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Abstract: The combined facility location and network design problem is an important practical problem for locating public and 
private facilities. Moreover, incorporating aspects of reliability into the modeling of facility location problems is an effective way to 
hedge against disruptions in the system. In this paper, we consider a combined facility location/network design problem that considers 
system reliability. This problem has a number of applications, many of which fall into the category of service systems, such as regional 
planning and locating schools, health care service centers and airline networks. Our model also includes an investment budget constraint. 
We propose a mixed integer programming formulation to model this problem, as well as an efficient heuristic based on the  problem’s  LP  
relaxation. Numerical results demonstrate that the proposed heuristic significantly outperforms CPLEX in terms of solution speed, while 
still maintaining excellent solution quality. Our results also suggest a favorable tradeoff between the “nominal cost” (including fixed 
facility location costs and link construction costs, as well as transportation costs) and system reliability; that is, substantial improvements 
in reliability are often possible with only slight increases in the total cost of investment and transportation. 
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1. Introduction 
 

1-1. Motivation 
 

Managers of service systems, as well as supply chains for goods, are continuously looking for ways to reduce total costs 
while  also   improving   the  performance  of   their  systems   in  order   to  stay  competitive   in   today’s  business   landscape.  At   the  
same time, many companies, especially in industrialized countries, face disruptions and other unexpected events throughout 
their supply chains, and these can lead to disastrous financial losses. Combined with the worldwide economic downturn in 
recent years, this risk necessitates the use of proactive strategies for mitigating the effects of disruptions.  

We present a model that combines facility location and network design decisions under the risk of disruptions. Thus, our 
model optimizes strategic decisions that account simultaneously for the need for efficiency (i.e., low costs) and for 
reliability (i.e., disruption resilience). (Other papers discuss operational approaches for mitigating disruptions; see, e.g., 
Tomlin (2006), or see Snyder et al. (2010) for a review.) Our model minimizes the total transportation cost assuming no 
disruptions take place while imposing a budget constraint on the fixed cost of building facilities and links in the network. It 
also ensures the reliability of the resulting network by enforcing an upper bound on the total cost that may result when 
disruptions occur. 

Facility location problems choose the locations of facilities and, often, the allocation of customers to them, in order to 
optimize some objective function, such as minimizing the operating cost or maximizing the demands covered. Based on 
their objective functions and constraints, facility location problems are categorized into several problem classes, such as the 
P-median and P-center problems (Hakimi 1964), the uncapacitated facility location problem (Kuehn and Hamburger 1963), 
the maximum covering location problem (Church and ReVelle 1974) and the set covering location problem (Toregas et al. 
1971). In network design problems, the basic goal is to optimally construct a network that enables some kind of flow, and 
possibly that satisfies some additional constraints. The nodes usually are given and the problem must make decisions about 
which links (edges) to choose from among a set of potential edges. 

Often these two problems (facility location and network design) are solved independently, but we would argue that it is 
more realistic and effective to model and solve them simultaneously. All of the aforementioned classical facility location 
models locate facilities on a predetermined network. However, the topology of the underlying network may profoundly 
affect the optimal facility locations. Joint facility location/network design problems have many applications in industries 
and services, and some studies clearly illustrate the value of solving them simultaneously (Melkote 1996, Melkote and 
Daskin 2001). 

Another significant subject that can affect facility location and network design is the reliability of the system. Assuming 
that facilities are always available and never disrupted is typical in classical studies. Although most companies would like to 
assume that disruptions rarely happen, and that even if they occur, their supply chains will be reliable enough, in practice, 
some unexpected disruptions happen and some companies are vulnerable and therefore easily disrupted. The terrorist 
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attacks of 9/11, the catastrophic devastation caused by Hurricane Katrina (Barrionuevo and Deutsch 2005, Latour 2001, 
Mouawad 2005), the huge fines paid by the Boeing company in compensation for postponing the delivery of the Dreamliner 
787 (Bathgate and Hayashi 2008, Peng et al. 2011) and the tragic earthquake and subsequent tsunami in Japan in 2011 
(Bathgate and Hayashi 2008, Clark and Takahashi 2011) are among the most obvious examples of these kind of disruptions. 

It can be difficult for companies to remove (or even reduce) the causes of disruptions, sometimes, because most of the 
times, the causes—such as equipment failures, natural disasters, industrial accidents, power outages, labor strikes, and 
terrorism—are out of companies’   control and cannot effectively be avoided by precautionary actions. Although some 
disruptions are short-lived, they can still cause serious long-term negative financial and operational outcomes. Some studies 
have quantified these negative effects of disruptions empirically; for example, the abnormal stock returns of firms that have 
been affected by disruptions can reach approximately 40% (Hendricks and Singhal 2005). Similar findings are described by 
(Peng et al. 2011, Hicks 2002). 

When facility disruptions occur, customers may have to be reassigned from their original facilities to the other available 
facilities, in which case the transportation costs will surely increase. Moreover, the facility locations that are chosen when 
the disruption risks are ignored may not be good locations to respond to disruptions; therefore, it is important to incorporate 
the risk of disruptions when making facility location and network design decisions. That is the primary focus of our study. 

 
1-2. Literature Review 

The initial model for the facility location/network design problem (FLNDP) was introduced by Daskin et al. in 1993 
(Daskin et al. 1993). They demonstrated the importance of optimizing facility locations at the same time as network design 
and developed a mathematical model to do so. Subsequently, Melkote (1996) developed three models for the FLNDP in his 
doctoral thesis including uncapacitated and capacitated versions (UFLNDP and CFLNDP, respectively) and the maximum 
covering location-network design problem (MCLNDP). These models were also described by Melkote and Daskin (2001). 
In another doctoral thesis, some efficient approaches were developed to solve the static budget-constrained FLNDP by 
Cocking (2008). Also, Cocking (2008) developed some useful algorithms to find good upper lower bounds on the optimal 
solution. The  main  heuristics   that  were  proposed   in  Cocking’s  doctoral   thesis  are simple greedy heuristics, a local search 
heuristic, metaheuristics including simulated annealing (SA) and variable neighborhood search (VNS), and a custom 
heuristic based on the problem-specific structure of FLND. In addition, a branch-and-cut algorithm using heuristic solutions 
as upper bounds, and cutting planes to improve the lower bound of the problem were developed. The method reduced the 
number of nodes which were needed to approach optimality.  

