
A Stochastic Trust Region Algorithm Based on Careful
Step Normalization

Frank E. Curtis, Katya Scheinberg, and Rui Shi

Department of Industrial and Systems Engineering, Lehigh University

COR@L Technical Report 17T-17-R1

A Stochastic Trust Region Algorithm Based on Careful Step

Normalization

Frank E. Curtis∗1, Katya Scheinberg†1, and Rui Shi‡1

1Department of Industrial and Systems Engineering, Lehigh University

Original Publication: January 27, 2018

Last Revised: June 26, 2018

Abstract

An algorithm is proposed for solving stochastic and finite sum minimization problems. Based on a
trust region methodology, the algorithm employs normalized steps, at least as long as the norms of the
stochastic gradient estimates are within a specified interval. The complete algorithm—which dynamically
chooses whether or not to employ normalized steps—is proved to have convergence guarantees that are
similar to those possessed by a traditional stochastic gradient approach under various sets of conditions
related to the accuracy of the stochastic gradient estimates and choice of stepsize sequence. The results
of numerical experiments are presented when the method is employed to minimize convex and nonconvex
machine learning test problems. These results illustrate that the method can outperform a traditional
stochastic gradient approach.

1 Introduction

The stochastic gradient (SG) method is the signature strategy for solving stochastic and finite-sum min-
imization problems. In this iterative approach, each step to update the solution estimate is obtained by
taking a negative multiple of an unbiased gradient estimate. With careful choices for the stepsize sequence,
the SG method possesses convergence guarantees and has been employed to great success for solving various
types of problems, such as those arising in machine learning. For fundamental work on SG, see [19] and [20].

One disadvantage of the SG method is that stochastic gradients, like the gradients that they approximate,
possess no natural scaling. By this, we mean that in order to guarantee convergence, the algorithm needs
to choose stepsizes in a problem-dependent manner; e.g., common theoretical guarantees require that the
stepsize is proportional to 1/L, where L is a Lipschitz constant for the gradient of the objective function. This
is in contrast to Newton’s method for minimization, for which one can obtain (local) convergence guarantees
with a stepsize of 1. Admittedly, Newton’s method is not generally guaranteed to converge from remote
starting points with unit stepsizes, but these observations do highlight a shortcoming of first-order methods,
namely, that for convergence guarantees the stepsizes need always be chosen in a problem-dependent manner.

The purpose of this paper is to propose a new algorithm for stochastic and finite-sum minimization. Our
proposed approach can be viewed as a modification of the SG method. The approach does not completely
overcome the issue of requiring problem-dependent stepsizes, but we contend that our approach does, for
practical purposes, reduce somewhat this dependence. This is achieved by employing, under certain condi-
tions, normalized steps. We motivate our proposed approach by illustrating how it can be derived from a

∗E-mail: frank.e.curtis@lehigh.edu
†E-mail: katyas@lehigh.edu
‡E-mail: rus415@lehigh.edu

2

mailto:frank.e.curtis@lehigh.edu
mailto:katyas@lehigh.edu
mailto:rus415@lehigh.edu

trust region methodology. This work can be viewed as a first step toward designing new classes of first- and
second-order trust region methods for solving stochastic and finite-sum minimization problems.

The use of normalized steps has previously been proposed in the context of (stochastic) gradient methods
for solving minimization problems. For example, in a method that is similar to ours, [12] propose an approach
that employs normalized steps in every iteration. They show that, if the objective function is M -bounded
and strictly-locally-quasi-convex, the stochastic gradients are sufficiently accurate with respect to the true
gradients (specifically, when mini-batch sizes are Ω(ε−2)), and a sufficiently large number of iterations are
run (specifically, Ω(ε−2)), then their method will, with high probability, yield a solution estimate that is
ε-optimal. By contrast, our approach, by employing a modified update that does not always involve the use
of a normalized step, enjoys convergence guarantees under different assumptions. We argue in this paper that
employing normalized steps in all iterations cannot lead to general convergence guarantees, which perhaps
explains the additional assumptions required for convergence by [12].

It is also worthwhile to mention the broader literature. For important work on SG-type methods and
their corresponding theoretical analyses, see, e.g., [1], [3], [6], [9], [10], [11], [13], and [18]. There are
also numerous variants of SG methods based on gradient aggregation, iterative averaging, second-order
techniques, momentum, acceleration, and beyond; for work on these, see [2] and the references therein. More
related to our work are techniques that normalize steplengths based on accumulated gradient information;
see, e.g., [7] and [21]. In a different direction, one should also contrast our work with stochastic trust region
approaches, such as those in [16] and [5]. The approaches proposed in these papers, which are based on
the use of randomized models of the objective function constructed during each iteration, are quite distinct
from our proposed method. For example, these approaches follow a traditional trust region strategy of
accepting or rejecting each step based on the magnitude of an (approximate) actual-to-predicted reduction
ratio. Our method, on the other hand, is closer to the SG method in that it accepts the computed step in
every iteration. Another distinction is that these other approaches rely on the use of so-called fully linear
models of the objective function to obtain their convergence guarantees. Our convergence guarantees are
obtained under straightforward upper bounds on the second moment of the stochastic gradient estimates,
and do not require fully linear models.

The paper is organized as follows. Our algorithm and motivation for our specific iterate updating scheme
are the subject of §2. In §3, we prove convergence guarantees for the algorithm under various types of
assumptions on the stochastic gradient estimates and stepsize choices. The results of numerical experiments
on test problems—some convex and some nonconvex—are given in §4. Concluding remarks are given in §5.
All norms in the paper are Euclidean, i.e., ‖ · ‖ := ‖ · ‖2.

2 Algorithm

Our problem of interest is a stochastic optimization problem in which the goal is to minimize over a vector
of decision variables, indicated by x ∈ Rn, a function f : Rn → R defined by the expectation of another
function F : Rn × Ξ→ R that depends on a random variable ξ, i.e.,

min
x∈Rn

f(x) with f(x) = Eξ[F (x, ξ)], (2.1)

where Eξ[·] denotes expectation with respect to the distribution of ξ. Our algorithm is also applicable for
finite-sum minimization where the objective takes the form

f(x) =
1

N

N∑
i=1

fi(x). (2.2)

Such objectives often arise in sample average approximations of (2.1); e.g., see [22].

3

2.1 Algorithm Description

Our algorithm is stated below as TRish, a trust-region-ish algorithm for stochastic optimization. Each
iteration involves taking a step along the negative of a stochastic gradient direction. In the context of
problem (2.1), this stochastic gradient can be viewed as gk = ∇xF (xk, ξk), where xk is the current iterate
and ξk is a realization of the random variable ξ. In the context of problem (2.2), it can be viewed as
gk = ∇xfik(xk) where ik has been chosen randomly as an index in {1, . . . , N}. In addition, in either case,
gk could represent an average of such quantities, i.e., over a set of independently generated realizations
{ξk,j}j∈Sk or over independently generated indices {ik,j}j∈Sk . This leads to a so-called mini-batch approach
with Sk representing the mini-batch of samples in the kth iteration. In the algorithm, we simply write
gk ≈ ∇f(xk) to cover all of these situations, since in any case gk represents a stochastic gradient estimate
for f at xk.

Algorithm TRish (Trust-region-ish algorithm based on careful step normalization)

1: Choose an initial iterate x1 and positive stepsizes {αk}.
2: Choose positive constants {γ1,k} and {γ2,k} such that γ1,k > γ2,k > 0 for all k ∈ N.
3: for all k ∈ N := {1, 2, . . . } do
4: Generate a stochastic gradient gk ≈ ∇f(xk).
5: Set

xk+1 ← xk −

γ1,kαkgk if ‖gk‖ ∈ [0, 1

γ1,k
)

αkgk/‖gk‖ if ‖gk‖ ∈ [1
γ1,k

, 1
γ2,k

]

γ2,kαkgk if ‖gk‖ ∈ (1
γ2,k

,∞).

6: end for

The scaling of the stochastic gradient employed in TRish can be motivated in the following manner.
Given a stochastic gradient gk and a stepsize αk, consider the trust region subproblem

min
s∈Rn

f(xk) + gTk s s.t. ‖s‖ ≤ αk. (2.3)

The solution of this subproblem, namely, sk = −αkgk/‖gk‖, represents the step that minimizes the first-order
model f(xk) + gTk s of the objective function f at xk subject to s having norm less than or equal to αk. This
is the prototypical strategy in a trust region methodology. When the norm of gk falls within the interval
[1
γ1,k

, 1
γ2,k

], TRish takes the step sk. However, if this were to be done no matter the norm of gk, then the

resulting algorithm might fail to make progress in expectation. This is illustrated in the following example.

Example 2.1. Suppose that, at a point xk ∈ R, one has ∇f(xk) = 1 and obtains

gk =

{
6 with probability 1

3

− 3
2 with probability 2

3 .

Then, Ek[gk] = 1 = ∇f(xk), where Ek denotes expectation given that an algorithm has reached xk as the kth
iterate. However, this means that the normalized stochastic gradient satisfies

gk
‖gk‖

=

{
1 with probability 1

3

−1 with probability 2
3 ,

from which it follows that sk = −αkgk/‖gk‖ is twice as likely to be a direction of ascent for f at xk than it
is to be a direction of descent for f at xk.

