
An Example with Decreasing Largest Inscribed Ball for
Deterministic Rescaling Algorithms

Dan Li and Tamás Terlaky

Department of Industrial and Systems Engineering, Lehigh University, USA

ISE Technical Report 15T-011

An Example with Decreasing Largest Inscribed Ball for

Deterministic Rescaling Algorithms

Dan Li, Tamás Terlaky

Abstract Recently, Peña and Sohèili presented a deterministic rescaling perceptron algorithm and proved

that it solves a feasible perceptron problem in O(m2n2 log(ρ−1)) perceptron update steps, where ρ is the

radius of the largest inscribed ball. The original stochastic rescaling perceptron algorithm of Dunagan and

Vempala is based on systematic increase of ρ, while the proof of Peña and Sohèili is based on the increase

of the volume of a so-called cap. In this note we present a perceptron example to show that with this

deterministic rescaling method, ρ may decrease after one rescaling step.

Furthermore, inspired by our previous work on the duality relationship between the perceptron and the

von Neumann algorithms, we propose a deterministic rescaling von Neumann algorithm which is a direct

transformation of the deterministic rescaling perceptron algorithm. Though the complexity of this algorithm

is not proved yet, we show by constructing a von Neumann example that ρ does not increase monotonically

for the deterministic rescaling von Neumann algorithm either. The von Neumann example serves as the

foundation of the perceptron example. This example also shows that proving the complexity of the rescaling

von Neumann algorithm cannot be based on monotonic expansion of ρ.

At last, we present computational results of the deterministic rescaling von Neumann algorithm. The

results show that the performance of the rescaling algorithm is improved compared with the original von

Neumann algorithm when solving the test problems.

Keywords Rescaling perceptron algorithm, the largest inscribed ball, von Neumann algorithm, linear

feasibility problem

1 Introduction

Dunagan and Vempala [6] proposed a stochastic rescaling perceptron algorithm. It solves linear feasibility

problems in the form of

(PPb) : pAT y ≥ 0, y 6= 0,

1

where pA ∈ Rm×n with its column vectors pa1,
pa2, . . . ,

pan ∈ Rm and y ∈ Rm. Without loss of generality,

we may assume that ‖pai‖2 = 1 for all i = 1, 2, . . . , n. Problem (PPb) is also called perceptron problem. In

order to prove the effectiveness of rescaling and the algorithm’s complexity, Dunagan and Vempala showed

that with high probability, pρ increases by at lease a fixed ratio after each rescaling, where pρ is the radius

of the largest inscribed ball contained in the feasible cone and centered on the unit sphere. The radius pρ

is also called the width of the feasible cone [13]. Since the complexity of the classical perceptron algorithm

[14, 12] is O
(
pρ−2

)
perceptron updates, as pρ increases periodically, the perceptron algorithm is accelerated to

O
(
m2 logm log

(
pρ−1

))
with high probability. To make the complexity for different algorithms comparable,

all the complexity is measured in the perceptron update steps. Due to the fact that pρ is guaranteed to

increase with a certain probability, this rescaling perceptron algorithm has the property of randomness.

Recently, Peña and Sohèili [13] proposed a deterministic rescaling perceptron algorithm with complexity

of O
(
m2n2 log

(
pρ−1

))
iteration complexity. The deterministic rescaling perceptron algorithm applies linear

transformation

pA′ =

(
I − 1

2
paj

paTj

)
pA (1)

on matrix pA at each rescaling step, where paj is one of the column vectors, called a rescaling vector. Compare

these two versions of the rescaling perceptron algorithms. The one by Peña and Sohèili has a weaker but

deterministic complexity.

To prove the complexity of the deterministic rescaling perceptron algorithm, Peña and Sohèili did not

mention how pρ changes with rescaling. Instead, they utilized a spherical cap, which is contained in the

intersection of the feasible cone and the unit sphere. In their paper, they showed that the volume of this

spherical cap increases monotonically after each rescaling. Since the spherical cap is always contained in a

hemisphere, they concluded that the algorithm will terminate in finite number of rescaling steps.

After comparing their proofs, the following question naturally arises: does pρ also increase monotonically

in the deterministic rescaling perceptron algorithm? In order to answer this question, we construct an

example to show that pρ may be smaller after one rescaling step.

The von Neumann problem [4] is a linear feasibility problem with the following form.

(vNPb) : vAx = 0,

eTx = 1,

x ≥ 0,

2

where vA ∈ Rm×n, x ∈ Rn, and e ∈ Rn is the vector of all ones. As the alternative system to the perceptron

problem, the von Neumann problem can be solved by the von Neumann algorithm [3, 4] published by Dantzig.