Drezner and Wesolowsky (2003) proposed a new network design problem with potential links, each of which could be 
either constructed at a given cost or not. Also, each constructed link could be constructed as either a one-way or two-way 
link. Bigotte et al. (2010) studied a version of the FLNDP in which the multiple levels of urban centers and multiple levels 
of network links were considered simultaneously in developing of a mixed integer mathematical model. Their model 
determines the best transfers of urban centers and network links to a new level of hierarchy in order to improve the 
accessibility of all kinds of facilities. Jabalameli and Mortezaei (2011) proposed a bi-objective mixed integer programming 
formulation as an extension of the CFLNDP in which the capacity of each link for transferring the demands is limited. 
Contreras and Fernandez (2012) reviewed the relevant modeling aspects, alternative formulations and several algorithmic 
strategies for the FLNDP. They studied general network design problems in which design decisions to locate facilities and 
to select links on an underlying network are combined with operational allocation and routing decisions to satisfy demands. 
Contreras et al. (2012) presented a combined FLND problem to minimize the maximum customer-facility travel time. They 
developed and compared two mixed integer programming formulations by generalizing the classical P-center problem so 
that the models consider the location of facilities and the design of the underlying network simultaneously. Table 1 presents 
an overview of the literature on the FLND problem. 

The literature related to system reliability in facility location problems demonstrates that, in light of the huge investment 
required for facility location, the attention paid to system failures in facility location has increased in recent years (Qi and 
Shen 2007, Qi et al. 2010). Drezner (1987) was one of the first researchers who proposed mathematical models for facility 
location with unreliable suppliers. He studied the unreliable P-median and (P,q)-center location problems, in which a 
facility has a given probability of becoming inactive. In subsequent research, Snyder and co-authors (2003, 2005, 2007) 
proposed several mathematical programming formulations for the reliable P-median and fixed charge problems based on 
level assignments, in which the candidate sites are subject to random disruptions with equal probability. Berman et al. 
(2007) formulated a P-median problem with disruptions that relaxes the equal-probability assumption made by Snyder and 
Daskin (2005). Their model is highly non-linear, and they focus on structural properties and special cases. Shen et al. (2009) 
also relaxed the assumption of uniform failure probabilities, formulated the stochastic fixed-charged facility location 
problem as a nonlinear mixed integer program, and proposed several heuristic solution algorithms, as well as a 2.674-
approximation algorithm for the equal-probability case. Lim et al. (2009) proposed a reliability continuum approximation 
(CA) approach for facility location problems with uniform customer density in which facilities can be protected with 
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additional investments. They demonstrated the impact of misestimating the disruption probability in facility location 
problems in the presence of random facility disruptions.  

Hanley and Church (2011) developed a facility location–interdiction covering model for finding a robust arrangement of 
facilities that has a suitable efficiency under worst-case facility losses. They formulated a MIP model in which all possible 
interdiction patterns are considered, and a second, more compact bilevel model in which the optimal interdiction pattern is 
implicitly defined in terms of the chosen facility locations. Peng et al. (2011) studied the effect of considering of reliability 
in logistic networks design problems with facility disruptions and illustrated that applying a reliable network design is often 
possible with negligible increases in total location and allocation costs. They considered open/close decisions on nodes but 
not on arcs of the commodity production/delivery system. By applying the p-robustness criterion (which bounds the cost in 
disruption scenarios), they simultaneously minimize the nominal cost (the cost when no disruptions occur) and reduce the 
disruption risk. Recently, Liberatore et al. (2012) proposed a tri-level mathematical model for the problem of optimizing 
fortification plans in capacitated median distribution systems with limited protective resources in the face of disruptions that 
involve large regions. They illustrated empirically that considering correlation effects in a system plays an important role in 
reducing the suboptimal protection plans and subsequently decreasing the unessential growth in the system cost when 
disruptions happen. Moreover, Jabbarzadeh et al. (2012) studied a supply chain design problem in which distribution centers 
may have partial and complete disruptions. The problem was formulated as a mixed-integer nonlinear program which 
maximizes the total profit of the system while taking into account different disruption scenarios at facilities. Table 2 
summarizes an overview on the literature of the facility location problems with respect to system reliability. 

 
1-3. Model Overview 

It is evident from the preceding literature review that the existing studies have not considered both network design and 
system reliability together with facility location. In fact, the literature review illustrates that there is a research gap in facility 
location regarding more realistic factors such as network design and system reliability to manage practical facility location 
problems. However, there are numerous examples of practical problems in which simultaneously considering facility 
location, network design, and system reliability is critical in improving the efficiency, usefulness, and security of the 
system. These examples include pipelines for gas and water, infrastructure for airline and railroad networks, and systems for 
delivering services such as health care and education. (In the latter example, link construction may represent establishing 
routes for medical transport vehicles or school buses, or may represent the construction of new roads to access the facilities, 
e.g., in underdeveloped regions.) Moreover, our model includes a budget constraint on the fixed cost of locating nodes and 
links in the network, which reflects a practical constraint faced by many of these systems.  

We will refer to our model as the reliable budget-constrained facility location/network design problem (RBFLNDP). The 
main contributions that differentiate this paper from the existing ones in the related literature can be summarized as follows: 
(1) We introduce a new optimization model to consider simultaneously facility location and allocation, network design, 
system reliability and a budget constraint as a mixed-integer, linear programming (MILP) problem. Our model integrates 
tactical and strategic decision making, such as determining the optimum locations of new facilities, optimum construction of 
transportation links, and optimum allocation of demand nodes to located facilities so that total costs as well as system 
reliability are optimized. (2) Our new mathematical formulation not only takes into account facility location costs, link 
construction costs, and transportation costs, but also constrains the maximum allowable disruption cost of the system, as 
well as the investment in facility location and transportation link construction. (3) We develop a new hybrid heuristic 
solution approach for the RBFLNDP that, to the best of our knowledge, has not previously been proposed for solving 
facility location problems. 