One can argue from this example that, without potentially restrictive assumptions on the objective
function f and/or the manner in which the stochastic gradient is computed, one cannot expect to be able to

4

prove convergence guarantees for an algorithm that solely computes steps based on solving the trust region
subproblem (2.3). In particular, the existence of any point (let alone more than one) at which the expectation
is to follow an ascent direction foils the typical convergence theory for an SG approach; see, e.g., [2].

In TRish, we overcome the issue highlighted in Example 2.1 by only choosing the trust region step when
the norm of the gradient is within a specified interval; otherwise, we compute a stochastic gradient step with
a stepsize that is a multiple of αk. It is for this reason that we refer to the algorithm as a trust-region-ish
approach. Overall, as a function of the norm of the stochastic gradient, the norm of the step taken by the
algorithm is illustrated in Figure 1. Note that care has been taken to make sure that the norm of the step
is a continuous function of the norm of the stochastic gradient estimate. The plot in Figure 1 illustrates the
relationship for moderate values of (γ1,k, γ2,k), but notice that for more extreme values (i.e., γ1,k � 0 and
γ2,k ≈ 0) the function would essentially be flat (except for stochastic gradients that are very small or large
in norm), meaning that the stepsize would typically be scaled so that the step norm is approximately αk for
all k ∈ N.

‖gk‖2

‖xk+1 − xk‖2

1
γ1,k

1
γ2,k

αk

γ1,kαk

γ2,kαk

Figure 1: Relationship between ‖gk‖ and ‖xk+1 − xk‖ in Algorithm TRish.

Our convergence analysis in the next section requires certain restrictions on the choice of stepsizes—as
is typical for (stochastic) gradient methods—and require certains restrictions on {γ1,k} and {γ2,k}. For
example, the issue in Example 2.1 is avoided as long as the pair (γ1,k, γ2,k) is chosen such that the step is
not normalized with probability 1 at the given xk, which means that—for this particular function, iterate,
and variance in the stochastic gradient estimates—one cannot choose this pair such that |6| ∈ [1

γ1,k
, 1
γ2,k

]

and | 32 | ∈ [1
γ1,k

, 1
γ2,k

] simultaneously. (In our convergence theory, this is avoided through upper bounds on

the ratio
γ1,k
γ2,k

.) Various situations can illustrate how TRish avoids the issue in Example 2.1. For example,

consider γ1,k = 1 and γ2,k = 1
2 , which leads to Ek[sk] = − 1

2αk(6)(1
3)− αk(−1)(2

3) = − 1
3αk, meaning that sk

is a descent direction in expectation. As another example, consider γ1,k = 1
4 and γ2,k = 1

6 , which leads to
Ek[sk] = −αk(1)(1

3)− 1
6αk(− 3

2)(2
3) = − 1

6αk, meaning again that sk is a descent direction in expectation. Our
theory reveals generic conditions that {(γ1,k, γ2,k)} must satisfy to attain different convergence properties
for TRish. We also discuss, in §4, strategies for choosing these values in practice.

3 Convergence Analysis

Our goal in this section is to prove convergence guarantees for TRish that are similar to fundamental guar-
antees for a straightforward SG method; see, e.g., [2]. As in the notation for Example 2.1, our analysis uses
Ek[·] (resp. Pk[·]) to denote conditional expectation (resp. conditional probability) given that the algorithm
has reached xk as the kth iterate.

Throughout our analysis, we make the following assumption about the objective function.

Assumption 3.1. The objective f : Rn → R is continuously differentiable and bounded below by f∗ =
infx∈Rn f(x) ∈ R. In addition, at any x ∈ Rn, the objective is bounded above by a first-order Taylor series

5

approximation of f at x plus a quadratic term with constant L ∈ (0,∞), i.e.,

f(x) ≤ f(x) +∇f(x)T (x− x) + 1
2L‖x− x‖

2 for all (x, x) ∈ Rn × Rn. (3.1)

It is known that (3.1) holds if the gradient function ∇f is Lipschitz continuous with constant L. This is
often referred to as L-smoothness of the function f .

We also make the following assumption about the stochastic gradients computed in TRish. This assump-
tion is standard in analyses of SG methods; it is easily seen to be satisfied when the variance of the stochastic
gradient estimate is uniformly bounded over k ∈ N.

Assumption 3.2. For all k ∈ N, the stochastic gradient gk is an unbiased estimator of ∇f(xk) in the sense
that Ek[gk] = ∇f(xk). In addition, there exists a pair (M1,M2) ∈ (0,∞) × (0,∞) (independent of k) such
that, for all k ∈ N, the squared norm of gk satisfies

Ek[‖gk‖2] ≤M1 +M2‖∇f(xk)‖2. (3.2)

Under these assumptions, we prove the following lemma providing fundamental inequalities satisfied by
TRish. For ease of reference in this result and throughout the remainder of our analysis, we define the
following cases based on those indicated in Line 5 of TRish:

“case 1” : ‖gk‖ ∈ [0, 1
γ1,k

); “case 2” : ‖gk‖ ∈ [1
γ1,k

, 1
γ2,k

]; “case 3” : ‖gk‖ ∈ (1
γ2,k

,∞).

The following lemma reveals an upper bound for the expected decrease in f for all k ∈ N.

Lemma 3.1. Under Assumptions 3.1 and 3.2, the iterates of TRish satisfy, for all k ∈ N,

Ek[f(xk+1)]− f(xk) ≤ − γ1,kαk(1− 1
2γ1,kLM2αk)‖∇f(xk)‖2

+ (γ1,k − γ2,k)αkPk[Ek]Ek[∇f(xk)T gk|Ek] + 1
2γ

2
1,kLM1α

2
k,

(3.3)

where Ek is the event that ∇f(xk)T gk ≥ 0 and Pk[Ek] is the probability of this event.

Proof. Proof. For all k ∈ N, let sk := xk+1 − xk represent the step taken by the algorithm. By (3.1),

f(xk+1) = f(xk + sk) ≤ f(xk) +∇f(xk)T sk + 1
2L‖sk‖

2.

Thus, with Ci,k for i ∈ {1, 2, 3} respectively representing the events that case 1, case 2, and case 3 occur,
and with Pk[Ci,k] for i ∈ {1, 2, 3} respectively representing the probabilities of these events, one finds from
the law of total probability that

Ek[f(xk+1)]− f(xk) ≤ Ek[∇f(xk)T sk] + 1
2LEk[‖sk‖2]

=

3∑
i=1

Pk[Ci,k]Ek[∇f(xk)T sk|Ci,k] + 1
2L

3∑
i=1

Pk[Ci,k]Ek[‖sk‖2|Ci,k]. (3.4)

In the event C1,k, the algorithm yields sk = −γ1,kαkgk, from which it follows that

Ek[∇f(xk)T sk|C1,k]

= − γ1,kαkEk[∇f(xk)T gk|C1,k]

= − γ1,kαkPk[Ek|C1,k]Ek[∇f(xk)T gk|C1,k ∩ Ek]− γ1,kαkPk[Ek|C1,k]Ek[∇f(xk)T gk|C1,k ∩ Ek]

≤ − γ2,kαkPk[Ek|C1,k]Ek[∇f(xk)T gk|C1,k ∩ Ek]

− γ1,kαk(Ek[∇f(xk)T gk|C1,k]− Pk[Ek|C1,k]Ek[∇f(xk)T gk|C1,k ∩ Ek])

= − γ1,kαkEk[∇f(xk)T gk|C1,k] + (γ1,k − γ2,k)αkPk[Ek|C1,k]Ek[∇f(xk)T gk|C1,k ∩ Ek] (3.5)

6

along with the fact that
Ek[‖sk‖2|C1,k] = γ21,kα

2
kEk[‖gk‖2|C1,k]. (3.6)

In the event C2,k, in which ‖gk‖−1 ≤ γ1,k and ‖gk‖−1 ≥ γ2,k, one finds that

Ek[∇f(xk)T sk|C2,k]

= − αkEk
[
∇f(xk)T gk
‖gk‖

∣∣∣∣C2,k

]
= − αkPk[Ek|C2,k]Ek

[
∇f(xk)T gk
‖gk‖

∣∣∣∣C2,k ∩ Ek
]
− αkPk[Ek|C2,k]Ek

[
∇f(xk)T gk
‖gk‖

∣∣∣∣C2,k ∩ Ek
]

≤ − γ2,kαkPk[Ek|C2,k]Ek[∇f(xk)T gk|C2,k ∩ Ek]− γ1,kαkPk[Ek|C2,k]Ek[∇f(xk)T gk|C2,k ∩ Ek]

= − γ2,kαkPk[Ek|C2,k]Ek[∇f(xk)T gk|C2,k ∩ Ek]

− γ1,kαk(Ek[∇f(xk)T gk|C2,k]− Pk[Ek|C2,k]Ek[∇f(xk)T gk|C2,k ∩ Ek])

= − γ1,kαkEk[∇f(xk)T gk|C2,k] + (γ1,k − γ2,k)αkPk[Ek|C2,k]Ek[∇f(xk)T gk|C2,k ∩ Ek] (3.7)

along with the fact that
Ek[‖sk‖2|C2,k] = α2

k ≤ γ21,kα2
kEk[‖gk‖2|C2,k]. (3.8)

