
A Polynomial Column-wise Rescaling von Neumann
Algorithm

Dan Li

Department of Industrial and Systems Engineering, Lehigh University, USA

Cornelis Roos

Department of Information Systems and Algorithms, Delft University of Technology,
Netherlands

Tamás Terlaky

Department of Industrial and Systems Engineering, Lehigh University, USA

ISE Technical Report 15T-010

A Polynomial Column-wise Rescaling von Neumann

Algorithm

Dan Li, Cornelis Roos, and Tamás Terlaky

July 2015

Recently Chubanov proposed a method which solves homogeneous linear equality systems with

positive variables in polynomial time. Chubanov’s method can be considered as a column-wise

rescaling procedure. We adapt Chubanov’s method to the von Neumann problem, and so we design

a polynomial time column-wise rescaling von Neumann algorithm. This algorithm is the first variant

of the von Neumann algorithm with polynomial complexity.

1 Introduction

The von Neumann problem is a Linear Feasibility Problem (LFP) with the following form:

Ax = 0, eTx = 1, x ≥ 0, (1)

where A is an m × n matrix, x ∈ Rn, and e denotes the all one vector in Rn. In this paper, we

only consider matrices A with integral entries. Without loss of generality, we may assume that

rank(A)=m. With a matrix A given as in (1) we also consider the system

Ax = 0, 0 6= x ≥ 0. (2)

Any solution of (2) can be transferred to a feasible solution of (1) by the normalization x := x
eT x

.

1

As the alternative system [15] of the von Neumann problem (1), the perceptron problem is also

an LFP in the following specific form

AT y > 0, (3)

where y ∈ Rm. Being a pair of alternative systems, exactly one of the two LFPs (1) and (3) is

feasible, by Farkas Lemma. In other words, problem (1) has a solution if and only if (3) has no

solution.

Several algorithms have been proposed for solving LFPs, such as simplex methods [2,21], ellipsoid

method [13, 14], interior point methods [19], Chubanov’s method [5, 6], variants of the perceptron

algorithm [3, 4, 22], and variants of the von Neumann algorithm [7, 8]. All of these algorithms aim

to find a feasible solution to a linear optimization problem, or equivalently to an LFP. They either

deliver a feasible solution, or provide an evidence of infeasibility.

The perceptron algorithm [20] was originally invented in the field of machine learning, i.e., it

solves data classification problems by learning a linear threshold function. It solves the perceptron

problem in the form (3). In its original form, it is not a polynomial-time algorithm. Its complexity

is O(1
ρ2p

), where ρp is the width of the cone of feasible solutions, which can be exponentially small.

In order to speed up the perceptron algorithm, two rescaling variants were proposed. Dunagan

and Vempala [10] purposed a randomized rescaling perceptron algorithm. It expands the width

of the feasible region ρp with high probability by periodically rescaling the linear system. The

total complexity of the randomized rescaling perceptron algorithm is O(n5 log n log(1
ρp

)) with high

probability. Observe that even though the complexity bound becomes polynomial, the algorithm

has a stochastic component, and the bound holds only with high probability. Recently, Peña and

Sohèili [17] purposed a deterministic rescaling perceptron algorithm, which enjoys an O(n6 log(1
ρp

))

polynomial-time complexity. Observe that the complexity of the stochastic version is better by a

factor of n
logn .

The von Neumann algorithm, originally published by Dantzig [7,8], can also be considered as a

special case of the Frank-Wolfe algorithm [1, 11], which is an iterative method for solving linearly

constrained convex optimization problems. The von Neumann algorithm is not a polynomial-time

2

algorithm. Its complexity of finding an ε-approximate solution is O(1
ρ2v

ln 1
ε). Analogous to ρp, the

quantity ρv quantifies how deep the origin is in the convex hull defined by the columns of matrix

A. Inspired by the success of rescaling perceptron algorithms, we aim to design a rescaling variant

of the von Neumann algorithm with deterministic polynomial-time complexity.

