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Abstract
In this paper, we propose a StochAstic Recur-
sive grAdient algoritHm (SARAH), as well as its
practical variant SARAH+, as a novel approach
to the finite-sum minimization problems. Dif-
ferent from the vanilla SGD and other modern
stochastic methods such as SVRG, S2GD, SAG
and SAGA, SARAH admits a simple recursive
framework for updating stochastic gradient esti-
mates; when comparing to SAG/SAGA, SARAH
does not require a storage of past gradients. The
linear convergence rate of SARAH is proven un-
der strong convexity assumption. We also prove
a linear convergence rate (in the strongly convex
case) for an inner loop of SARAH, the property
that SVRG does not possess. Numerical exper-
iments demonstrate the efficiency of our algo-
rithm.

1. Introduction
We are interested in solving a problem of the form

min
w∈Rd

 P (w)
def
=

1

n

∑
i∈[n]

fi(w)

 , (1)

where each fi, i ∈ [n]
def
= {1, . . . , n} is a convex function

with a Lipschitz continuous gradient. Throughout the pa-
per, we assume that there exists an optimal solution w∗ of
(1).

Problems of this type arise frequently in supervised learn-
ing applications (Hastie et al., 2009). Given a training set
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{(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ R, the least squares re-
gression model, for example, is written as (1) with fi(w)

def
=

(xTi w−yi)2+ λ
2 ‖w‖

2, where ‖·‖ denotes the `2-norm. The
`2-regularized logistic regression for binary classification
is written with fi(w)

def
= log(1 + exp(−yixTi w)) + λ

2 ‖w‖
2

(yi ∈ {−1, 1}).

In recent years, many advanced optimization methods have
been developed for problem (1). While the objective func-
tion is smooth and convex, the traditional optimization
methods, such as gradient descent (GD) or Newton method
are often impractical for this problem, when n – the num-
ber of training samples and hence the number of fi’s is very
large. In particular, GD updates iterates as follows

wt+1 = wt − ηt∇P (wt), t = 0, 1, 2, . . . .

Under strong convexity assumption on P and with appro-
priate choice of ηt, GD converges at a linear rate in terms
of objective function values P (wt). However, when n is
large, computing ∇P (wt) at each iteration can be pro-
hibitive.

As an alternative, stochastic gradient descent (SGD), orig-
inating from the seminal work of Robbins and Monro in
1951 (Robbins & Monro, 1951), has become the method
of choice for solving (1). At each step, SGD picks an in-
dex i ∈ [n] uniformly at random, and updates the iterate as
wt+1 = wt − ηt∇fi(wt), which is up-to n times cheaper
than an iteration of a full gradient method. The conver-
gence rate of SGD is slower than that of GD, in particular, it
is sublinear in the strongly convex case. The tradeoff, how-
ever, is advantageous due to the tremendous per-iteration
savings and the fact that low accuracy solutions are suffi-
cient. This trade-off has been thoroughly analyzed in (Bot-
tou, 1998). Unfortunately, in practice SGD method is often
too slow and its performance is too sensitive to the vari-
ance in the sample gradients∇fi(wt). Use of mini-batches
(averaging multiple sample gradients ∇fi(wt)) was used
in (Shalev-Shwartz et al., 2007; Cotter et al., 2011; Takáč
et al., 2013) to reduce the variance and improve conver-
gence rate by constant factors. Using diminishing sequence
{ηt} is used to control the variance (Shalev-Shwartz et al.,
2011; Bottou, 1998; Bottou et al., 2016), but the practical
convergence of SGD is known to be very sensitive to the
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Table 1: Comparisons between different algorithms for strongly
convex functions. The condition number κ = L/µ is of order
O(n) in general.

Method Complexity
Fixed

Learning
Rate

Low
Storage

Cost
GD O (nκ log (1/ε)) " "

SGD O (1/ε) % "

SVRG O ((n+ κ) log (1/ε)) " "

SAG/SAGA O ((n+ κ) log (1/ε)) " %

SARAH O ((n+ κ) log (1/ε)) " "

Table 2: Comparisons between different algorithms for convex
functions.

Method Complexity
GD O (n/ε)

SGD O
(
1/ε2

)
SVRG O (n+ (

√
n/ε))

SAGA O (n+ (n/ε))
SARAH O ((n+ (1/ε)) log(1/ε))

SARAH (one outer
loop) O

(
n+ (1/ε2)

)
choice of this sequence, which needs to be hand-picked.

Recently, a class of more sophisticated algorithms have
emerged, which use the specific finite-sum form of (1) and
combine some deterministic and stochastic aspects to re-
duce variance of the steps. The examples of these meth-
ods are SAG/SAGA (Le Roux et al., 2012; Defazio et al.,
2014), SDCA (Shalev-Shwartz & Zhang, 2013), SVRG
(Johnson & Zhang, 2013; Xiao & Zhang, 2014), DIAG
(Mokhtari et al., 2017), MISO (Mairal, 2013) and S2GD
(Konečný & Richtárik, 2013; Konečný et al., 2016), all of
which enjoy faster convergence rate than that of SGD and
use a fixed learning rate parameter η. In this paper we in-
troduce a new method in this category, SARAH, which fur-
ther improves several aspects of the existing methods. In
Table 1 we summarize complexity and some other proper-
ties of the existing methods and SARAH when applied to
strongly convex problems.

In addition, theoretical results for complexity of the meth-
ods or their variants when applied to general convex func-
tions have been derived (Schmidt et al., 2016; Defazio
et al., 2014; Reddi et al., 2016; Allen-Zhu & Yuan, 2016;
Allen-Zhu, 2017). In Table 2 we summarize the key com-
plexity results, noting that convergence rate is now sublin-
ear.

Our Contributions. In this paper, we propose a novel
algorithm which combines some of the good properties of
existing algorithms, such as SAGA and SVRG, while aim-
ing to improve on both of these methods. In particular, our
algorithm does not take steps along a stochastic gradient
direction, but rather along an accumulated direction using

past stochastic gradient information (as in SAGA) and oc-
casional exact gradient information (as in SVRG). We sum-
marize the key properties of the proposed algorithm below.

