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ABSTRACT: For a multiple-fluid system, CG models capable of accurately
predicting the interfacial properties as a function of curvature are still lacking. In
this work, we propose a new probabilistic machine learning (ML) model for
learning CG potentials for binary fluids. The water—hexane mixture is selected as a
typical immiscible binary liquid—liquid system. We develop a new CG force field
(FF) using the Shinoda-DeVane-Klein (SDK) FF framework and compute
parameters in this CG FF using the proposed probabilistic ML method. It is
shown that a standard response-surface approach does not provide a unique set of 0.21
parameters, as it results in a loss function with multiple shallow minima. To address
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12 this challenge, we develop a probabilistic ML approach where we compute the =

13 probability density function (PDF) of parameters that minimize the loss function. 019", ods o5 e b

14 The PDF has a well-defined peak corresponding to a unique set of parameters in ' ' o (nm) ‘

15 the CG FF that reproduces the desired properties of a liquid—liquid interface. We

16 compare the performance of the new CG FF with several existing FFs for the water—hexane mixture, including two atomistic and

three CG FFs with respect to modeling the interface structure and thermodynamic properties. It is demonstrated that the new FF
significantly improves the CG model prediction of both the interfacial tension and structure for the water—hexane mixture.
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1. INTRODUCTION

19 We propose a machine learning (ML) method for estimating
20 parameters in coarse-grained (CG) force fields (FFs) and use it
21 for constructing a CG FF for binary fluids. ML methods are
22 often used to construct potential energy response surfaces
23 using quantum chemistry calculations and parametrize atom-
24 istic interaction potentials.' > Similar strategies were used to
25 construct coarse-grained models.® In this paper, we propose a
26 polynomial-regression-based ML method to construct a
27 response surface that relates parameters in a CG FF to the
28 (curvature—dependent) surface tension of the liquid—liquid
29 interface. Then, the parameters can be identified by
30 minimizing the loss function constructed as a mean square
31 difference between surface tensions given by the response

chemical measurement methods, have been proposed to 47
experimentally study interfaces.'’~'> However, due to limited 43
resolution, experimental methods cannot reveal the micro- 49
scopic structures in full details. 50

Computational methods, including Molecular Dynamics s1
(MD) techniques, have been used for studying aqueous s2
interfaces since the 1980s,"® but most of the MD studies were s3
focused on liquid—vapor interfaces."*'® In contrast to liquid— s4
vapor interfaces, MD simulations of liquid—liquid interfaces ss
are more challenging because a larger system size is required to s6
stabilize the flexible liquid phases and the interfacial region.'® s7
The computation of interfacial properties of large systems ss
involving sampling of long time and lar7ge length scales remains s9
a challenge for atomistic MD models."” > CG models present 6o

N
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32 surface and measured in atomistic simulations. We demon-
33 strate that for the considered problem, this approach does not
34 provide a unique set of parameters because it results in a loss
35 function with multiple shallow minima. To address this
36 challenge, we propose a probabilistic approach where we
37 compute the probability density function (PDF) of parameters
38 minimizing the loss function. The PDF has a well-defined peak
39 corresponding to a unique set of parameters in the CG FF that
40 reproduces the desired properties of a liquid—liquid interface.
41 We focus on liquid—liquid interfaces because of their
42 importance for many physical, chemical, and biological
43 processes, including micelle formation, interfacial polymer-
44 ization, and protein folding.”~” Therefore, understanding
4s interfaces at the molecular level is fundamentally important.
46 Various techniques, including spectroscopy and electro-
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an attractive alternative to atomistic MD models because of 61
their ability to simulate much larger time and length scales.””** 6
In this regard, several coarse-graining approaches have been 63
developed for the interface system by averaging over atomistic 64
details and building CG FFs that can reproduce certain 65
essential properties.”"*® Generally, there are two ways to 66
construct the CG FF, i.e., the bottom-up approach and the top- 67
down approach.25 In the bottom-up approach, the CG 68
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potentials are extracted and constructed from the atomic
system.”®”” In other words, it focuses on the accurate
modeling of the underlying atomistic structural details at a
particular state point for a specific system.”® The top-down CG
models that macroscopic properties (e.g, thermodynamic
data) are used as the main target of their parametrization are
often cheaper and have better representability.”” > It is found
that several CG FFs developed with the top-down CG
approach can accurately reproduce multiple properties of
industrial fluids. For example, the Shinoda-DeVane-Klein
(SDK) CG FF and its extension SPICA (surface property
fitting coarse graining) CG FF were shown to accurately model
the surface tension, bulk density, and hydration free energy of
water and alkanes.”*~** The MARTINI FF, originally designed
for lipids, surfactants, and biomacromolecules, was used to
model the interface system.””*”~** The Statistical Associating
Fluid Theory (SAFT) CG FF'**~* was developed for many
solvents, including water, alkanes, and carbon dioxide, where
the effective CG intermolecular interactions between particles
are estimated using an accurate description of the macroscopic
experimental vapor—liquid equilibria data by means of a
molecular-based equation of state. The above-mentioned CG
FFs were shown to effectively describe multiple physical
properties for some industrial fluids.