In the event C3,k, the algorithm yields sk = −γ2,kαkgk, from which it follows that

Ek[∇f(xk)T sk|C3,k]

= − γ2,kαkEk[∇f(xk)T gk|C3,k]

≤ − γ2,kαkPk[Ek|C3,k]Ek[∇f(xk)T gk|C3,k ∩ Ek]− γ1,kαkPk[Ek|C3,k]Ek[∇f(xk)T gk|C3,k ∩ Ek]

= − γ2,kαkPk[Ek|C3,k]Ek[∇f(xk)T gk|C3,k ∩ Ek]

− γ1,kαk(Ek[∇f(xk)T gk|C3,k]− Pk[Ek|C3,k]Ek[∇f(xk)T gk|C3,k ∩ Ek])

= − γ1,kαkEk[∇f(xk)T gk|C3,k] + (γ1,k − γ2,k)αkPk[Ek|C3,k]Ek[∇f(xk)T gk|C3,k ∩ Ek] (3.9)

along with the fact that

Ek[‖sk‖2|C3,k] = γ22,kα
2
kEk[‖gk‖2|C3,k] ≤ γ21,kα2

kEk[‖gk‖2|C3,k]. (3.10)

Combining (3.4)–(3.10), it follows that

Ek[f(xk+1)]− f(xk)

≤ − γ1,kαk‖∇f(xk)‖2 + (γ1,k − γ2,k)αkPk[Ek]Ek[∇f(xk)T gk|Ek] + 1
2γ

2
1,kLα

2
kEk[‖gk‖2].

Applying the upper bound for the last term in (3.2) and rearranging terms yields the result.

For some (but not all) of our convergence guarantees, we also make the following assumption.

Assumption 3.3. At any x ∈ Rn, the Polyak- Lojasiewicz condition holds with c ∈ (0,∞), i.e.,

2c(f(x)− f∗) ≤ ‖∇f(x)‖2 for all x ∈ Rn. (3.11)

Assumptions 3.1 and 3.3 do not ensure that a stationary point for f exists, though, when combined, they
do guarantee that any stationary point for f is a global minimizer of f . Assumption 3.3 holds when f is c-
strongly convex, but it is also satisfied for other functions that are not convex. We direct the interested reader
to [14] for a discussion on the relationship between the Polyak- Lojasiewicz condition and the related error
bounds, essential strong convexity, weak strong convexity, restricted secant inequality, and quadratic growth
conditions. In short, when f has a Lipschitz continuous gradient, the Polyak- Lojasiewicz is the weakest of
these except for the quadratic growth condition, though these two are equivalent when f is convex.

We now proceed to prove convergence guarantees for TRish in various cases depending on whether or not
the Polyak- Lojasiewicz condition (hereafter referred to as the P-L condition) holds and based on different
sets of properties of the sequence of stepsizes and stochastic gradient estimates. Our analysis covers various
types of convex and nonconvex objective functions.

7

3.1 P-L Condition and Constant Parameters

Let us first prove a convergence result for TRish when the P-L condition holds and each sequence {αk},
{γ1,k}, and {γ2,k} is constant. This result appears in this section as Theorem 3.1.

Our first requirement toward proving Theorem 3.1 is the following lemma.

Lemma 3.2. Under Assumption 3.2, it follows that, for all k ∈ N,

Pk[Ek]Ek[∇f(xk)T gk|Ek] ≤ h1 + h2‖∇f(xk)‖2 (3.12)

for any (h1, h2) ∈ (0,∞)× (0,∞) such that h1 ≥ 1
2

√
M1 and h2 ≥ 1

2

√
M1 +

√
M2.

Proof. Proof. One finds with the law of total probability that

Pk[Ek]Ek[∇f(xk)T gk|Ek] ≤ Pk[Ek]Ek[‖∇f(xk)‖‖gk‖|Ek]

= ‖∇f(xk)‖(Pk[Ek]Ek[‖gk‖|Ek])

= ‖∇f(xk)‖(Ek[‖gk‖]− Pk[Ek]Ek[‖gk‖|Ek])

≤ ‖∇f(xk)‖Ek[‖gk‖].

Then, by Jensen’s Inequality, concavity of the square root, and Assumption 3.2, one finds that

Ek[‖gk‖] ≤
√
Ek[‖gk‖2] ≤

√
M1 +M2‖∇f(xk)‖2 ≤

√
M1 +

√
M2‖∇f(xk)‖.

Therefore, by combining the inequalities above, one finds that

Pk[Ek]Ek[∇f(xk)T gk|Ek] ≤ ‖∇f(xk)‖(
√
M1 +

√
M2‖∇f(xk)‖)

=
√
M1‖∇f(xk)‖+

√
M2‖∇f(xk)‖2

≤ 1

2

√
M1(1 + ‖∇f(xk)‖2) +

√
M2‖∇f(xk)‖2

=
1

2

√
M1 +

(
1

2

√
M1 +

√
M2

)
‖∇f(xk)‖2,

where the second inequality follows by the fact that a ≤ 1
2 (1 + a2) for any a ∈ R.

While the upper bound on Ek[‖gk‖2] stated as (3.2) in Assumption 3.2 is standard in the literature,
the quantity on the left-hand side of (3.12)—which Lemma 3.2 shows is bounded in a similar manner—is
uniquely important for our analysis. For this reason, we feel that it is useful to provide specific examples
illustrating how this quantity is bounded. We state two related examples next.

Example 3.1. Suppose f : R → R and xk are given such that ∇f(xk) = µk ∈ R, where without loss of
generality one can assume that µk ≥ 0. In addition, suppose that gk follows a normal distribution with mean
µk and variance σ2

k. Then,

Pk[Ek]Ek[∇f(xk)T gk|Ek] = µk

∫ ∞
0

g 1√
2πσk

e
−(g−µk)2

2σ2
k dg

= µk

∫ µk

0

g 1√
2πσk

e
−(g−µk)2

2σ2
k dg + µk

∫ ∞
µk

g 1√
2πσk

e
−(g−µk)2

2σ2
k dg.

Let us separately investigate these two terms on the right-hand side. First, one finds that

µk

∫ µk

0

g 1√
2πσk

e
−(g−µk)2

2σ2
k dg ≤ µ2

k

∫ µk

0

1√
2πσk

e
−(g−µk)2

2σ2
k dg ≤ µ2

k

∫ µk

−∞

1√
2πσk

e
−(g−µk)2

2σ2
k dg = 1

2µ
2
k.

8

Second, one finds that

µk

∫ ∞
µk

g 1√
2πσk

e
−(g−µk)2

2σ2
k dg = µk

∫ ∞
0

(t+ µk) 1√
2πσk

e
−t2

2σ2
k dt

= µk

∫ ∞
0

t 1√
2πσk

e
−t2

2σ2
k dt+ µ2

k

∫ ∞
0

1√
2πσk

e
−t2

2σ2
k dt = µk

σk√
2π

+ 1
2µ

2
k.

Thus, combining the bounds above, one finds that

Pk[Ek]Ek[∇f(xk)T gk|Ek] ≤ µk
σk√
2π

+ µ2
k ≤

(
µ2
k + 1

2

)
σk√
2π

+ µ2
k =

σk

2
√

2π
+

(
1 +

σk

2
√

2π

)
µ2
k.

Overall, if σk ≤ σ for some positive σ ∈ R for all k ∈ N, then (3.12) holds with

h1 =
σ

2
√

2π
and h2 = 1 +

σ

2
√

2π
. (3.13)

Example 3.2. Suppose f : Rn → R and xk are given such that ∇f(xk) = µk ∈ Rn. In addition, suppose
that gk follows a normal distribution with mean µk and covariance matrix Σk. Then, by Theorem 3.3.3 in
[23], the inner product ∇f(xk)T gk follows a normal distribution with mean ‖µk‖2 and variance µTk Σkµk.

Hence, following the analysis in Example 3.1, if
√
µTk Σkµk ≤ σ for some positive σ ∈ R for all k ∈ N, then

(3.12) holds with h1 and h2 from (3.13).

We now prove our first theorem on the behavior of TRish.

Theorem 3.1. Under Assumptions 3.1, 3.2, and 3.3, and with a pair (h1, h2) satisfying the inequalities in
Lemma 3.2, suppose that TRish is run with (γ1,k, γ2,k) = (γ1, γ2) for all k ∈ N such that γ1

γ2
< h2

h2−1 (meaning

γ1 − h2(γ1 − γ2) > 0) and with αk = α for all k ∈ N such that

0 < α ≤ min

{
1

2cθ1
,
γ1 − h2(γ1 − γ2)

γ1LM2

}
, (3.14)

where
θ1 = 1

2 (γ1 − h2(γ1 − γ2)) > 0. (3.15)

Then, for all k ∈ N, the expected optimality gap satisfies

E[f(xk+1)]− f∗ ≤
θ2

2cαθ1
+ (1− 2cαθ1)k−1

(
f(x1)− f∗ −

θ2
2cαθ1

)
k→∞−−−−→ θ2

2cαθ1
, (3.16)

where
θ2 = h1(γ1 − γ2)α+ 1

2γ
2
1LM1α

2 > 0. (3.17)

Proof. Proof. Combining the results of Lemmas 3.1 and 3.2, it follows that, for all k ∈ N,

Ek[f(xk+1)]− f(xk) ≤ − γ1α(1− 1
2γ1LM2α)‖∇f(xk)‖2

+ (γ1 − γ2)α(h1 + h2‖∇f(xk)‖2) + 1
2γ

2
1LM1α

2.
(3.18)

Therefore, with (θ1, θ2) defined in (3.15)/(3.17), it follows with (3.11) that, for all k ∈ N,

Ek[f(xk+1)]− f(xk) ≤ −αθ1‖∇f(xk)‖2 + θ2

≤ −2cαθ1(f(xk)− f∗) + θ2.