The remainder of the paper is organized as follows: In Section 2, the mathematical formulation of the RBFLNDP is 
developed. In Section 3, the hybrid LP relaxation heuristic solution approach is proposed and described. Then, in Section 4, 
a numerical example that illustrates the application of the heuristic is demonstrated and, based on it, a sensitivity analysis of 
the model parameters is reported. Computational results are presented in Section 5 and finally, conclusions and future works 
are discussed in Section 6. 
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Table 1: An overview on the literature of the FLND problem 
 

  Contribution(s) Assumptions and descriptions Solution method(s) Other comments 
Daskin et al. 1993  Considering the facility location & network 

design topics simultaneously for the first time 
 Proposing mathematical model for facility 

location/network design problem (FLNDP) 

 Locating uncapacitated facilities and optimizing 
network design simultaneously - 

 Proposing a mixed integer 
mathematical model for 
FLNDP 

Melkote and Daskin 1996, 2001  Proposing several mathematical models for 
FLNDP with different assumptions 

 Minimizing the facility location, link construction 
and transportation costs for: 
 Uncapacitated facilities 
 Capacitated facilities 

 Maximizing the covering of demand nodes by 
located facilities in FLND problem 

 Branch and bound 
approach 

 Heuristic algorithm 

 Proposing three 
mathematical models 

Drezner and 
Wesolowsky 

2003  Considering FLNDP as two separate 
objective functions (facility location costs & 
traffic flow costs)  

 Designing and constructing the links as one 
direction & two directions with different costs 

 Heuristic algorithms 
 Simulated annealing 
 Tabu search 
 Genetic algorithm 

 Simultaneously optimizing 
facility location and 
network design as two 
separate objective functions 

Miranda 2004  Modeling of FLNDP with congestion costs 
and interdependency 

 Considering congestion costs 
 Bringing up the interdependency among facilities 

 Benders decomposition 
algorithm 

 Branch and bound 
approach in CPLEX solver 

- 

Cocking 2008, 2009  Modeling of budget-constrained FLNDP  Considering of investment budget constraint for 
facility location & network design 

 Branch and cut algorithm 
 Heuristic algorithm 
 Variable neighborhood 

search (VNS) including 
RVNS & VNDS 

 Simulated annealing 

 Applying the proposed 
solution methods for a real 
case study 

Bigotte  et al. 2010  Integrated modeling of urban hierarchy and 
transportation network planning 

 Considering facility location and allocation as 
hierarchical and multi-level problem 

 Heuristic algorithm 
 Nested partitioning 

algorithm 
 Tabu search 
 Genetic algorithm 

 Applying the proposed 
solution methods for a real-
world application of urban 
hierarchy and transportation 
network planning 

Jabalameli and 
Mortezaei 

2011  An extension of  FLNDP proposed by 
Melkote (1996, 2001) subject to capacitated 
facilities as multi objective mathematical 
model 

 The facilities are capacitated 
 The transportation links are capacitated 

 Hybrid heuristic algorithm 
 Lexicography method - 

Contreras and 
Fernandez 

2012  Discussing and analyzing general network 
design problems subject to combining 
design decisions to locate facilities and to 
select links on an underlying network with 
the operational allocation and routing 
decisions to satisfy demands 

 Considering the relevant modeling aspects, 
alternative formulations and possible algorithmic 
strategies of general network design problems  - - 

Contreras et al. 2012  Minimizing the maximum customer-facility 
travel time of center FLNDP 

 Generalizing the classical P-center problem for 
various applications in regional planning, 
distribution  

 Formulating multi-commodity-type decision 
variables for telecommunications, emergency 
systems 

 Branch and cut algorithm 
 Heuristic algorithm 

- 
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Table 2: An overview of the literature on facility location problems considering system reliability 
 

Author(s)  Contribution(s) Assumptions and descriptions Solution method(s) Other comments 
Drezner 1987  Considering disruptions in a facility location 

problem for the first time 
 Introducing two mathematical models: 
 First, a reliability version of the classical P-median problem, 

assuming that nodes fail with a given probability. The failure 
probability for each node is known, as are the joint 
probabilities. The objective is to minimize the expected 
demand-weighted travel distance.  

 Second, the (P; q)-center problem, a type of P-center problem 
in which P facilities must be located to minimize the maximum 
cost that may occur when at most q facilities fail.  

 Variable neighborhood search 
 Heuristic algorithm 

 Providing small illustrative 
examples demonstrating the 
behavior of the (P; q)-center 
problem 

Snyder 2003, 
2005 

 Proposing mathematical models for PMP & 
UFLP considering the failures of facilities 

 Formulating models for choosing facility locations to minimize 
cost while also taking into account the expected transportation cost 
after failures of facilities.  

 The goal is to choose facility locations that are both inexpensive 
under traditional objective functions and also reliable. 

 Exact Lagrangian relaxation algorithm 

- 

Berman et al. 2007  Study of facility reliability issues in network P-
median problems subject to strategic 
centralization and co-location effects 

 Analyzing a facility location model where facilities may be subject 
to disruptions depending on the probability of facility failure. 

 Generalizing the classical P-median problem on a network to 
explicitly include the failure probabilities. 

 Greedy heuristic method  Illustrative case study: location 
hospitals in Toronto, Canada 

Shen, et al. 2007  Study of the reliable uncapacitated facility 
location problem in which the failure 
probabilities are site-specific. 

 Developing several models that can be used to 
fortify the reliability of the existing facilities. 

 Formulating the problem as a two-stage stochastic program and 
then a nonlinear integer program. 

 Monotonic branch-reduce-bound algorithm, 
 Sample average approximation heuristic 
 Four heuristic algorithms 
 Genetic algorithm based heuristic algorithm 
 Approximation algorithm with worst case 

bound for the special case where the failure 
probability at each facility is the same 

- 

Lim et al. 2009  Proposing a reliable facility location design in 
the presence of random facility disruptions with 
the option of hardening selected facilities 

 Formulating a facility location problem as a mixed integer 
programming model incorporating two types of facilities, one that 
is unreliable and another that is reliable 

 Lagrangian relaxation-based solution 
algorithm - 

Gade and Pohl 2009  Developing a mathematical model for discrete 
capacitated-facility location problem  

 Presenting a stochastic programming formulation that deals with 
opening facilities with a finite capacity to serve a set of customers. 

 Sample average approximation-based 
algorithm 

 

Cui et al. 2010  Proposing a compact mixed integer program 
formulation and a continuum approximation 
(CA) model to study the reliable uncapacitated 
fixed charge location problem 

 Determining the optimal facility locations as well as the optimal 
customer assignments to minimize initial setup costs and expected 
transportation costs in normal and failure scenarios. 