Parametrization methods for CG FFs for pure fluids are well
established. However, for multiple-fluid systems, parametriza-
tion of FFs, especially the potentials acting between beads of
different liquids, still remains a challenge. For example,
transferable CG models that can reproduce the local structure
and free energy in multiple-fluid systems with changing
chemical environment are still lacking."” For the coarse-
grained ML potential, once the coarse-graining map is defined,
the definition of the energy function can be seen as a learning
problem. In particular, the energy loss function or the force-
matching loss function can be used to train the effective energy
of the model from the atomistic energies or forces. Such an
approach was used to design coarse-grained force fields for
different systems with kernel methods’”®' and deep neural
networks.”* However, few ML methods were focused on
learning the CG potential using the top-down CG approach. In
this work, we present a novel probabilistic ML method to
estimate interaction parameters in the CG FF. This approach is
applied to parametrizing a CG FF of a water—alkane system
using interfacial tension as the target. We select the water—
hexane mixture as it is a typical immiscible binary system and
use the proposed CG model to study the interfacial properties
of water—hexane as functions of the interface curvature. We
demonstrate that the proposed parametrization improves the
ability of CG models to predict the interfacial tension and
interfacial structure as functions of the interface curvature,
even though the interfacial structure is not used as a target in
the CG model parametrization. This paper is organized as
follows. Section 2 describes the atomic and CG models.
Section 3 discusses the atomic and CG simulation results.
Section 3.3 introduces the ML method and discusses its
application to the water—hexane mixture. Section 4 presents
the conclusions and outlook for CG modeling of complex
liquid—liquid interfaces.

2. SIMULATION MODELS AND METHODS

2.1. Atomistic Model and Simulation. Several rigid
water models have been proposed in the literature, but only the
Transferable Intermolecular Potential with 4 Points 2005

(TIP4P200S) model was shown to accurately reproduce the
temperature-dependent liquid—vapor surface tension.””*
Therefore, we employ the TIP4P200S water model in our
atomistic simulations. The Transferable Potentials for Phase
Equilibria (TraPPE) FF>° was shown to predict surface tension
of alkanes in experiments.>> Also, Neyt et al. demonstrated that
the TIP4P200S water and octane models combined in a
TraPPE FF can reproduce the experimentally measured
interfacial tension of a water—n-octane system.41 Therefore,
in this work, we employ the n-hexane model from the TraPPE
FF. The interaction potential between the TIP4P2005-
modeled water and the TraPPE-modeled alkane is modified
following Ashbaugh’s protocol.’® This modification results in
the more accurate hydration energy of alkane molecules in
water and does not change other properties. In addition, the n-
hexane model in the TraPPE FF is a united-atom model, where
CH; and CH, groups are represented with a single united
atom. Therefore, the interaction between the “TIP4P2005”
water and TraPPE n-hexane does not include electrostatic
interactions, which might affect the local structure of the
interface. To study the effect of this potential on interfacial
tension, we also test the hexane model in the Optimized
Potential for Liquid Simulation All-Atom (OPLS-AA) FE.”
We consider the water—hexane mixture with planar and
curved interfaces (see Figure 1). In our simulations of planar

Figure 1. Initial state of the water—hexane planar interface and curved
interface in atomic simulation: (a) planar interface and (b) curved
interface.

interfaces, we put a pre-equilibrated water slab sandwiched
between pre-equilibrated n-hexane slabs. The initial simulation
box size is L, = L, = 6 nm and L, = 20 nm. We place 8315
water molecules and 1152 hexane molecules for the TraPPE
FF and 1140 hexane molecules for the OPLS-AA FF in the
simulation box. Initially, the water and hexane molecules are
separated by the plane interface. We also model a spherical
water droplet in n-hexane with both the TIP4P200S5 water—
TraPPE n-hexane and the TIP4P200S water—OPLS n-hexane
models. We simulate droplets with radii of 2 nm (1026 water
molecules) and 3 nm (3609 water molecules) in the simulation
box with L, =L, =L, ~ 1l nmand L, = L, = L, & 15 nm,
respectively. The box size is slightly adjusted during the
equilibration process to keep pressure at 1 atm. For both the
curved and planar interfaces, the long-range dispersion force
correction method is used to obtain the correct density and
pressure. These planar and droplet systems are equilibrated for
10 ns using the NPGAT"® ensemble (to keep the pressure
constant, the box volume is changed by varying L,) and the
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174 NPT ensemble with a V-rescale thermostat and Berendsen
175 barostat, respectively. The temperature and pressure are set to
176 310 K and 1 atm. Then we run another 10 ns simulation with
177 the canonical ensemble at 310 K to collect data. All bonds
178 between atoms are fixed by the LINCS algorithm.>” Periodic
179 boundary conditions are used in all three directions. The time
180 step is 2 fs. The cutoffs for vdW interaction are 1.5 and 1.2 nm
181 for the TraPPE and OPLS-AA FFs, respectively. The cutoff for
182 Coulomb interaction is 1.2 nm for OPLS-AA FF. The particle
183 mesh Ewald (PME) method® is used for calculating the long-
184 range electrostatic interactions. All the atomistic simulations
185 are performed with GROMACS.

1868 2.2. CG Model and Simulations. We select the
187 MARTINI (including the original and polarized water
188 model) and SAFT CG FFs for modeling the water—hexane
189 interface. The original MARTINI water model freezes under
190 certain conditions.” To avoid water freezing, we replaced 12%
191 of CG water beads with antifreeze CG water beads. Our
192 simulation results show that the addition of antifreeze CG
193 water beads does not affect the interfacial tension between
194 water and n-hexane as long as the percentage of antifreeze CG
195 water beads does not exceed 50%. For the polarized MARTINI
196 water model, antifreezing CG water beads is not needed. There
197 are several SAFT CG water models. Here, we employ the bio2
198 CG water model.

