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3 ABSTRACT: For a multiple-fluid system, CG models capable of accurately
4 predicting the interfacial properties as a function of curvature are still lacking. In
5 this work, we propose a new probabilistic machine learning (ML) model for
6 learning CG potentials for binary fluids. The water−hexane mixture is selected as a
7 typical immiscible binary liquid−liquid system. We develop a new CG force field
8 (FF) using the Shinoda-DeVane-Klein (SDK) FF framework and compute
9 parameters in this CG FF using the proposed probabilistic ML method. It is
10 shown that a standard response-surface approach does not provide a unique set of
11 parameters, as it results in a loss function with multiple shallow minima. To address
12 this challenge, we develop a probabilistic ML approach where we compute the
13 probability density function (PDF) of parameters that minimize the loss function.
14 The PDF has a well-defined peak corresponding to a unique set of parameters in
15 the CG FF that reproduces the desired properties of a liquid−liquid interface. We
16 compare the performance of the new CG FF with several existing FFs for the water−hexane mixture, including two atomistic and
17 three CG FFs with respect to modeling the interface structure and thermodynamic properties. It is demonstrated that the new FF
18 significantly improves the CG model prediction of both the interfacial tension and structure for the water−hexane mixture.

1. INTRODUCTION

19 We propose a machine learning (ML) method for estimating
20 parameters in coarse-grained (CG) force fields (FFs) and use it
21 for constructing a CG FF for binary fluids. ML methods are
22 often used to construct potential energy response surfaces
23 using quantum chemistry calculations and parametrize atom-
24 istic interaction potentials.1−5 Similar strategies were used to
25 construct coarse-grained models.6 In this paper, we propose a
26 polynomial-regression-based ML method to construct a
27 response surface that relates parameters in a CG FF to the
28 (curvature−dependent) surface tension of the liquid−liquid
29 interface. Then, the parameters can be identified by
30 minimizing the loss function constructed as a mean square
31 difference between surface tensions given by the response
32 surface and measured in atomistic simulations. We demon-
33 strate that for the considered problem, this approach does not
34 provide a unique set of parameters because it results in a loss
35 function with multiple shallow minima. To address this
36 challenge, we propose a probabilistic approach where we
37 compute the probability density function (PDF) of parameters
38 minimizing the loss function. The PDF has a well-defined peak
39 corresponding to a unique set of parameters in the CG FF that
40 reproduces the desired properties of a liquid−liquid interface.
41 We focus on liquid−liquid interfaces because of their
42 importance for many physical, chemical, and biological
43 processes, including micelle formation, interfacial polymer-
44 ization, and protein folding.7−9 Therefore, understanding
45 interfaces at the molecular level is fundamentally important.
46 Various techniques, including spectroscopy and electro-

47chemical measurement methods, have been proposed to
48experimentally study interfaces.10−12 However, due to limited
49resolution, experimental methods cannot reveal the micro-
50scopic structures in full details.
51Computational methods, including Molecular Dynamics
52(MD) techniques, have been used for studying aqueous
53interfaces since the 1980s,13 but most of the MD studies were
54focused on liquid−vapor interfaces.14,15 In contrast to liquid−
55vapor interfaces, MD simulations of liquid−liquid interfaces
56are more challenging because a larger system size is required to
57stabilize the flexible liquid phases and the interfacial region.16

58The computation of interfacial properties of large systems
59involving sampling of long time and large length scales remains
60a challenge for atomistic MD models.17−21 CG models present
61an attractive alternative to atomistic MD models because of
62their ability to simulate much larger time and length scales.22,23

63In this regard, several coarse-graining approaches have been
64developed for the interface system by averaging over atomistic
65details and building CG FFs that can reproduce certain
66essential properties.24,26 Generally, there are two ways to
67construct the CG FF, i.e., the bottom-up approach and the top-
68down approach.25 In the bottom-up approach, the CG
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69 potentials are extracted and constructed from the atomic
70 system.26,27 In other words, it focuses on the accurate
71 modeling of the underlying atomistic structural details at a
72 particular state point for a specific system.28 The top-down CG
73 models that macroscopic properties (e.g., thermodynamic
74 data) are used as the main target of their parametrization are
75 often cheaper and have better representability.29−32 It is found
76 that several CG FFs developed with the top-down CG
77 approach can accurately reproduce multiple properties of
78 industrial fluids. For example, the Shinoda-DeVane-Klein
79 (SDK) CG FF and its extension SPICA (surface property
80 fitting coarse graining) CG FF were shown to accurately model
81 the surface tension, bulk density, and hydration free energy of
82 water and alkanes.33−38 The MARTINI FF, originally designed
83 for lipids, surfactants, and biomacromolecules, was used to
84 model the interface system.23,39−42 The Statistical Associating
85 Fluid Theory (SAFT) CG FF19,43−48 was developed for many
86 solvents, including water, alkanes, and carbon dioxide, where
87 the effective CG intermolecular interactions between particles
88 are estimated using an accurate description of the macroscopic
89 experimental vapor−liquid equilibria data by means of a
90 molecular-based equation of state. The above-mentioned CG
91 FFs were shown to effectively describe multiple physical
92 properties for some industrial fluids.
93 Parametrization methods for CG FFs for pure fluids are well
94 established. However, for multiple-fluid systems, parametriza-
95 tion of FFs, especially the potentials acting between beads of
96 different liquids, still remains a challenge. For example,
97 transferable CG models that can reproduce the local structure
98 and free energy in multiple-fluid systems with changing
99 chemical environment are still lacking.49 For the coarse-
100 grained ML potential, once the coarse-graining map is defined,
101 the definition of the energy function can be seen as a learning
102 problem. In particular, the energy loss function or the force-
103 matching loss function can be used to train the effective energy
104 of the model from the atomistic energies or forces. Such an
105 approach was used to design coarse-grained force fields for
106 different systems with kernel methods50,51 and deep neural
107 networks.52 However, few ML methods were focused on
108 learning the CG potential using the top-down CG approach. In
109 this work, we present a novel probabilistic ML method to
110 estimate interaction parameters in the CG FF. This approach is
111 applied to parametrizing a CG FF of a water−alkane system
112 using interfacial tension as the target. We select the water−
113 hexane mixture as it is a typical immiscible binary system and
114 use the proposed CG model to study the interfacial properties
115 of water−hexane as functions of the interface curvature. We
116 demonstrate that the proposed parametrization improves the
117 ability of CG models to predict the interfacial tension and
118 interfacial structure as functions of the interface curvature,
119 even though the interfacial structure is not used as a target in
120 the CG model parametrization. This paper is organized as
121 follows. Section 2 describes the atomic and CG models.
122 Section 3 discusses the atomic and CG simulation results.
123 Section 3.3 introduces the ML method and discusses its
124 application to the water−hexane mixture. Section 4 presents
125 the conclusions and outlook for CG modeling of complex
126 liquid−liquid interfaces.

