem (1).

Definition 7. A vector y is an ǫ-infeasibility certificate for the perceptron problem (1) if there exist a
vector x ∈ ∆n such that Ax = y and ‖y‖ ≤ ǫ.

We can derive the following corollary from Theorem 3.2.

Corollary 2. An ǫ-infeasibility certificate indicates that the perceptron problem (1) is either infeasible,
or feasible with ρp(A) ≤ ǫ.

Since ǫ is a small positive number, it means that the norm of any feasible solution ỹ′ of problem (GP),
if it exists, is at least as large as 1

ǫ
. Thus, if problem (GP) is close to infeasibility, any feasible solutions

–if it exists– has to be large. For example, if problem (GP) is feasible and the distance to infeasibility is
as small as 10−10, then the magnitude of any feasible solution ỹ′ has to be at least as large as 1010.

In this section we utilized the definition of the quantity ρ and the Approximate Farkas Lemma to interpret
approximate solutions so that we can draw more definitive conclusions about the solutions or feasibility
of the corresponding problems. In addition, when the respective variants of the perceptron and the von
Neumann algorithms terminate at a certain point, then the Approximate Farkas Lemma allows a more
precise interpretation of the output and provides meaningful information about the solution.

Inspired by the alternative system relationship of problems (1) and (2), we investigate the duality of the
perceptron and the von Neumann algorithms. In Section 4, different versions of the perceptron algorithm
are interpreted as variants of the von Neumann algorithm as they are applied to problem (2). In Section
5, we interpret variants of the von Neumann algorithm from the perspective of the perceptron algorithm.
By exploring this intriguing duality of these algorithms, we not only gain new insight into the intimate
relationship of these algorithms, but also derive several novel variants of these algorithms with their
corresponding complexity results.

4 From Perceptron to von Neumann

Since problem (1) and (2) are alternative systems to each other, the perceptron algorithm can be operated
on problem (2) with proper adjustments. The complexity results for the feasible case of the perceptron
algorithm are adaptable for the infeasible case of the von Neumann algorithm. Since the perceptron
algorithm has several variants, we discuss them in the following subsections.

In order to make our discussions more transparent, we rename the two spaces. The perceptron algorithm
solves problems in form (1) to get a solution y if the problem is feasible. Thus, we call the space Rm

in which the vector y lives the perceptron space. Similarly, because the von Neumann algorithm solves
problem (2), we call Rn the von Neumann space. Note that the vector bk = Axk in the von Neumann
algorithm, presented as Algorithm 2, is in the perceptron space. This reflects the duality of the two
problems and also indicates some close relationships between the two algorithms. Matrix A can be seen
as a linear operator between the perceptron and the von Neumann spaces.
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4.1 The Normalized Perceptron Algorithm

We first revisit, Algorithm 1, the Classical Perceptron Algorithm. It starts from y0 = 0 and at iteration
k, yk makes one unit step in the direction of the most violated constraint. Let xk be the corresponding
vector that satisfies yk = Axk. We have x0 = 0 and xk+1 = xk + es, where es = x(y). According to this
relationship, xk is a sequence of vectors in the von Neumann space with xk ≥ 0 and ‖xk‖1 = k for all
k ∈ N. On the other hand, observe that the last two constraints in problem (2), eTx = 1, x ≥ 0 restrict
vector x to be in the unit simplex ∆n. The comparison of xk at iteration k in the Classical Perceptron
Algorithm and x in problem (2) leads to a normalized version of the perceptron algorithm [20]. Assume
that problem (1) is feasible. The Normalized Perceptron Algorithm is as follows.

Algorithm 3. The Normalized Perceptron Algorithm

Initialization Let y0 = 0 and k = 0.

While True Do

Let as = Ax(yk).

If aTs y
k > 0, STOP and return yk.

Else

θk =
1

k + 1
,

yk+1 = (1− θk)y
k + θkas,

k = k + 1.