199 We build planar and curved interface systems for all
200 considered CG FFs (see Figure 2). In the planar interface

[

Figure 2. Initial state of the water—hexane planar interface and curved
interface in CG simulation: (a) planar interface and (b) curved
interface.

et

201 simulations, the simulation box size is set to L, = L, > 5 nm
202 and L, > 11 nm to avoid the boundary effect on the interfacial
203 tension.”” To study properties of the curved interface, we
204 simulate 2 and 3 nm water droplets in n-hexane. To reduce the
205 boundary effect, the initial lengths of the simulation box are set
206 to 11 and 15 nm. The simulation boxes are equilibrated for 20
207 ns in NPyAT and NPT ensembles at 310 K and 1 atm,
208 respectively. Then, we perform 30 ns (planar interface) and 10
209 ns (curved interface) NVT simulations at 310 K for data
210 collection. To get better statistics, we perform five parallel
211 simulations for each curved interface system. The cutoffs for
212 vdW interaction are 1.2 and 1.5 nm for the MARTINI and
213 SAFT CG FFs, respectively. The cutoff for the Coulomb
214 potential is 1.2 nm for the polarized water model in the
215 MARTINI CG FF. The V-rescale thermostat and Berendsen
216 barostat are used to keep constant temperature and pressure
217 during pre-equilibrium. Then, the Nose-Hoover thermostat is
218 employed in the production simulation. The time step is 10 fs.
219 All CG simulations are performed with GROMACS. '

—_

3. SIMULATION RESULTS

In this section, we investigate the density profiles, pressure
profiles, and interfacial tensions of a water—hexane mixture
with planar and curved interfaces using two atomistic and three
CG FFs. Our analysis demonstrates that the interfacial
structures and interfacial tensions obtained from the two
atomistic models are in close agreement with each other. On
the other hand, the three considered CG models produce

results, which do not agree with each other nor the results of 227

the atomistic models. Finally, we present a novel probabilistic
ML approach for learning parameters in the CG FF and
demonstrate that this FF significantly improves the prediction
of both the interfacial tension and structure for the water—
hexane mixture.

3.1. Planar Interface. 3.1.1. Density Profiles. Here, we
describe the interface structure of water—hexane systems using
the intrinsic and nonintrinsic density profiles. The nonintrinsic
or local mass density py(x) is defined as the mass of liquid in a
cube (centered at point «x) divided by the cube’s volume. Here,
we use the cube size of 0.2 nm. The nonintrinsic density is
averaged within each cube over time and over all cubes with
the same normal distance to the interface. At the molecular
level, the interface is corrugated by thermal capillary waves
rather than being flat. To detect the molecular-level interface
(so-called intrinsic interface), we use the so-called identi-
fication of the truly interfacial molecule (ITIM) method.”>~%
This method identifies interfacial molecules that are exposed to
the opposite phase using a probe sphere with radius of 0.2 nm
(see Figure 3). The probe sphere is moved along test lines

Figure 3. Scheme of the intrinsic density calculation for a water—
hexane interface.

perpendicular to the plane of the fluid—fluid interface. Atoms
that first encounter the probing ball are identified as the
interfacial atoms, and the corresponding molecules are
identified as the interfacial molecules. This process is repeated
over the entire interfacial area in the simulation.

The intrinsic density provides more information about the
interface structure (i.e., the location of the interface and the
molecular organization) than the nonintrinsic density.”® The
nonintrinsic density profile is smooth and only contains
approximate information about the interface location. The
intrinsic density profile has local peaks corresponding to the
locations of molecules layers near the interface, with the lar§est
peak corresponding to the location of the interface.””*’~¢

Figure 4 presents the intrinsic and nonintrinsic density
profiles of the water and n-hexane of a water—hexane planar
interface obtained from atomistic simulations with the
TIP4P2005-TraPPE and TIP4P2005-OPLSAA models. Both
atomistic models result in the same water density profiles and

https://dx.doi.org/10.1021/acs.jcim.0c00337
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Figure 4. Intrinsic and nonintrinsic density profiles of (a) water and (b) hexane at the water—hexane interface as a function of z obtained from
atomistic simulation. The point z = 0 corresponds to the position of the outermost water/hexane atoms in the intrinsic density profile and the
Gibbs dividing surface of the water—hexane system for the nonintrinsic density profile.
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Figure S. Intrinsic and nonintrinsic density profiles of (a) water and (b) hexane at the water—hexane interface in CG simulations. The zero point of
the interface corresponds to the position of the outermost water/hexane atoms in the intrinsic density profile and the Gibbs dividing surface of the

water—hexane system for the nonintrinsic density profile.

very similar hexane density profiles. Also, both atomistic
models can reproduce the experimental density of water and
hexane at 310 K. The intrinsic density profiles show that there
are two water layers close to the interface. In addition, the
strong directional bonding of water creates a well-defined
correlation structure at short distances from the interface, but
it does not propagate to longer distances as efficiently as it
does for more packed liquid structures such as alkanes. The
comparison of parts (a) and (b) of Figure 4 shows longer-
range oscillations in alkanes than in water. Similar observations
were made for a water—hexane binary system with the SPC/E
water model.”’ In the case of hexane, we see that the
distribution of the first peak is wider. This is due to the long
tail of the alkane molecule. Overall, we find that the intrinsic
structure of the water/n-hexane system is insensitive to
atomistic FF parameters.