9

Adding and subtracting f∗ on the left-hand side, taking total expectations, and rearranging yields

E[f(xk+1)]− f∗ ≤ (1− 2cαθ1)(E[f(xk)]− f∗) + θ2

=
θ2

2cαθ1
+ (1− 2cαθ1)(E[f(xk)]− f∗) + θ2 −

θ2
2cαθ1

=
θ2

2cαθ1
+ (1− 2cαθ1)

(
E[f(xk)]− f∗ −

θ2
2cαθ1

)
.

Since 1 − 2cαθ1 ∈ (0, 1), this represents a contraction inequality. Applying the result repeatedly through
iteration k ∈ N, one obtains the desired result.

It is worthwhile to compare the result of Theorem 3.1 with a corresponding result known to hold for
a straightforward SG method. For example, from [2, Thm. 4.6] with our notation, it is known that for
an SG method with fixed stepsize α = 1

LM2
an upper bound for the expected optimality gap converges to

αLM1

2c = M1

2cM2
. On the other hand, the analysis in Theorem 3.1 shows that TRish with α = γ1−h2(γ1−γ2)

γ1LM2

(which may occur, e.g., if c ≈ 0) yields an upper bound for the expected optimality gap that converges to

h1(γ1 − γ2) + 1
2γ

2
1LM1α

c(γ1 − h2(γ1 − γ2))
=

h1(γ1 − γ2)

c(γ1 − h2(γ1 − γ2))
+
γ1M1

2cM2
. (3.19)

We can now make a couple of observations. On one hand, if h1 ≈ 1
2

√
M1 and h2 ≈ M2 ≈ 1, then the

condition that γ1
γ2
< h2

h2−1 essentially does not restrict (γ1, γ2), in which case (3.19) is approximately

√
M1(γ1 − γ2)

2cγ2
+
γ1M1

2c
.

This quantity is less than M1

2c , i.e., the approximate bound for SG, if, e.g., the parameters satisfy γ1 ∈ (0, 1)
with γ2 ≥ γ1

1+(1−γ1)
√
M1
∈ (0, γ1). On the other hand, if h1 ≈ 1

2

√
M1 and h2 ≈ 1

2

√
M1 +

√
M2 with M1 � 0,

then the condition that γ1
γ2

< h2

h2−1 essentially requires that γ1 ≈ γ2, in which case the bound (3.19) is

approximately γ1M1

2cM2
, which is less than the bound for SG if γ1 ∈ (0, 1). Overall, while we are not necessarily

recommending that one employes TRish with the parameter settings mentioned in this discussion, we have
at least been able to demonstrate in both of these cases that TRish can possess an asymptotic bound on the
expected optimality gap that is on par with that for SG. (For a detailed discussion on how to choose (γ1, γ2)
in practice, see §4.1.)

Besides the conclusions of the previous paragraph, the result of Theorem 3.1 points to fundamental
differences between TRish and SG for certain choices of the input parameters. In particular, the result in
[2, Thm. 4.6] points to a well-known trade-off for SG with a fixed stepsize: If a relatively large stepsize is
employed, then the rate to achieve the asymptotic expected optimality gap involves a better constant at the
sake of the upper bound on the gap being relatively large, i.e., αLM1

2c , which is proportional to the stepsize
α. On the other hand, one can achieve a smaller upper bound on the expected optimality gap with a smaller
α, but at the cost of a worse constant in the rate to achieve that gap. A similar conclusion can be derived
from (3.16) for TRish: One can control the constant (1− 2cαθ1) by the choice of α. However, the effect of
α on the expected optimality gap is not exactly the same for TRish as for an SG method. This can be seen
in the fact that the left-hand side of (3.19) involves one term that decreases with α, but another term that
does not. That said, one can compensate for this in TRish if one ties the difference γ1 − γ2 to the stepsize
α. This idea can be seen in the first of our two theorems in the next subsection.

3.2 P-L Condition and Sublinearly Diminishing Stepsizes

Let us now consider the behavior of TRish when the P-L condition holds and diminishing stepsizes are
employed. Our first theorem in this setting, which makes the same assumptions as Theorem 3.1, but involves

10

different parameter choices, is the following. (The parameter choices in the theorem could be generalized
even further. However, we have made certain choices—e.g., to have {γ1} be constant—for some amount of
simplicity in the proof while still maintaining generality. One could prove a similar result with {γ2} constant
instead, or with neither {γ1} nor {γ2} constant, as long as the sequence {γ1,k − γ2,k} is proportional to αk,
as it is in the following theorem.)

Theorem 3.2. Under Assumptions 3.1, 3.2, and 3.3, and with a pair (h1, h2) satisfying the inequalities in
Lemma 3.2, suppose that TRish is run with γ1,k = γ1 > 0, γ2,k = γ1(1− 1

2ηαk) for η ∈ (0, 1), and

αk =
a

b+ k
for some a ∈

(
1

cγ1
,
b+ 1

cγ1

)
and b > 0 with α1 ∈

(
0,min

{
1

η
,

1

ηh2 + γ1LM2

}]
(3.20)

for all k ∈ N. Then, for all k ∈ N, the expected optimality gap satisfies

E[f(xk)]− f∗ ≤
φ

b+ k
, (3.21)

where

φ = max

{
a2δ

acγ1 − 1
, (b+ 1)(f(x1)− f∗)

}
> 0 (3.22)

and δ = 1
2γ1(ηh1 + γ1LM1) > 0. (3.23)

Proof. Proof. First observe that the restrictions on {αk} in (3.20) ensure that γ2,k > 0, γ1− γ2,k = 1
2γ1ηαk,

and 1− 1
2 (ηh2 + γ1LM2)αk ≥ 1

2 for all k ∈ N. Thus, similar to the proof of Theorem 3.1, for all k ∈ N,

Ek[f(xk+1)]− f(xk) ≤ − γ1αk(1− 1
2γ1LM2αk)‖∇f(xk)‖2

+ (γ1 − γ2,k)αk(h1 + h2‖∇f(xk)‖2) + 1
2γ

2
1LM1α

2
k

= − γ1αk(1− 1
2γ1LM2αk)‖∇f(xk)‖2

+ 1
2γ1ηα

2
k(h1 + h2‖∇f(xk)‖2) + 1

2γ
2
1LM1α

2
k

= − γ1αk(1− 1
2 (ηh2 + γ1LM2)αk)‖∇f(xk)‖2 + 1

2γ1(ηh1 + γ1LM1)α2
k

≤ − 1
2γ1αk‖∇f(xk)‖2 + 1

2γ1(ηh1 + γ1LM1)α2
k.

Therefore, with δ defined in (3.23), it follows with (3.11) that, for all k ∈ N,

Ek[f(xk+1)]− f(xk) ≤ − 1
2γ1αk‖∇f(xk)‖2 + δα2

k (3.24)

≤ −cγ1αk(f(xk)− f∗) + δα2
k.

Adding and subtracting f∗ on the left-hand side, taking total expectations, and rearranging yields

E[f(xk+1)]− f∗ ≤ (1− cγ1αk)(E[f(xk)]− f∗) + δα2
k. (3.25)

Let us now prove (3.21) by induction. First, for k = 1, the inequality holds by the definition of φ. Now

11

suppose that (3.21) holds up to k ∈ N; then, for k + 1, one finds from above that

E[f(xk+1)]− f∗ ≤ (1− cγ1αk)(E[f(xk)]− f∗) + δα2
k

=

(
1− acγ1

b+ k

)
(E[f(xk)]− f∗) +

a2δ

(b+ k)2

≤
(

1− acγ1
b+ k

)
φ

b+ k
+

a2δ

(b+ k)2

=
(b+ k)φ

(b+ k)2
− acγ1φ

(b+ k)2
+

a2δ

(b+ k)2

=
(b+ k − 1)φ

(b+ k)2
− (acγ1 − 1)φ

(b+ k)2
+

a2δ

(b+ k)2

≤ (b+ k − 1)φ

(b+ k)2
≤ φ

b+ k + 1
,

where the last two inequalities follow from the definition of φ and since (b + k − 1)(b + k + 1) ≤ (b + k)2,
respectively. The desired conclusion now follows from this inductive argument.

As one might predict from the discussion at the end of §3.1, in Theorem 3.2 we have been able to prove
sublinear convergence of the expected optimality gap by tying the rate that {γ1,k−γ2,k} vanishes to the rate
that {αk} vanishes; in particular, both the differences and the stepsizes diminish sublinearly, as is the case
in similar results for SG methods.

One might also be interested in the behavior of TRish when the sequences {γ1,k} and {γ2,k} are constant
while only the stepsizes decrease sublinearly. For example, this might be of interest since otherwise there are
additional parameters to estimate and/or to tune. In the remainder of this subsection, we prove a sublinear
convergence result under this setting. However, achieving sublinear convergence in this setting requires the
following assumption, which can be viewed as a strengthening of (3.2) from Assumption 3.2.