Since the two problems (PPb) and (vNPb) are a pair of alternative systems to each other, our previous work

[11] revealed the duality relationship between the perceptron and the von Neumann algorithms. Based

on the duality relationship, variants of the perceptron algorithm can be interpreted as variants of the von

Neumann algorithm and vice versa, as well as one can transit the complexity results from one family to the

other. The complexity of the von Neumann algorithm linearly depends on the multiplicative inverse of vρ2

[7], where vρ is the radius of the largest inscribed ball in the convex hull of vA centered at the origin. Since

vρ could be exponential in the input size of the problem, the von Neumann algorithm is not a polynomial

algorithm. For the purpose of improving its complexity and hopefully to obtain a polynomial version, we

propose a deterministic rescaling von Neumann algorithm. When trying to prove its complexity, we raise the

analogous question for the deterministic rescaling von Neumann algorithm to the one we have asked for the

deterministic rescaling perceptron algorithm: will vρ increase monotonically with rescaling? We construct a

von Neumann example in R3 to give a negative answer. Since it is visualized to construct a von Neumann

example in R3, the perceptron example is actually derived from this von Neumann example. We present the

major steps of transforming the von Neumann example to the perceptron example at the end of this paper.

We use notations following several rules: (1) the superscript on the left indicates which problem the

notation is used for, e.g., p for the perceptron problem and v for the von Neumann problem; (2) prime

denotes the corresponding notation after rescaling; (3) the superscript on the right is either the iteration

counter or an arithmetic operation depending on the context; (4) positive number subscript is the index of

vectors, points, or coordinates.

The paper is structured as follows. In Section 2, we present a perceptron example to show that in the

deterministic rescaling perceptron algorithm, pρ may not increase after one rescaling step. The construction

of a von Neumann example is introduced in Section 3 and its validity is verified in Section 3.3. In Section 4,

we present the procedure of deriving the perceptron example from the von Neumann example.

2 A decreasing ball example for rescaling perceptron algorithms

Since this example is derived from a von Neumann example which is in the dual perspective, we will present

and verify the example in this section first, then introduce how it is developed in a later section.

3

2.1 The example

The example is as follows:

(Eg.p) pAT y ≥ 0, y 6= 0,

where pA ∈ R4×9 and

pAT =



−0.000003029342674 −2.019699173751262 −0.000004999001640 0.020000000000000

−0.019798999974999 0.019997999899990 −0.019997999899990 0.020000000000000

0.001431631766736 0.019997999899990 0 0.020000000000000

−0.000003028146773 −1.973134679085590 0.183149852715338 0.020000000000000

0.019737351052173 0.000000950063128 0.020002002579065 0.020000000000000

−0.052561097586474 1.592477159015729 −0.091573429520343 0.024000000000000

−0.052561703455009 1.188537324265476 −0.091574429320671 0.028000000000000

−0.052560491717939 1.996416993765981 −0.091572429720015 0.020000000000000

0.050728859951203 1.996416993765981 −0.091572429720015 0.020000000000000



.

Each column vector pai of pA defines a hyperplane in R4 and there are nine hyperplanes in total. We have

the following claims.

Claim 1. For the perceptron problem (Eg.p), the radius of the largest inscribed ball pρ will decrease if the

problem is rescaled by (1) using pa1 as the rescaling vector.

Claim 2. The perceptron phase of the rescaling perceptron algorithm [13] will identify column pa1 as the

rescaling vector when the algorithm is applied to problem (Eg.p).

2.2 Verification

In order to verify these two claims, we implement the example and the algorithm in MATLAB using IEEE

double precision arithmetic. The unit roundoff error is O(10−16).

We have the following observations. The initial pρ = 0.00999988. After running the rescaling perceptron

algorithm [13], the perceptron phase does not solve pAT y ≥ 0, y 6= 0. It identifies column pa1 as the rescaling

vector, which is nearly perpendicular to the feasible cone. In the rescaling phase, pa1 is used to rescale the

matrix pA. The radius of the largest inscribed ball after rescaling becomes pρ′ = 0.00961856, which yields a

factor of O(10−4) decrease.

4

Verify Claim 1: the correctness of pρ and pρ′ are checked first by solving

pρ = max
‖y‖=1,pAT y≥0

min
i
{paTi y} (2)

in MATLAB using the fminmax function. The fminmax function uses a Sequential Quadratic Programming

method [2] and might only return a local optimal solution. To clarify the situation, we also verify the results

by the following steps.

Step 1. Identify the hyperplanes that touch/support the current ball (pρ or pρ′).