• Similarly to SVRG, SARAH’s iterations are divided
into the outer loop where a full gradient is computed
and the inner loop where only stochastic gradient is
computed. Unlike the case of SVRG, the steps of
the inner loop of SARAH are based on accumulated
stochastic information.

• Like SAG/SAGA and SVRG, SARAH has a sublin-
ear rate of convergence for general convex functions,
and a linear rate of convergence for strongly convex
functions.

• SARAH uses a constant learning rate, whose size is
larger than that of SVRG. We analyze and discuss the
optimal choice of the learning rate and the number
of inner loop steps. However, unlike SAG/SAGA but
similar to SVRG, SARAH does not require a storage
of n past stochastic gradients.

• We also prove a linear convergence rate (in the
strongly convex case) for the inner loop of SARAH,
the property that SVRG does not possess. We show
that the variance of the steps inside the inner loop goes
to zero, thus SARAH is theoretically more stable and
reliable than SVRG.

• We provide a practical variant of SARAH based on
the convergence properties of the inner loop, where
the simple stable stopping criterion for the inner loop
is used (see Section 4 for more details). This vari-
ant shows how SARAH can be made more stable than
SVRG in practice.

2. Stochastic Recursive Gradient Method
Now we are ready to present our SARAH algorithm (Al-
gorithm 1). The key step of the algorithm is a recursive
update of the stochastic gradient estimate (SARAH update)

vt = ∇fit(wt)−∇fit(wt−1) + vt−1, (2)

followed by the iterate update:

wt+1 = wt − ηvt. (3)

For comparison, SVRG update can be written in a similar
way as

vt = ∇fit(wt)−∇fit(w0) + v0. (4)

Observe that in SVRG, vt is an unbiased estimator of the
gradient, while it is not true for SARAH. Specifically, 1

E[vt|Ft] = ∇P (wt)−∇P (wt−1)+vt−1 6= ∇P (wt), (5)

1 E[·|Ft] = Eit [·], which is expectation with respect to the
random choice of index it (conditioned on w0, i1, i2, . . . , it−1).
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Algorithm 1 SARAH

Parameters: the learning rate η > 0 and the inner loop
size m.
Initialize: w̃0

Iterate:
for s = 1, 2, . . . do
w0 = w̃s−1

v0 = 1
n

∑n
i=1∇fi(w0)

w1 = w0 − ηv0
Iterate:
for t = 1, . . . ,m− 1 do

Sample it uniformly at random from [n]
vt = ∇fit(wt)−∇fit(wt−1) + vt−1
wt+1 = wt − ηvt

end for
Set w̃s = wt with t chosen uniformly at random from
{0, 1, . . . ,m}

end for

where 2 Ft = σ(w0, i1, i2, . . . , it−1) is the σ-algebra gen-
erated by w0, i1, i2, . . . , it−1; F0 = F1 = σ(w0). Hence,
SARAH is different from other stochastic methods, such
as SGD, SVRG, SAG/SAGA, however, the following total
expectation holds

E[vt] = E[∇P (wt)].

SARAH is similar to SVRG (Johnson & Zhang, 2013)
since they both contain outer loops which require one full
gradient evaluation per outer iteration followed by one
full gradient descent step with a given learning rate. The
difference lies in the inner loop, where SARAH updates
the stochastic step direction vt recursively by adding and
subtracting component gradients to and from the previ-
ous vt−1 (t ≥ 1) in (2). Each inner iteration evaluates 2
stochastic gradients and hence the total work per outer it-
eration is O(n + m) in terms of the number of gradient
evaluations. Note that due to its nature, without running
the inner loop, i.e., m = 1, SARAH reduces to the GD
algorithm.

3. Theoretical Analysis
To proceed with the analysis of the proposed algorithm, we
will make the following common assumptions.

Assumption 1 (L-smooth). Each fi : Rd → R, i ∈ [n], is
L-smooth, i.e., there exists a constant L > 0 such that

‖∇fi(w)−∇fi(w′)‖ ≤ L‖w − w′‖, ∀w,w′ ∈ Rd.

Note that this assumption implies that P (w) =
1
n

∑n
i=1 fi(w) is also L-smooth. The following strong con-

2Ft also contains all the information of w0, . . . , wt as well as
v0, . . . , vt−1.

vexity assumption will be made for the appropriate parts of
the analysis, otherwise, it would be dropped.

Assumption 2a (µ-strongly convex). The function P :
Rd → R, is µ-strongly convex, i.e., there exists a constant
µ > 0 such that ∀w,w′ ∈ Rd,

P (w) ≥ P (w′) +∇P (w′)T (w − w′) + µ
2 ‖w − w

′‖2.

Another, stronger, assumption of µ-strong convexity for (1)
will also be imposed when required in our analysis. Note
that Assumption 2b implies Assumption 2a but not vice
versa.

Assumption 2b. Each function fi : Rd → R, i ∈ [n], is
strongly convex with µ > 0.

Under Assumption 2a, let us define the (unique) optimal
solution of (1) as w∗, Then strong convexity of P implies
that

2µ[P (w)− P (w∗)] ≤ ‖∇P (w)‖2, ∀w ∈ Rd. (6)

We note here, for future use, that for strongly convex func-
tions of the form (1), arising in machine learning applica-
tions, the condition number κ def

= L/µ is usually O(n).

Finally, as a special case of the strong convexity of all fi’s
with µ = 0, we state the general convexity assumption,
which we will use for convergence analysis.

Assumption 3. Each function fi : Rd → R, i ∈ [n], is
convex, i.e.,

fi(w) ≥ fi(w′) +∇fi(w′)T (w − w′), ∀i ∈ [n].