Assumption 3.4. There exists a pair (M3,M4) ∈ (0,∞) × (0,∞) (independent of k) such that, for all
k ∈ N, the squared norm of gk satisfies

Ek[‖gk‖2] ≤M3α
2
k +M4‖∇f(xk)‖2. (3.26)

One finds that Assumption 3.4 can be satisfied under reasonable conditions in practice if one employs
mini-batch stochastic gradient estimates with sample sizes that increase with k; see, e.g., [9]. For example,
in the context of problem (2.1), suppose that

gk =
1

|Sk|
∑
j∈Sk

∇xF (xk, ξk,j), (3.27)

where the values {ξk,j}j∈Sk are drawn independently according to the distribution of ξ. If one assumes that
the variance of each ∇xF (xk, ξk,j) is equal and bounded by M ∈ (0,∞), then for arbitrary j ∈ Sk it follows
(see, e.g., [8]) that

Ek[‖gk‖2]− ‖∇f(xk)‖2 ≤ M

|Sk|
. (3.28)

Hence, (3.26) holds with M3 = M and M4 = 1 if one chooses |Sk| = α−2k . (In Theorem 3.3 below, the result
requires αk = Θ(1

k), in which case one can employ |Sk| = Θ(k2).)
An important consequence of Assumption 3.4 is the following, which strengthens Lemma 3.2.

Lemma 3.3. Under Assumption 3.4, it follows that, for all k ∈ N,

Pk[Ek]Ek[∇f(xk)T gk|Ek] ≤ h3αk + h4‖∇f(xk)‖2 (3.29)

for any (h3, h4) ∈ (0,∞)× (0,∞) such that h3 ≥ 1
2

√
M3 and h4 ≥ 1

2

√
M3(max

k∈N
αk) +

√
M4.

12

Proof. Proof. By Jensen’s Inequality, concavity of the square root, and Assumption 3.4, one finds that

Ek[‖gk‖] ≤
√
Ek[‖gk‖2] ≤

√
M3α2

k +M4‖∇f(xk)‖2 ≤
√
M3αk +

√
M4‖∇f(xk)‖.

The result then follows using the same line of argument as used in the proof of Lemma 3.2.

The following examples parallel Examples 3.1 and 3.2, but illustrate the attainment of (3.29).

Example 3.3. Consider the scenario in Example 3.1. Then, if σk ≤ αk for all k ∈ N with αk ≤ α for
some α ∈ (0,∞) for all k ∈ N, it follows that (3.29) holds with

h3 =
1

2
√

2π
and h4 = 1 +

α

2
√

2π
. (3.30)

Example 3.4. Consider the scenario in Example 3.2. Then, if
√
µTk Σkµk ≤ αk for all k ∈ N with αk ≤ α

for some α ∈ (0,∞) for all k ∈ N, it follows that (3.29) holds with h3 and h4 from (3.30).

Our next theorem on the behavior of TRish is now proved as the following. (For the result, we include
Assumptions 3.2 and 3.4 for convenience since, in our proof, we employ results that we have proved using each
of these assumptions. Notice, however, that the bound (3.2) in Assumption 3.2 holds under Assumption 3.4
if one considers M1 ≥M3(max

k∈N
α2
k) and M2 = M4.)

Theorem 3.3. Under Assumptions 3.1, 3.2, 3.3, and 3.4, and with a pair (h3, h4) satisfying the inequalities
in Lemma 3.3, suppose that TRish is run with γ1 > γ2 > 0 such that γ1

γ2
< h4

h4−1 (meaning γ1−h4(γ1−γ2) >

0), and with, for all k ∈ N,

αk =
a

b+ k
for some a ∈

(
1

2cβ1
,
b+ 1

2cβ1

)
and b > 0 such that α1 ∈

(
0,
γ1 − h4(γ1 − γ2)

γ1LM2

]
,

where
β1 = 1

2 (γ1 − h4(γ1 − γ2)) > 0. (3.31)

Then, for all k ∈ N, the expected optimality gap satisfies

E[f(xk)]− f∗ ≤
ν

b+ k
, (3.32)

where

ν = max

{
a2β2

2acβ1 − 1
, (b+ 1)(f(x1)− f∗)

}
> 0 (3.33)

and β2 = h3(γ1 − γ2) + 1
2γ

2
1LM1 > 0. (3.34)

Proof. Proof. Similar to the proof of Theorem 3.1, for all k ∈ N,

Ek[f(xk+1)]− f(xk) ≤ − γ1αk(1− 1
2γ1LM2αk)‖∇f(xk)‖2

+ (γ1 − γ2)αk(h3αk + h4‖∇f(xk)‖2) + 1
2γ

2
1LM1α

2
k.

Therefore, with (β1, β2) defined in (3.31)/(3.34), it follows with (3.11) that, for all k ∈ N,

Ek[f(xk+1)]− f(xk) ≤ −β1αk‖∇f(xk)‖2 + β2α
2
k (3.35)

≤ −2cβ1αk(f(xk)− f∗) + β2α
2
k.

Adding and subtracting f∗ on the left-hand side, taking total expectations, and rearranging yields

E[f(xk+1)]− f∗ ≤ (1− 2cβ1αk)(E[f(xk)]− f∗) + β2α
2
k.

Using this inequality, which has the same form as (3.25), one can apply the same inductive argument as in
the remainder of the proof of Theorem 3.2 to achieve the desired result.

13

Overall, we have proved two theorems for TRish when diminishing stepsizes are employed. If the sequence
{γk,1 − γk,2} diminishes proportionally with {αk}, then sublinear convergence of the expected optimality
gap is achieved under the same assumptions as needed for such a result for an SG method. We followed this
with a result for the case when {γk,1− γk,2} is constant, in which case a sublinear convergence result for the
expected optimality gap requires that the stochastic gradient estimates satisfy Assumption 3.4.

3.3 P-L Condition, Constant Parameters, and Linearly Decreasing Variance

Let us now prove a convergence result for TRish when the P-L condition holds, each sequence {αk}, {γ1,k},
and {γ2,k} is constant, and the stochastic gradients satisfy the following assumption.

Assumption 3.5. There exist constants (M5, ζ) ∈ (0,∞)× (0, 1) such that

Ek[‖gk‖2] ≤M5ζ
k−1 + ‖∇f(xk)‖2. (3.36)

The achievement of linear convergence of the expected optimality gap for SG also requires increasingly
accurate gradient estimates along the lines required in Assumption 3.5; see, e.g., [2]. One finds that Assump-
tion 3.5 can be satisfied under reasonable conditions in practice if one employs mini-batch stochastic gradient
estimates with sample sizes that increase with k. For example, using estimates as in (3.27) and under the
same conditions as led to (3.28), one finds that (3.36) holds if the sample sizes increase geometrically, e.g.,
|Sk| = dτk−1e for some τ ∈ (1,∞).

Our main result in this section, namely, Theorem 3.4, requires the following.

Lemma 3.4. Under the Assumption 3.5, it follows that, for all k ∈ N,

Pk[Ek]Ek[∇f(xk)T gk|Ek] ≤ h5λk−1 + h6‖∇f(xk)‖2 (3.37)

for any (h5, h6) ∈ (0,∞)× (0,∞)× (0, 1) such that h5 ≥ 1
2

√
M5, 1 + h6 ≥ 1

2

√
M5, and λ ≥

√
ζ.

Proof. Proof. By Jensen’s inequality, concavity of the square root, and Assumption 3.5, one finds that

Ek[‖gk‖] ≤
√
Ek[‖gk‖2] ≤

√
M5ζk−1 + ‖∇f(xk)‖2 ≤

√
M5(

√
ζ)k−1 + ‖∇f(xk)‖. (3.38)

The result then follows using the same line of argument as used in the proof of Lemma 3.2.

The following examples parallel Examples 3.1 and 3.2, but illustrate the attainment of (3.37).

Example 3.5. Consider the scenario in Example 3.1. Then, since (3.36) implies that σ2
k ≤M3ζ

k−1 for all
k ∈ N, it follows along with the fact that ζ ∈ (0, 1) that

Pk[Ek]Ek[∇f(xk)T gk|Ek] ≤ σk

2
√

2π
+

(
1 +

σk

2
√

2π

)
µ2
k

≤
√
M3

2
√

2π
(
√
ζ)k−1 +

(
1 +

√
M3

2
√

2π

)
µ2
k.

Hence, it follows that (3.37) holds with

h5 =

√
M3

2
√

2π
, h6 = 1 +

√
M3

2
√

2π
, and λ =

√
ζ. (3.39)

Example 3.6. Consider the scenario in Example 3.2. Then, with
√
µTk Σkµk ≤ M3ζ

k−1 for all k ∈ N, it

follows that (3.37) holds with h5, h6, and λ from (3.39).

14

Our next theorem on the behavior of TRish is now proved as the following. (For the result, we include
Assumptions 3.2 and 3.5 for convenience since, in our proof, we employ results that we have proved using each
of these assumptions. Notice, however, that the bound (3.2) in Assumption 3.2 holds under Assumption 3.5
if one considers M1 ≥M5, M2 ≥ 1, and any ζ ∈ (0, 1).)