The density profiles in CG simulations are shown in Figure
S. The nonintrinsic and intrinsic densities of water and hexane
are different for various CG FFs. The nonintrinsic density
profile obtained with the SAFT CG FF is flatter than that
obtained with the MARTINI CG FF. It should be noted that

the density of water in the n-hexane phase is almost zero in the
TIP4P200S water model that is close to the experimental water
density value of 6 X 10~ g/cm®”" In CG simulations, the
density of water in hexane is 3 X 107* g/ cm’ for the MARTINI
CG FF, which is approximately five times larger than the
experimental value. For the SAFT bio2 CG water model in n-
hexane, the water density is even greater. In Figure S(a), the
intrinsic water density profile has three peaks (note that two
peaks were observed in MD simulations). This indicates that
the CG water phase shows a longer-range ordered structure
compared to the atomistic simulations. The intrinsic density
profiles are similar for the original and polarized MARTINI
CG water models, except that the original MARTINI CG
water model has a higher interfacial density. The first peak in
the SAFT bio2 CG model is lower than in the atomistic
models because the CG model produces a wider interface. The
positions of the first intrinsic density peaks for the CG n-
hexane models are also very close. The hexane intrinsic density
profiles, obtained from the MARTINI and SAFT CG n-hexane
models, do not have distinct peaks (Figure S(b)). However, we
can observe a peak in the intrinsic density of hexane in the

https://dx.doi.org/10.1021/acs.jcim.0c00337
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5 T T
(a)
0 4
T 57 1 ©
o o
2 =3
o -10 J o
3 )
n 9]
[%2] [%2]
O 154 4 9
o o
204 —P;]
|:’N
-25 4
T T
0 5 10 15
z (nm) z (nm)
10 T T T
(c)
04 A Somntn Sl ot A W PN _A -
—_ _10- (’ 7
©
o
2 04 i
o
?
2 -30 4 -
o —P;
-40 4 PN -
-50 u u -
-60 T T T
0 5 10 15
z (nm)

Figure 7. Local pressure components of the water—hexane planar interface in (a) MARTINI FF, (b) MARTINI FF with polarized water, and (c)

SAFT FF models.

303 polarized MARTINI CG model. This is because single CG
300 beads are used for both the MARTINI and SAFT bio2 CG
310 Water models. On the other hand, the polarized MARTINI CG
311 water model has a physics-based, three-point structure. Bresme
312 et al. demonstrated that the packing of water molecules will

influence the orientation of alkane molecules at the interface.”® 5,
In our CG simulations, we also see that the geometry topology 5,
constraints of the CG water model affect the local interface 5
structure of the hexane phase. For the SAFT n-hexane model, 54
the CG water beads infiltrate into the hexane phase so deeply 317
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that the density of the first peak is lower than that of the bulk
phase. In Figure 5(a),(b), the intrinsic density profiles of water
or hexane for the three CG models are all different, which
illustrates that the intrinsic density profile is sensitive to the
choice of water and n-hexane CG models.

3.1.2. Pressure Profiles and Interfacial Tension. Previous
atomistic simulations demonstrated that the errors in the
estimated surface tension and liquid density are closely
correlated.>>”* Therefore, the accurate prediction of density
is very important in the calculation of surface tension. Above,
we demonstrated that both of the considered atomistic water
and hexane models can reproduce the liquid bulk density at
310 K. Here, we calculate the interfacial tension based on the
mechanical approach.”*~”” The interfacial tension of a planar
interface is computed as”®

z/2
&= [ @) - )
—22 (1)
where Py and P are the normal and tangential components of
the pressure tensor along the normal direction to the surface.
For a spheric droplet, the expression for the surface tension
takes the form

1) = [ @) = Bl

We use the Irving—Kirkwood”® and Vanegas and Ollila
approaches for computing pressure components in eqs 1 and 2,
respectively. These approaches were originally proposed for
MD systems with pairwise interactions. To compute local
pressure components due to three-body angular potentials,
these potentials are decomposed into pairwise potentials by
Vanegas’s central force decomposition (CFD) method,”’
which has been implemented in a modified GROMACS
code (http://mdstress.org/). The many-body electrostatic
interactions are approximated as pairwise interactions. In our
pressure calculations, the cutoff of the pairwise interactions is
2.0 nm. There are other methods to calculate surface tension
including the thermodynamic methods.”” We note that the
mechanical and thermodynamic methods can yield different
surface tension estimates, especially at the interfaces with large
curvature. However, both of these methods predict surface
tension to decrease with the the decreasing radius of
curvature.”’

The normal and tangent pressure tensor components as
functions of z, obtained from the atomistic and CG
simulations, are presented in Figures 6 and 7. Atomistic
simulations produce two symmetrical positive stress regions in
the tangent component of pressure that correspond to the two
water—hexane interfaces (Figure 6). They both appear on the
water side of the interfaces. A similar pressure profile was also
observed in an atomistic simulation with the TIP3P water and
CHARMM hexane models.*” Water molecules cause interface
polarization and the positive pressure region on the water side
of the interface.