Step 2. Project the normal vectors of the hyperplanes found in Step 1 to a three dimensional subspace. Denote

these three-dimension vectors as lai.

Step 3. Employ Dantzig’s method [3] to solve the von Neumann problem

lAx = 0,

eTx = 1,

x ≥ 0,

where lA is composed by the vectors lai as its columns. If an exact solution is found, then this von Neumann

problem is feasible, which proves that there is no direction in which the ball would grow. Dantzig’s method

yields to run the von Neumann algorithm multiple times and solve a linear equation system to obtain an

exact solution to the von Neumann problem. The von Neumann algorithm is presented as the von Neumann

phase of Algorithm 1 in Section 3.1. The main arithmetical operations in the process of verification involve

vector normalization, matrix-vector multiplication, and solving linear equation systems. At each iteration of

the von Neumann algorithm, the column vectors las which has the largest angle with the current iterate lAxk

is chosen for update, where k is the iteration counter. The inner product values of laTi (lAxk) are compared

for all i. The minimal difference between laTs (lAxk) and all the other laTi (lAxk) values is O(10−5) versus

the numerical error is O(10−16) in the double precision arithmetic. Thus, we recognize that the vectors las

are chosen correctly due to sufficient separation between the vectors. Regarding solving the linear equation

systems, since the systems for our example are 4 × 4 dimensional, we use decomposition methods to solve

them. Both LU and QR factorizations are applied to test our results. Though LU factorization is commonly

used and needs less computation, QR factorization is more reliable in numerical computations. The accuracy

of QR factorization is enough for most purposes [15]. The results of our experiment show that the values of

pρ and pρ′ are consistent while using different methods and factorizations. Therefore, executing Steps 1-3,

5

we verify that pρ = 0.00999988 and pρ′ = 0.00961856 are the radius of the largest inscribed balls before and

after rescaling, respectively. Rescaling using pa1 makes the ball shrink. which verifies Claim 1.

Verify Claim 2: we have already noticed that the perceptron phase of the rescaling algorithm is actually

the same as the perceptron algorithm. The minimal difference between paT1 (pAxk) and all the other paTi (pAxk)

values is in the order of O(10−5), which is much larger than the numerical error O(10−16). Therefore, the

vector pa1 is chosen correctly as the rescaling vector after running the rescaling perceptron algorithm. Claim

2 is verified.

3 The von Neumann side

Paper [11] on the duality between the perceptron and the von Neumann algorithms discusses the duality

relationship between these two algorithms; and consequently interpreted variants of the perceptron algorithm

as variants of the von Neumann algorithm and vice versa. This relationship leads us to formalize an analogous

deterministic rescaling von Neumann algorithm according to the deterministic rescaling perceptron algorithm

[13].

3.1 A deterministic rescaling von Neumann algorithm

Recall that as the dual [4, 11] of the perceptron problem (PPb), the von Neumann problem is in the form

of (vNPb). Without loss of generality [1], we can assume that matrix vA has the same properties as pA in

problem (PPb). For a pair of dual problems we have vA = pA, and they are usually denoted by the same

letter A. However, in this paper, we construct two different examples, therefore superscripts are used for the

purpose of clarification. For convenience, we first introduce the following notation.

• conv(vA) – the convex hull of all column vectors vai of vA.

• vρ – the radius of the largest inscribed ball in conv(vA) and centered at the origin, i.e.,

vρ = inf{‖h‖ : h ∈ ∂(conv(vA))}. (3)

• x(y) := argmin {yT vAx | eTx = 1, x ≥ 0}.

Therefore, we have vAx(y) = vas if and only if vaTs y = min {vaTi y | i = 1, · · · , n}.

6

3.1.1 The deterministic rescaling von Neumann algorithm

Analogous to the rescaling perceptron algorithm, we propose the following rescaling variant of the von

Neumann algorithm.

Algorithm 1. The Deterministic Rescaling von Neumann Algorithm

Let N = 6nm2, D = I, and let t = 0.

I. The von Neumann Phase [3, 4] (Run the von Neumann algorithm for N iterations)

Choose any x0 ∈ ∆n.

Let b0 = vAx0 and k = 0.

For k = 0, 1, · · · , N − 1

1. If ‖bk‖ ≤ ε
2t , then STOP, return

x∗ =
Dxk∑n

i=1(dixki)
(4)

as an ε-solution, where xki is the i-th coordinate of xk and di is the i-th diagonal entry of D.

2. Else, find vas which makes the largest angle with the vector bk, i.e., vas = vAx(bk).

3. Let νk = vaTs b
k.

If νk > 0, then STOP, problem (vNpb) is infeasible.