2. SIMULATION MODELS AND METHODS
127 2.1. Atomistic Model and Simulation. Several rigid
128 water models have been proposed in the literature, but only the
129 Transferable Intermolecular Potential with 4 Points 2005

130(TIP4P2005) model was shown to accurately reproduce the
131temperature-dependent liquid−vapor surface tension.53,54

132Therefore, we employ the TIP4P2005 water model in our
133atomistic simulations. The Transferable Potentials for Phase
134Equilibria (TraPPE) FF55 was shown to predict surface tension
135of alkanes in experiments.55 Also, Neyt et al. demonstrated that
136the TIP4P2005 water and octane models combined in a
137TraPPE FF can reproduce the experimentally measured
138interfacial tension of a water−n-octane system.41 Therefore,
139in this work, we employ the n-hexane model from the TraPPE
140FF. The interaction potential between the TIP4P2005-
141modeled water and the TraPPE-modeled alkane is modified
142following Ashbaugh’s protocol.56 This modification results in
143the more accurate hydration energy of alkane molecules in
144water and does not change other properties. In addition, the n-
145hexane model in the TraPPE FF is a united-atom model, where
146CH3 and CH2 groups are represented with a single united
147atom. Therefore, the interaction between the “TIP4P2005”
148water and TraPPE n-hexane does not include electrostatic
149interactions, which might affect the local structure of the
150interface. To study the effect of this potential on interfacial
151tension, we also test the hexane model in the Optimized
152Potential for Liquid Simulation All-Atom (OPLS-AA) FF.57

153We consider the water−hexane mixture with planar and
154 f1curved interfaces (see Figure 1). In our simulations of planar

155interfaces, we put a pre-equilibrated water slab sandwiched
156between pre-equilibrated n-hexane slabs. The initial simulation
157box size is Lx = Ly = 6 nm and Lz = 20 nm. We place 8315
158water molecules and 1152 hexane molecules for the TraPPE
159FF and 1140 hexane molecules for the OPLS-AA FF in the
160simulation box. Initially, the water and hexane molecules are
161separated by the plane interface. We also model a spherical
162water droplet in n-hexane with both the TIP4P2005 water−
163TraPPE n-hexane and the TIP4P2005 water−OPLS n-hexane
164models. We simulate droplets with radii of 2 nm (1026 water
165molecules) and 3 nm (3609 water molecules) in the simulation
166box with Lx = Ly = Lz ≈ 11 nm and Lx = Ly = Lz ≈ 15 nm,
167respectively. The box size is slightly adjusted during the
168equilibration process to keep pressure at 1 atm. For both the
169curved and planar interfaces, the long-range dispersion force
170correction method is used to obtain the correct density and
171pressure. These planar and droplet systems are equilibrated for
17210 ns using the NPNAT

58 ensemble (to keep the pressure
173constant, the box volume is changed by varying Lz) and the

Figure 1. Initial state of the water−hexane planar interface and curved
interface in atomic simulation: (a) planar interface and (b) curved
interface.
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174 NPT ensemble with a V-rescale thermostat and Berendsen
175 barostat, respectively. The temperature and pressure are set to
176 310 K and 1 atm. Then we run another 10 ns simulation with
177 the canonical ensemble at 310 K to collect data. All bonds
178 between atoms are fixed by the LINCS algorithm.59 Periodic
179 boundary conditions are used in all three directions. The time
180 step is 2 fs. The cutoffs for vdW interaction are 1.5 and 1.2 nm
181 for the TraPPE and OPLS-AA FFs, respectively. The cutoff for
182 Coulomb interaction is 1.2 nm for OPLS-AA FF. The particle
183 mesh Ewald (PME) method60 is used for calculating the long-
184 range electrostatic interactions. All the atomistic simulations
185 are performed with GROMACS.
186 2.2. CG Model and Simulations. We select the
187 MARTINI (including the original and polarized water
188 model) and SAFT CG FFs for modeling the water−hexane
189 interface. The original MARTINI water model freezes under
190 certain conditions.39 To avoid water freezing, we replaced 12%
191 of CG water beads with antifreeze CG water beads. Our
192 simulation results show that the addition of antifreeze CG
193 water beads does not affect the interfacial tension between
194 water and n-hexane as long as the percentage of antifreeze CG
195 water beads does not exceed 50%. For the polarized MARTINI
196 water model, antifreezing CG water beads is not needed. There
197 are several SAFT CG water models. Here, we employ the bio2
198 CG water model.
199 We build planar and curved interface systems for all