Chubanov [5,6] has recently proposed novel polynomial-time algorithms for solving homogeneous

linear systems with positive variables. It is a divide-and-conquer algorithm which can be considered

as a generalization of the relaxation method [16]. The so-called Basic Procedure is the core of the

method. If it neither finds a feasible solution, nor identifies the infeasibility of the system, then

the basic procedure identifies an upper bound for at least one coordinate of any possible feasible

solution. According to this upper bound for the identified coordinates, the corresponding columns

of the coefficient matrix are multiplied by a scalar. Therefore, Chubanov’s method can be also

considered as a rescaling procedure. Utilizing this idea, we propose a deterministic column-wise

rescaling von Neumann algorithm and prove its polynomial-time complexity. We rename the basic

procedure as von Neumann Procedure (vNP) because it uses von Neumann-like update steps and

it is a subroutine of this variant of the von Neumann algorithm. The outline of this paper is as

follows. In the next section we introduce some notations and important lemmas that serve as the

foundation of Chubanov’s method. In Section 4, we present the details of the column-wise rescaling

von Neumann algorithm. In Section 3.1, we introduce different ways to compute upper bounds

for some coordinates of any feasible x, if problem (2) has feasible solutions. These bounds are

utilized to construct a rescaling matrix. The complexity analysis is presented in Section 5, and

computational results are given in Section 6.

2 Preliminaries

Before presenting the details of the column-wise rescaling perceptron algorithm, we first introduce

important notations and lemmas which are the foundation of Chubanov’s method. Let NA denote

3

the null space of the matrix A and RA its row space, i.e.,

NA := {x ∈ Rn : Ax = 0}, RA := {AT y : y ∈ Rm}.

We define matrices PA and QA as the orthogonal projection matrices of Rn onto NA and RA,

respectively, as follows:

PA := I −AT (AAT)−1A, QA := AT (AAT)−1A = I − PA.

Our assumption that matrix A is full rank guarantees that AAT is invertible. So PA and QA are

well defined. Let xN and xR denote the orthogonal decomposition of vector x in the spaces NA

and RA, respectively, i.e.,

xN := PAx, xR := QAx.

Obviously we have

APA = 0, PAQA = 0, x = xN + xR.

According to the properties of the orthogonal decomposition [12], PAx = 0 holds if and only if

x ∈ RA, i.e., x = AT y holds for some y. In other words, problem (3) is equivalently solvable to the

following problem

PAx = 0, x > 0. (4)

Since problem (4) is homogeneous and x is strictly positive, without loss of generality, we may as-

sume that eTx = 1. The concept of the orthogonal decomposition plays a crucial role in Chubanov’s

method. The following lemma summarize the relationship between the orthogonal components and

the solutions of problems.

4

Lemma 1. For a vector x ∈ Rn, if we have 0 6= PAx ≥ 0, then xN is a solution to problem (2)

and problem (1) is also solvable; if PAx = 0 for some x > 0, i.e., x is a solution to problem (4),

then problem (3) is solvable, i.e., x = AT y holds for some y.

Proof. The first statement immediately follows from the definitions of NA and PA. For the second

statement, if x is a solution to problem (4), then we have x = xR + xN = xR ∈ RA, which implies

x = AT y > 0 has a solution, i.e., problem (3) is feasible. By Farkas Lemma, problem (1) has no

solution.

Lemma 1 shows that the value of PAx for some x can be used to solve problem (1) when

0 6= PAx ≥ 0 or identify the feasibility when PAx = 0. Therefore, as we show in the next section,

Lemmas 1 serves as stopping criteria for the vNP in Chubanov’s method.

3 The von Neumann Procedure

Chubanov’s method is solving the homogeneous linear inequality system

Ax = 0, x > 0. (5)

Since this system is homogeneous, we may assume that 0 < x ≤ e, where e denotes the all-one

vector. Thus, we may equivalently consider the problem

Ax = 0, x ∈ (0, 1]n. (6)

The solution set of problem (6) is a subset of the unit cube. The major difference between (1) and

(6) is that every solution of (6) has to be strictly positive, while solutions of (1) still may have zero

coordinates.