Again, we note that Assumption 2b implies Assumption 3,
but Assumption 2a does not. Hence in our analysis, de-
pending on the result we aim at, we will require Assump-
tion 3 to hold by itself, or Assumption 2a and Assumption 3
to hold together, or Assumption 2b to hold by itself. We
will always use Assumption 1.

Our iteration complexity analysis aims to bound the num-
ber of outer iterations T (or total number of stochastic
gradient evaluations) which is needed to guarantee that
‖∇P (wT )‖2 ≤ ε. In this case we will say that wT is an
ε-accurate solution. However, as is common practice for
stochastic gradient algorithms, we aim to obtain the bound
on the number of iterations, which is required to guarantee
the bound on the expected squared norm of a gradient, i.e.,

E[‖∇P (wT )‖2] ≤ ε. (7)

3.1. Linearly Diminishing Step-Size in a Single Inner
Loop

The most important property of the SVRG algorithm is the
variance reduction of the steps. This property holds as the
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A Simple Example with SVRG
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Figure 1: A two-dimensional example of minw P (w) with n = 5
for SVRG (left) and SARAH (right).
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Figure 2: An example of `2-regularized logistic regression on
rcv1 training dataset for SARAH, SVRG, SGD+ and FISTA with
multiple outer iterations (left) and a single outer iteration (right).

number of outer iteration grows, but it does not hold, if only
the number of inner iterations increases. In other words, if
we simply run the inner loop for many iterations (without
executing additional outer loops), the variance of the steps
does not reduce in the case of SVRG, while it goes to zero
in the case of SARAH. To illustrate this effect, let us take a
look at Figures 1 and 2.

In Figure 1, we applied one outer loop of SVRG and
SARAH to a sum of 5 quadratic functions in a two-
dimensional space, where the optimal solution is at the ori-
gin, the black lines and black dots indicate the trajectory of
each algorithm and the red point indicates the final iterate.
Initially, both SVRG and SARAH take steps along stochas-
tic gradient directions towards the optimal solution. How-
ever, later iterations of SVRG wander randomly around the
origin with large deviation from it, while SARAH follows a
much more stable convergent trajectory, with a final iterate
falling in a small neighborhood of the optimal solution.

In Figure 2, the x-axis denotes the number of effective
passes which is equivalent to the number of passes through
all of the data in the dataset, the cost of each pass being
equal to the cost of one full gradient evaluation; and y-axis
represents ‖vt‖2. Figure 2 shows the evolution of ‖vt‖2
for SARAH, SVRG, SGD+ (SGD with decreasing learn-
ing rate) and FISTA (an accelerated version of GD (Beck
& Teboulle, 2009)) withm = 4n, where the left plot shows
the trend over multiple outer iterations and the right plot

shows a single outer iteration3. We can see that for SVRG,
‖vt‖2 decreases over the outer iterations, while it has an
increasing trend or oscillating trend for each inner loop.
In contrast, SARAH enjoys decreasing trends both in the
outer and the inner loop iterations.

We will now show that the stochastic steps computed by
SARAH converge linearly in the inner loop. We present
two linear convergence results based on our two different
assumptions of µ-strongly convexity. These results substan-
tiate our conclusion that SARAH uses more stable stochas-
tic gradient estimates than SVRG. The following theorem
is our first result to demonstrate the linear convergence of
our stochastic recursive step vt.
Theorem 1a. Suppose that Assumptions 1, 2a and 3 hold.
Consider vt defined by (2) in SARAH (Algorithm 1) with
η < 2/L. Then, for any t ≥ 1,

E[‖vt‖2] ≤
[
1−

(
2
ηL − 1

)
µ2η2

]
E[‖vt−1‖2]

≤
[
1−

(
2
ηL − 1

)
µ2η2

]t
E[‖∇P (w0)‖2].

This result implies that by choosing η = O(1/L), we ob-
tain the linear convergence of ‖vt‖2 in expectation with the
rate (1− 1/κ2). Below we show that a better convergence
rate can be obtained under a stronger convexity assumption.
Theorem 1b. Suppose that Assumptions 1 and 2b hold.
Consider vt defined by (2) in SARAH (Algorithm 1) with
η ≤ 2/(µ+ L). Then the following bound holds,

E[‖vt‖2] ≤
(

1− 2µLη

µ+ L

)
E[‖vt−1‖2], ∀ t ≥ 1,

and hence,

E[‖vt‖2] ≤
(

1− 2µLη

µ+ L

)t
E[‖∇P (w0)‖2], ∀ t ≥ 1.

Again, by setting η = O(1/L), we derive the linear con-
vergence with the rate of (1 − 1/κ), which is a significant
improvement over the result of Theorem 1a, when the prob-
lem is severely ill-conditioned.

3.2. Convergence Analysis

We will now derive the general convergence rate results for
Algorithm 1 in the cases of general convex and strongly
convex functions.

We begin with proving two useful lemmas that do not re-
quire any convexity assumption. The first Lemma 1 bounds
the sum of expected values of ‖∇P (wt)‖2. The second,
Lemma 2, bounds E[‖∇P (wt)− vt‖2].

3In the plots of Figure 2, since the data for SVRG is noisy, we
smooth it by using moving average filters with spans 100 for the
left plot and 10 for the right one.
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Lemma 1. Suppose that Assumption 1 holds. Consider
SARAH (Algorithm 1). Then, we have

m∑
t=0

E[‖∇P (wt)‖2] ≤ 2

η
E[P (w0)− P (w∗)] (8)

+

m∑
t=0

E[‖∇P (wt)− vt‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2].

Lemma 2. Suppose that Assumption 1 holds. Consider vt
defined by (2) in SARAH (Algorithm 1). Then for any t ≥ 1,

E[‖∇P (wt)− vt‖2] =

t∑
j=1

E[‖vj − vj−1‖2]

−
t∑

j=1

E[‖∇P (wj)−∇P (wj−1)‖2].

Now we are ready to provide the main theoretical results
for SARAH.

3.2.1. GENERAL CONVEX CASE

Following from Lemma 2, we can obtain the following up-
per bound for E[‖∇P (wt) − vt‖2] for convex functions
fi, i ∈ [n].