Calculated and experimentally determined interfacial
tensions are listed in Table 1. Both atomistic models predict
the interfacial tension within 5% of the experimental value. We
note that the computational cost of the all-atom model (OPLS-
AA FF) is about five times larger than that of the united-atom
model (TraPPE FF). The SAFT CG FF can also reproduce the
experimental interfacial tension. However, the interfacial
tension predicted by the MARTINI CG FF is only half of
the experiment value. A previous MARTINI CG FF simulation

@)

76,78

Table 1. Interfacial Tensions 7., of the Water—Hexane
Planar Interface in the Atomistic and CG Simulations and
the Experiment®’ at 310 K

model interfacial tension (mN/m)
experiment 49.4
atomistic TIP4P200S + TraPPE 524 + 1.1
atomistic TIP4P200S + OPLS-AA 521 £ 1.2
CG MARTINI 259 + 1.0
CG polarized MARTINI 27.8 £ 1.2
CG SAFT SL6 £ 1.1

study of a water—octane system at 298 K also reported an
approximately 25% error in the estimated interfacial tension.*'
In addition, we find that using the polarized MARTINI water
model instead of the MARTINI water model only slightly
improves the interfacial tension prediction.

3.2. Curved Interfaces. 3.2.1. Density Profiles. The
intrinsic and nonintrinsic density profiles of a 2 nm water
droplet in n-hexane, obtained in the two atomistic models, are

shown in Figure 8. There are two peaks in the intrinsic density
6 ; ; ; . .
5 | -
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Figure 8. Intrinsic and nonintrinsic density profiles of a 2 nm water
droplet in n-hexane obtained from atomistic simulations.

profiles in both atomistic models, which is similar to what we
observed in the planar interface atomistic simulations.
However, the peaks at the curved interface are higher than
those at the planar interface. Compared to Figure 4, we also
see that the width of the first peak is narrower, implying that
the first water layer on the droplet surface is thinner than the
one at the planar interface.

The CG water droplets show qualitatively different results.
Figure 9 shows the density profiles of a 2 nm water droplet in
n-hexane with various CG FFs. In the CG simulations of the
planar interface, we see three density peaks on the water side.
In Figure 9, the intrinsic density profile in the SAFT CG FF
simulation has three peaks, while there are only two peaks in
the MARTINI FF simulation. This could be caused by a larger
cutoff in the SAFT CG FF. Both the CG and atomistic
simulations show that the first peak in the water density profile
is much higher for a curved interface than a planar interface.

3.2.2. Pressure Profiles and Interfacial Tension. Although
it is widely accepted that the Laplace law, which relates the

https://dx.doi.org/10.1021/acs.jcim.0c00337
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Figure 9. Intrinsic and nonintrinsic density profiles of a 2 nm water
droplet in n-hexane obtained from CG simulations.

405 pressure jump across a curved interface to its curvature, fails for
406 nanodroplets, the limit of the Laplace law validity is
407 controversial. Takahashi and Morita concluded that this limit
408 is less than 1 nm.* For liquid droplets in vapor environment,
409 this limit was found to be between 5—10 nm.””"* Figures 10
410 and 11 show the normal and tangential components of the
411 pressure tensor for a 2 nm water droplet in n-hexane. We see
412 negative peaks in the tangent pressure profile at the interface in
413 all simulations, indicating that the interface is under
414 compression. Similar to the planar interface in atomistic
415 simulations, we find a small peak on the water side of the
416 tangent pressure in the droplet atomistic simulations. The
417 pressure in the water droplet is greater than that in the hexane
418 phase, which is consistent with the Laplace law. Comparing
419 Figures 10 and 11, we find that the inner pressure in the
420 atomistic simulations is higher than that in the CG simulations.
41 In addition, electrostatic interactions in the MARTINI FF
422 slightly increase the inner pressure, as shown in Figure 11(b).
423 Table 2 lists the interfacial tensions of a 2 nm water droplet
424 in n-hexane obtained from the atomistic and CG simulations.
425 Both atomistic models result in a similar interfacial tension,

=
[

which is smaller than the interfacial tension of the planar
interface. Similar to the planar interface, the interfacial tension
calculated with the MARTINI CG FFs is much smaller than
that provided by the corresponding atomistic simulation. The
SAFT CG FF, which is able to reproduce the interfacial
tension of the planar interface, also results in a nearly 50%
smaller interfacial tension than that in the atomistic
simulations.

3.3. Stochastic ML Method for Estimating the
Interaction Parameters in CG FFs. Our results in the 435
previous section show that the MARTINI CG FF cannot 436
reproduce the interfacial tension and density profile near the 437
interface observed in our atomistic simulations. The SAFT CG 438
FF can predict the interfacial tension of the planar interface but 439
underestimates the interfacial tension of the curved interface 440
by almost 50%. In addition, we find that the bio2 water model 441
in SAFT CG FF overestimates the solubility of water in n- 442
hexane. Therefore, we develop a new CG FF for the water— 443
hexane system. We propose using the SDK CG FF” because it 444
allows a lower degree of coarse graining, and the current SDK 445
FF does not define the parameters between water and hexane 446
for the low coarse-graining degree water model. We note that 447
there is an SDK FF for the high coarse-graining degree water 448
model, but we find that this water model may lead to 449
crystallization of large water droplets. 450

In the remainder of this paper, we propose a new approach 4s1
for learning coarse-grained potentials, apply it to estimating 4s2
parameters in the water—hexane potential under the SDK CG 453
FF framework, and test the resulting model for the water— 454
hexane system against atomistic simulations. In this work, we 453
use the 1:2 water model (one CG water bead represents two 4s6
water molecules) and the 1:3 hexane model. The potential 457
between CG water and hexane beads is given as 458

j’a
2 YRR A a
el -
A, = L N4, r r

where A, and A, are repulsive and attractive exponents, 460
respectively, € is the energy parameter, and ¢ is the core 461
diameter. The potentials U,,.,, and Uy, between water—water 462
and hexane—hexane beads have the same form, with 4633

(3) 459
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Figure 10. Pressure components as a function of the distance from the
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center of a 2 nm water droplet in n-hexane in atomistic FF simulations,
including (a) the TIP4P200S water model and n-hexane in TraPPE FF and (b) the TIP4P200S water model and n-hexane in OPLS-AA FF.