f2 200 considered CG FFs (see Figure 2). In the planar interface

201 simulations, the simulation box size is set to Lx = Ly > 5 nm
202 and Lz > 11 nm to avoid the boundary effect on the interfacial
203 tension.61 To study properties of the curved interface, we
204 simulate 2 and 3 nm water droplets in n-hexane. To reduce the
205 boundary effect, the initial lengths of the simulation box are set
206 to 11 and 15 nm. The simulation boxes are equilibrated for 20
207 ns in NPNAT and NPT ensembles at 310 K and 1 atm,
208 respectively. Then, we perform 30 ns (planar interface) and 10
209 ns (curved interface) NVT simulations at 310 K for data
210 collection. To get better statistics, we perform five parallel
211 simulations for each curved interface system. The cutoffs for
212 vdW interaction are 1.2 and 1.5 nm for the MARTINI and
213 SAFT CG FFs, respectively. The cutoff for the Coulomb
214 potential is 1.2 nm for the polarized water model in the
215 MARTINI CG FF. The V-rescale thermostat and Berendsen
216 barostat are used to keep constant temperature and pressure
217 during pre-equilibrium. Then, the Nose-Hoover thermostat is
218 employed in the production simulation. The time step is 10 fs.
219 All CG simulations are performed with GROMACS.16

3. SIMULATION RESULTS
220In this section, we investigate the density profiles, pressure
221profiles, and interfacial tensions of a water−hexane mixture
222with planar and curved interfaces using two atomistic and three
223CG FFs. Our analysis demonstrates that the interfacial
224structures and interfacial tensions obtained from the two
225atomistic models are in close agreement with each other. On
226the other hand, the three considered CG models produce
227results, which do not agree with each other nor the results of
228the atomistic models. Finally, we present a novel probabilistic
229ML approach for learning parameters in the CG FF and
230demonstrate that this FF significantly improves the prediction
231of both the interfacial tension and structure for the water−
232hexane mixture.
2333.1. Planar Interface. 3.1.1. Density Profiles. Here, we
234describe the interface structure of water−hexane systems using
235the intrinsic and nonintrinsic density profiles. The nonintrinsic
236or local mass density ρN(x) is defined as the mass of liquid in a
237cube (centered at point x) divided by the cube’s volume. Here,
238we use the cube size of 0.2 nm. The nonintrinsic density is
239averaged within each cube over time and over all cubes with
240the same normal distance to the interface. At the molecular
241level, the interface is corrugated by thermal capillary waves
242rather than being flat. To detect the molecular-level interface
243(so-called intrinsic interface), we use the so-called identi-
244fication of the truly interfacial molecule (ITIM) method.62−65

245This method identifies interfacial molecules that are exposed to
246the opposite phase using a probe sphere with radius of 0.2 nm
247 f3(see Figure 3). The probe sphere is moved along test lines

248perpendicular to the plane of the fluid−fluid interface. Atoms
249that first encounter the probing ball are identified as the
250interfacial atoms, and the corresponding molecules are
251identified as the interfacial molecules. This process is repeated
252over the entire interfacial area in the simulation.
253The intrinsic density provides more information about the
254interface structure (i.e., the location of the interface and the
255molecular organization) than the nonintrinsic density.66 The
256nonintrinsic density profile is smooth and only contains
257approximate information about the interface location. The
258intrinsic density profile has local peaks corresponding to the
259locations of molecules layers near the interface, with the largest
260peak corresponding to the location of the interface.62,67−69

261 f4Figure 4 presents the intrinsic and nonintrinsic density
262profiles of the water and n-hexane of a water−hexane planar
263interface obtained from atomistic simulations with the
264TIP4P2005-TraPPE and TIP4P2005-OPLSAA models. Both
265atomistic models result in the same water density profiles and

Figure 2. Initial state of the water−hexane planar interface and curved
interface in CG simulation: (a) planar interface and (b) curved
interface.