Lemma 3. Suppose that Assumptions 1 and 3 hold. Con-
sider vt defined as (2) in SARAH (Algorithm 1) with η <
2/L. Then we have that for any t ≥ 1,

E[‖∇P (wt)− vt‖2] ≤ ηL

2− ηL

[
E[‖v0‖2]− E[‖vt‖2]

]
≤ ηL

2− ηL
E[‖v0‖2]. (9)

Using the above lemmas, we can state and prove one of our
core theorems as follows.

Theorem 2. Suppose that Assumptions 1 and 3 hold. Con-
sider SARAH (Algorithm 1) with η ≤ 1/L. Then for any
s ≥ 1, we have

E[‖∇P (w̃s)‖2] ≤ 2

η(m+ 1)
E[P (w̃s−1)− P (w∗)]

+
ηL

2− ηL
E[‖∇P (w̃s−1)‖2]. (10)

Proof. Since v0 = ∇P (w0) implies ‖∇P (w0)−v0‖2 = 0
then by Lemma 3, we can write∑m

t=0E[‖∇P (wt)− vt‖2] ≤ mηL
2−ηLE[‖v0‖2]. (11)

Hence, by Lemma 1 with η ≤ 1/L, we have

m∑
t=0

E[‖∇P (wt)‖2]

≤ 2

η
E[P (w0)− P (w∗)] +

m∑
t=0

E[‖∇P (wt)− vt‖2]

(11)
≤ 2

η
E[P (w0)− P (w∗)] +

mηL

2− ηL
E[‖v0‖2]. (12)

Since we are considering one outer iteration, with s ≥ 1,
then we have v0 = ∇P (w0) = ∇P (w̃s−1) (since w0 =
w̃s−1), and w̃s = wt, where t is picked uniformly at ran-
dom from {0, 1, . . . ,m}. Therefore, the following holds,

E[‖∇P (w̃s)‖2] =
1

m+ 1

m∑
t=0

E[‖∇P (wt)‖2]

(12)
≤ 2

η(m+ 1)
E[P (w̃s−1)− P (w∗)]

+
ηL

2− ηL
E[‖∇P (w̃s−1)‖2].

Theorem 2, in the case when η ≤ 1/L implies that

E[‖∇P (w̃s)‖2] ≤ 2

η(m+ 1)
E[P (w̃s−1)− P (w∗)]

+ ηLE[‖∇P (w̃s−1)‖2].

By choosing the learning rate η =
√

2
L(m+1) (with m such

that
√

2
L(m+1) ≤ 1/L) we can derive the following con-

vergence result,

E[‖∇P (w̃s)‖2]

≤
√

2L
m+1E[P (w̃s−1)− P (w∗) + ‖∇P (w̃s−1)‖2].

Clearly, this result shows a sublinear convergence rate for
SARAH under general convexity assumption within a sin-
gle inner loop, with increasing m, and consequently, we
have the following result for complexity bound.

Corollary 1. Suppose that Assumptions 1 and 3 hold. Con-
sider SARAH (Algorithm 1) within a single outer iteration
with the learning rate η =

√
2

L(m+1) wherem ≥ 2L−1 is

the total number of iterations, then ‖∇P (wt)‖2 converges

sublinearly in expectation with a rate of
√

2L
m+1 , and there-

fore, the total complexity to achieve an ε-accurate solution
defined in (7) is O(n+ 1/ε2).

We now turn to estimating convergence of SARAH with
multiple outer steps. Simply using Theorem 2 for each of
the outer steps we have the following lemma.



SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient

m ×10
7

0 0.5 1 1.5 2

L
e
a
rn

in
g

 R
a
te

0.1259

0.1995

0.3162

0.5012

0.7943

1.2589

1.9953

Evolutions of Learning Rates

σm (SARAH)
αm (SVRG)

m ×10
7

0 0.5 1 1.5 2

C
o

n
v
e
rg

e
n

c
e
 R

a
te

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Evolutions of Convergence Rates

σm (SARAH)
αm (SVRG)

m ×10
7

0.8 1 1.2 1.4 1.6 1.8 2

C
o

n
v
e
rg

e
n

c
e
 R

a
te

0.4

0.6

0.8

1

1.2

1.4

1.6

Evolutions of Convergence Rates

σm (SARAH)
αm (SVRG)

Figure 3: Theoretical comparisons of learning rates (left) and convergence rates (middle and right) with n = 1, 000, 000 for SVRG and
SARAH in one inner loop.

Theorem 3. Suppose that Assumptions 1 and 3 hold. Con-
sider SARAH (Algorithm 1) and define

δk = 2
η(m+1)E[P (w̃k)− P (w∗)], k = 0, 1, . . . , s− 1,

and δ = max0≤k≤s−1 δk. Then we have

E[‖∇P (w̃s)‖2]−∆ ≤ αs(‖∇P (w̃0)‖2 −∆), (13)

where ∆ = δ
(

1 + ηL
2(1−ηL)

)
, and α = ηL

2−ηL .

Based on Theorem 3, we have the following total complex-
ity for SARAH in the general convex case.

Corollary 2. Let us choose ∆ = ε/4, α = 1/2 (with η =
2/(3L)), and m = O(1/ε) in Theorem 3. Then, the total
complexity to achieve an ε-accuracy solution defined in (7)
is O((n+ (1/ε)) log(1/ε)).

3.2.2. STRONGLY CONVEX CASE

We now turn to the discussion of the linear convergence
rate of SARAH under the strong convexity assumption on
P . From Theorem 2, for any s ≥ 1, using property (6) of
the µ-strongly convex P , we have

E[‖∇P (w̃s)‖2] ≤ 2
η(m+1)E[P (w̃s−1)− P (w∗)]

+ ηL
2−ηLE[‖∇P (w̃s−1)‖2]

(6)
≤
(

1
µη(m+1) + ηL

2−ηL

)
E[‖∇P (w̃s−1)‖2],

and equivalently,

E[‖∇P (w̃s)‖2] ≤ σm E[‖∇P (w̃s−1)‖2]. (14)

If we define

σm
def
= 1

µη(m+1) + ηL
2−ηL . (15)

Then by choosing η and m such that σm < 1, and applying
(14) recursively, we are able to reach the following conver-
gence result.