4. Else, let es be the unit vector corresponding to index s. Let

λ =
1− νk

‖bk‖2 − 2νk + 1
,

xk+1 = λxk + (1− λ)es,

bk+1 = vAxk+1,

k = k + 1.

End For

II. The Rescaling Phase

Let j = argmax
i=1,··· ,n

{eTi xN}.

Utilize vaj as the rescaling vector, then formula (1) yields

vA =

(
I − 1

2
vaj

vaTj

)
vA. (5)

7

Let

D = Ddiag

(
1

‖va1‖
,

1

‖va2‖
, · · · , 1

‖van‖

)
,

where diag(d1, d2, · · · , dn) means an n× n diagonal matrix whose diagonal entries are d1, d2, · · · , dn.

Normalize each column of vA back to the unite sphere and let t = t+ 1.

III. Go back to I, to the von Neumann Phase.

Polynomial complexity of this algorithm need to be proved. So far could not complete this project. In

order to get closer to this result, we ask the same question as for the rescaling perceptron algorithm: can the

complexity be proved based on the increase of vρ as was done in the proof of the rescaling perceptron algorithm

by Dunagan and Vempala [6]? Or else, analogous to the deterministic rescaling perceptron algorithm, is it

possible to identify some increasing cap? Towards answering these questions, we construct an example

of the von Neumann problem in the next section. This example not only shows that vρ is not going to

increase monotonically after each rescaling, but also helps us to generate an analogous perceptron example

as presented in Section 2.

3.1.2 The precision of solutions

Before introducing the example of the von Neumann problem, we first discuss how rescaling steps effect the

precision of a solution.

Lemma 1. Run Algorithm 1 on a von Neumann problem (vNPb). Assume that starting from this original

von Neumann problem, the algorithm has done t times rescaling steps (rescaling phase) and the current

iterator in the von Neumann phase is bk. If ‖bk‖ ≤ ε
2t , then x∗ calculated by (4) is an ε-solution to the

original von Neumann problem, i.e., ‖vAx∗‖ ≤ ε.

Proof. For one single rescaling step, the matrix vA is rescaled by formula (5) and then each column is

normalized back to the unit sphere. Let B = I − 1
2
vaj

vaTj and D = diag
(

1
‖va′1‖

, 1
‖va′2‖

, · · · , 1
‖va′n‖

)
. We

have vA′ = BvAD, where vA′ is the matrix after rescaling. Assume that after rescaling ‖vA′x‖ = ‖b‖ ≤ ε

and x is on the unit simplex. The matrix B is invertible and its inverse can be computed according to the

Sherman-Morrison formula [8]

B−1 = (I − 1

2
vaj

vaTj)−1 = I + vaj
vaTj .

8

Since vA′x = BvADx = b, we have

‖vADx‖ = ‖B−1b‖ = ‖(I + vaj
vaTj)b‖ ≤ ‖b‖+ ‖(vajvaTj)b‖ ≤ 2‖b‖ ≤ 2ε. (6)

It means that x is a solution of ‖vADx‖ ≤ 2ε. In order to recover a solution for the original problem, we

need to bound ‖vAx∗‖ above. Notice that x∗ is also on the unit simplex and

‖vAx∗‖ =

∥∥∥∥∥
n∑
i=1

vaix
∗
i

∥∥∥∥∥ =

∥∥∥∥∑n
i=1

vaidixi∑n
i=1(dixi)

∥∥∥∥ =
‖
∑n
i=1

vaidixi‖∑n
i=1(dixi)

. (7)

Since we also have the fact that

1

di
= ‖va′i‖ =

∥∥∥∥vai − 1

2
(vaTi

vaj)
vaj

∥∥∥∥ =

√
1− 3

4
‖vaTi vaj‖ ≤ 1, (8)

which shows that rescaling always shrinks the length of column vectors of vA. Combine (4), (7), and (8), we

have after one rescaling step

‖vAx∗‖ =
‖vADx‖∑n
i=1(dixi)

≤ ‖vADx‖ ≤ 2ε.

Therefore, ε needs to be reduced by a factor 1
2 after each rescaling phase in order to keep the final solution

x∗ as an ε-solution to the original problem. If the total number of calling the rescaling phase is t, then in

the worst case we need to reduce ε to ε
2t . This lemma is proved.

3.2 Construction of the matrix vA

For an example that vρ is not increasing monotonically, the constraint matrix vA has to satisfy the following

properties.

Property 1. Among all column vectors vai, there is at least one vaj such that after applying (5), vρ′ < vρ.