Figure 3. Scheme of the intrinsic density calculation for a water−
hexane interface.
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266 very similar hexane density profiles. Also, both atomistic
267 models can reproduce the experimental density of water and
268 hexane at 310 K. The intrinsic density profiles show that there
269 are two water layers close to the interface. In addition, the
270 strong directional bonding of water creates a well-defined
271 correlation structure at short distances from the interface, but
272 it does not propagate to longer distances as efficiently as it
273 does for more packed liquid structures such as alkanes. The
274 comparison of parts (a) and (b) of Figure 4 shows longer-
275 range oscillations in alkanes than in water. Similar observations
276 were made for a water−hexane binary system with the SPC/E
277 water model.70 In the case of hexane, we see that the
278 distribution of the first peak is wider. This is due to the long
279 tail of the alkane molecule. Overall, we find that the intrinsic
280 structure of the water/n-hexane system is insensitive to
281 atomistic FF parameters.

f5 282 The density profiles in CG simulations are shown in Figure
f5 283 5. The nonintrinsic and intrinsic densities of water and hexane

284 are different for various CG FFs. The nonintrinsic density
285 profile obtained with the SAFT CG FF is flatter than that
286 obtained with the MARTINI CG FF. It should be noted that

287the density of water in the n-hexane phase is almost zero in the
288TIP4P2005 water model that is close to the experimental water
289density value of 6 × 10−5 g/cm3.71 In CG simulations, the
290density of water in hexane is 3 × 10−4 g/cm3 for the MARTINI
291CG FF, which is approximately five times larger than the
292experimental value. For the SAFT bio2 CG water model in n-
293hexane, the water density is even greater. In Figure 5(a), the
294intrinsic water density profile has three peaks (note that two
295peaks were observed in MD simulations). This indicates that
296the CG water phase shows a longer-range ordered structure
297compared to the atomistic simulations. The intrinsic density
298profiles are similar for the original and polarized MARTINI
299CG water models, except that the original MARTINI CG
300water model has a higher interfacial density. The first peak in
301the SAFT bio2 CG model is lower than in the atomistic
302models because the CG model produces a wider interface. The
303positions of the first intrinsic density peaks for the CG n-
304hexane models are also very close. The hexane intrinsic density
305profiles, obtained from the MARTINI and SAFT CG n-hexane
306models, do not have distinct peaks (Figure 5(b)). However, we
307can observe a peak in the intrinsic density of hexane in the

Figure 4. Intrinsic and nonintrinsic density profiles of (a) water and (b) hexane at the water−hexane interface as a function of z obtained from
atomistic simulation. The point z = 0 corresponds to the position of the outermost water/hexane atoms in the intrinsic density profile and the
Gibbs dividing surface of the water−hexane system for the nonintrinsic density profile.

Figure 5. Intrinsic and nonintrinsic density profiles of (a) water and (b) hexane at the water−hexane interface in CG simulations. The zero point of
the interface corresponds to the position of the outermost water/hexane atoms in the intrinsic density profile and the Gibbs dividing surface of the
water−hexane system for the nonintrinsic density profile.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00337
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

D



308 polarized MARTINI CG model. This is because single CG

309 beads are used for both the MARTINI and SAFT bio2 CG

310 water models. On the other hand, the polarized MARTINI CG

311 water model has a physics-based, three-point structure. Bresme
312 et al. demonstrated that the packing of water molecules will

313influence the orientation of alkane molecules at the interface.68

314In our CG simulations, we also see that the geometry topology

315constraints of the CG water model affect the local interface

316structure of the hexane phase. For the SAFT n-hexane model,
317the CG water beads infiltrate into the hexane phase so deeply

Figure 6. Pressure tensor components of the water−hexane planar interface in the atomistic (a) TIP4P2005 water + hexane in TraPPE FF and (b)
TIP4P2005 water + hexane in OPLS-AA FF models.

Figure 7. Local pressure components of the water−hexane planar interface in (a) MARTINI FF, (b) MARTINI FF with polarized water, and (c)
SAFT FF models.
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318 that the density of the first peak is lower than that of the bulk
319 phase. In Figure 5(a),(b), the intrinsic density profiles of water
320 or hexane for the three CG models are all different, which
321 illustrates that the intrinsic density profile is sensitive to the
322 choice of water and n-hexane CG models.
323 3.1.2. Pressure Profiles and Interfacial Tension. Previous
324 atomistic simulations demonstrated that the errors in the
325 estimated surface tension and liquid density are closely
326 correlated.53,72 Therefore, the accurate prediction of density
327 is very important in the calculation of surface tension. Above,
328 we demonstrated that both of the considered atomistic water
329 and hexane models can reproduce the liquid bulk density at
330 310 K. Here, we calculate the interfacial tension based on the
331 mechanical approach.73−77 The interfacial tension of a planar
332 interface is computed as75

∫γ = −
−

z P z P z dz( ) ( ( ) ( ))
z

z

N T
/2

/2

333 (1)

334 where PN and PT are the normal and tangential components of
335 the pressure tensor along the normal direction to the surface.
336 For a spheric droplet, the expression for the surface tension
337 takes the form

∫γ = −∞
r P r P r dr( ) ( ( ) ( ))N T

0338 (2)

339 We use the Irving−Kirkwood73 and Vanegas and Ollila76,78

340 approaches for computing pressure components in eqs 1 and 2,
341 respectively. These approaches were originally proposed for
342 MD systems with pairwise interactions. To compute local
343 pressure components due to three-body angular potentials,
344 these potentials are decomposed into pairwise potentials by
345 Vanegas’s central force decomposition (CFD) method,77

346 which has been implemented in a modified GROMACS
347 code (http://mdstress.org/). The many-body electrostatic
348 interactions are approximated as pairwise interactions. In our
349 pressure calculations, the cutoff of the pairwise interactions is
350 2.0 nm. There are other methods to calculate surface tension
351 including the thermodynamic methods.79 We note that the
352 mechanical and thermodynamic methods can yield different
353 surface tension estimates, especially at the interfaces with large
354 curvature. However, both of these methods predict surface
355 tension to decrease with the the decreasing radius of
356 curvature.79