Theorem 4. Suppose that Assumptions 1, 2a and 3 hold.
Consider SARAH (Algorithm 1) with the choice of η and m
such that

σm
def
=

1

µη(m+ 1)
+

ηL

2− ηL
< 1. (16)

Then, we have

E[‖∇P (w̃s)‖2] ≤ (σm)s‖∇P (w̃0)‖2.

Remark 1. Theorem 4 implies that any η < 1/L will work
for SARAH. Let us compare our convergence rate to that of
SVRG. The linear rate of SVRG, as presented in (Johnson
& Zhang, 2013), is given by

αm =
1

µη(1− 2Lη)m
+

2ηL

1− 2ηL
< 1.

We observe that it implies that the learning rate has to
satisfy η < 1/(4L), which is a tighter restriction than
η < 1/L required by SARAH. In addition, with the same
values of m and η, the rate or convergence of (the outer
iterations) of SARAH is always smaller than that of SVRG.

σm =
1

µη(m+ 1)
+

ηL

2− ηL
=

1

µη(m+ 1)
+

1

2/(ηL)− 1

<
1

µη(1− 2Lη)m
+

1

0.5/(ηL)− 1
= αm.

Remark 2. To further demonstrate the better convergence
properties of SARAH, let us consider following optimiza-
tion problem

min
0<η<1/L

σm, min
0<η<1/4L

αm,

which can be interpreted as the best convergence rates for
different values of m, for both SARAH and SVRG. After
simple calculations, we plot both learning rates and the
corresponding theoretical rates of convergence, as shown
in Figure 3, where the right plot is a zoom-in on a part
of the middle plot. The left plot shows that the optimal
learning rate for SARAH is significantly larger than that of
SVRG, while the other two plots show significant improve-
ment upon outer iteration convergence rates for SARAH
over SVRG.

Based on Theorem 4, we are able to derive the following
total complexity for SARAH in the strongly convex case.
Corollary 3. Fix ε ∈ (0, 1), and let us run SARAH with
η = 1/(2L) and m = 4.5κ for T iterations where
T = dlog(‖∇P (w̃0)‖2/ε)/ log(9/7)e, then we can derive
an ε-accuracy solution defined in (7). Furthermore, we
can obtain the total complexity of SARAH, to achieve the
ε-accuracy solution, as O ((n+ κ) log(1/ε)) .
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4. A Practical Variant
While SVRG is an efficient variance-reducing stochastic
gradient method, one of its main drawbacks is the sensitiv-
ity of the practical performance with respect to the choice
of m. It is know that m should be around O(κ),4 while it
still remains unknown that what the exact best choice is. In
this section, we propose a practical variant of SARAH as
SARAH+ (Algorithm 2), which provides an automatic and
adaptive choice of the inner loop sizem. Guided by the lin-
ear convergence of the steps in the inner loop, demostrated
in Figure 2, we introduce a stoping criterion based on the
values of ‖vt‖2 while upper-bounding the total number of
steps by a large enough m for robustness. The other mod-
ification compared to Algorithm 1 is the more practical
choice w̃s = wt, where t is the last index of the partic-
ular inner loop, instead of randomly selected intermediate
index.

Algorithm 2 SARAH+

Parameters: the learning rate η > 0, 0 < γ ≤ 1 and the
maximum inner loop size m.
Initialize: w̃0

Iterate:
for s = 1, 2, . . . do
w0 = w̃s−1

v0 = 1
n

∑n
i=1∇fi(w0)

w1 = w0 − ηv0
t = 1
while ‖vt−1‖2 > γ‖v0‖2 and t < m do

Sample it uniformly at random from [n]
vt = ∇fit(wt)−∇fit(wt−1) + vt−1
wt+1 = wt − ηvt
t = t+ 1

end while
Set w̃s = wt

end for

Different from SARAH, SARAH+ provides a possibility of
earlier termination and unnecessary careful choices of m,
and it also covers the classical gradient descent when we
set γ = 1 (since the while loop does not proceed). In Fig-
ure 4 we present the numerical performance of SARAH+
with different γs on rcv1 and news20 datasets. The size
of the inner loop provides a trade-off between the fast sub-
linear convergence in the inner loop and linear convergence
in the outer loop. From the results, it appears that γ = 1/8
is the optimal choice. With a larger γ, i.e. γ > 1/8, the
iterates in the inner loop do not provide sufficient reduc-
tion, before another full gradient computation is required,
while with γ < 1/8 an unnecessary number of inner steps

4 In practice, when n is large, P (w) is often considered as a
regularized Empirical Loss Minimization problem with regular-
ization parameter µ = 1

n
, then κ ∼ O(n).
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Figure 4: An example of `2-regularized logistic regression on
rcv1 (left) and news20 (right) training datasets for SARAH+ with
different γs on loss residuals P (w)− P (w∗).

Table 3: Summary of datasets used for experiments.

Dataset d n (train) Sparsity n (test) L

covtype 54 406,709 22.12% 174,303 1.90396
ijcnn1 22 91, 701 59.09% 49, 990 1.77662
news20 1,355,191 13, 997 0.03375% 5, 999 0.2500

rcv1 47,236 677,399 0.1549% 20,242 0.2500

is performed without gaining substantial progress. Clearly
γ is another parameter that requires tuning, however, in our
experiments, the performance of SARAH+ has been very
robust with respect to the choices of γ and did not vary
much from one data set to another.