Property 2. After running the von Neumann algorithm, vaj has the largest weight in the returned linear

combination, i.e., the largest coordinate of x is corresponding to vaj.

In order to obtain these two properties, the example is generated according to the following idea. First,

create an initial convex hull with a known vρ0, where vρ0 is a small positive number. Second, identify

vectors vaj from the columns of vA which shrink vρ after rescaling. If no such column vector exist, then

add new columns to vA. As a result, matrix A satisfies Property 1. At last, if vaj obtained in the previous

step does not satisfy Property 2, then add new perturbed points around vai which have larger weight after

running the von Neumann algorithm but would increase vρ with rescaling. The function of these new

9

perturbed points is to introduce perturbation by creating more small facets around the corner of those vai

and evenly share(distribute) the large weight when running the von Neumann algorithm, and consequently

make Property 2 holds for vaj .

We construct an example vA ∈ R3 with 13 column vectors. Each column vector represents a point on the

unit sphere. Let ε = 0.01, which gives the initial vρ0. Let α1 =
√

1− 2ε2 to simplify expressions. First, we

construct a symmetric convex hull defined by eight points(columns) as follows:

[p1, p2, p3, p4, p5, p6, p7, p8] =


α1 α1 α1 α1 −α1 −α1 −α1 −α1

ε ε −ε −ε ε ε −ε −ε

ε −ε ε −ε ε −ε ε −ε

 .

These points are symmetrically distributed on four hyperplanes. The distances between the origin and these

four hyperplanes are all equal to ε = 0.01. Figure 1 shows the positions of these initial points. For better

illustration, the distances in Figure 1 are not drawn to scale. The unit sphere is presented for scale, while

the four sub-circles are pushed much further away from the origin. The real distance is much smaller. We

call these eight points major points.

Figure 1: Illustration of initial major points, p9, and p10.

10

In order to obtain a rescale vector vaj , we add two points

[p9, p10] =


0 0√

1−
(
2ε
3

)2 −ε
2ε
3 −

√
1− ε2

 .

Figure 1 also illustrates these two points. Computational experiment shows that with points p9 and p10, vρ

will decrease after rescaling by p9. However, after running the von Neumann algorithm, p9 does not take

the largest weight. Therefore, we need more points (columns).

The goal of adding new points is to decrease large weights on other points so that after running the von

Neumann algorithm p9 has the largest weight. A point with larger weight indicates that the point has been

used more for updating the iterate. Thus, after identifying those major points with large weight, we consider

to add perturbed points near them. The perturbed points will disturb the update process so that instead

of the major points the perturbed points are used to update at some iterations. As a result, the perturbed

points share weight with the major points. To prevent that the new perturbed points are dominated, which

means the new perturbed points take all the weights from the major points, the perturbation should be

small enough compared to the distance among major points, which is O(10−2). We set the magnitude of

perturbation to δ = 10−6.

We present two methods to perturb the major point. The first method is to move the point along certain

small circle on the unit sphere. We perturb point p7 by this method to obtain p12 and p13 as follows.

p12 =


−
√

1− 2ε2 − 17
16δ

2 − 5
2εδ

−ε− δ

ε+ δ
4

 ,

p13 =


−
√

1− 2ε2 − 17
16δ

2 − 3
2εδ

−ε− δ

ε− δ
4

 .

Observe that the second coordinates of p12 and p13 are more negative than the one of p7, which means the

direction of perturbation is pointing away from the initial convex hull. This is also the rule when we for

the rest of perturbations. The second method to generate perturbed point is to move point along a given

direction d with a step length δ = 10−6, then normalize it back to the unit sphere. Points p3, p4, and p12

11

are perturbed by the second method to generate p11, p14, and p15 respectively.

p11 = p3 + δd3 =


x1

−ε

ε

+ δ


0

−4

1

 ,

p14 = p4 + δd4 =


x1

−ε

−ε

+ δ


−10−4

0

−0.01

 ,

p15 = p12 + δd12 =


−
√

1− 2ε2 − 17
16δ

2 − 3
2εδ

−ε− δ

ε− δ
4

+ δ


−10−4

0

−0.01

 .

After normalization and rearrangement, the new perturbed points can be expressed as follows.

p11 =
(
1 + 10εδ + 17δ2

)− 1
2


α1

−ε− 4δ

ε+ δ

 ,

p14 =
(
1− 2× 10−4δα1 + (10−4 + 10−8)δ2 + 2× 10−2εδ

)− 1
2


α1 − 10−4δ

−ε

−ε− 10−2δ

 ,

p15 =

(
1 +

(
10−8 − 49

1.6× 105

)
δ − 2× 10−2εδ − 2× 10−4δ

√
1− 2ε2 − 17

16
δ2 − 5

2
εδ

)− 1
2

×


−
√

1− 2ε2 − 17
16δ

2 − 5
2εδ + 10−4δ

−ε− δ

ε+ 6
25δ

 .