5

3.1 Bounds for feasible solutions

The core of Chubanov’s method is the vNP. The vNP is a von Neumann-like algorithm and works

on problem (4). For the purpose of clarification, vector u ∈ Rn is used to denote the variable in

problem (4) in the rest of this paper. Vector x is only used in the problems whose coefficient matrix

is A, such as problems (1), (2), and (6). With the new notation, problem (4) can be rewritten as

follows.

PAu = 0, eTu = 1, u > 0. (7)

Recall that uN = PAu and uR = QAu. Due to the fact that PA and QA are orthogonal projection

matrices, with the assumption that problem (1) or (6) is feasible, an upper bound of every feasible

solution x may be obtained from a given vector u. Let vector d > 0 denote this upper bound for

x and its i-th coordinate di represent the upper bound for xi, i.e., xi ≤ di holds for every feasible

solution x and every coordinate i. We will show later that vector d is crucial for rescaling. First

we have the following observation.

Lemma 2. Let vector d be an upper bound for every feasible solution x of problem (6). If max(d) <

1, then problem (6) is infeasible.

Proof. Observe that problem (6) is homogenous. Assume that it is feasible and x′ is a feasible

solution, then x = x
max(x) is another feasible solution which has at least one coordinate equal to 1.

In other words, we have xj = 1 for some j. According to the definition of vector d, xi ≤ di holds

for every feasible solution x and every coordinate i. Therefore, if problem (6) is feasible, then dj

has to be at least 1 for some j.

Lemma 2 is utilized as an evidence of infeasibility in Algorithm 3 in Section 4. There are several

ways to compute such an upper bound for x. Chubanov’s original method uses the bound [5,6]

xi ≤ di =

√
n‖uN ‖
ui

, (8)

6

where the subscript i is the index for coordinates. This inequality provides a useful bound only if

the right hand side expression is smaller than 1, because our assumption is that x is in the unit

cube for problem (6). To determine if there is a bound (8) not greater than 1
2 for some i, we can

simply test the inequality

2
√
n‖uN ‖ ≤ max

i
(ui). (9)

Chubanov proved the following lemma.

Lemma 3. [5,6] Let u satisfy 0 6= u ≥ 0 and (9), and let j be such that uj = maxi(ui). Let x be a

solution for (6). Then xj is bounded above by dj = 1
2 .

It will be convenient to call u small if it satisfies (9), and large otherwise. Note that uN 6= 0 if

u is large, and u is small if (4) is feasible. For future use we also state the following result.

Lemma 4. [18] If u satisfies 2
√
n‖uN ‖ ≤ eTu, then u is small.

Lemma 3 shows that any small vector u induces a bound xj ≤ 1
2 for some j for problem (6).

Recently more study shows that some large vectors u may also provide available bounds for x. Roos

[18] proposed a modified vNP using the following bound.

Lemma 5. [18] Let x be a solution for (6). Then xi is bounded by

xi ≤ di = min

{
1, eT

[
uR

−uRi

]+}
, for i = 1, · · · , n, (10)

where [a]+ arises from a by replacing its negative entries by zero, i.e., [a]+j = max{0, aj}

By using the duality theorem of LO, Chubanov [6] also derived another bound in Lemma 6.

Lemma 6. [18] Let x be a solution for (6). Then xi is bounded by

xi ≤ di = min

{
1, eT

[
ei −

uR

ui

]+}
, for i = 1, · · · , n, (11)

where ei is the i-th unit vector.

7

Among these three bounds (8), (11), and (10), Roos [18] concludes that for each nonzero u ≥ 0

and for each i, one has

min

{
1, eT

[
uR

−uRi

]+}
≤ min

{
1, eT

[
ei −

uR

ui

]+}
≤ min

{
1,

√
n‖uN ‖
ui

}
. (12)

Bound (10) is the tightest upper bound for x. In the vNP, we only need to compute the smallest

bound among all coordinates, so we define

dmin := min
i
di = dj ,

where j is as follows: for the bounds (11) and (10), j is the index such that uRj = maxi(u
R
i)

if eTuR > 0 and uRj = mini(u
R
i) if eTuR < 0; for the bound (8), j is the index such that

uj = maxi(ui). Note that j might not be unique.