357 The normal and tangent pressure tensor components as
358 functions of z, obtained from the atomistic and CG

f6f7 359 simulations, are presented in Figures 6 and 7. Atomistic
360 simulations produce two symmetrical positive stress regions in
361 the tangent component of pressure that correspond to the two
362 water−hexane interfaces (Figure 6). They both appear on the
363 water side of the interfaces. A similar pressure profile was also
364 observed in an atomistic simulation with the TIP3P water and
365 CHARMM hexane models.80 Water molecules cause interface
366 polarization and the positive pressure region on the water side
367 of the interface.
368 Calculated and experimentally determined interfacial

t1 369 tensions are listed in Table 1. Both atomistic models predict
370 the interfacial tension within 5% of the experimental value. We
371 note that the computational cost of the all-atom model (OPLS-
372 AA FF) is about five times larger than that of the united-atom
373 model (TraPPE FF). The SAFT CG FF can also reproduce the
374 experimental interfacial tension. However, the interfacial
375 tension predicted by the MARTINI CG FF is only half of
376 the experiment value. A previous MARTINI CG FF simulation

377study of a water−octane system at 298 K also reported an
378approximately 25% error in the estimated interfacial tension.41

379In addition, we find that using the polarized MARTINI water
380model instead of the MARTINI water model only slightly
381improves the interfacial tension prediction.
3823.2. Curved Interfaces. 3.2.1. Density Profiles. The
383intrinsic and nonintrinsic density profiles of a 2 nm water
384droplet in n-hexane, obtained in the two atomistic models, are
385 f8shown in Figure 8. There are two peaks in the intrinsic density

386profiles in both atomistic models, which is similar to what we
387observed in the planar interface atomistic simulations.
388However, the peaks at the curved interface are higher than
389those at the planar interface. Compared to Figure 4, we also
390see that the width of the first peak is narrower, implying that
391the first water layer on the droplet surface is thinner than the
392one at the planar interface.
393The CG water droplets show qualitatively different results.
394 f9Figure 9 shows the density profiles of a 2 nm water droplet in
395n-hexane with various CG FFs. In the CG simulations of the
396planar interface, we see three density peaks on the water side.
397In Figure 9, the intrinsic density profile in the SAFT CG FF
398simulation has three peaks, while there are only two peaks in
399the MARTINI FF simulation. This could be caused by a larger
400cutoff in the SAFT CG FF. Both the CG and atomistic
401simulations show that the first peak in the water density profile
402is much higher for a curved interface than a planar interface.
4033.2.2. Pressure Profiles and Interfacial Tension. Although
404it is widely accepted that the Laplace law, which relates the

Table 1. Interfacial Tensions γ∞ of the Water−Hexane
Planar Interface in the Atomistic and CG Simulations and
the Experiment81 at 310 K

model interfacial tension (mN/m)

experiment 49.4
atomistic TIP4P2005 + TraPPE 52.4 ± 1.1
atomistic TIP4P2005 + OPLS-AA 52.1 ± 1.2
CG MARTINI 25.9 ± 1.0
CG polarized MARTINI 27.8 ± 1.2
CG SAFT 51.6 ± 1.1

Figure 8. Intrinsic and nonintrinsic density profiles of a 2 nm water
droplet in n-hexane obtained from atomistic simulations.
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405 pressure jump across a curved interface to its curvature, fails for
406 nanodroplets, the limit of the Laplace law validity is
407 controversial. Takahashi and Morita concluded that this limit
408 is less than 1 nm.82 For liquid droplets in vapor environment,

f10 409 this limit was found to be between 5−10 nm.79,83 Figures 10
f11 410 and 11 show the normal and tangential components of the

411 pressure tensor for a 2 nm water droplet in n-hexane. We see
412 negative peaks in the tangent pressure profile at the interface in
413 all simulations, indicating that the interface is under
414 compression. Similar to the planar interface in atomistic
415 simulations, we find a small peak on the water side of the
416 tangent pressure in the droplet atomistic simulations. The
417 pressure in the water droplet is greater than that in the hexane
418 phase, which is consistent with the Laplace law. Comparing
419 Figures 10 and 11, we find that the inner pressure in the
420 atomistic simulations is higher than that in the CG simulations.
421 In addition, electrostatic interactions in the MARTINI FF
422 slightly increase the inner pressure, as shown in Figure 11(b).

t2 423 Table 2 lists the interfacial tensions of a 2 nm water droplet
424 in n-hexane obtained from the atomistic and CG simulations.
425 Both atomistic models result in a similar interfacial tension,