5. Numerical Experiments
To support the theoretical analyses and insights, we
present our empirical experiments, comparing SARAH and
SARAH+ with the state-of-the-art first-order methods for
`2-regularized logistic regression problems with

fi(w) = log(1 + exp(−yixTi w)) + λ
2 ‖w‖

2,

on datasets covtype, ijcnn1, news20 and rcv1 5. For ijcnn1
and rcv1 we use the predefined testing and training sets,
while covtype and news20 do not have test data, hence we
randomly split the datasets with 70% for training and 30%
for testing. Some statistics of the datasets are summarized
in Table 3.

The penalty parameter λ is set to 1/n as is common prac-
tice (Le Roux et al., 2012; Konečný et al., 2016). Note
that like SVRG/S2GD and SAG/SAGA, SARAH also al-
lows an efficient sparse implementation named “lazy up-
dates” (Konečný et al., 2016). We conduct and com-
pare numerical results of SARAH with SVRG, SAG,
SGD+ and FISTA. SVRG (Johnson & Zhang, 2013) and
SAG (Le Roux et al., 2012) are classic modern stochas-
tic methods. SGD+ is SGD with decreasing learning
rate η = η0/(k + 1) where k is the number of ef-
fective passes and η0 is some initial constant learning
rate. FISTA (Beck & Teboulle, 2009) is the Fast Iterative
Shrinkage-Thresholding Algorithm, well-known as an ef-
ficient accelerated version of the gradient descent. Even

5All datasets are available at http://www.csie.ntu.
edu.tw/˜cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 5: Comparisons of loss residuals P (w) − P (w∗) (top) and test errors (bottom) from different modern stochastic methods on
covtype, ijcnn1, news20 and rcv1.

Table 4: Summary of best parameters for all the algorithms on
different datasets.

Dataset SARAH
(m∗, η∗)

SVRG
(m∗, η∗)

SAG
(η∗)

SGD+
(η∗)

FISTA
(η∗)

covtype (2n, 0.9/L) (n, 0.8/L) 0.3/L 0.06/L 50/L
ijcnn1 (0.5n, 0.8/L) (n, 0.5/L) 0.7/L 0.1/L 90/L
news20 (0.5n, 0.9/L) (n, 0.5/L) 0.1/L 0.2/L 30/L

rcv1 (0.7n, 0.7/L) (0.5n, 0.9/L) 0.1/L 0.1/L 120/L

though for each method, there is a theoretical safe learning
rate, we compare the results for the best learning rates in
hindsight.

Figure 5 shows numerical results in terms of loss residuals
(top) and test errors (bottom) on the four datasets, SARAH
is sometimes comparable or a little worse than other meth-
ods at the beginning. However, it quickly catches up to or
surpasses all other methods, demonstrating a faster rate of
decrease across all experiments. We observe that on cov-
type and rcv1, SARAH, SVRG and SAG are comparable
with some advantage of SARAH on covtype. On ijcnn1
and news20, SARAH and SVRG consistently surpass the
other methods.

In particular, to validate the efficiency of our practical vari-
ant SARAH+, we provide an insight into how important
the choices of m and η are for SVRG and SARAH in Ta-
ble 4 and Figure 6. Table 4 presents the optimal choices of
m and η for each of the algorithm, while Figure 6 shows
the behaviors of SVRG and SARAH with different choices
of m for covtype and ijcnn1, where m∗s denote the best
choices. As observed in Figure 6, the behaviors of both
SARAH and SVRG are quite sensitive to the choices of m.
With improper choices of m, the loss residuals can be in-
creased considerably from 10−15 to 10−3 on both covtype
in 40 effective passes and ijcnn1 in 17 effective passes for
SARAH/SVRG.
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Figure 6: Comparisons of loss residuals P (w) − P (w∗) for dif-
ferent inner loop sizes with SVRG (top) and SARAH (bottom) on
covtype and ijcnn1.

6. Conclusion
We propose a new variance reducing stochastic recur-
sive gradient algorithm SARAH, which combines some of
the properties of well known existing algorithms, such as
SAGA and SVRG. For smooth convex functions, we show
a sublinear convergence rate, while for strongly convex
cases, we prove the linear convergence rate and the compu-
tational complexity as those of SVRG and SAG. However,
compared to SVRG, SARAH’s convergence rate constant
is smaller and the algorithms is more stable both theoret-
ically and numerically. Additionally, we prove the linear
convergence for inner loops of SARAH which support the
claim of stability. Based on this convergence we derive a
practical version of SARAH, with a simple stopping crite-
rion for the inner loops.
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A. Technical Results
Lemma 4 (Theorem 2.1.5 in (Nesterov, 2004)). Suppose that f is convex and L-smooth. Then, for any w, w′ ∈ Rd,

f(w) ≤ f(w′) +∇f(w′)T (w − w′) +
L

2
‖w − w′‖2, (17)

f(w) ≥ f(w′) +∇f(w′)T (w − w′) +
1

2L
‖∇f(w)−∇f(w′)‖2, (18)

(∇f(w)−∇f(w′))T (w − w′) ≥ 1

L
‖∇f(w)−∇f(w′)‖2. (19)

Note that (17) does not require the convexity of f .

Lemma 5 (Theorem 2.1.11 in (Nesterov, 2004)). Suppose that f is µ-strongly convex and L-smooth. Then, for any w,
w′ ∈ Rd,

(∇f(w)−∇f(w′))T (w − w′) ≥ µL

µ+ L
‖w − w′‖2 +

1

µ+ L
‖∇f(w)−∇f(w′)‖2. (20)

Lemma 6 (Choices of m and η). Consider the rate of convergence σm in Theorem 4. If we choose η = 1/(θL) with θ > 1
and fix σm, then the best choice of m is

m∗ =
1

2
(2θ∗ − 1)2κ− 1,

where κ
def
= L/µ, with θ∗ calculated as:

θ∗ =
σm + 1 +

√
σm + 1

2σm
.

Furthermore, we require θ∗ > 1 +
√

2/2 for σm < 1.