G
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Figure 11. Pressure components as a function of the distance from the center of a 2 nm water droplet in n-hexane in CG simulations, including (a)
MARTINI FF, (b) MARTINI FF with the polarized water model, and (c) SAFT FF.

Table 2. Interfacial Tensions ¥, (r = 2 nm) of a Water the ¢ and & parameters in the U, potential using the surface 471
Droplet in n-Hexane for Various Atomistic and CG FFs at tension of the planar and curved water—hexane interfaces as 472
310 K target properties. 473
We define the parameter vector € = (c,e)” and use 474
model interfacial tension (mN/m) . . 84—86

polynomial regression (PR) to construct a surrogate 475
atomistic TIP4P2005 + TraPPE 470 £ 1.1 model of the interfacial tension as a function of 6. PR uses a 476
atomistic TIP4P2005 + OPLS-AA 472£19 linear combination of a set of orthogonal basis functions of € to 477
CG MARTINI 214 £20 represent the quantity of interest (Qol) f 478

CG polarized MARTINI 239 £ 22

N
CG SAFT 27.7 £ 1.1
£0) = X a(®)

t3 464 parameters A,, 4, 0, and ¢ listed in Table 3. In the original SDK i=1 (4) 49

46s framework, there are only two combinations of 4, and 4, (4, = where y; are basis functions (Legendre polynomials), and ¢; are 4s0

constant coefficients. Details of constructing multivariate 481

Table 3;3(939 Interaction Parameters of Water and Legendre polynomials and selection of N can be found in 4s2
Hexane™ the Supporting Information. Here, f is the interfacial tension 483
CG model i a ¢ (keal/mol) & (am) obtained from the atomistic simulations. 484
We search parameters in the space 6 € [0, Oma] and € € 4ss
water 9 6 0.7050 0.2908 . .
[€miny Emax) and treat ¢ and € as independent uniform random 486
hexane 9 6 0.4690 0.4585 . .
variables given by 487
466 12, 4, = 4) and (4, = 9, 1, = 6). The former combination (6) _ c + (5, 8)- &
467 results in a sharper interface because of the larger repulsive € 3 o & (s)
: o . 488
468 force corresponding to A, = 12. In the atomistic simulations, we
469 observe a relatively sharp water—hexane interface. Therefore, where (5,€) = (0.5, 0.225) are the parameter means and (&, 489
470 in the U, potential, we set 4, = 12 and 1, = 4. Next, we learn &,) are independent random variables uniformly distributed on 490
H https://dx.doi.org/10.1021/acs.jcim.0c00337

J. Chem. Inf. Model. XXXX, XXX, XXX—XXX



Journal of Chemical Information and Modeling

pubs.acs.org/jcim

a
@ 26
0.35
0:35 0.3
.02 -
3
£ o2 -
=
g
g oz .18
W
0.21 0.1
0.2 0.05
0.19 —
0.4 0.45 0.5 0.55 0.6
o (nm)
C
© .26
0.25
0.24
~~
—
3
E 023
SRy
—
%
£ o022
N—
(3}
0.21
0.2
0.19

0.4 0.45

o
o
=

o
S}

0.19
0.4 0.45 0.5

o (nm

; 0.55
05
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1

0.55 0.6
)

0.55 0.6

o (nm)

Figure 12. Loss functions L, (a), L, (b), and L; (c) as functions of ¢ and &. Star and square symbols denote minima of the loss functions.

491 [—1, 1]. The & and € values are defined as an average of o and
492 € in water—water and hexane—hexane potentials, respectively.
493 The parameters 6, = 0.1 and J, = 0.035 are found as J, =
494 (6,,,—0) and 8, = (&,,,—€), where 6,,,, = 0.6 is estimated as
495 the maximum size of the water—hexane molecule cluster, and
496 €may = 0.26 is estimated as the interaction energy between
497 water and hexane. The parameters o,,;, and &, are computed
498 AS Oy = 20 — Opoy and € = 28 — €, respectively. We
499 generate 49 samples of £, and &, using the sparse grids
so0 method”” with one-dimensional Gaussian quadrature points
so1 and the tensor product rule (ie., the number of samples is
502 equal to 7'i, where 7 is the number of one-dimensional
s03 quadrature points and d is the number of unknown
504 parameters). Its distribution is shown in Figure S1. We then
sos compute (o, €) for each sample (&, £,) from eq S, simulate the
sos flat interface using the CG model for these values of (o, €), and
so7 compute the corresponding interfacial tension. The values of
sos the interfacial tension are used to estimate the coefficients ¢; in
so9 the PR surrogate model f,,(o, €) based on the probabilistic
s10 collocation method.®® Here, the subscript oo signifies that this
s11 is a response surface of a planar interface with the infinite
s12 radius of curvature. We find that the interfacial tension changes
s13 smoothly in the considered parameter space, and the relative
si4 error of the surrogate model, based on 10-fold cross-
s1s validation,® is less than 1%.

si¢  Finally, the surrogate model is used to find parameters ¢ and
517 € that correspond to the interfacial tension of the planar