3.2 The von Neumann Procedure (vNP)

By iteratively updating vector u and the value of PAu, the vNP aims to find a vector u which either

satisfies one of the two conditions in Lemma 1, or if such an u is not found, then uN 6= 0 and there

is at least one nonpositive coordinate of uN . Let K denote a nonempty set of indices such that

∑
k∈K

uNk ≤ 0.

Let pk denote the k-th column of PA, i.e., pk = PAek. We define

eK :=
1

|K|
∑
k∈K

ek, pK := PAeK =
1

|K|
∑
k∈K

pk.

The vNP is shown in Algorithm 1. Recall that vector u in problem (7) is analogous to vector x

in problem (1). To solve problem (7), Algorithm 1 starts with u as a point from the unit simplex.

Vector uN = PAu is analogous to vector b = Ax in the von Neumann algorithm [15]. Line 12-15

in Algorithm 1 is the update step. It moves uN along a direction, which is a combination of one

8

Algorithm 1 [ū, u, uN , J̃ , d̃, CASE]=von Neumann Procedure(PA, u)

1: Initialize: ū = 0, uN = PAu, K = J̃ = ∅, dmin = 1, CASE = 0, 1
2 < θ < 1 (e.g. θ = 0.8).

2: while dmin >
1
2 and CASE = 0 do

3: if 0 6= uN ≥ 0 then
4: CASE = 1 . Problem (1) is feasible.
5: Return
6: else
7: if uN = 0 then
8: CASE = 2 . Problem (1) is infeasible.
9: Return

10: else
11: ū = u
12: Find K such that

∑
k∈K u

N
k ≤ 0

13: α =
pTK(pK−uN)
‖uN−pK‖2

14: u = αu+ (1− α)eK
15: uN = αuN + (1− α)pK
16: end if
17: end if
18: Compute dmin by using (10)
19: end while
20: if CASE = 0 then
21: Compute di for all i by using (10)
22: d̃ = {di : di ≤ θ} . Upper bound(s).
23: J̃ = {i : di ≤ θ} . Corresponding coordinate index (indices).
24: end if

9

or more columns of PA, with step size α. The updating maintains at every iteration the conditions

that u is from the unit simplex and the corresponding uN is a convex combination of columns of PA,

i.e., u ∈ ∆n and uN ∈ conv(PA). Since this update step is analogous to the von Neumann update

step in the von Neumann algorithm, we name this procedure as the vNP. As you will learn later

in Section 4 that the vNP is the core subroutine of this proposed rescaling algorithm, therefore,

we classify it as a variant of the von Neumann algorithm. Line 12-15 in Algorithm 1 is the von

Neumann update steps. It updates vector u until one of the following three cases occurs:

CASE = 1: Find uN = PAu as a solution of problem (6);

CASE = 2: If uN = 0, then problem (6) is infeasible, and u is a certificate of infeasibility;

CASE = 0: Find an index set J̃ and the corresponding bounds d̃ such that xJ̃ < d̃ for every

feasible solution x for problem (6), and d̃ ≤ 1
2 . In other words, find at least one coordinate j

of x such that xj ≤ 1
2 .

As we will show in Section 4, d̃ is going to be used as the rescaling factor. In the case of rescaling,

the vNP terminates when dmin ≤ 1
2 , i.e. the minimum value in d̃ is less than 1

2 . We also require

that the maximum value of d̃ should not exceed a threshold θ ∈ (1
2 , 1). Therefore, the vNP only

records those di ≤ θ into d̃ and their corresponding indices into J̃ .

3.3 Complexity of vNP

Roos has proved that the vNP in Algorithm 1 has strong polynomial-time complexity.

Theorem 3.1. [18] After at most 4n2 iterations, the vNP either (a) provides a solution to problem

(6), or (b) provides an evidence of infeasibility, or (c) identifies at least one coordinate of x which

is smaller than or equal to 1
2 in every feasible solution of (6).