If ‖yk‖ ≤ ǫ, STOP and return yk as an ǫ-infeasibility certificate.

End While

Note that at the end of each iteration, the iterate yk is inspected. The algorithm terminates if yk is
an ǫ-infeasibility certificate. This stopping criterion is derived from the von Neumann side after we
successfully explain an approximate solution. In the Normalized Perceptron Algorithm, the k-th iterate
yk is divided by k to satisfy yk = Axk for some xk ∈ ∆n. Thus, xk is a vector x in the von Neumann
space, as well as yk can be interpreted as the corresponding bk vector in the von Neumann algorithm.
If the Normalized Perceptron Algorithm starts from x0 = 0 and xk can be updated to satisfy xk ∈ ∆n

and yk = Axk, then we get a variant of the von Neumann algorithm. To ease understanding, the derived
Normalized von Neumann Algorithm is described in full details as follows.

Algorithm 4. The Normalized von Neumann Algorithm

Initialization Let x0 = 0, b0 = Ax0, and k = 0.

While ‖bk‖ ≥ ǫ Do

Let as = Ax(bk).

If aTs b
k > 0, STOP, return bk as an infeasibility certificate of problem (2).

Else

θk =
1

k + 1
,

xk+1 = (1− θk)x
k + θkx(b

k),

bk+1 = Axk+1,

k = k + 1.

End While

Return xk as an ǫ-solution.

When applying to problem (2), the Normalized von Neumann Algorithm has the following complexity
result.

Theorem 4.1. Let ǫ > 0.
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1) If problem (2) is feasible, then the Normalized von Neumann Algorithm provides an ǫ-solution in
at most

⌈

1

ǫ2

⌉

iterations.

2) If problem (2) is strictly infeasible, then in at most

⌈

1

ρv(A)2

⌉

iterations an infeasibility certificate is given.

Proof. When problem (2) is strictly infeasible, then its alternative problem (1) is strictly feasible. Since yk,
generated by the Normalized Perceptron Algorithm, is exactly the same as yk in the Classical Perceptron
Algorithm divided by k, the complexity result of the Classical Perceptron Algorithm stated in Theorem
2.1 is also valid for Algorithm 3, the Normalized Perceptron Algorithm. Thus, the complexity result for
strictly infeasible problems is an immediate corollary of Theorem 2.1.

Now we prove the complexity when problem (2) is feasible. By using induction on k, we prove that
‖bk‖ ≤ 1√

k
. For k = 1, since the algorithm starts with b0 = 0,

‖b1‖ = ‖(1− θ0)b
0 + θ0Ax(b

0)‖ = ‖Ax(b0)‖ = 1,

where the last equality results from ‖ai‖ = 1 for i = 1, . . . , n.

Now, suppose that we have ‖bk−1‖ ≤ 1√
k−1

. At the iteration k, we obtain

‖bk‖2 = ‖(1− θk−1)b
k−1 + θk−1as‖2

= (1− θk−1)
2‖bk−1‖2 + θ2k−1‖as‖2 + 2θk−1(1− θk−1)(a

T
s b

k−1)

≤ 1

k2
[

(k − 1)2‖bk−1‖2 + 1
]

≤ 1

k

The first inequality must be true because aTs b
k−1 ≤ 0 when problem (2) is feasible. The second inequality

holds due to the inductive hypothesis ‖bk‖ ≤ 1/
√
k. Thus, to obtain an ǫ-solution, after k iterations, it

is sufficient to have
ǫ = ‖bk‖ ≤ 1/

√
k.

Therefore, the algorithm needs at most ⌈1/ǫ2⌉ iterations.

Recall that Theorem 2.1 provides the complexity result for feasible perceptron problems. If problem
(1) is strictly feasible, then the Classical Perceptron Algorithm returns a feasible solution in at most
1/ρp(A)

2 iterations. However, there is no published result for infeasible perceptron problems. Now by
transiting Theorem 4.1 back to the perceptron problems, we obtain the following new result for the
Classical Perceptron Algorithm.