 Lagrangian relaxation algorithm 
 Continuum approximation (CA) method for 

large scale problems 

 

Hanley and 
Church 

2011  Developing a facility location–interdiction 
model in order to design a coverage-type 
service network that is robust to the worst 
instances of long-term facility loss 

 Formulating the problem both as a mixed-integer program and as a 
bilevel mixed-integer program that maximizes a combination of 
initial coverage by P facilities and the minimum coverage level 
following the loss of the most critical facility 

 Bilevel programming algorithm 
 Bilevel decomposition algorithm 

 

Peng et al. 2011  Study of reliable logistics networks design with 
facility disruptions 

 Proposing a mixed-integer programming model to simultaneously 
minimize the nominal cost and reduce the disruption risk using the 
p-robustness criterion 

 Genetic algorithm-based heuristic  Evaluating  the efficiency of 
hybrid metaheuristic algorithm 
vs. branch and bound algorithm 

Liberatore et al. 2012  Considering the problem of optimally protecting 
a capacitated median system with a limited 
amount of protective resources subject to 
disruptions. 

 The type of disruption studied is characterized by correlation 
effects between the facilities, and may result in partial or complete 
disruption of the facilities involved. 

 The model optimizes protection plans in the face of large area 
disruptions. 

 Exact solution algorithm which makes use 
of a tree-search procedure to identify which 
facilities to protect 

 Testing the algorithm on a 
dataset based on the 2009 
L’Aquila  earthquake. 

Jabbarzadeh et al. 2012  Study of a supply chain design problem 
considering the risk of disruptions at facilities 

 Study of supply chain design in which distribution centers may 
have partial and complete disruptions.  

 Formulating the problem as a mixed-integer nonlinear program 
which maximizes the total profit for the whole system while taking 
into account different disruptions scenarios at facilities. 

 Lagrangian relaxation method 
 Genetic algorithm 
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2. Mathematical Formulation of the RBFLNDP 
2-1. Problem Description 

We assume that we are given a set of demand nodes, as well as a set of potential transportation links among 
them. Each of the demand nodes is also a candidate facility node, and our goal is to choose facility nodes and 
transportation links, thereby constructing a transportation network to meet all of the demand. Fixed costs are 
incurred for constructing nodes and links, and transportation costs are incurred for each unit of demand that 
flows along the links. If some demand nodes are not eligible to become facilities, we can set their fixed costs to 
infinity, and if some facilities or links already exist, we can set their fixed costs to zero. The total investment cost 
(for locating facilities and constructing links) has a predetermined upper bound, represented in our model by a 
budget constraint. An additional upper bound is imposed on the investment by requiring that no more than P 
facilities are constructed. (By including both fixed costs and a limit of P facilities, our model combines aspects 
of both the uncapacitated fixed cost location problem and the P-median problem.) 

Moreover, we assume that the facilities are not reliable and, due to unexpected events such as poor weather or 
sabotage, they occasionally fail and become unavailable. Accordingly, the demand nodes that were served by the 
disrupted facility must be reassigned to the nearest active facility. Of course, the re-assigned flows to the backup 
facilities are not optimal, leading to increased transportation costs, as well as increased link construction costs to 
accommodate the rerouted flows. The cost that is incurred during a disruption is known as the “failure cost”  
(JabalAmeli and Mortezaei 2011, Contreras and Fernandez 2012), and its upper bound may be called the 
“maximum allowable failure cost.” Our goal is to bound the failure cost that occurs for any disruption, regardless 
of how likely the disruption is. Accordingly, we do not consider either the probability or the duration of 
disruptions. 

We assume that the system functions as a customer-to-server system in which customers themselves travel to 
the  facilities  in  order  to  receive  service.  Thus,  when  we  speak  of  a  “flow”  on  a  given  link,  we  are  speaking  of  the  
flow of customers traveling on the link toward the facility they patronize. In contrast, many facility location or 
network design models treat flows of goods, and in the opposite direction, from facilities toward customers. The 
customer-to-server assumption is common for service systems and is consistent with the models proposed by 
Melkote (1996). However, this assumption is not critical for our model, which could be easily adapted to 
accommodate flows in the opposite direction through appropriate modifications to the parameters, decision 
variables, and constraints. 

In our model, when we choose the location of a facility, we also choose which facility will serve as its backup 
when the facility is disrupted. Note that this differs from the notion of “backup  facility”  as  used  by  Snyder and 
Daskin (2005) and other authors, in which backups are assigned at the customer level, not the facility level. That 
is, in other models, two customers assigned to the same facility may have different backup facilities, whereas in 
our model, they have the same backup facility.  

Suppose that node k is chosen as the backup facility for a facility at node i. We assume that additional links 
must be constructed to accommodate the new flows into node k when a disruption occurs at node i. Thus, to 
accommodate rerouting when i is disrupted, a link (j,k) must be constructed for every link (j,i) that was 
constructed for normal flows, and a link from i to k must also be constructed (for the demands originating at i). 

To summarize, our problem is to determine: (1) the optimum locations of facilities; (2) the primary facility and 
backup facility of every demand node; (3) the transportation links that should be constructed for both normal and 
disrupted conditions; and (4) the amount of demand that should be transported on each transportation link. The 
objective function minimizes the transportation cost, while constraints bound the investment cost and the failure 
cost. 

 
2-2. Additional Assumptions 
In addition to the assumptions described in the preceding section, we assume the following: 

 
 The facilities and network links are uncapacitated. 
 Facilities can only be located on the nodes of the network, not on links. 
 All travel costs are symmetric. 
 All network links are reliable; that is, disruptions occur at the nodes only.  
 At most one facility fails at a time. 
 
 

2-3. Notation 
Sets and Parameters: 

N            set of nodes in the network; each is both a demand node and a potential facility location 
S             set of candidate links in the network 
di            demand at node iN  

D            = total demand 

B            investment budget for (i.e., upper bound on) facility location and link construction 
fi             fixed cost of locating a facility at node iN  
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cij            cost of constructing link (i, j) 
P             number of facilities to open, (P  2) 
FC          maximum allowable failure cost 
tij

0           transportation cost of a unit of flow on link (i,j) 
tij

l           transportation cost for all of the demand of node l to flow on link (i,j) = tij
0 dl 

M           large number 
 

Note that tij
0 and tij

l represent link-specific transportation costs, not origin-destination transportation costs. 
Since customers traverse routes that consist of multiple links (unlike in classical location problems), we must 
model the flows link-by-link and therefore use link-specific transportation costs.  