Figure 2 illustrates the perturbation of point p7. After removing p3 and p6, we obtain our example

12

(Eg.vN): problem (vNPb) with vA = [va1,
va2, · · · , va13] = [p1, p2, p4, p5, p7, p8, · · · , p15]. The reason that we

remove points p3 and p6 is that p9 will have the largest weight without them.

(a) Relative positions.

-0.9999-0.9999-0.9999-0.9999-0.9999-0.9999-0.9999-0.9999-0.9999

-0.01

-0.01

-0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

p13

p12

p15

p7

(b) Drawn to scale.

Figure 2: Illustration of the perturbations on point p7.

We have the following two claims on this example (Eg.vN) and they will be verified in Section 3.3.

Claim 3. For the von Neumann problem (Eg.vN), the radius of the largest inscribed ball vρ will decrease if

the problem is rescaled by (5) using va7 as the rescaling vector.

Claim 4. The von Neumann phase of the deterministic rescaling von Neumann algorithm will identify va7

as the rescaling vector when applying the algorithm on (Eg.vN).

3.3 Verification

In this section, we will verify Claim 3 in Section 3.3.1 – 3.3.2, and Claim 4 in Section 3.3.3 both theoretically

and numerically.

3.3.1 The initial vρ ≥ 0.01

To estimate vρ, we start from an initial convex hull comprised by the following ten columns pi, where

i = 1, 2, · · · , 10. Figure 3 shows this initial convex hull. By construction, p1, p2, · · · , p8 compose a cube with

an edge length of 0.02. It is easy to check that the radius of the largest inscribed ball in this initial convex

hull is vρ0 = 0.01. Then for the radius vρ, we have the following conclusions.

Lemma 2. (a) The quantity vρ0 is a lower bound of the largest inscribed ball in conv([va1,
va2, · · · , va9]).

Then (b) it also provides a lower bound for vρ, i.e., vρ0 ≤ vρ.

13

Figure 3: Illustration of initial convex hull.

Proof. The lemma can be proved by the procedure of construction, which is based on the initial convex hull

shown in Figure 3.

(a) Due to the special positions of p9 and p10, removing p6 only causes trivial changes of some inessential

facets which compared with 0.01 have relatively larger distance to the origin. Thus, removing p6 from the

convex hull does not effect vρ. However, removing p3 will generate a new facet defined by p4, p7, and p9.

This facet is closer to the origin than 0.01. Thus, we continue our constrcution with replacing p3 by p11

instead of removing p3 directly.

Recall that in the previous section, p11 is generated by perturbing p3 along the direction of [0;−4; 1]

with a step size 10−6. Point p11 is very close to p3 compare the distance among the facets and the origin.

In the original convex hull, the facets containing p3 as vertex are (p3, p1, p4), (p3, p4, p7), (p3, p7, p9), and

(p3, p1, p9). Replacing p3 by p11 rotate facets (p3, p4, p7), (p3, p7, p9), and (p3, p1, p9) towards outside of the

original convex hull and generates new facets with p8 and p10. Since (p3, p4, p7) is the facet which defines vρ in

the original convex hull, the rotation relaxes this constraint and makes vρ larger than 0.01. The replacement

also brings the facet (p3, p1, p4) closer to the origin. However, the original distance from this facet to the

origin is almost one and the change is in the magnitude of 10−6. Thus, it does not have effect on vρ. Figure

4 illustrates this replacement without drawing to scale.

Therefore, after removing p6 and replacing p3 by p11, we obtain a convex set comprised by nine columns

conv([va1,
va2, · · · , va9]) = conv([p1, p2, p4, p5, p7, p8, p9, p10, p11]) and vρ0 is a lower bound for the radius of

14

Figure 4: Illustration of replacing p3 by p11.

the largest inscribed ball.

(b) Since ‖vai‖ = 1 for all i, conv([va1,
va2, · · · , va9]) is in the interior of the unit ball except nine vertexes

va1,
va2, · · · , va9. All the new points p12, · · · , p15 are on the unit sphere and different from va1,

va2, · · · , va8.

Introducing them to matrix vA will expand the convex hull, i.e., conv([va1,
va2, · · · , va9])⊂conv(vA). Therefore,

vρ ≥ vρ0 = 0.01.