426which is smaller than the interfacial tension of the planar
427interface. Similar to the planar interface, the interfacial tension
428calculated with the MARTINI CG FFs is much smaller than
429that provided by the corresponding atomistic simulation. The
430SAFT CG FF, which is able to reproduce the interfacial
431tension of the planar interface, also results in a nearly 50%
432smaller interfacial tension than that in the atomistic
433simulations.
4343.3. Stochastic ML Method for Estimating the
435Interaction Parameters in CG FFs. Our results in the
436previous section show that the MARTINI CG FF cannot
437reproduce the interfacial tension and density profile near the
438interface observed in our atomistic simulations. The SAFT CG
439FF can predict the interfacial tension of the planar interface but
440underestimates the interfacial tension of the curved interface
441by almost 50%. In addition, we find that the bio2 water model
442in SAFT CG FF overestimates the solubility of water in n-
443hexane. Therefore, we develop a new CG FF for the water−
444hexane system. We propose using the SDK CG FF33 because it
445allows a lower degree of coarse graining, and the current SDK
446FF does not define the parameters between water and hexane
447for the low coarse-graining degree water model. We note that
448there is an SDK FF for the high coarse-graining degree water
449model, but we find that this water model may lead to
450crystallization of large water droplets.
451In the remainder of this paper, we propose a new approach
452for learning coarse-grained potentials, apply it to estimating
453parameters in the water−hexane potential under the SDK CG
454FF framework, and test the resulting model for the water−
455hexane system against atomistic simulations. In this work, we
456use the 1:2 water model (one CG water bead represents two
457water molecules) and the 1:3 hexane model. The potential
458between CG water and hexane beads is given as
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460where λr and λa are repulsive and attractive exponents,
461respectively, ε is the energy parameter, and σ is the core
462diameter. The potentials Uw‑w and Uh‑h between water−water
463 t3and hexane−hexane beads have the same form, with

Figure 9. Intrinsic and nonintrinsic density profiles of a 2 nm water
droplet in n-hexane obtained from CG simulations.

Figure 10. Pressure components as a function of the distance from the center of a 2 nm water droplet in n-hexane in atomistic FF simulations,
including (a) the TIP4P2005 water model and n-hexane in TraPPE FF and (b) the TIP4P2005 water model and n-hexane in OPLS-AA FF.
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t3 464 parameters λr, λa, σ, and ε listed in Table 3. In the original SDK
465 framework, there are only two combinations of λr and λa, (λr =

466 12, λa = 4) and (λr = 9, λa = 6). The former combination
467 results in a sharper interface because of the larger repulsive
468 force corresponding to λr = 12. In the atomistic simulations, we
469 observe a relatively sharp water−hexane interface. Therefore,
470 in the Uw‑h potential, we set λr = 12 and λa = 4. Next, we learn

471the σ and ε parameters in the Uw‑h potential using the surface
472tension of the planar and curved water−hexane interfaces as
473target properties.
474We define the parameter vector θ = (σ,ε)T and use
475polynomial regression (PR)84−86 to construct a surrogate
476model of the interfacial tension as a function of θ. PR uses a
477linear combination of a set of orthogonal basis functions of θ to
478represent the quantity of interest (QoI) f

∑θ ψ θ=
=

f c( ) ( )
i

N

i i
1 479(4)

480where ψi are basis functions (Legendre polynomials), and ci are
481constant coefficients. Details of constructing multivariate
482Legendre polynomials and selection of N can be found in
483the Supporting Information. Here, f is the interfacial tension
484obtained from the atomistic simulations.
485We search parameters in the space σ ∈ [σmin, σmax] and ε ∈
486[εmin, εmax] and treat σ and ε as independent uniform random
487variables given by
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489where (σ̅,ε)̅ = (0.5, 0.225) are the parameter means and (ξ1,
490ξ2) are independent random variables uniformly distributed on

Figure 11. Pressure components as a function of the distance from the center of a 2 nm water droplet in n-hexane in CG simulations, including (a)
MARTINI FF, (b) MARTINI FF with the polarized water model, and (c) SAFT FF.

Table 2. Interfacial Tensions γ2 (r = 2 nm) of a Water
Droplet in n-Hexane for Various Atomistic and CG FFs at
310 K

model interfacial tension (mN/m)

atomistic TIP4P2005 + TraPPE 47.0 ± 1.1
atomistic TIP4P2005 + OPLS-AA 47.2 ± 1.9
CG MARTINI 21.4 ± 2.0
CG polarized MARTINI 23.9 ± 2.2
CG SAFT 27.7 ± 1.1

Table 3. CG Interaction Parameters of Water and
Hexane33,90

CG model λr λa ε (kcal/mol) σ (nm)

water 9 6 0.7050 0.2908
hexane 9 6 0.4690 0.4585
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491 [−1, 1]. The σ̅ and ε ̅ values are defined as an average of σ and
492 ε in water−water and hexane−hexane potentials, respectively.
493 The parameters δσ = 0.1 and δε = 0.035 are found as δσ =
494 (σmax−σ̅) and δε = (εmax−ε)̅, where σmax = 0.6 is estimated as
495 the maximum size of the water−hexane molecule cluster, and
496 εmax = 0.26 is estimated as the interaction energy between
497 water and hexane. The parameters σmin and εmin are computed
498 as σmin = 2σ̅ − σmax and εmin = 2ε ̅ − εmax, respectively. We
499 generate 49 samples of ξ1 and ξ2 using the sparse grids
500 method87 with one-dimensional Gaussian quadrature points
501 and the tensor product rule (i.e., the number of samples is
502 equal to 7d, where 7 is the number of one-dimensional
503 quadrature points and d is the number of unknown
504 parameters). Its distribution is shown in Figure S1. We then
505 compute (σ, ε) for each sample (ξ1, ξ2) from eq 5, simulate the
506 flat interface using the CG model for these values of (σ, ε), and
507 compute the corresponding interfacial tension. The values of
508 the interfacial tension are used to estimate the coefficients ci in
509 the PR surrogate model f∞(σ, ε) based on the probabilistic
510 collocation method.88 Here, the subscript ∞ signifies that this
511 is a response surface of a planar interface with the infinite
512 radius of curvature. We find that the interfacial tension changes
513 smoothly in the considered parameter space, and the relative
514 error of the surrogate model, based on 10-fold cross-
515 validation,89 is less than 1%.
516 Finally, the surrogate model is used to find parameters σ and
517 ε that correspond to the interfacial tension of the planar