We assume that the maximum allowable failure cost, FC, is the same for all facilities, for the sake of 
simplicity. The model can easily be modified to allow facility-dependent maximum allowable failure costs by 
appending a subscript to FC and modifying the appropriate constraint in the formulation below. Determining a 
suitable value for FC in practice may be challenging, because firms and service organizations may find it 
difficult to quantify the specific maximum failure cost they could withstand. However, our problem can be 
solved iteratively with different values of FC to obtain a tradeoff curve from which decision makers may choose 
a solution that strikes an appropriate balance between operating cost and failure cost, based on their preference. 
The method for generating this tradeoff curve is discussed in Section 4. 

 
 
Decision variables: 

Zik  = 1  if a facility is located at node i and the facility located at node k is node i's backup facility, 0 
otherwise 
Xij  = 1 if link (i,j) is constructed, 0 otherwise 
Yij

l = fraction of demand of node l that flows on link  (i,j)  S 
Yij

i = Xij   (i,j) S 
Wi

l = fraction of demand of node l that is served by a facility at node  iN 

Wi
i =    iN 

 
Since a backup facility is required for each open facility, a facility is located at node i if and only if k Zik = 1. 

(It is allowable for Zik and Zki both   to   equal   1.   Each   facility  may   serve   as   both   a   “primary”   facility   and   as   a  
backup for another facility.) 

The transportation (flow) variables work as follows. Yij
l represents the fraction of node l’s  demand  that  flows  

on link (i,j). (Recall   that  “flow”  refers  to  the  flow  of  customers  toward  their  facilities.)  No flow is allowed on 
(i,j) unless that link is constructed, i.e., unless Xij = 1. Moreover, if link (i,j) is constructed, then we assume that 
the demand of node i flows on it. (This is optimal if the link construction and transportation costs satisfy the 
triangle inequality.) Thus, we define Yij

i = Xij. A second set of flow variables, Wi
l, indicates which facilities (i) 

serve which customers (l), ignoring which links that flow actually travels on. We assume that if i is selected as a 
facility, then that facility serves the demand at i itself; hence, Wi

i  = k Zik.  
 
 
2-4. Formulation 

 
With respect to the above assumptions and notations, the mathematical formulation of the RBFLNDP is 

shown below: 
 

(1) 
 

 

(RBFLNDP) 

   

(2)   

(3) 
  

(4)   
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(5)        

(6)  
 

(7)  
 

(8)   

(9)  
 

(10)   

(11)   

(12)   

(13)   

(14)   

(15)   

(16)   

(17)   

 
 

The objective function (1) includes the transportation costs on all transportation links. The first term 
represents  the  first  “leg”  of  the  flow  from  demand  node   i, while the second term represents any additional links 
that node i’s   demand   travels   along.  Constraint (2) stipulates that the investment in facility location and link 
construction cannot exceed B. Constraints (3) are the reliability constraints. If a facility is opened at i and has 
backup facility k (i.e., Zik = 1), then the total failure cost may not be greater than FC. The first bracket calculates 
the   “nominal”   cost   (the   location   and   transportation   cost   if   no   disruptions   occur),   while   the   second   bracket  
calculates the increase in cost when facility i fails. In particular, when facility i fails we must construct a new 
link to k from each node j for which a link (j,i) exists for normal conditions, as well as a new link from i to k to 
accommodate i’s  demand;;  these  costs  are  represented  by  the  first  two  terms  in  the  second  bracket.  We  must  also  
re-route the flows on these new links, and the additional transportation cost from this re-routing is represented 
by the second two terms inside the second bracket. Note that if Zik = 0, then the constraint is non-binding since 
the right-hand side is large. 

Constraints (4) and (5) are flow-conservation constraints requiring that, for each pair of nodes l and i, the 
flow of node l’s   demand   into  node   i equals the flow of the same out of node i plus the demand served by a 
facility at node i, if any. Note that the customer-to-server assumption means that we treat facility nodes as 
“sinks”  for  the  demand.  The  two  constraints  differ  by  the  term  Xli, which is included in the inbound flow if (l,i) is 
a potential link (in which case it equals Yli

l). 
Constraints (6) ensure that, for each node i, either there is a facility at i or some link is constructed out of i. 

Constraints (7) require the demand of node i to find a destination, whether it is satisfied by node i itself (Zik = 1 
for some k) or by some other node j (Wj

i = 1). Constraints (8) and (9) guarantee that potential links and facilities 
are not used if they are not constructed. Constraint (10) restricts the total number of newly located facilities to P. 
Constraints (11) stipulate that at most one facility k may be chosen as the backup for i. Constraints (12) prevent 
facility k from being used as a backup for facility i if k has not been opened. Constraints (13) say that a facility 
cannot be selected its own backup facility. Constraints (14)–(17) are standard non-negativity and integrality 
constraints. Note that, although we define Y and W as continuous variables, there exist optimal solutions in 
which they are binary, as in many other uncapacitated facility location models. Thus, we can treat the demand of 
each node as though it is completely assigned to the closest single facility rather than split among multiple 
facilities.  

 
2-5. Complexity 

Property 1 establishes that the RBFLND problem is NP-hard, since it has the P-median problem, which is 
itself NP-hard, as a special case. 
 
Property 1: The RBFLND problem is NP-hard. 
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Proof: The RBFLNDP reduces to the classical P-median problem if we set fij = cij = 0 and B = FC = ∞.  Since  the  
P-median problem is NP-hard (Kariv and Hakimi 1979), so is the RBFLNDP. (Note that the RBFLNDP allows 
travel through intermediate nodes, whereas the classical P-median assumes direct travel between customers and 
facilities. However, the model in Kariv and Hakimi (1979) assumes distances are calculated as shortest paths in 
an underlying network, and therefore the two interpretations are identical.) □ 
 
 
 

3.  Solution procedure: LP relaxation heuristic approach 
We coded the formulation for the RBFLNDP proposed in Section 2-5 in GAMS 23.3 and solved it using 

CPLEX 12. We found that CPLEX can find an optimal solution for the RBFLNDP quickly for small-­scale 
instances but that the run times increase quickly as the problem size grows, as suggested by Property 1. Thus, it 
is desirable to have an efficient heuristic solution procedure to solve larger-scale instances of the RBFLNDP. 
From the literature review in Section 1-2, one can conclude that customized heuristics based on problem-specific 
structure have played an important role in solving both the FLND problem and reliable facility location 
problems, and that they can often obtain near-optimal solutions to these problems in a reasonable computation 
time.  