Theorem 3.4. Under Assumptions 3.1, 3.2, 3.3, and 3.5, and with a tuple (h5, h6, λ) satisfying the in-
equalities in Lemma 3.4, suppose that TRish is run with γ1 > γ2 > 0 such that γ1

γ2
< h6

h6−1 (meaning

γ1 − h6(γ1 − γ2) > 0), and with αk = α for all k ∈ N such that

0 < α ≤ min

{
γ1 − h6(γ1 − γ2)

γ21L
,

1

cκ1

}
, (3.40)

where
κ1 := 1

2 (γ1 − h6(γ1 − γ2)) > 0. (3.41)

Then, for all k ∈ N, the expected optimality gap satisfies

E[f(xk)]− f∗ ≤ ωρk−1, (3.42)

where

κ2 := h5(γ1 − γ2) + 1
2γ

2
1αLM3 > 0, (3.43)

ω := max{f(x1)− f∗, κ2

cκ1
} > 0,

and ρ := max{1− αcκ1, λ, ζ} ∈ (0, 1).

Proof. Proof. As in the proof of Lemma 3.1, it follows with (3.36) and (3.37) that, for all k ∈ N,

Ek[f(xk+1)]− f(xk)

≤ − αγ1‖∇f(xk)‖2 + (γ1 − γ2)αPk[Ek]Ek[∇f(xk)T gk|Ek] + 1
2γ

2
1Lα

2Ek[‖gk‖2]

≤ − αγ1‖∇f(xk)‖2 + (γ1 − γ2)α(h5λ
k−1 + h6‖∇f(xk)‖2) + 1

2γ
2
1Lα

2(M3ζ
k−1 + ‖∇f(xk)‖2)

= − α(γ1 − h6(γ1 − γ2)− 1
2γ

2
1Lα)‖∇f(xk)‖2 + (γ1 − γ2)αh5λ

k−1 + 1
2γ

2
1Lα

2M3ζ
k−1

≤ − 1
2α(γ1 − h6(γ1 − γ2))‖∇f(xk)‖2 + (γ1 − γ2)αh5λ

k−1 + 1
2γ

2
1Lα

2M3ζ
k−1.

Therefore, with (κ1, κ2) defined in (3.41)/(3.43), it follows with (3.11) that, for all k ∈ N,

Ek[f(xk+1)] ≤ f(xk)− ακ1‖∇f(xk)‖2 + ακ2 max{λ, ζ}k−1

≤ f(xk)− 2αcκ1(f(xk)− f∗) + ακ2 max{λ, ζ}k−1,

from which it follows that

E[f(xk+1)]− f∗ ≤ (1− 2αcκ1)(E[f(xk)]− f∗) + ακ2 max{λ, ζ}k−1.

Let us now prove (3.42) by induction. First, for k = 1, the inequality follows by the definition of ω.
Then, assuming the inequality holds true for k ∈ N, one finds that

E[f(xk+1)]− f∗ ≤ (1− 2αcκ1)(E[f(xk)]− f∗) + ακ2 max{λ, ζ}k−1

≤ (1− 2αcκ1)ωρk−1 + ακ2 max{λ, ζ}k−1

= ωρk−1

(
1− 2αcκ1 +

ακ2
ω

(
max{λ, ζ}

ρ

)k−1)
≤ ωρk−1

(
1− 2αcκ1 +

ακ2
ω

)
≤ ωρk−1(1− αcκ1)

≤ ωρk,

which proves that the conclusion holds for k + 1, as desired.

15

3.4 No P-L Condition and Constant Parameters

Let us now consider the behavior of TRish when the P-L condition does not hold. Our first such result
involves the use of constant {γ1,k}, {γ2,k}, and {αk}.

Theorem 3.5. Under Assumptions 3.1 and 3.2 and with a pair (h1, h2) satisfying the inequalities in
Lemma 3.2, suppose that TRish is run with (γ1,k, γ2,k) = (γ1, γ2) for all k ∈ N such that γ1

γ2
< h2

h2−1
(meaning γ1 − h2(γ1 − γ2) > 0) and with αk = α for all k ∈ N such that

0 < α ≤ γ1 − h2(γ1 − γ2)

γ1LM2
.

Then, with (θ1, θ2) defined in (3.15)/ (3.17), it follows that, for all K ∈ N,

E

[
K∑
k=1

‖∇f(xk)‖2
]
≤ Kθ2

αθ1
+
f(x1)− f∗

αθ1
(3.44a)

and E

[
1

K

K∑
k=1

‖∇f(xk)‖2
]
≤ θ2
αθ1

+
f(x1)− f∗
Kαθ2

K→∞−−−−→ θ2
αθ1

. (3.44b)

Proof. Proof. As in the proof of Theorem 3.1, combining the results of Lemmas 3.1 and 3.2, it follows that
the inequality (3.18) holds for all k ∈ N. Taking total expectations, it follows that, for all k ∈ N,

E[f(xk+1)]− E[f(xk)] ≤ −αθ1E[‖∇f(xk)‖2] + θ2.

Summing both sides for k ∈ {1, . . . ,K} yields

f∗ − f(x1) ≤ E[f(xK+1)]− f(x1) ≤ −αθ1
K∑
k=1

E[‖∇f(xk)‖2] +Kθ2.

Rearranging yields (3.44a), then dividing by K yields (3.44b).

As in the case of [2, Thm. 4.8], this result shows that while one cannot bound the expected optimality
gap as when the P-L condition holds, one can bound the average norm of the gradients of the objective that
are observed during the optimization process.

3.5 No P-L Condition and Sublinearly Diminishing Stepsizes

Finally, let us consider the behavior of TRish when the P-L condition does not hold and diminishing step-
sizes are employed. For brevity, the following theorem considers both when parameters are chosen as in
Theorem 3.2 and as in Theorem 3.3, since in either case the final conclusion is the same.

Theorem 3.6. Suppose Assumptions 3.1 and 3.2 hold and at least one of the following.

(i) With a pair (h1, h2) satisfying the inequalities in Lemma 3.2, suppose that TRish is run with {γ1,k},
{γ2,k}, and {αk} chosen as in Theorem 3.2.

(ii) Suppose Assumption 3.4 holds and, with a pair (h3, h4) satisfying the inequalities in Lemma 3.3, suppose
that TRish is run with {γ1,k}, {γ2,k}, and {αk} chosen as in Theorem 3.3.

Then, with AK :=
∑K
k=1 αk, it follows that

lim
K→∞

E

[
K∑
k=1

αk‖∇f(xk)‖2
]
<∞ (3.45a)

and E

[
1

AK

K∑
k=1

αk‖∇f(xk)‖2
]

K→∞−−−−→ 0. (3.45b)

16

Proof. Proof. First observe that, under the conditions of the theorem, specifically the conditions placed on
the stepsize sequence {αk} in Theorem 3.2 or Theorem 3.3, it follows that

∞∑
k=1

αk =∞ and

∞∑
k=1

α2
k <∞. (3.46)

Second, following the proofs of Theorem 3.2 or Theorem 3.3, it follows that under conditions (i) or (ii) one
finds by taking total expectations in (3.24) or (3.35) that

E[f(xk+1)]− E[f(xk)] ≤ − 1
2γ1αkE[‖∇f(xk)‖2] + δα2

k

or E[f(xk+1)]− E[f(xk)] ≤ −β1αkE[‖∇f(xk)‖2] + β2α
2
k.

Without loss of generality, let us assume that condition (ii) holds and the latter inequality above is satisfied.
(The proof is the same if condition (i) holds and the former inequality above is satisfied.) Summing both
sides for k ∈ {1, . . . ,K} yields

f∗ − f(x1) ≤ E[f(xK+1)]− f(x1) ≤ −β1
K∑
k=1

αkE[‖∇f(xk)‖2] + β2

K∑
k=1

α2
k,

which after rearrangement gives

K∑
k=1

αkE[‖∇f(xk)‖2] ≤ f(x1)− f∗
β1

+
β2
β1

K∑
k=1

α2
k.

From (3.46), it follows that the right-hand side converges to a finite limit as K →∞, giving (3.45a). Then,
the limit (3.45b) follows since (3.46) ensures that {AK} → ∞ as K →∞.

A consequence of this theorem is the straightforward fact that

lim inf
k→∞

E[‖∇f(xk)‖2] = 0.

That is, under the conditions of the theorem, the expected squared norms of the gradients at the iterates of
the algorithm cannot stay bounded away from zero.

4 Numerical Experiments

In this section, we provide the results of numerical experiments to demonstrate the performance of TRish
compared to a stochastic gradient (SG) approach. Through solving machine learning test problems involving
objective functions of the form (2.2)—some convex and some nonconvex—we demonstrate that TRish can
outperform SG with comparable computational effort. Before presenting our results, we first discuss how
the parameters of the algorithm might be chosen.

4.1 Algorithm Parameter Selection

Our analysis in §3 provides guidelines on how the stepsizes {αk} and pairs {(γ1,k, γ2,k)} should be chosen
to guarantee convergence properties for TRish. That said, as for SG, the values required by the theory are
often too conservative in practice, whereas one often finds better performance by a parameter tuning scheme.
Still, it is worthwhile to comment on how the theoretical analysis might inform parameter selection. For our
purposes, since our numerical experiments focus on results obtained with fixed parameters, we shall discuss
how the analysis in §3.1 informs parameter selection. Similar conclusions can be drawn based on our other
theoretical results.