=

iy

—

—

water—hexane interface in the atomistic simulation, by solving 518

the minimization problem 519
o, €) =min L,(0, €
(0, €) = min L (0, ) ©
where 521
2

f,(o,8) =

Lo, &) = 0077w
Yoo (7) 52
is the “single target” loss function. 523

Figure 12(a) shows L, as a function of ¢ and &. There is an 524 f12
infinite number of pairs (o,¢) that generate y,, lying on the s2s
curve L,(0, €) = 0. To regularize parametrization, we select the s26
interfacial tension of a 2 nm water droplet in hexane (y(2) =y, s27
= 47 mN/m) as an additional constraint. We use the same 49 s28
samples of random variables and the corresponding ¢ and € to 529
simulate a water droplet in hexane with the CG model. To s30
reduce the statistical error caused by the thermal fluctuations s31
of a small droplet, every sample is averaged over five 532
independent CG simulations. These simulations are used to s33
construct the surrogate model of the surface tension of a 2 nm s34
droplet f,(o, €). Then, the optimal 6 and ¢ are determined by s3s

solving the minimization problem 536
(6, €) = min L,(o, €)

o,e (8) 537

where 538

https://dx.doi.org/10.1021/acs.jcim.0c00337
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is the “two-target” loss function.

Figure 12(b) shows L, as a function of ¢ and &. It can be
seen that there are two sets of optimal parameters: &€ = 0.23
kcal/mol and ¢ = 0.48 nm (the star) and & = 0.19 kcal/mol
and ¢ = 0.59 nm (the square). The difference between the
response surface values at these two points is less than 2%,
which is within the range of fluctuations observed in the CG
simulations. (Note that if only the f, term is included in the
loss function L,, the result is similar to Figure 12(a). See
Figure S2 for details.) To further regularize parametrization,
we simulate a 3 nm water droplet in n-hexane using the
atomistic MD model and use the resulting surface tension y; =
49.1 mN/m as the third target to determine the parameters ¢
and € as

(0, €) = min L,(o, €)
0,

(10)

where

(11)

is the “three-target” loss function, and f(o, €) is the response
surface of the surface tension of a 3 nm droplet as a function of
o and e. Figure 12(c) shows that L,(o, €) still has two minima.
This demonstrates that adding more targets does not make
parametrization of this problem unique.

We propose a probabilistic approach to identify a unique set
of parameters. We base our approach on the fact that the
interfacial tension calculations from CG simulations are noisy
due to the particle nature of the CG model. When the
interfacial tension is used as a target to estimate parameters,
these fluctuations (which can be treated as uncertainty) should
be transferred to parameters. In our case, this requires
knowledge of the interfacial tension sensitivity with respect
to the parameters ¢ and &. To perform the sensitivity analysis,
we add 4% and 8% Gaussian noise to the values of the
interfacial tension obtained from the 49 CG simulations,
construct the surrogate model, and determine the optimal
parameter set (&, o) as described above. We repeat this
procedure 100,000 times and compute the probability density
function (PDF) of the optimal (¢, 6).

https://dx.doi.org/10.1021/acs.jcim.0c00337
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Figure 15. Three targets: PDF function of the optimal parameters with (left) 4% Gaussian noise and (right) 8% Gaussian noise.
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Figure 16. Intrinsic and nonintrinsic density profiles of a water—hexane interface obtained with atomistic TIP4P2005/TraPPE FF the CG FF with
learned o and &: (a) water at the water—hexane planar interface, (b) hexane at the water—hexane planar interface, and (c) water at the water—

hexane curved interface.

We evaluate PDFs of the (¢, 6) parameter sets, which
minimize the L,(¢g, 6), L,(¢, 6), and L;(¢, 6) loss functions.
These PDFs are shown in Figures 13, 14, and 15, respectively.
In Figure 13, the PDF has a “ridge” of most-probable
parameters minimizing L,. Therefore, we conclude that one
target is not enough to uniquely determine the ¢ and ¢
parameters. In Figures 14 and 15, we see that the PDFs have a

single sharp maximum at (¢,6) &~ (0.23,0.48) for both 4% and
8% added noise, with the peak in the 4% case being steeper
than that in the 8% case. This demonstrates that the smaller
noise (uncertainty) in the surface tension leads to a more
certain estimate of the optimal parameters. The difference in
the optimal value of parameters in Figures 14 and 15 is less
than 1%. Therefore, in the proposed probabilistic approach,

https://dx.doi.org/10.1021/acs.jcim.0c00337
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591 two targets are sufficient to uniquely define the unknown
s92 parameters, while the standard response surface approach
593 yields a nonunique result even with three targets. The squares
so4 in Figure 12(b),(c) correspond to a point with very small
s9s probability in Figures 14 and 15.

so96  With (g0) = (0.23,0.48) obtained from the PDF using two
597 targets, the CG model produces an interfacial tension of 53.2
598 mN/m for the planar interface and 42.0 mN/m for the curved
s99 interface. These values are within 11% of the values obtained in
600 atomistic simulations. Finally, we test the CG model by
601 simulating a 3 nm water droplet in n-hexane and comparing
602 the resulting surface tension with y; found from the atomistic
603 simulation. Note that we do not use y; to obtain the
604 parameters (£,6) = (0.23,0.48). We find that the interfacial
60s tension of the 3 nm droplet is 45.1 mN/m, which is within 9%
606 of the 49.1 mN/m interfacial tension value computed from the
607 atomistic simulation of the 3 nm water droplet.