Motivated by this, we propose a new LP relaxation-based heuristic to solve the RBFLNDP. The basic idea is 
to first solve the LP relaxation of (RBFLNDP), then to round the resulting location variable matrix (ZLP) to 
integers, and finally to solve the original (RBFLNDP) model but with the location variables fixed to these new 
integer values. The rounding is performed based not on the individual elements Zij

LP of ZLP, but on the sums Zij
LP 

+ Zji
LP, since this sum provides more information about whether i and j represent a good pair of facilities. The 

heuristic proceeds as follows: 
 
 

1. Solve the LP relaxation of (RBFLNDP). Let ZLP denote the n×n matrix of location variables, and let 
Zij

LP be its (i,j)th element. 
2. Improve ZLP heuristically to obtain a binary matrix Zimp as follows: 

a. Let ZLP2 be a new upper-triangular matrix in which Zij
LP2 = Zij

LP + Zji
LP if i < j and Zij

LP2 = 0 
if i > j. (Recall that Zij

LP2 = 0 if i = j.) 
b. Let Zimp be an n×n matrix consisting of all 0s , Ψ = {Ø} and θ = 0 (Note that θ represents 

the number of elements of Ψ). 
c. While θ ≤  P do: 

i. Let (i,j) be the largest element of ZLP2. If there are multiple elements with the 
same maximum value, select the one whose column has the largest sum. 

ii. Set the values of Zij
LP2 and Zij

imp based on the “If-Then”   conditions  described in 
Fig. 1. 
 

 

Fig. 1: “if-then”  conditions  flowchart  of  heuristic  algorithm 
 

3. Solve (RBFLNDP), treating the decision variables Z as fixed parameters equal to the corresponding 
values in Zimp. 
 
 

We consider a small numerical example to illustrate the heuristic. Suppose that ZLP, the output of the LP 
relaxation of (RBFLNDP), is as given below. By adding the corresponding values as in step 2(a), we obtain the 
matrix ZLP2.   
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The maximum value of ZLP2 is 0.682, but elements (1,2) and (1,4) both attain this maximum. Since column 2 

sums to 0.682 and column 4 sums to 0.795, we select element (1,4), and we set Z1,4
imp = 1 and Z1,4

LP2 = 0. We 
repeat this process until Ψ contains P elements. If P = 4, the final matrix Zimp has elements (1,4), (4,1), (2,1), and 
(5,1) equal to 1. In other words, facilities are opened at nodes 1, 2, 4, and 5, and the variables Z14, Z41, Z21, and 
Z51 are fixed to 1 when we solve (RBFLNDP). 

 
4. Numerical Example 

We now provide a numerical example illustrating the application of the model and heuristic to a 21-node 
example used by several authors (Melkote 1996, Daskin 1987, Hodgson M J, Rosing  1992, Simchi-Levi D, 
Berman  1988). The network has 38 potential links that may be selected for construction. Other data, such as the 
facility location cost, the demand of each node and the transportation cost of each link are described in Melkote 
(1996). Also, a fixed coefficient u is defined as the cost of constructing one unit length of a link, so that each link 
construction cost is calculated as cij=u tij. We assume that P = 4, u = 30 and the budget B = $25,000.  

We begin by ignoring the disruptions (setting FC =  ∞).  The  optimal  solution  for  this  problem,  obtained  by  
solving (RBFLNDP) optimally using CPLEX, is depicted in Fig. 2. The optimal facilities are 2, 10, 12, and 18, 
and the optimal links are displayed in the figure. Note that some demands (e.g., nodes 4 and 11) are served 
directly by a facility, while others (e.g., nodes 5 and 13) are served via intermediate nodes and links. 

 
 

  

Fig. 2: The optimal solution of the numerical example 
without considering disruptions (FC=∞) 

Fig. 3: The optimal solution of the numerical example 
considering disruptions (FC=$159,000) 
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The total cost of this solution, which ignores disruptions, is $28,410. However, suppose that the worst-case 

disruption occurs; this happens to be facility 18, which has the maximum failure cost (i.e., the largest left-hand 
side of constraints (3)). In this case, the demand nodes that are served by facility 18 must be served by facility 
18’s  best (or nearest) backup facility, facility 10. This results in a failure cost of $168,666.00. (Recall that the 
objective function includes transportation costs only, whereas the failure cost includes all costs.) 

Now suppose, instead, that the decision makers want the maximum value of the failure cost to be not more 
than $159,000 (FC = $159,000). In this case, the optimal design, shown in Fig. 3, has a cost of $32,310 when 
there is no disruption. But, in this case, if there is a disruption at the facility located at node 10 (which has the 
maximum failure cost), the demand nodes that are served by node 10 are fulfilled by facility 10’s   backup 
facility, facility 2 (according to the obtained solution of RBFLNDP model), and the failure cost is $158,256. 
(Note that node 2 may not be the best (or nearest) backup facility for node 10. However, it is good enough to 
ensure that the failure cost is less than the upper bound of $159,000.000. In general the model does not 
differentiate  among  these  “good  enough”  backup  facilities, and any of them may be chosen.) Clearly, the new 
solution causes a small increase in transportation cost versus the original solution ($32,310 versus $28,410), but 
the maximum failure cost is significantly reduced ($158,000 versus $168,666). This reduction can be critical, 
especially in emergency conditions.  

To provide insights into the behavior of the objective function of (RBFLNDP) in response to changes in FC 
and B, Fig. 4 and Fig. 5 present tradeoff curves for the RBFLNDP for the problem instance from Melkote 
(1996). Fig. 4 shows how the objective function changes with FC. The optimal FLNDP solution (FC = ∞)  is  the 
left-most point on the curve, and subsequent points represent solutions obtained by choosing other values of FC. 
Evidently, the objective function decreases as the maximum failure cost increases; there is a tradeoff between the 
two. This relationship is logical because, in order to increase the reliability of the network, additional facility 
location costs, link construction costs, and transportation costs must be paid. Fortunately, the left part of the 
tradeoff curve is steep, indicating that large improvements in reliability may be attained with small increases in 
FLNDP cost. For example, the fourth point on the curve has a 6% larger value of C* versus the optimal solution 
to the FLNDP but a 20% reduction in the maximum failure cost. The smooth right-most portion of the curve is 
of less interest, because it shows a large increase in the total cost compared with a very small decrease in the 
maximum failure cost.  