Theorem 4.2. Let ǫ > 0. If problem (1) is infeasible, then the Classical/Normalized Perceptron Algo-
rithm provides an ǫ-infeasibility certificate in at most

⌈

1

ǫ2

⌉

iterations, which indicates that there is no such an ǫ-ball in the feasible region.

The complexity bound in Theorem 4.2 only depends on the value ǫ, the accuracy of the infeasibility
certificate, but does not depend on the geometry of the problem.
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4.2 The Smooth Perceptron Algorithm

Soheili and Peña [20] proposed a smooth version of the perceptron algorithm and showed that it can
be seen as a smooth first-order algorithm. This deterministic variant retains the original simplicity of
the perceptron algorithm and its complexity is improved by almost a factor of 1/ρp(A) compared to
the Classical Perceptron Algorithm. The improved complexity result is given in Theorem 4.3. We first
introduce the Smooth Perceptron Algorithm.

Given µ > 0, x(y) is smoothed by the entropy prox-function

xµ(y) =
e

−AT y
µ

∥

∥

∥

∥

e
−AT y

µ

∥

∥

∥

∥

1

, (13)

where the expression e
−AT y

µ denotes the n-dimensional vector

e
−AT y

µ =

[

e
−aT

1
y

µ , e
−aT

2
y

µ , . . . , e
−aT

ny

µ

]T

.

The Smooth Perceptron Algorithm is as follows.

Algorithm 5. The Smooth Perceptron Algorithm

Initialization Let y0 = Ae
n
, µ0 = 1, and x0 = xµ0

(y0). k = 0.

While True Do

Let as = Ax(yk).

If aTs y
k > 0, STOP and return yk.

Else

θk =
2

k + 3
,

yk+1 = (1− θk)(y
k + θkAx

k) + θ2kAxµk
(yk),

µk+1 = (1− θk)µk,

xk+1 = (1− θk)x
k + θkxµk+1

(yk+1),

k = k + 1.

End While

Compared to the complexity of the Classical Perceptron Algorithm stated in Theorem 2.1, Theorem 4.3
shows that the Smooth Perceptron Algorithm has a complexity result with 1

ρp(A)
√

log(n)
improvement.

Theorem 4.3. [20] Assume that problem (1) is strictly feasible. The Smooth Perceptron Algorithm
terminates in at most

2
√

log(n)

ρp(A)
− 1

iterations with a feasible solution.

Analogous to the Normalized Perceptron Algorithm, the Smooth Perceptron Algorithm can also be
applied to problem (2) when it is infeasible. Iterate yk in the perceptron space plays the role of the vector
bk in the von Neumann algorithm. Since bk is updated so that Axk = bk, we derive the corresponding
vector xk.

Algorithm 6. The Smooth von Neumann Algorithm

Initialization Let x0 = e
n
, b0 = Ax0 = Ae

n
, µ0 = 1, and x̃0 = xµ0

(y0). k = 0.

While True Do
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Let as = Ax(bk)

If aTs b
k > 0, STOP and return bk as an infeasibility certificate.

Else

θk =
2

k + 3
,

bk+1 = (1− θk)(b
k + θkAx̃

k) + θ2kAxµk
(bk),

µk+1 = (1− θk)µk,

x̃k+1 = (1− θk)x̃
k + θkxµk+1

(bk+1),

xk+1 = (1− θk)(x
k + θkx̃

k) + θ2kxµk
(bk),

k = k + 1.

End While

Compare Algorithm 5 and 6. Iterate yk in Algorithm 5 is the same as vector bk in Algorithm 6, and its
corresponding xk satisfying yk = Axk is the vector x in problem (2). It is easy to see that xk ∈ ∆n for all
iterations. Therefore, the complexity result of Theorem 4.3 applies to Algorithm 6 as well when problem
(2) is infeasible. We derive the following corollary from Theorem 4.3.