518water−hexane interface in the atomistic simulation, by solving
519the minimization problem

σ ε σ ε=
σ ε

L( , ) min ( , )
,

1
520(6)

521where

i

k
jjjjj

y

{
zzzzzσ ε

σ ε γ
γ

= − ∞
∞

L
f

( , )
( , )

1
0

2

522(7)

523is the “single target” loss function.
524 f12Figure 12(a) shows L1 as a function of σ and ε. There is an
525infinite number of pairs (σ,ε) that generate γ∞ lying on the
526curve L1(σ, ε) = 0. To regularize parametrization, we select the
527interfacial tension of a 2 nm water droplet in hexane (γ(2) = γ2
528= 47 mN/m) as an additional constraint. We use the same 49
529samples of random variables and the corresponding σ and ε to
530simulate a water droplet in hexane with the CG model. To
531reduce the statistical error caused by the thermal fluctuations
532of a small droplet, every sample is averaged over five
533independent CG simulations. These simulations are used to
534construct the surrogate model of the surface tension of a 2 nm
535droplet f 2(σ, ε). Then, the optimal σ and ε are determined by
536solving the minimization problem

σ ε σ ε=
σ ε

L( , ) min ( , )
,

2
537(8)

538where

Figure 12. Loss functions L1 (a), L2 (b), and L3 (c) as functions of σ and ε. Star and square symbols denote minima of the loss functions.
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540 is the “two-target” loss function.

541 Figure 12(b) shows L2 as a function of σ and ε. It can be

542 seen that there are two sets of optimal parameters: ε = 0.23

543 kcal/mol and σ = 0.48 nm (the star) and ε = 0.19 kcal/mol

544 and σ = 0.59 nm (the square). The difference between the

545 response surface values at these two points is less than 2%,

546 which is within the range of fluctuations observed in the CG

547 simulations. (Note that if only the f 2 term is included in the

548 loss function L2, the result is similar to Figure 12(a). See

549 Figure S2 for details.) To further regularize parametrization,

550 we simulate a 3 nm water droplet in n-hexane using the

551 atomistic MD model and use the resulting surface tension γ3 =

552 49.1 mN/m as the third target to determine the parameters σ
553 and ε as

σ ε σ ε=
σ ε

L( , ) min ( , )
,

3
554 (10)
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557is the “three-target” loss function, and f 3(σ, ε) is the response
558surface of the surface tension of a 3 nm droplet as a function of
559σ and ε. Figure 12(c) shows that L3(σ, ε) still has two minima.
560This demonstrates that adding more targets does not make
561parametrization of this problem unique.
562We propose a probabilistic approach to identify a unique set
563of parameters. We base our approach on the fact that the
564interfacial tension calculations from CG simulations are noisy
565due to the particle nature of the CG model. When the
566interfacial tension is used as a target to estimate parameters,
567these fluctuations (which can be treated as uncertainty) should
568be transferred to parameters. In our case, this requires
569knowledge of the interfacial tension sensitivity with respect
570to the parameters σ and ε. To perform the sensitivity analysis,
571we add 4% and 8% Gaussian noise to the values of the
572interfacial tension obtained from the 49 CG simulations,
573construct the surrogate model, and determine the optimal
574parameter set (ε, σ) as described above. We repeat this
575procedure 100,000 times and compute the probability density
576function (PDF) of the optimal (ε, σ).

Figure 13. Single target: PDF function of the optimal parameters with (left) 4% Gaussian noise and (right) 8% Gaussian noise.

Figure 14. Two targets: PDF function of the optimal parameters with (left) 4% Gaussian noise and (right) 8% Gaussian noise.
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577 We evaluate PDFs of the (ε, σ) parameter sets, which

578 minimize the L1(ε, σ), L2(ε, σ), and L3(ε, σ) loss functions.

f13f14f15 579 These PDFs are shown in Figures 13, 14, and 15, respectively.

580 In Figure 13, the PDF has a “ridge” of most-probable

581 parameters minimizing L1. Therefore, we conclude that one

582 target is not enough to uniquely determine the σ and ε
583 parameters. In Figures 14 and 15, we see that the PDFs have a

584single sharp maximum at (ε,σ) ≈ (0.23,0.48) for both 4% and

5858% added noise, with the peak in the 4% case being steeper

586than that in the 8% case. This demonstrates that the smaller

587noise (uncertainty) in the surface tension leads to a more

588certain estimate of the optimal parameters. The difference in

589the optimal value of parameters in Figures 14 and 15 is less
590than 1%. Therefore, in the proposed probabilistic approach,

Figure 15. Three targets: PDF function of the optimal parameters with (left) 4% Gaussian noise and (right) 8% Gaussian noise.