17

For simplicity, let us assume that the bound (3.2) in Assumption 3.2 holds with M2 = 1. In this case, the
bound (3.2) is equivalent to the restriction that the variance of the stochastic gradient estimate is bounded

by M1, i.e., that Ek[‖gk‖2]− ‖∇f(xk)‖2 ≤ M1. If one has an estimate M̃1 of M1—which, for example, can
be obtained by sampling gradients and computing a variance estimate—then, following Lemma 3.2, one can

employ the value h̃2 = 1
2

√
M̃1 + 1 for parameter selection. In particular, Theorem 3.1 suggests to choose

(γ1, γ2) such that

γ1
γ2

<
h̃2

h̃2 − 1
= 1 +

2√
M̃1

.

Naturally, this still leads to flexibility in the precise values of (γ1, γ2), but the trade-offs between different
choices become similar to the traditional trade-offs one finds for the selection of α in an SG scheme: (i) one
can choose values such that γ1 − γ2 is large, which leads to fast convergence, but only to a relatively large
neighborhood of the solution, or (ii) one can choose values such that γ1 − γ2 is small, which leads to slow
convergence, but to a relatively small neighborhood of a solution. Overall, one might be discouraged by the
idea that the choice of (γ1, γ2) requires estimation of the upper bound M1. However, this is not dissimilar
to the fact that, theoretically, one needs an estimate of the Lipschitz constant L of the gradient in order to
choose the stepsize for SG, and clearly also for TRish, such as through the bound (3.14). The good news is
that estimating the variance of the stochastic gradient estimates is a reasonable request that could even be
done during an initial phase that simply uses SG iterations.

Despite all of this commentary, in practice one should expect to achieve better performance by simply
tuning parameters for a given problem, as is often done for SG methods. For our experiments described in
the following subsections, we chose (γ1, γ2) by a simple tuning scheme that also selects the stepsize α. We
took care to make sure that the tuning procedure for TRish did not require more effort than the tuning used
for the SG method that we have for comparison purposes.

4.2 Logistic Regression

As a first test case, we considered the problem of binary classification through logistic regression using a
few datasets available in the well-known LIBSVM repository; see [4]. In particular, for each dataset, with
training feature vector zi ∈ Rn and training label yi ∈ {−1, 1} for all i ∈ {1, . . . , N}, the objective of this
problem has the form

f(x) =
1

N

N∑
i=1

log(1 + e−yi(x
T zi)). (4.1)

Also available in each case is a testing dataset {(zi, yi)}Ni=1.
We ran implementations of TRish and SG and compare performance by comparing training loss (i.e., the

objective function (4.1) evaluated with the training data) and testing accuracy (i.e., for a given approximate
solution, what fraction of the testing set is classified correctly) for iterates throughout the optimization
process. We ran each algorithm for one epoch (i.e., until N training pairs have been accessed) with a fixed
stepsize α and, for TRish, a fixed parameter pair (γ1, γ2).

For both algorithms and all datasets, the stochastic gradient estimates were computed using a mini-
batch size of 64. For choosing a fair set of parameters for the comparison for each dataset, we first ran
SG with a stepsize of 0.1 and computed G as the average norm of stochastic gradient estimates throughout
the run. Then, for TRish, we considered the stepsizes α ∈ {10−1, 10−1/2, 100, 101/2, 101} and parameters
γ1 ∈ { 4

G ,
8
G ,

16
G ,

32
G } and γ2 ∈ { 1

2G ,
1
G ,

2
G}. (The value G gauges the magnitude of the stochastic gradient

estimates, which depends on problem scaling. As seen in our results, these choices of (γ1, γ2) ensure that
step normalization—i.e., case 2 of TRish—occurs. In practice, one could compute G during an initial SG
phase before starting TRish, but to cleanly distinguish between TRish and SG, we computed this value using
an independent run of SG.) This resulted in 60 parameter settings with TRish employing stepsizes in the
range from 1

2G × 10−1 (i.e., the minimum γ2 times the minimum α) to 32
G × 101 (i.e., the maximum γ1 times

the maximum α). Hence, for SG, we considered 60 values for α in the range [1
2G × 10−1, 32G × 101] so that

18

neither algorithm had an advantage in terms of the range of the stepsizes. Specifically, we considered the 60
values such that log10(α) was evenly distributed in [log10(1

2G × 10−1), log10(32
G × 101)].

For each dataset, we ran the algorithms with these different parameters settings and selected for each
the setting that led to the best average testing accuracy in the last ten iterations of the run.

4.2.1 a1a.

The first dataset that we considered was a1a in which the feature vectors have length n = 123, the number
of points in the training set is N = 1605, and the number of points in the testing set is N = 30956. For
tuning, the value G ≈ 0.1746 was determined, yielding a stepsize range of approximately [0.2863, 1832].
After tuning, the selected parameter setting for TRish was (α, γ1, γ2) ≈ (0.1, 22.90, 2.863) and the selected
parameter setting for SG was α ≈ 0.4471.

The algorithms, TRish and SG, were each run 10 times from the same starting point (the origin). The
training losses and testing accuracies, averaged over these 10 runs, are plotted in Figure 2 after 0.1 epoch
through the end of the first epoch. (The values during the first 0.1 epoch are not plotted here, nor for the
other datasets, so that it is easier to distinguish the differences at the end of the first epoch.) It is worthwhile
to note that, during the runs for TRish, case 1 did not occur, case 2 occurred in approximately 99% of the
iterations, and case 3 occurred in approximately 1% of the iterations; i.e., step normalization occurred in a
large majority of the iterations. The figure shows that TRish yields better training losses throughout the
optimization process. However, for this dataset, the performance in terms of testing accuracy is roughly the
same for both algorithms.

Figure 2: Average training loss and testing accuracy during the first epoch when TRish and SG are employed
to minimize the logistic regression function (4.1) using the a1a dataset.

4.2.2 w1a.

The second dataset that we considered was w1a in which the feature vectors have length n = 300, the number
of points in the training set is N = 2477, and the number of points in the testing set is N = 47272. For
tuning, the value G ≈ 0.0887 was determined, yielding a stepsize range of approximately [0.5638, 3608].
After tuning, the selected parameter setting for TRish was (α, γ1, γ2) ≈ (0.1, 360.8, 5.638) and the selected
parameter setting for SG was α ≈ 0.6541.

The training losses and testing accuracies, averaged over 10 runs when both algorithms were initialized
at the same starting point (the origin), are plotted in Figure 3. During the runs for TRish, case 2 occurred
in approximately 99% of the iterations while case 1 and case 3 combined occurred in fewer than 1% of the

19

iterations. For this dataset, TRish outperformed SG both in terms of training losses and testing accuracies
throughout the first epoch.

Figure 3: Average training loss and testing accuracy during the first epoch when TRish and SG are employed
to minimize the logistic regression function (4.1) using the w1a dataset.

4.2.3 rcv1.

The third dataset that we considered was rcv1 in which the feature vectors have length n = 47236, the
number of points in the training set is N = 20242, and the number of points in the testing set is N = 677399.
For tuning, the value G ≈ 0.0497 was determined, yielding a stepsize range of approximately [1.007, 6444].
After tuning, the selected parameter setting for TRish was (α, γ1, γ2) ≈ (0.3162, 644.4, 10.07) and the selected
parameter setting for SG was α ≈ 10.84.

The training losses and testing accuracies, averaged over 10 runs when both algorithms were initialized
at the same starting point (the origin), are plotted in Figure 4. During the runs for TRish, case 1 occurred
in approximately 27% of the iterations, case 2 occurred in approximately 73% of the iterations, and case
3 did not occur. For this dataset, TRish outperformed SG both in terms of training losses and testing
accuracies throughout the first epoch. That said, the testing accuracies appear to near at the end of the first
epoch, leading one to wonder about the performance of the methods if the parameters are re-tuned and the
algorithms are run for more epochs.

To address this question, Figure 5 plots the training losses and testing accuracies—averaged over 10
runs—for TRish and SG during two epochs. (For this horizon, tuning led to the parameter setting for
TRish as (α, γ1, γ2) = (0.1, 376.2, 47.02) and the parameter setting for SG as α ≈ 5.192. For TRish, case 2
occurred in approximately 94% of the iterations, case 3 occurred in approximately 5% of the iterations, and
case 1 occurred in fewer than 1% of the iterations.) These plots show a trade-off where, for a longer horizon,
the better parameters for TRish do not necessarily offer better results initially, but do offer better results
eventually.

In all of the experiments presented in this section, TRish generally outperforms SG. However, the gains
are somewhat limited due to the fact that, by convexity of the problems, both algorithms are tending to
neighborhoods around the same optimal solution. The results presented in the next subsection, in which
we consider nonconvex optimization problems arising from neural network training, show more substantial
benefits from using TRish as compared to SG.

20

Figure 4: Average training loss and testing accuracy during the first epoch when TRish and SG are employed
to minimize the logistic regression function (4.1) using the rcv1 dataset.

Figure 5: Average training loss and testing accuracy during the first two epochs when TRish and SG are
employed to minimize the logistic regression function (4.1) using the rcv1 dataset.