Corollary 3. Assume that problem (2) is strictly infeasible. The Smooth von Neumann Algorithm
terminates in at most

2
√

log(n)

ρv(A)
− 1

iterations with a certificate of infeasibility bk such that AT bk > 0.

Recall that the Smooth Perceptron Algorithm has an improved complexity result compared to the Nor-
malized Perceptron Algorithm when problem (1) is feasible. Thus, if problem (2) is infeasible, then
after interpreted in the von Neumann space, the Smooth von Neumann Algorithm also enjoys an almost
1/ρv(A) complexity improvement compared to the one presented in Corollary 4.1.

Independently of our work, Soheili and Peña [19] proposed a version of smooth von Neumann algorithm
called Iterated Smooth Perceptron-von Neumann (ISPVN) Algorithm. It is also based on the duality
relationship between problems (1) and (2). Instead of using the entropy prox-function as the Smooth
Perceptron Algorithm, it employs the Euclidean prox-function to smooth x(y). The merit of the ISPVN
Algorithm is that when problem (1) is infeasible with ρp(A) > 0, the ISPVN Algorithm solves its alterna-
tive system (2). Thus, the ISPVN Algorithm could handle both problems (1) and (2) simultaneously. It

either finds a feasible solution to problem (1) in O
( √

n

ρp(A) log
(

1
ρp(A)

))

elementary iterations, or finds an

ǫ-solution to the corresponding problem (2) in O
( √

n
ρv(A) log

(

1
ǫ

)

)

elementary iterations. Both of the iter-

ation complexity of the ISPVN Algorithm are better than these of the perceptron and the von Neumann
algorithms. However, in the case when problem (2) is infeasible, the Smooth von Neumann Algorithm
stated in Algorithm 6 has a better complexity bound.

5 From von Neumann to Perceptron

After interpreting variants of the perceptron algorithm from its dual perspective in Section 4, in this
section we show how to interpret the von Neumann algorithm as a variant of the perceptron algorithm
and how to apply it to problem (1).

5.1 The Original von Neumann Algorithm

The von Neumann algorithm was reviewed in Section 2.2. Note that in the von Neumann algorithm,
iterates xk are always in the unit simplex. The vector bk = Axk in the von Neumann algorithm can play
the role of vector y in the perceptron space.
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Algorithm 7. The von Neumann Algorithm in the perceptron space

Initialization

Choose any x0 ∈ ∆n. Let y
0 = Ax0 and k = 0.

While ‖yk‖ ≥ ǫ Do

1. Let µk = ‖yk‖ and νk = (Ax(yk))T yk, where x(yk) = argmin
x∈∆n

{(yk)TAx}.

2. If νk > 0, STOP and return yk as a solution.

3. Update

λ =
1− νk

µ2
k − 2νk + 1

,

µ2
k+1 = λνk + (1− λ),

yk+1 = λyk + (1− λ)Ax(yk),

k = k + 1.

End While

According to Theorem 2.3, there are two possible outcomes of the von Neumann algorithm. If problem
(2) is strictly infeasible, the von Neumann algorithm provides an infeasibility certificate. Then the
alternative case in the perceptron space is that problem (1) is strictly feasible. Thus, applying the von
Neumann algorithm to problem (1) will provide a feasible solution yk. On the other hand, if problem
(2) is strictly feasible, then the von Neumann algorithm will return an ǫ-solution with ‖bk‖ < ǫ, and
m+1 applications of the von Neumann Algorithm allows to get an exact solution [6], which is interpreted
as an exact infeasibility certificate for problem (1). However, if problem (2) is neither strictly feasible
with an ǫ-ball in the feasible set, nor strictly infeasible with at least ǫ distance to feasibility, then an
ǫ-solution interpreted in the perceptron space implies an ǫ-infeasibility certificate of problem (1). An
ǫ-solution/ǫ-infeasibility certificate could have two possible meanings.