Figure 16. Intrinsic and nonintrinsic density profiles of a water−hexane interface obtained with atomistic TIP4P2005/TraPPE FF the CG FF with
learned σ and ε: (a) water at the water−hexane planar interface, (b) hexane at the water−hexane planar interface, and (c) water at the water−
hexane curved interface.
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591 two targets are sufficient to uniquely define the unknown
592 parameters, while the standard response surface approach
593 yields a nonunique result even with three targets. The squares
594 in Figure 12(b),(c) correspond to a point with very small
595 probability in Figures 14 and 15.
596 With (ε,σ) = (0.23,0.48) obtained from the PDF using two
597 targets, the CG model produces an interfacial tension of 53.2
598 mN/m for the planar interface and 42.0 mN/m for the curved
599 interface. These values are within 11% of the values obtained in
600 atomistic simulations. Finally, we test the CG model by
601 simulating a 3 nm water droplet in n-hexane and comparing
602 the resulting surface tension with γ3 found from the atomistic
603 simulation. Note that we do not use γ3 to obtain the
604 parameters (ε,σ) = (0.23,0.48). We find that the interfacial
605 tension of the 3 nm droplet is 45.1 mN/m, which is within 9%
606 of the 49.1 mN/m interfacial tension value computed from the
607 atomistic simulation of the 3 nm water droplet.
608 The intrinsic and nonintrinsic density profiles for planar and
609 curved interfaces obtained from the CG model with (ε,σ) =

f16 610 (0.23,0.48) are presented in Figure 16. Figure 16(a),(b) shows
611 that the width of the planar interface is very similar in the
612 atomistic and CG simulations, as well as in the resulting
613 nonintrinsic density profiles for both water and hexane. For the
614 planar interface, there are three peaks in the “CG” intrinsic
615 density profile of water, while only two peaks are observed in
616 the “atomistic” intrinsic water density profile. The CG FF
617 produces a longer-range ordered structure because it uses a
618 larger cutoff than the atomistic FF. On the other hand, the
619 locations and magnitudes of the first two peaks in the CG
620 density profile are close to those in the atomistic simulations.
621 Figure 16(c) also demonstrates good agreement between the
622 intrinsic and nonintrinsic density profiles of a 2 nm water
623 droplet (i.e., curved interface) obtained with our CG model
624 and the atomistic models in terms of the bulk water density,
625 interface width, and structure. There are some disagreements
626 in the intrinsic density profiles of hexane in the CG and
627 atomistic simulations. There is a relatively small peak in the
628 intrinsic atomistic hexane density profile and no apparent peak
629 in the CG intrinsic hexane density profile.
630 This disagreement is caused by the coarse graining of the
631 one-site CG water and two-site CG hexane models.

4. CONCLUSION
632 We developed a new probabilistic machine learning framework
633 that combines the polynomial-regression-based response
634 surface with the uncertainty analysis resulting in the probability
635 density function of optimal CG FF parameters. Optimal
636 parameters are defined as parameters that minimize the
637 difference between the CG and atomistic predictions of target
638 properties (here, the interfacial tension of planar and curved
639 interfaces). We applied the probabilistic ML method to
640 parametrize the CG FF for a water−hexane mixture and
641 demonstrated that a such constructed CG FF has better
642 transferability than existing CG FFs with respect to the
643 interface curvature. Specifically, it is more accurate than
644 existing CG FFs for predicting the interfacial tension and
645 coexisting densities as functions of the interface curvature.
646 First, we tested two existing atomistic FFs (the TIP4P2005
647 water model and OPLS-AA FF and the TIP4P2005 water
648 model and TraPPE FF) and three existing CG FFs (MARTINI
649 FF, polarized MARTINI FF, and SAFT FF) for a water−
650 hexane mixture. The interface structure and thermodynamic
651 properties were calculated for the planar and curved interfaces

652(water droplets with a radius of 2 and 3 nm in hexane). We
653found that the simulation results of both atomistic FFs for the
654planar interface agree well with published experimental values.
655Next, the atomistic FFs were used to simulate curved
656interfaces, and the resulting density profiles and surface
657tension values were used as reference solutions. The atomistic
658simulations confirmed that at the considered length scales, the
659interfacial tension depends on the interface curvature.
660Then, we tested three popular CG FFs and found that none
661of them can accurately reproduce the interfacial structure and
662interfacial tensions of the planar or curved water−hexane
663interfaces. Next, we used the proposed probabilistic ML
664approach to learn new CG interaction parameters σ and ε
665within the SDK CG FF framework. We chose the interfacial
666tensions of the planar interface and the curved interfaces (2
667and 3 nm droplets) as target properties. It is found that the
668probabilistic approach produces a unique set of parameters
669with two targets (the surface tension of the planar interface and
670the 2 nm droplet) and used the third target (the surface
671tension of the 3 nm droplet) to validate the FF. The calculated
672interfacial tension is within 9% of the atomistic prediction. We
673also demonstrated that the intrinsic and nonintrinsic densities
674in the learned CG model are in close agreement with those
675observed in the atomistic simulations. Transferability of the
676proposed CG FF with respect to the interface curvature also
677suggests transferability with respect to the chemical composi-
678tion of the fluid mixture as the interfacial curvature locally
679defines the ratio of water to hexane.
680Finally, we demonstrated that the standard ML response
681surface approach does not produce a unit set of σ and ε
682parameters even when three targets are used. Therefore, the
683proposed probabilistic framework reduces the number of target
684properties required to uniquely parametrize CG FFs and, thus,
685significantly reduces the computational cost of CG model
686parametrization. In addition, our ML method is very efficient.
687It only took less than 1 s for current model training. The
688proposed approach is general and can be used for learning
689interaction parameters in both atomistic and CG models of
690complex systems with appropriate target properties.
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