Each vNP iteration needs O(n) arithmetic operations. Therefore, the vNP has O(n3) time

complexity. Note that this is a strongly polynomial-time complexity.

10

4 The column-wise rescaling von Neumann algorithm

In Section 3, we introduced the vNP to calculate an upper bound d for every feasible solution x

for problem (6). In this section, we start with the idea of utilizing this upper bound as a rescaling

vector. Then the column-wise rescaling von Neumann algorithm is discussed in details.

4.1 Rescaling

Since x ≤ d ≤ e holds for every feasible solution x of problem (6), then x′i = xi

di
≤ 1. This means

that x′ is a feasible solution to the following problem:

ADx = 0, x ∈ (0, 1]n, (13)

where D = diag(d), i.e., D is the diagonal matrix whose i-th diagonal entry is di. Observe that

problems (6) and (13) are the same, if we replace A by AD. Since D is a diagonal matrix, AD is a

rescaled version of A, where the i-th column of A is scaled by the factor di. This rescaling preserves

the problem’s form because e remains the upper bound for the variables.

When the vNP stops with an upper bound d, then the columns of A are rescaled by their

corresponding di bound, respectively. The condition dmin ≤ 1
2 ensures that at least one column is

divided by at least a factor of 1
2 . This fact is used when proving the complexity result. Note that

in Algorithm 1, the vNP only records the bounds which are less than a threshold θ, e.g., 0.8. After

rescaling the vNP is called again to solve the rescaled problem, which has the same form but a

different coefficient matrix. By repeating this vNP-rescaling procedure, a sequence of vectors d is

constructed. The coordinate wise multiplication of these d vectors is denoted by d̂ in Algorithm 3,

as the final upper bound for every feasible solutions of problem (6).

It is well known that if problem (6) has rational data, there exists a positive number τ such

that it is a lower bound for the positive coordinates in all basic solutions. Due to [19], we may

assume τ−1 = O(2L), where L denotes the binary input size of matrix A [13]. After calling the

vNP-rescaling procedure at most O(nL) times, the upper bound for at least one coordinate of x

will become smaller than τ , which is not possible if the problem has positive solution. Therefore,

11

we can conclude that then problem (6) is infeasible.

4.2 Removing columns

Compare the von Neuman problem (2) and problem (6). Every solution of (6) is restricted to

be strictly positive. However, solutions of (2) may have zero coordinates. This difference leads

to different conclusions in the case of xi < τ for some i. As we stated in the previous section,

when solving problem (6), we can conclude that if xi < τ , then problem (6) is infeasible. When

solving problem (2), in such a case xi has to be zero if the problem is feasible. We call such i a

“must-be-zero” coordinate. Once a “must-be-zero” coordinate is identified, xi is fixed to 0, and the

corresponding column is removed from A without changing the feasibility of the problem.

Recall that in order to guarantee that PA is well defined, we assume that matrix A has full row

rank. Removing columns from A may destroy this assumption. Therefore, a preprocessing step is

needed before running the vNP-rescaling procedure again on the new problem. The preprocessing

procedure eliminates any redundant rows to bring A back to a full rank matrix and reduces problem

(6) to a similar problem with A replaced by a reduced matrix of A. The preprocessing procedure

is stated as Algorithm 2. There are three possible outcomes of the preprocessing procedure:

Algorithm 2 [A,CASE]=PreProcessing(A, J)

if J 6= ∅ then
A = A \AJ . Remove column(s) J from matrix A.
if rank(A)=0 then

Return CASE = 3 . xI\J0 (Line 35 in Algorithm 3) can be any positive numbers.
end if
if A is not full rank then

Remove redundant row(s) of A to make it of full row rank
end if

end if
Return A,CASE = 0

CASE = 0: A is full rank and not a square matrix;

CASE = 2: A is full rank and square. In this case problem (2) is infeasible;

CASE = 3: rank(A) = 0. In this case problem (2) is feasible.

12

If the preprocessing procedure returns CASE = 3, then the non-zero coordinates of a feasible

solution x can be any positive numbers. If CASE = 0, no action is needed.