4.3 Neural Network Training

As a second test case, we considered the problem to train convolutional neural networks (CNNs) for image
classification. We considered two well-known datasets. The first, the mnist dataset [17], is a collection of
images of hand-written digits. The goal for training the network for this dataset is to classify which of
the digits (0 through 9) is written in each image. It includes N = 60000 training samples and N = 10000
testing samples. The second, the cifar-10 dataset [15], is a collection of color images in ten categories (e.g.,
airplanes, dogs, and ships). The goal for training the network for this dataset is to classify the image with
the correct category. It includes N = 50000 training samples and N = 10000 testing samples.

Implemented using tensorflow, the neural networks that we considered for both datasets are composed
of two convolutional layers (involving 32 and 64 filters, respectively, and each followed by an average pooling
layer) followed by two fully connected layers. ReLU activation is used at each hidden layer and the objective
is defined using the logistic (cross entropy) loss function. The networks vary slightly, e.g., due to the fact
that a pixel for each mnist image corresponds to a single feature while a pixel for each cifar-10 image
corresponds to three features (for each RGB value since they are color images). As seen in our experimental

21

results, training the network led to a very good classifier for mnist, yielding over 95% testing accuracy.
The performance is less impressive for cifar-10 (yielding around 60% accuracy); achieving higher accuracy
would require a more sophisticated network and more computational resources than were available. That
said, both datasets provide interesting settings for comparing the performance of TRish and SG.

As for the results in §4.2, we compare performance between TRish and SG by comparing training loss
and testing accuracy. We tuned parameters using the same setup as in §4.2, except with slightly different
parameter choices. In particular, the mini-batch size used when computing stochastic gradients was 128
and, when computing G, we ran SG with a stepsize of 0.01. For TRish, we considered stepsizes α ∈
{10−3, 10−2, 10−1, 100} and parameters γ1 ∈ { 4

G ,
8
G ,

16
G } and γ2 ∈ { 1

8G ,
1
4G ,

1
2G}. This means that SG was

tuned with 36 choices of α in the range [1
8G × 10−3, 16G × 100].

4.3.1 mnist.

For mnist, we ran the algorithms for two epochs. For parameter tuning, the value G ≈ 2.8277 was de-
termined, yielding a stepsize range of approximately [2.683 × 10−5, 3.435]. After tuning, the selected pa-
rameter setting for TRish was (α, γ1, γ2) ≈ (1, 1.717, 0.0268) and the selected parameter setting for SG was
α ≈ 0.0609.

The training losses and testing accuracies for each of the 10 runs that we performed with the tuned
parameters are plotted in Figure 6, ignoring the first 0.2 epochs so that the later values are more easily
distinguished. (For each run, the network parameters were initialized to the same randomly generated values;
the values were generated from a truncated normal distribution with mean 0 and standard deviation 0.1. We
did not average the loss and accuracy values over the 10 runs since the optimization problem is nonconvex,
meaning that for each run an algorithm might tend toward a different region of the search space.) During the
runs for TRish, case 1 occurred in approximately 62% of the iterations, case 2 occurred in approximately 37%
of the iterations, and case 3 almost did not occur. Overall, TRish consistently outperformed SG in terms of
both training loss and testing accuracy throughout the optimization process.

Figure 6: Average training loss and testing accuracy during the first two epochs when TRish and SG are
employed to train a convolutional neural network using the mnist dataset.

4.3.2 cifar-10.

For cifar-10, we ran the algorithms for five epochs (since further improvement was clearly being made even
after the first few epochs). The value G ≈ 964.39 was determined, yielding a stepsize range of approximately
[8.990 × 10−6, 1.151]. After tuning, the parameter setting for TRish was (α, γ1, γ2) ≈ (1, 1.051, 0.0089) and
the parameter setting for SG was α ≈ 0.0104.

22

The training losses and testing accuracies for each of the 10 runs that we performed with the tuned
parameters are plotted in Figure 7, again ignoring the first 10% of the runs (i.e., in this case, the first
0.5 epochs) so that the later values are more easily distinguished. (For each run, the network parameters
were initialized to the same randomly generated values; the values were generated from a truncated normal
distribution with mean 0 and standard deviation 0.01.) During the runs for TRish, case 1 occurred in
approximately 1% of the iterations, case 2 occurred in approximately 99% of the iterations, and case 3 did
not occur. In these experiments, TRish typically outperformed SG in terms of both training loss and testing
accuracy throughout each run.

Figure 7: Average training loss and testing accuracy during the first five epochs when TRish and SG are
employed to optimize the convolutional neural network using the cifar10 dataset.

5 Conclusion

An algorithm inspired by a trust region methodology has been proposed, analyzed, and tested for solving
stochastic and finite-sum minimization problems. Our proved theoretical guarantees show that our method,
deemed TRish, has convergence properties that are similar to a traditional SG method. Our numerical
results, on the other hand, show that TRish can outperform a traditional SG approach. We attribute this
better behavior to the algorithm’s use of normalized steps, which one can argue lessens its dependence on
problem-specific quantities.

Naturally, a more substantial numerical study—that goes well beyond the scope of this paper—would be
necessary to fully explore the trade-offs between TRish and SG in practice. For example, a more substantial
numerical study would take into account different procedures that might be used to decrease the stepsize
after some number of iterations, as is typically done in practice. Indeed, for the convex problems that we
considered, this was our motivation for presenting results for only one epoch, since, in practice, one often
adjusts the stepsize after each epoch. For TRish, this adjustment may involve updates to the pair (γ1, γ2)
as well, which one might adjust so that γ1 − γ2 = O(α), as our theory suggests.

Finally, while not considered in this paper, we believe it would be interesting to explore the incorporation
within TRish of various enhancements, such as the use of second-derivative (i.e., Hessian) approximations,
acceleration, and/or momentum. These might further improve the practical performance of the framework
set forth in this paper.

23

Acknowledgment

The authors would like to thank Chaoxu Zhou of Columbia University for his valuable assistance in correct-
ing errors in an earlier version of this manuscript. They would also like to thank the anonymous referees and
the Associate Editor for providing valuable comments on an earlier draft of the paper. In particular, one
anonymous referee suggested a proof for Lemma 3.2, which greatly improved the analysis. All authors were
supported by the U.S. National Science Foundation’s Division of Computing and Communication Founda-
tions and Division of Mathematical Sciences under award numbers CCF–1618717 and DMS–1319356. The
first author was also supported by the U.S. Department of Energy, Office of Science, Applied Mathematics,
Early Career Research Program under Award Number DE–SC0010615.

References

[1] A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums. In Proceedings of the
International Conference on Machine Learning, volume 37, pages 78–86. PMLR, 2015.

[2] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale Machine Learning.
SIAM Review, 60(2):223–311, 2018.

[3] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu. Sample Size Selection in Optimization Methods for
Machine Learning. Mathematical Programming, Series B, 134(1):127–155, 2012.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http:

//www.csie.ntu.edu.tw/~cjlin/libsvm.

[5] Ruobing Chen, Matt Menickelly, and Katya Scheinberg. Stochastic optimization using a trust-region
method and random models. Mathematical Programming, 169(2):447–487, 2018.

[6] K. L. Chung. On a stochastic approximation method. Annals of Mathematical Statistics, 25(3):463–483,
1954.

[7] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[8] J. E. Freund. Mathematical Statistics. Prentice-Hall, Englewood Cliffs, NJ, USA, 1962.

[9] M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data-fitting. SIAM
Journal on Scientific Computing, 34:A1380–A1405, 2012.

[10] Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[11] E. G. Gladyshev. On stochastic approximations. Theory of Probability and its Applications, 10:275–278,
1965.

[12] Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex optimiza-
tion. In Advances in Neural Information Processing Systems, pages 1594–1602, 2015.

[13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduc-
tion. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

[14] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak- lojasiewicz condition. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

24

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[15] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical Report, University of
Toronto, 2009.

[16] Jeffrey Larson and Stephen C Billups. Stochastic derivative-free optimization using a trust region
framework. Computational Optimization and Applications, 64(3):619–645, 2016.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. In Proceedings of the IEEE, 86(11), pages 2278–2324, 1998.

[18] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust Stochastic Approximation Approach to
Stochastic Programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[19] H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals of Mathematical Statistics,
22(3):400–407, 1951.

[20] H. Robbins and D. Siegmund. A convergence theorem for nonnegative almost supermartingales and
some applications. In Jagdish S. Rustagi, editor, Optimizing Methods in Statistics. Academic Press,
1971.

[21] Stéphane Ross, Paul Mineiro, and John Langford. Normalized online learning. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI), 2013.

[22] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Modeling and
Theory. SIAM, 2009.

[23] Yung Liang Tong. The multivariate normal distribution. Springer Science & Business Media, 2012.

25

	Introduction
	Algorithm
	Algorithm Description

	Convergence Analysis
	P-L Condition and Constant Parameters
	P-L Condition and Sublinearly Diminishing Stepsizes
	P-L Condition, Constant Parameters, and Linearly Decreasing Variance
	No P-L Condition and Constant Parameters
	No P-L Condition and Sublinearly Diminishing Stepsizes

	Numerical Experiments
	Algorithm Parameter Selection
	Logistic Regression
	a1a.
	w1a.
	rcv1.

	Neural Network Training
	mnist.
	cifar-10.

	Conclusion