1. If problem (2) is feasible, then problem (1) is infeasible.

2. If problem (2) is infeasible, then an ǫ-solution implies that the distance to the infeasibility of problem
(2) is less than ǫ, i.e., ρv(A) < ǫ; and the radius of the largest inscribed ball in the feasible region
of problem (1) is ρp(A) < ǫ. This means that though problem (1) is feasible, it is almost infeasible.
The distance to the infeasibility is less then ǫ.

Thus, problem (1) is either infeasible or ǫ-close to infeasibility. From Theorem 2.3 the following complexity
result can be derived for Algorithm 7.

Theorem 5.1. Let ǫ > 0.

1) If problem (1) is strictly feasible, then in at most

⌊

1

ρ2p

⌋

iterations the von Neumann Algorithm finds a feasible solution to problem (1).

2) If problem (1) is strictly infeasible, then in at most

⌈

2

ρ2p
ln

1

ǫ

⌉

iterations the von Neumann Algorithm provides an ǫ-infeasibility certificate.
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5.2 The Optimal Pair Adjustment Algorithm

Gonçalves et al. [11] introduced three variants of the von Neumann algorithm named as Weight-
Reduction, Optimal Pair Adjustment (OPA), and Projection Algorithms. Among these three variants,
the OPA Algorithm has the best performance in computational experiments. The basic idea of the OPA
Algorithm is to move the residual bk in Algorithm 2 closer to the origin 0 as much as possible at each
update step. It gives the maximum possible freedom to two weights: the one in column as+ which has the
largest angle with bk and the one in column as− which has the smallest angle with bk. At each iteration,
it finds the optimal value for these two coordinates and adjusts the remaining ones. The OPA Algorithm
is as follows.

Algorithm 8. The Optimal Pair Adjustment Algorithm

Initialization

Choose any x0 ∈ ∆n. Let b
0 = Ax0.

Given a small positive number ǫ.

While ‖bk‖ ≥ ǫ Do

1. Find the vectors as+ and as− which make the largest and smallest angles with the current iterate
yk:

s+ = argmin
i=1,...,n

{aTi bk},

s− = argmin
i=1,...,n

{aTi bk|xi > 0},

νk = aTs+b
k.

2. If νk > 0, STOP, return bk as a feasible solution to problem (2).

3. Solve the subproblem

min ‖b̄‖2
s.t. λ0(1− xk

s+
− xk

s−
) + λ1 + λ2 = 1,

λi ≥ 0, for i = 1, 2,

where b̄ = λ0(b
k − xk

s+
as+ − xk

s−
as−) + λ1as+ + λ2as− .

4. Update

bk+1 = λ0(b
k − xk

s+as+ − xk
s−as−) + λ1as+ + λ2as− ,

xk+1
i =







λ0x
k
i i 6= s+, s−,

λ1, i = s+,
λ2, i = s−.

k = k + 1.

End While

The OPA Algorithm has a better performance than the original von Neumann algorithm in practice [11],
and Gonçalves proves that in theory it is at least as good as the original von Neumann algorithm.

Theorem 5.2. [11] The decrease in ‖bk‖ obtained by an iteration of the OPA Algorithm is at least as
large as that obtained by one iteration of the von Neumann Algorithm.

Therefore, the OPA and the von Neumann Algorithms share the same theoretical complexity as given in
Theorem 2.3.

In the dual space, the residual bk is the normalized iterate yk in the perceptron algorithm. The column
which has the largest angle with bk corresponds the “most infeasible” constraint for yk. Since a feasible
solution to the von Neumann problem is an infeasibility certificate for the corresponding perceptron
problem, the faster the residual bk moves closer to 0, the sooner infeasibility of the perceptron problem
is detected. Therefore, the OPA algorithm outperforms the von Neumann algorithm when problem (1)
is infeasible. In this section, we describe the equivalent OPA Perceptron Algorithm.
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Algorithm 9. The Optimal Pair Adjustment Perceptron Algorithm

Initialization

Choose any x0 ∈ ∆n. Let y
0 = Ax0 and u0 = ‖y0‖. θ = 1.