B. Proofs
B.1. Proof of Lemma 1

By Assumption 1 and wt+1 = wt − ηvt, we have

E[P (wt+1)]
(17)
≤ E[P (wt)]− ηE[∇P (wt)T vt] +

Lη2

2
E[‖vt‖2]

= E[P (wt)]− η

2
E[‖∇P (wt)‖2] +

η

2
E[‖∇P (wt)− vt‖2]−

(
η

2
− Lη2

2

)
E[‖vt‖2],

where the last equality follows from the fact aT b = 1
2

[
‖a‖2 + ‖b‖2 − ‖a− b‖2

]
.

By summing over t = 0, . . . ,m, we have

E[P (wm+1)] ≤ E[P (w0)]− η

2

m∑
t=0

E[‖∇P (wt)‖2] +
η

2

m∑
t=0

E[‖∇P (wt)− vt‖2]−
(
η

2
− Lη2

2

) m∑
t=0

E[‖vt‖2],

which is equivalent to (η > 0):

m∑
t=0

E[‖∇P (wt)‖2] ≤ 2

η
E[P (w0)− P (wm+1)] +

m∑
t=0

E[‖∇P (wt)− vt‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2]

≤ 2

η
E[P (w0)− P (w∗)] +

m∑
t=0

E[‖∇P (wt)− vt‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2],

where the last inequality follows since w∗ is a global minimizer of P .
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B.2. Proof of Lemma 2

Note that Fj contains all the information of w0, . . . , wj as well as v0, . . . , vj−1. For j ≥ 1, we have

E[‖∇P (wj)− vj‖2|Fj ] = E[‖[∇P (wj−1)− vj−1] + [∇P (wj)−∇P (wj−1)]− [vj − vj−1]‖2|Fj ]
= ‖∇P (wj−1)− vj−1‖2 + ‖∇P (wj)−∇P (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ]

+ 2(∇P (wj−1)− vj−1)T (∇P (wj)−∇P (wj−1))

− 2(∇P (wj−1)− vj−1)TE[vj − vj−1|Fj ]
− 2(∇P (wj)−∇P (wj−1))TE[vj − vj−1|Fj ]

= ‖∇P (wj−1)− vj−1‖2 − ‖∇P (wj)−∇P (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ],

where the last equality follows from

E[vj − vj−1|Fj ]
(2)
= E[∇fij (wj)−∇fij (wj−1)|Fj ] = ∇P (wj)−∇P (wj−1).

By taking expectation for the above equation, we have

E[‖∇P (wj)− vj‖2] = E[‖∇P (wj−1)− vj−1‖2]− E[‖∇P (wj)−∇P (wj−1)‖2] + E[‖vj − vj−1‖2].

Note that ‖∇P (w0)− v0‖2 = 0. By summing over j = 1, . . . , t (t ≥ 1), we have

E[‖∇P (wt)− vt‖2] =

t∑
j=1

E[‖vj − vj−1‖2]−
t∑

j=1

E[‖∇P (wj)−∇P (wj−1)‖2].

B.3. Proof of Lemma 3

For j ≥ 1, we have

E[‖vj‖2|Fj ] = E[‖vj−1 − (∇fij (wj−1)−∇fij (wj))‖2|Fj ]

= ‖vj−1‖2 + E
[
‖∇fij (wj−1)−∇fij (wj)‖2 − 2

η (∇fij (wj−1)−∇fij (wj))T (wj−1 − wj)|Fj
]

(19)
≤ ‖vj−1‖2 + E

[
‖∇fij (wj−1)−∇fij (wj)‖2 − 2

Lη‖∇fij (wj−1)−∇fij (wj)‖2|Fj
]

= ‖vj−1‖2 +
(

1− 2
ηL

)
E[‖∇fij (wj−1)−∇fij (wj)‖2|Fj ]

(2)
= ‖vj−1‖2 +

(
1− 2

ηL

)
E[‖vj − vj−1‖2|Fj ],

which, if we take expectation, implies that

E[‖vj − vj−1‖2] ≤ ηL

2− ηL

[
E[‖vj−1‖2]− E[‖vj‖2]

]
,

when η < 2/L.

By summing the above inequality over j = 1, . . . , t (t ≥ 1), we have

t∑
j=1

E[‖vj − vj−1‖2] ≤ ηL

2− ηL

[
E[‖v0‖2]− E[‖vt‖2]

]
. (21)

By Lemma 2, we have

E[‖∇P (wt)− vt‖2] ≤
t∑

j=1

E[‖vj − vj−1‖2]
(21)
≤ ηL

2− ηL

[
E[‖v0‖2]− E[‖vt‖2]

]
.
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B.4. Proof of Lemma 6

With η = 1/(θL) and κ = L/µ, the rate of convergence αm can be written as

σm
(16)
=

1

µη(m+ 1)
+

ηL

2− ηL
=

θL

µ(m+ 1)
+

1/θ

2− 1/θ
=

(
κ

m+ 1

)
θ +

1

2θ − 1
,

which is equivalent to

m(θ)
def
= m =

θ(2θ − 1)

σm(2θ − 1)− 1
κ− 1.

Since σm is considered fixed, then the optimal choice of m in terms of θ can be solved from minθm(θ), or equivalently,
0 = (∂m)/(∂θ) = m′(θ), and therefore we have the equation with the optimal θ satisfying

σm = (4θ∗ − 1)/(2θ∗ − 1)2, (22)

and by plugging it into m(θ) we conclude the optimal m:

m∗ = m(K∗) =
1

2
(2K∗ − 1)2κ− 1,

while by solving for θ∗ in (22) and taking into account that θ > 1, we have the optimal choice of θ:

θ∗ =
σm + 1 +

√
σm + 1

2σm
.

Obviously, for σm < 1, we require θ∗ > 1 +
√

2/2.