Another important factor affecting the value of objective function is the investment budget B. Fig. 5 
illustrates the changes in the optimal value of the objective function (C*) for different values of B. From Fig. 5, 
it is clear that the optimal value of C* will increase considerably as the value of B decreases. This relationship is 
also logical, because as the investment budget decreases, fewer facilities and links can be constructed, and 
therefore travel costs will increase.  

 

  

Fig. 4: The changes in optimal value of objective function 
for different values of FC 

Fig. 5: The changes in optimal value of C* for different 
values of B 

 
 
5- Computational Results 

A series of numerical experiments to evaluate the performance of the proposed heuristic approach were 
performed. The algorithm was coded in MATLAB R2011b and GAMS 23.3.3 and executed on a computer with 
an AMD Opteron 2.0 GHz (×16) processor and 32GB RAM, operating under Linux.  
 
5-1. Experimental Design 
 

In order to verify the performance of the proposed heuristic approach, we solved 30 problems of varying 
sizes. These problems were generated randomly in a manner similar to that described in the literature (Melkote 
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1996, 2001). In particular: The transportation cost for each link was randomly drawn from a discrete uniform 
distribution on [30, 100]. The construction costs of new links were calculated by multiplying the transportation 
cost by a coefficient u, where u has a discrete uniform distribution on [15, 30] and is drawn once for each 
instance and used for all links. The demand at each node and the fixed cost of opening each facility were 
sampled uniformly from [10, 150] and [1200, 3000], respectively, and then rounded to the nearest integer. Our 
instances contain between N = 5 and 60 nodes and P varies from 2 to 9. 

We   set   CPLEX’s   optimality   tolerance   to   10%   and   its   time   limit   to   2500   seconds   for   both   the   exact   and  
heuristic methods. That is, CPLEX terminated when either of these criteria were reached, both when solving the 
problem optimally and when solving the IP in the final step of the heuristic. 

 
5-2. Algorithm Performance 
 

Table 3 summarizes the performance of the proposed heuristic algorithm with that of CPLEX. For each 
algorithm, the table  the  run  time  (“Time”) and objective  value  (“Cost”). The run time for the heuristic 
includes the time required to solve the LP relaxation in step 1, which is then used as an input for the main step of 
the algorithm. The table reports  the  lower  bound  from  CPLEX  (“CLB”)  and  from  the  heuristic  (“HLB”),  where  
the latter represents the objective value of the LP relaxation solved in step 1 of the heuristic, and the percentage 
gap between the objective value of the best solution found and the corresponding lower bound: 

 

 

 
Finally, the last two columns give the ratio between the computation times (solution costs, respectively) of 

the two methods: 
 

 

 
Values  less  than  100%  in  the  “Time  (%)”  and  “Cost  (%)”  columns  indicate  that  our  heuristic  outperformed  

CPLEX with respect to CPU time and solution cost, respectively. (CPLEX may find sub-optimal solutions 
because of our termination settings, as described above.) Our heuristic was faster than CPLEX for all instances. 
In addition, the notation  “n/a”  in  the  table indicates that no feasible solution could be obtained for that instance 
in the allowed time (2500 seconds). 

The proposed heuristic algorithm was able to find the same or better solutions than CPLEX for 25 of the 36 
test problems (69.4%). The heuristic is also much faster: it required only  64.6%  of  CPLEX’s  time, on average, 
and found solutions within the time limit for all but one of the instances, whereas CPLEX failed to do so for 9 of 
the 36.  

Fig. 6 illustrates the run times of the proposed heuristic algorithm and CPLEX graphically. Each data point 
represents the average of the three instances (each with a different value of P) for each value of N. From Fig. 6, 
it can be concluded that the CPU time of CPLEX increases sharply as the number of nodes increases; moreover, 
CPLEX cannot solve the instances with more than 50 nodes to 10% optimality. In contrast, the proposed 
heuristic can obtain the same or better solutions in a reasonable time compared with CPLEX. 
 
6. Conclusions and future research 

In this paper, we considered the combined facility location/network design problem considering two 
additional aspects not previously included in studies of this problem, namely, system reliability and budget 
constraints. Our problem, called the reliable budget-constrained facility location/network design problem 
(RBFLNDP), was formulated as a mixed integer linear programming model. The basic principal in the proposed 
formulation   is   the   concept  of   “backup”   assignments,  which   indicate   the  backup   facilities   to  which   clients   are  
assigned when closer facilities have failed and are not available. The tradeoff between the nominal cost and 
system reliability emphasized that significant improvements in system reliability are often possible with slight 
increases in the total cost. Moreover, a sensitivity analysis was done to provide insight into the behavior of the 
proposed model in response to changes in the reliability limit and the investment budget. The sensitivity analysis 
for the maximum allowable failure cost indicates that large improvements in reliability may be attained with 
small increases in cost, while that for the investment budget showed that the optimal value of the objective 
function increases considerably as the budget decreases. This effect is logical, because of the limitation the 
investment budget places on new facility location and link construction. We proposed an efficient heuristic 
based on LP relaxation to solve the proposed mathematical model. Numerical tests showed that the proposed 
heuristic consistently outperforms CPLEX in terms of solution speed, while still maintaining excellent solution 
quality. 
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Our findings raise some questions for future research. First, our heuristic may still require an unacceptably 
long run time for considerably larger problem instances, so it would be desirable to develop an alternate heuristic 
capable of solving larger instances in reasonable time. One possible avenue is the development of metaheuristics 
such as tabu search (TS) and particle swarm optimization (PSO). Second, we considered only a single objective 
function in this paper; however, considering the RBFLNDP as a multi-objective problem, such as minimizing 
the operating costs while also maximizing the reliability of system, may find practical application in industries 
and services. 