4.3 The column-wise rescaling von Neumann algorithm

The column-wise rescaling von Neumann algorithm is stated as Algorithm 3. For convenience,

the while loop in lines 9-32 is called inner loop, the while loop in lines 2-37 is called outer loop.

The inner loop is the vNP-rescaling procedure for the actual matrix A. Once it identifies “must-be-

zero” coordinates, the algorithm removes the corresponding columns from A, calls the preprocessing

procedure, updates matrix A and PA, and starts the vNP-rescaling procedure again.

5 Complexity

The following complexity result for the column-wise rescaling von Neumann algorithm shows that

this is a polynomial time variant of the von Neumann algorithm.

Theorem 5.1. After at most O(n5 log2 τ
−1) = O(n5L) arithmetic operations, the column-wise

rescaling von Neumann algorithm, as stated in Algorithm 3, either finds a solution to the von

Neumann problem (2) or provides an evidence of its infeasibility.

Proof. The number of inner-loop iterations is O(n log2 τ
−1) for a given A. For each inner-loop

iteration, the complexity of the vNP is O(n3) arithmetic operations. For each time calling the vNP,

O(n3) arithmetic operations are needed for computing PA. Therefore, the complexity of executing

the inner loop is O(n4 log2 τ
−1). The complexity of the preprocessing procedure is O(n3). The

total number of executions of the outer loop is O(n). Therefore, the total complexity of Algorithm

3 is O(n5 log2 τ
−1) = O(n5L).

6 Computational results

The performance of the column-wise rescaling von Neumann algorithm is compared with those of

SeDuMi and Linprog. The bound used in the implementation is bound (10). For each size of A,

13

Algorithm 3 The Column-wise Rescaling von Neumann Algorithm

1: Initialize: CASE = 0, J0 = J = ∅
2: while CASE = 0 do
3: [A,CASE]=PreProcessing(A, J) . Check if A is full rank
4: if A is square then
5: CASE=2 . System (2) is infeasible
6: Break
7: end if
8: Set d̂ = e, y = e

n , x = 0 with corresponding dimension
9: while CASE = 0 do

10: PA = I −AT (AAT)−1A
11: [ȳ, y, z, J̃ , d̃, CASE]=von Neumann Procedure(PA, y)
12: if CASE=0 then
13: D̃ = diag(d̃)

14: d̂J̃ = D̃d̂J̃ . d records the rescaling factors

15: AJ̃ = D̃AJ̃ . Rescale matrix A

16: if max(d̂) < 1 then
17: CASE = 2 . System (2) is infeasible
18: Break
19: end if
20: if exists some coordinates J such that d̂J < τ then
21: xJ = 0
22: J0 = J0 ∪ J
23: Break
24: else
25: if ȳ 6= 0 then
26: y = ȳ
27: end if
28: yJ = yJ/2
29: y = y/eT y
30: end if
31: end if
32: end while
33: if CASE = 1 then . x is a solution of (1.1).

34: D = diag(d̂)
35: xI\J0 = Dz
36: end if
37: end while

14

Table 1: Comparison of the performance of Algorithm 3, SeDuMi, and Linprog.

Size(m× n)
MA SeDuMi Linprog

Sec. ‖Ax‖ Sec. ‖Ax‖ Sec. ‖Ax‖
5× 10 0.0025 3.0e-13 0.0316 2.0e-9 0.0033 5.3e-11
25× 50 0.0085 3.6e-12 0.1077 6.3e-9 0.0046 6.7e-11

125× 250 0.1102 8.5e-11 0.7439 2.7e-8 0.0456 9.1e-10
250× 500 0.2386 3.5e-10 3.8000 1.6e-7 0.3476 (48) 6.7e-9
500× 1000 1.0553 8.3e-10 27.7594 4.4e-7 1.0407 (19) 9.4e-9
625× 1250 2.4499 2.2e-10 61.6622 3.0e-8 – –
1000× 2000 7.6571 8.4e-10 555.3555 1.8e-7 – –

we randomly generated 100 von Neumann problems with a dense matrix. The elements of A are

randomly chosen in the intervals [-100,100].