Given a small positive number ǫ.

While uk ≥ ǫ Do

1. Find the vectors as+ and as− which make the largest and smallest angles with the current iterate
yk:

s+ = argmin
i=1,...,n

{aTi yk},

s− = argmin
i=1,...,n

{aTi yk|xi > 0},

νk = aTs+y
k.

2. If νk > 0, STOP. Return yk as a feasible solution to problem (1).

3. Solve the subproblem

min ‖ȳ‖2
s.t. λ0(1− xk

s+
− xk

s−
) + λ1 + λ2 = 1,

λi ≥ 0, for i = 1, 2,

where ȳ = λ0(
yk

θ
− xk

s+
as+ − xk

s−
as−) + λ1as+ + λ2as− .

4. Update

If λ0 = 0, then

θ = 1,

yk+1 = λ1as+ + λ2as− .

Else,

θ =
θ

λ0

yk+1 = yk + (θλ1 − xk
s+)as+ + (θλ2 − xk

s−)as− .

End If

uk+1 =
1

θ
‖yk+1‖,

xk+1
i =







λ0x
k
i i 6= s+, s−,

λ1, i = s+,
λ2, i = s−.

k = k + 1.

End While

The subproblem in Step 3 can be solved by enumerating all possibilities that satisfy the KKT conditions
[11]. Analogous to Algorithm 7, if problem (1) is feasible and Algorithm 9 terminates with uk < ǫ, then
there is no ǫ-ball contained in the feasible cone centered on the unit sphere. In this case, problem (1) is
close to infeasibility and yk is an ǫ-infeasibility certificate. After interpreted as a variant of the perceptron
algorithm, the OPA Perceptron Algorithm has the complexity result as stated in Theorem 5.1.

6 Summary and Future Work

The perceptron and the von Neumann algorithms are used to solve LFPs in different forms. In this
paper, we reveal the duality relationship between these algorithms. This observation is based on the fact
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that the forms of the LFPs these algorithms deal with are a pair of Farkas alternative systems. This
relationship enables us to interpret variants of the perceptron algorithm as variants of the von Neumann
algorithm, and vice versa. The dual interpretation of the algorithms allows us to transit the complexity
results to the new algorithms too. The interpretation of an approximate solution is crucial during the
algorithms transit. By utilizing the Approximate Farkas Lemma to make the solution meaningful for the
alternative system and the transit complete. A major difference of these two algorithm families is that the
perceptron algorithm assumes that the problem is feasible while the von Neumann algorithm solves both
feasible and infeasible problems. Therefore, in this paper, we show that the infeasibility of perceptron
problems are detected by the interpreted von Neumann algorithm (Algorithm 7) and the OPA perceptron
algorithm (Algorithm 9); and the Normalized von Neumann Algorithm (Algorithm 4) – interpreted from
the Normalized Perceptron Algorithm is applicable for both strictly infeasible and feasible von Neumann
problems. Furthermore, when problem (1) is infeasible, we derive a complexity result for the Classical
Perceptron Algorithm from the perspective of the von Neumann space.

There is another variant of the perceptron algorithm – the Modified Perceptron Algorithm [4]. It starts
from a random vector y. In order to interpret it from the von Neumann perspective, finding the corre-
sponding vector x is a critical step. In addition, the Modified Perceptron Algorithm returns a σ-feasible
solution – which is also an approximate solution – when the perceptron problem is feasible with small
quantity ρp(A) – smaller than a given threshold. Therefore, we are aiming to design a modified version
of von Neumann algorithm which can return an infeasibility certificate when the problem is almost in-
feasible. Its interpreted variant will benefit detecting infeasibility of perceptron problems when ρp(A) is
small.
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