To confirm this conclusion, we have calculated vρ with double precision arithmetic as described in Section

2. Numerical calculation returns vρ = 0.010002475, which confirms that initially vρ is larger than 0.01.

3.3.2 After one rescaling we have vρ′ < 0.01

Numerical experiment shows that rescaling by using va7 will decrease the size of the inscribed ball, i.e.,

vaj = va7 = p9 in (5). The hyperplane defined by va8,
va9,

va10 restricts the ball. The distance from the origin

to this hyperplane is 0.009964594, which gives an upper bound for vρ′, i.e., vρ′ ≤ 0.009964594.

We verify this number by multiple methods. First we solve the problem

vρ′ = min
‖z‖=1

max
i
{−zT (a′v)i} (9)

by the fminmax function in MATLAB. The solution returned is also vρ′ = 0.009964594. By the reasons

stated in Section 2 for the function fminmax, we numerically enumerate all the facets of the convex hull and

calculate the minimal distance from the origin to those facets and use both of LU and QR factorizations to

15

solve linear equation systems in the process of calculating the hyperplanes. All the calculations are done

in double precision arithmetic. The returned results are within the same order of O(10−15) precision. The

difference between vρ and vρ′ is on the order of O(10−5), which is much larger than the roundoff errors. Thus

we claim that vρ > vρ′. Therefore, utilizing va7 to rescale this von Neumann problem (Eg.vN) will shrink

the inscribed ball. Claim 3 is verified.

3.3.3 Weights after running the von Neumann algorithm

In the desired rescaling von Neumann algorithm, we run the von Neumann algorithm to identify the rescaling

vector, which need to be va7 in this example. The rescaling vector should be the corresponding column vector

of the largest coordinate of x when the von Neumann algorithm stops after 6mn2 iterations [13]. Let ξi be

the i-th coordinate of x, so x = [ξ1, ξ2, · · · , ξ13]. In our example, the von Neumann algorithm initiated

with x0 = e7, where e7 is the unit vector corresponding to index 7. After 3042 iterations, the numerical

experiment shows that va7 and va8 have the same largest weight ξ7 = ξ8 = ξmax. Now we verify ξ7 and ξ8

are theoretically equal. Since we start from ξ07 = 1, ξ08 = 0. The superscript denotes the iteration counter.

At the first iteration, va8 is utilized to update x. Thus, ξ17 = ξ18 = 0.5. After that, neither of va7 and va8

are used again to update. Throughout the following 3041 iterations, vaT7 (pAxk) is always positive, and the

minimal difference between vaT7 (pAxk) and vaTs (pAxk) are in the order of O(10−5) versus the numerical error

is O(10−15) for double digit accuracy. Thus, we recognize that there is enough separation between va7 and

vas, and va7 is not overlooked. Consequently, ξ7 and ξ8 have exactly the same updates starting from the

second iteration [9]

ξk7 = ξk8 = λkξk−17 = · · · = 1

2

k∏
i=2

λi.

Therefore, ξ7 and ξ8 remain equal, thus we can choose va7 as the rescaling vector. The computational

experiment also shows that va7 is chosen when the von Neumann phase terminates. Claim 4 is confirmed.

4 From the von Neumann example to the perceptron example

In this section, we explain how we derived the example for the rescaling perceptron algorithm which is stated

in Section 2. Since constructing a von Neumann example in dimension three can be visualized, we start from

the von Neumann example in spite the fact that the complexity of the deterministic rescaling von Neumann

algorithm has not been proved yet. After obtaining an example for the von Neumann algorithm for which

the inscribed ball decrease, we adopt the following steps.

16

1. Identify all the facets of conv(vA) and calculate their normal vectors.

2. Lift these normal vectors to a one dimension higher space. Since we already know that conv(vA) only

contains a small ball inside, lifting will lead to a narrow feasible cone.

3. Run the perceptron algorithm and remove the redundant constraints that are not used during updates.

4. Identify a constraint which can shrink pρ when rescaling is done by its normal vector paj .

5. Analogous to constructing the von Neumann example, adding perturbed constraints to balance the

weight among all vectors pai so that paj is used the most frequently during the preceptron updates.

With the above five steps, we obtain the example presented in Section 1.

5 Computational results for the rescaling von Neumann algorithm

The description of the deterministic rescaling von Neumann algorithm is given in Section 3.1. As we state, the

theoretical complexity result of this algorithm is not proved yet. Regardless, we present some computation

results in this section to show that the performance of the von Neumann algorithm is improved after applying

the rescaling phase.