B.5. Proof of Theorem 1a

For t ≥ 1, we have

‖∇P (wt)−∇P (wt−1)‖2 =
∥∥∥ 1

n

n∑
i=1

[∇fi(wt)−∇fi(wt−1)]
∥∥∥2

≤ 1

n

n∑
i=1

‖∇fi(wt)−∇fi(wt−1)‖2

= E[‖fit(wt)− fit(wt−1)‖2|Ft]. (23)

Using the proof of Lemma 3, for t ≥ 1, we have

E[‖vt‖2|Ft] ≤ ‖vt−1‖2 +
(

1− 2
ηL

)
E[‖∇fit(wt−1)−∇fit(wt)‖2|Ft]

(23)
≤ ‖vt−1‖2 +

(
1− 2

ηL

)
‖∇P (wt)−∇P (wt−1)‖2

≤ ‖vt−1‖2 +
(

1− 2
ηL

)
µ2η2‖vt−1‖2.

Note that 1 − 2
ηL < 0 since η < 2/L. The last inequality follows by the strong convexity of P , that is, µ‖wt − wt−1‖ ≤

‖∇P (wt) − ∇P (wt−1)‖ and the fact that wt = wt−1 − ηvt−1. By taking the expectation and applying recursively, we
have

E[‖vt‖2] ≤
[
1−

(
2
ηL − 1

)
µ2η2

]
E[‖vt−1‖2]

≤
[
1−

(
2
ηL − 1

)
µ2η2

]t
E[‖v0‖2]

=
[
1−

(
2
ηL − 1

)
µ2η2

]t
E[‖∇P (w0)‖2].
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B.6. Proof of Theorem 1b

We obviously have E[‖v0‖2|F0] = ‖∇P (w0)‖2. For t ≥ 1, we have

E[‖vt‖2|Ft]
(2)
= E[‖vt−1 − (∇fit(wt−1)−∇fit(wt))‖2|Ft]
(3)
= ‖vt−1‖2 + E[‖∇fit(wt−1)−∇fit(wt)‖2 − 2

η (∇fit(wt−1)−∇fit(wt))T (wt−1 − wt)|Ft]
(20)
≤ ‖vt−1‖2 − 2µLη

µ+L ‖vt−1‖
2 + E[‖∇fit(wt−1)−∇fit(wt)‖2|Ft]− 2

η ·
1

µ+LE[‖∇fit(wt−1)−∇fit(wt)‖2|Ft]

= (1− 2µLη
µ+L )‖vt−1‖2 + (1− 2

η ·
1

µ+L )E[‖∇fit(wt−1)−∇fit(wt)‖2|Ft]

≤
(

1− 2µLη
µ+L

)
‖vt−1‖2, (24)

where in last inequality we have used that η ≤ 2/(µ+ L). By taking the expectation and applying recursively, the desired
result is achieved.

B.7. Proof of Theorem 3

By Theorem 2, we have

E[‖∇P (w̃s)‖2] ≤ 2

η(m+ 1)
E[P (w̃s−1)− P (w∗)] +

ηL

2− ηL
E[‖∇P (w̃s−1)‖2]

= δs−1 + αE[‖∇P (w̃s−1)‖2]

≤ δs−1 + αδs−2 + · · ·+ αs−1δ0 + αs‖∇P (w̃0)‖2

≤ δ + αδ + · · ·+ αs−1δ + αs‖∇P (w̃0)‖2

≤ δ 1− αs

1− α
+ αs‖∇P (w̃0)‖2

= ∆(1− αs) + αs‖∇P (w̃0)‖2

= ∆ + αs(‖∇P (w̃0)‖2 −∆),

where the second last equality follows since

δ

1− α
= δ

(
2− ηL
2− 2ηL

)
= δ

(
1 +

ηL

2(1− ηL)

)
= ∆.

Hence, the desired result is achieved.

B.8. Proof of Corollary 2

Based on Theorem 3, if we would aim for an ε-accuracy solution, we can choose ∆ = ε/4 and α = 1/2 (with η = 2/(3L)).
To obtain the convergence to an ε-accuracy solution, we need to have δ = O(ε), or equivalently, m = O(1/ε). Then we
have

E[‖∇P (w̃s)‖2]
(13)
≤ ∆

2
+

1

2
E[‖∇P (w̃s−1)‖2]

≤ ∆

2
+

∆

22
+

1

22
E[‖∇P (w̃s−2)‖2]

≤ ∆

(
1

2
+

1

22
+ · · ·+ 1

2s

)
+

1

2s
‖∇P (w̃0)‖2

≤ ∆ +
1

2s
‖∇P (w̃0)‖2.

To guarantee that E[‖∇P (w̃s)‖2] ≤ ε, it is sufficient to make 1
2s ‖∇P (w̃0)‖2 ≤ 3

4ε, or s = O(log(1/ε)). This implies the
total complexity to achieve an ε-accuracy solution is (n+ 2m)s = O((n+ (1/ε)) log(1/ε)).
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B.9. Proof of Corollary 3

Based on Lemma 6 and Theorem 4, let us pick θ∗ = 2, i.e, then we have m∗ = 4.5κ − 1. So let us run SARAH with
η = 1/(2L) and m = 4.5κ, then we can calculate σm in (16) as

σm =
1

µη(m+ 1)
+

ηL

2− ηL
=

1

[µ/(2L)](4.5κ+ 1)
+

1/2

2− 1/2
<

4

9
+

1

3
=

7

9
.

According to Theorem 4, if we run SARAH for T iterations where

T = dlog(‖∇P (w̃0)‖2/ε)/ log(9/7)e = dlog7/9(ε/‖∇P (w̃0)‖2)e ≥ log7/9(ε/‖∇P (w̃0)‖2),

then we have

E[‖∇P (w̃T )‖2] ≤ (σm)T ‖∇P (w̃0)‖2 < (7/9)T ‖∇P (w̃0)‖2 ≤ (7/9)log7/9(ε/‖∇P (w̃0)‖2)‖∇P (w̃0)‖2 = ε,

thus we can derive (7). If we consider the number of gradient evaluations as the main computational complexity, then the
total complexity can be obtained as

(n+ 2m)T = O ((n+ κ) log(1/ε)) .