For those randomly generated problems, the rescaling von Neumann algorithm outperforms

SeDuMi. The running time shown has a significant reduction. With less than a tenth of the

running time, the rescaling von Neumann algorithm returns solutions with higher accuracy then

the ones obtained by SeDuMi. Linprog runs faster than the rescaling von Neumann algorithm when

problem size is small. However, when the size is getting larger than 250×500, Linprog has a limited

ability to solve all the problems. The numbers in the bracket show how many problems out of 100

is solved successfully by Linprog.

The results in Table 1 are obtained by using Matlab R2014a on a Windows 7 desktop (Intel(R)

Xeon(R) CPU, 3.07GHz) with 4Gb RAM. For the computation of the projection matrix PA, we

used the factorize function developed by Davis [9].

References

[1] A. Beck and M. Teboulle. A conditional gradient method with linear rate of convergence

for solving convex linear systems. Mathematical Methods of Operations Research, 59:235–247,

2004.

[2] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1997.

15

[3] A. Blum and J. Dunagan. Smoothed analysis of the perceptron algorithm for linear program-

ming. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 905–914, 2002.

[4] A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial-time algorithm for learning

noisy linear threshold functions. Algorithmica, 22(1), 1998.

[5] S. Chubanov. A polynomial relaxation type algorithm for linear programming. http://www.

optimization-online.org/DB_FILE/2011/02/2915.pdf, 2012.

[6] S. Chubanov. A polynomial projection algorithm for linear feasibility problems. Mathematical

Programming, pages 1–27, 2014.

[7] G. B. Dantzig. Converting a converging algorithm into a polynomially bounded algorithm.

Technical Report SOL 91-5, Stanford University, 1991.

[8] G. B. Dantzig. An ε-precise feasible solution to a linear program with a convexity constraint in

1/ε2 iterations independent of problem size. Technical Report SOL 92-5, Stanford University,

1992.

[9] T. Davis. http://www.mathworks.com/matlabcentral/fileexchange/24119-don-t-let-that-inv-

go-past-your-eyes–to-solve-that-system–factorize-.

[10] J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm for solving linear

programs. Mathematical Programming, 114:101–114, 2008.

[11] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics

Quarterly, 3:95–110, 1956.

[12] P. E. Gill, W. Murray, and M. H. Wright. Numerical Linear Algebra and Optimization, Volume

1. Addison-Wesley Publishing Company, 1991.

[13] L. G. Khachiyan. A polynomial algorithm for linear programming. Soviet Mathematics Dok-

lady, 20:191–194, 1979.

16

[14] E. Klafszky and T. Terlaky. On the ellipsoid method. Radovi Mathematicki, 8:269–280, 1992.

[15] D. Li and T. Terlaky. The duality between the perceptron algorithm and the von neumann

algorithm. In L. F. Zuluaga and T. Terlaky, editors, Modeling and Optimization: Theory and

Applications, volume 62 of Springer Proceedings in Mathematics and Statistics, pages 113–136.

Springer New York, 2013.

[16] T. S. Motzkin and I. J. Schoenberg. The relaxation method for linear inequalities. Canadian

Journal of Mathematics, 6:393–404, 1954.

[17] J. Peña and N. Sohèili. A deterministic rescaled perceptron algorithm. 2015. Ac-

cepted by Mathematical Programming. Appears online at http://dx.doi.org/10.1007/

s10107-015-0860-y.

[18] C. Roos. An improved version of chubanov’s method for solving a homogeneous feasibility

problem. http://www.optimization-online.org/DB_HTML/2015/01/4750.html.

[19] C. Roos, T. Terlaky, and J.-P. Vial. Interior Point Methods for Linear Optimization. Springer,

2006.

[20] F. Rosenblatt. The perceptron–a perceiving and recognizing automaton. Technical Report

85-460-1, Cornell Aeronautical Laboratory, 1957.

[21] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1998.

[22] J. Shawe-Taylor and N. Cristianini. Support Vector Machines and Other Kernel-Based Learning

Methods. Cambridge University Press, 2000.

17

	chubanov_cover
	chubanov_vn