To generate ill-conditioned von Neumann problems which have small vρ, we adapt the tube generator

[5, 10].It places n − 1 points on the spherical cap concentrated around [0 0 . . . 0 1]T or [0 0 . . . 0 − 1]T .

The n-th point is generated as a positive combination of the antipodes of the first n − 1 points, so that it

is on the opposite spherical cap. This generator guarantees that the von Neumann problem is feasible. At

the mean time, since all the n points lie in the tube around the last coordinate axis, we can control vρ by

adjusting the width of the tube. The performance of the deterministic rescaling von Neumann algorithm

is compared with the original von Neumann algorithm. For each size of A, we randomly generated 20 von

Neumann problems using tube generator. The results in Table 1 are obtained by using Matlab R2014a on a

Table 1: Comparison of the performance of Algorithm 1 and the original von Neumann algorithm,

Size:m× n Original Deterministic rescaling
Sec. No.update Sec. No.update No.rescaling vρ′/vρ

5× 10 9.8102 3.77E+5 0.3542 1.22E+4 4.05 63.1851
10× 20 10.3687 3.98E+5 1.8770 6.00E+4 2.5 47.9988
20× 40 16.0625 5.90E+5 10.2361 2.30E+5 1.2 4.2875

Windows 7 desktop (Intel(R) Xeon(R) CPU, 3.07GHz) with 4Gb RAM.

17

6 Conclusions

Peña and Sohèili presented a deterministic rescaling perceptron algorithm. The main result of the paper is

the construction of an example which shows that even though the algorithm eventually expands the feasible

cone, pρ may decrease after one rescaling step. By the duality relationship between the perceptron and

the von Neumann algorithms, we apply the Peña-Sohèili rescaling method to the von Neumann algorithm.

Driven by the desire of proving its complexity, we explore how vρ will change after rescaling. We construct an

example in R3 to show that there is no guarantee of monotonic increasing of vρ. Therefore, the complexity

cannot be proved by increasing vρ and another methods e.g., a proof analogous to the one presented in

[13] need to be discovered. The computational results show that the deterministic rescaling von Neumann

algorithm solves the test problems significantly faster then the original von Neumann algorithm.

References

[1] I. Bárány and S. Onn. Colourful linear programming and its relatives. Mathematics of Operations

Research, 22(3), 1997.

[2] R. K. Brayton, S. W. Director, G. Hachtel, and L.Vidigal. A new algorithm for statistical circuit design

based on quasi-newton methods and function splitting. IEEE Trans. Circuits and Systems, 26:784–794,

1979.

[3] G. B. Dantzig. Converting a converging algorithm into a polynomially bounded algorithm. Technical

Report SOL 91-5, Stanford University, 1991.

[4] G. B. Dantzig. An ε-precise feasible solution to a linear program with a convexity constraint in 1/ε2

iterations independent of problem size. Technical Report SOL 92-5, Stanford University, 1992.

[5] A. Deza, S. Huang, T. Stephen, and T. Terlaky. The colourful feasibility problem. Discrete Applied

Mathematics, 156:2166–2177, 2008.

[6] J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm for solving linear programs.

In Proceedings of STOC’04, pages 315–320. ACM Press, 2004.

[7] M. A. Epelman and R. M. Freund. Condition number complexity of an elementary algorithm for

resolving a conic linear system. Mathematical Programming, 88(3):451–485, 2000.

[8] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins University Press, Baltimore and

London, third edition, 1996.

18

[9] J. P. M. Gonçalves, R. Storer, and J. Gondzio. A family of linear programming algorithms based on an

algorithm by von Neumann. Optimization Methods and Software, 24(3):461–478, 2009.

[10] S. Huang. Colourful feasibility: algorithms, bounds and implications. Master’s thesis, Computing and

Software, McMaster University, Hamilton,Ontario, 2007.

[11] D. Li and T. Terlaky. The duality between the perceptron algorithm and the von neumann algorithm. In

L. F. Zuluaga and T. Terlaky, editors, Modeling and Optimization: Theory and Applications, volume 62

of Springer Proceedings in Mathematics and Statistics, pages 113–136. Springer New York, 2013.

[12] M. Minsky and S. A. Papert. Perceptrons: An Introduction To Computational Geometry. MIT Press,

1969.

[13] J. Peña and M. Sohèili. A deterministic rescaled perceptron algorithm. Mathematical Programming,

pages 1–14, January 2015.

[14] F. Rosenblatt. The perceptron–a perceiving and recognizing automaton. Technical Report 85-460-1,

Cornell Aeronautical Laboratory, 1957.

[15] L. N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, 1997.

19

	cover
	vNcounterExample