 
Table 3: Comparison of performance of heuristic vs. CPLEX 

Instance 
Abbreviation N P 

  CPLEX   Heuristic   DIFF (%) 

  Value LB Gap (%) Time   Value LB Gap (%) Time   Time (%) Cost (%) 

TP1 5 2  1,475.000 1,475.000 0.000 0.174  1,475.000 1,475.000 0.000 0.173 

 

99.425 100.000 

TP2  2  1,964.000 1,817.277 7.471 1.028  1,937.000 1,937.000 0.000 1.027 

 

99.903 98.625 

TP3   3  760.000 760.000 0.000 0.195  760.000 760.000 0.000 0.161 

 

82.564 100.000 

AVG       0.466        
0.454 

 
93.964 99.542 

TP4 10 2  26,470.000 26,470.000 0.000 
0.902  26,470.000 26,470.000 0.000 

0.897 
 

99.446 100.000 

TP5  3  19,210.000 19,010.703 1.037 
0.833  20,210.000 20,210.000 0.000 

0.716 
 

85.954 105.206 

TP6   3  51,250.000 47,095.719 8.106 
1.297  51,250.000 46,709.762 0.089 

1.104 
 

85.120 100.000 

AVG          1.011        
0.906 

 

90.173 101.735 

TP7 15 2  39,880.000 39,291.527 1.476 5.339  39,880.000 39,783.304 0.002 
4.068 

 

76.194 100.000 

TP8  3  47,564.000 42,861.049 9.888 11.719  44,319.000 43,250.323 0.024 
6.779 

 

57.846 93.178 

TP9   4  56,250.000 54,250.073 3.555 23.311  56,250.000 56,250.000 0.000 
4.563 

 

19.574 100.000 

AVG            13.456        
5.137 

 

51.205 98.329 

TP10 20 3  46,270.000 45,821.508 0.969 66.393  46,270.000 45,832.170 0.009 
53.907 

 

81.194 100.000 

TP11  4  57,464.000 56,420.465 1.816 84.803  67,012.000 64,402.628 0.039 
58.866 

 

69.415 116.616 

TP12   5  81,315.000 77,790.430 4.334 66.092  82,546.000 80,215.000 0.028 
25.989 

 

39.322 101.514 

AVG            72.429        
46.254 

 

63.310 106.043 

TP13 25 3  64,320.000 61,510.000 4.369 109.099  68,890.000 68,890.000 0.000 
69.661 

 

63.851 107.105 

TP14  4  113,865.000 103,680.000 8.945 81.197  125,505.000 122,480.894 0.024 
52.101 

 

64.166 110.223 

TP15   5  141,525.000 141,525.000 0.000 
106.862 

 

135,375.000 133,459.066 0.014 49.456 

 

46.280 95.654 

AVG            99.053        
57.073 

 

58.099 104.327 

TP16 30 3  84,650.000 78,353.330 7.438 
383.123  83,900.000 82,970.000 0.011 212.089 

 

55.358 99.114 

TP17  4  113,203.000 112,181.300 0.903 368.389  123,535.600 123,535.600 0.000 
174.173 

 

47.280 109.127 

TP18   5  84,858.000 83,605.500 1.476 482.191  92,077.500 92,077.500 0.000 
166.196 

 

34.467 108.508 

AVG            411.234        
184.153 

 

45.701 105.583 

TP19 35 3  75,992.000 74,651.593 1.764 583.703  62,167.000 57,693.234 0.072 
450.692 

 

77.213 81.807 

TP20  4  103,290.000 97,306.902 5.793 634.380  103,290.000 100,587.000 0.026 
407.006 

 

64.158 100.000 

TP21   5  175,395.000 170,317.200 2.895 532.552  182,751.000 178,687.381 0.022 
276.695 

 

51.956 104.194 

AVG            583.545        
378.131 

 

64.442 95.334 

TP22 40 3  93,563.000 89,190.562 4.673 1,138.700  95,480.000 95,480.000 0.000 
757.902 

 

66.559 102.049 

TP23  4  122,097.000 114,943.500 5.859 1,026.718  135,733.500 135,733.500 0.000 
612.342 

 

59.641 111.169 

TP24   5  105,918.000 98,899.000 6.627 
655.389  105,708.000 105,708.000 0.000 256.917 

 

39.201 99.802 

AVG            940.269        
542.387 

 

55.133 104.340 

TP25 45 4 

 

n/a n/a n/a n/a  85,665.000 85,665.000 0.000 
817.790 

 

n/a n/a 

TP26  5  n/a n/a n/a n/a  115,939.500 115,939.500 0.000 
1,151.206 

 

n/a n/a 

TP27   6  130,906.000 130,906.000 0.000 1,228.256  135,906.000 130,906.000 0.037 
872.010 

 

70.996 103.820 

AVG            1,228.256        
947.002 

 

70.996 103.820 

TP28 50 5  n/a n/a n/a 2,500.000  n/a n/a n/a 
n/a 

 

n/a 
n/a 

TP29  6  n/a n/a n/a 2,500.000  80,266.000 80,266.000 0.000 
1,489.721 

 

n/a 
n/a 

TP30   7  78,761.000 73,384.000 6.827 
2,390.350  75,252.000 75,252.000 0.000 1,268.279 

 

53.058 95.545 
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AVG            2,463.450        1,379.000  53.058 95.545 

TP31 55 6  n/a n/a n/a 2,500.000  84,550.000 84,550.000 0.000 
1,694.246 

 

n/a n/a 

TP32  7  n/a n/a n/a 2,500.000  92,670.000 92,670.000 0.000 
1,587.678 

 

n/a n/a 

TP33   8  n/a n/a n/a 2,500.000  91,740.000 91,740.000 0.000 
1,462.357 

 

n/a n/a 

AVG            2,500.000        1,581.427  n/a n/a 

TP34 60 7  n/a n/a n/a 2,500.000  125,641.000 115,647.251 0.080 
1,942.631 

 

n/a n/a 

TP35  8  n/a n/a n/a 2,500.000  121,645.054 115,456.398 0.051 
1,802.467 

 

n/a n/a 

TP36   9  n/a n/a n/a 2,500.000  119,251.601 112,449.256 0.057 
1,745.927 

 

n/a n/a 

AVG            2,500.000        1,830.342  n/a n/a 

Total AVG 
          831.782         534.790   64.608 101.399 

 
 

 
Fig. 6: Run times of proposed heuristic algorithm vs. CPLEX  
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