608  The intrinsic and nonintrinsic density profiles for planar and
609 curved interfaces obtained from the CG model with (g,6) =
610 (0.23,0.48) are presented in Figure 16. Figure 16(a),(b) shows
611 that the width of the planar interface is very similar in the
612 atomistic and CG simulations, as well as in the resulting
613 nonintrinsic density profiles for both water and hexane. For the
614 planar interface, there are three peaks in the “CG” intrinsic
615 density profile of water, while only two peaks are observed in
616 the “atomistic” intrinsic water density profile. The CG FF
617 produces a longer-range ordered structure because it uses a
618 larger cutoff than the atomistic FF. On the other hand, the
619 locations and magnitudes of the first two peaks in the CG
620 density profile are close to those in the atomistic simulations.
621 Figure 16(c) also demonstrates good agreement between the
622 intrinsic and nonintrinsic density profiles of a 2 nm water
623 droplet (i.e., curved interface) obtained with our CG model
624 and the atomistic models in terms of the bulk water density,
625 interface width, and structure. There are some disagreements
626 in the intrinsic density profiles of hexane in the CG and
627 atomistic simulations. There is a relatively small peak in the
628 intrinsic atomistic hexane density profile and no apparent peak
629 in the CG intrinsic hexane density profile.

630 This disagreement is caused by the coarse graining of the
631 one-site CG water and two-site CG hexane models.

& X

- O

[

—

4. CONCLUSION

632 We developed a new probabilistic machine learning framework
633 that combines the polynomial-regression-based response
634 surface with the uncertainty analysis resulting in the probability
635 density function of optimal CG FF parameters. Optimal
636 parameters are defined as parameters that minimize the
637 difference between the CG and atomistic predictions of target
638 properties (here, the interfacial tension of planar and curved
639 interfaces). We applied the probabilistic ML method to
640 parametrize the CG FF for a water—hexane mixture and
641 demonstrated that a such constructed CG FF has better
642 transferability than existing CG FFs with respect to the
643 interface curvature. Specifically, it is more accurate than
644 existing CG FFs for predicting the interfacial tension and
645 coexisting densities as functions of the interface curvature.

646  First, we tested two existing atomistic FFs (the TIP4P2005
647 water model and OPLS-AA FF and the TIP4P2005 water
648 model and TraPPE FF) and three existing CG FFs (MARTINI
649 FF, polarized MARTINI FF, and SAFT FF) for a water—
650 hexane mixture. The interface structure and thermodynamic
651 properties were calculated for the planar and curved interfaces

oo

=

(water droplets with a radius of 2 and 3 nm in hexane). We 632
found that the simulation results of both atomistic FFs for the 6s3
planar interface agree well with published experimental values. 654
Next, the atomistic FFs were used to simulate curved 6ss
interfaces, and the resulting density profiles and surface 6s6
tension values were used as reference solutions. The atomistic 657
simulations confirmed that at the considered length scales, the 6ss
interfacial tension depends on the interface curvature. 659

Then, we tested three popular CG FFs and found that none 660
of them can accurately reproduce the interfacial structure and ¢61
interfacial tensions of the planar or curved water—hexane ¢62
interfaces. Next, we used the proposed probabilistic ML 663
approach to learn new CG interaction parameters ¢ and € 664
within the SDK CG FF framework. We chose the interfacial 665
tensions of the planar interface and the curved interfaces (2 666
and 3 nm droplets) as target properties. It is found that the 667
probabilistic approach produces a unique set of parameters 668
with two targets (the surface tension of the planar interface and 669
the 2 nm droplet) and used the third target (the surface 670
tension of the 3 nm droplet) to validate the FF. The calculated 671
interfacial tension is within 9% of the atomistic prediction. We 672
also demonstrated that the intrinsic and nonintrinsic densities 673
in the learned CG model are in close agreement with those 674
observed in the atomistic simulations. Transferability of the 675
proposed CG FF with respect to the interface curvature also 676
suggests transferability with respect to the chemical composi- 677
tion of the fluid mixture as the interfacial curvature locally 678
defines the ratio of water to hexane. 679

Finally, we demonstrated that the standard ML response 680
surface approach does not produce a unit set of ¢ and & ¢s1
parameters even when three targets are used. Therefore, the 632
proposed probabilistic framework reduces the number of target 6s3
properties required to uniquely parametrize CG FFs and, thus, cs4
significantly reduces the computational cost of CG model 6ss
parametrization. In addition, our ML method is very efficient. 6s6
It only took less than 1 s for current model training. The 687
proposed approach is general and can be used for learning ess
interaction parameters in both atomistic and CG models of 689

complex systems with appropriate target properties. 690
B ASSOCIATED CONTENT 691
© Supporting Information 692
The Supporting Information is available free of charge at 693
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00337. 694

Method details about constructing multivariate Legen- 695
dre polynomials and selection of N, distribution of 49 69
points in training set (Figure S1), and loss function L’ 697

as function of ¢ and ¢ (Figure S2) (PDF) 698
B AUTHOR INFORMATION 699
Corresponding Authors 700

Peiynan Gao — Advanced Computing, Mathematics, and Data 701
Division, Pacific Northwest National Laboratory, Richland, 702
Washington 99352, United States; ©® orcid.org/0000-0002- 703

2906-6551; Email: peiyuan.gao@pnnl.gov 704
Alexandre M. Tartakovsky — Advanced Computing, 705
Mathematics, and Data Division, Pacific Northwest National 706
Laboratory, Richland, Washington 99352, United States; 707
Email: alexandre.tartakovsky@pnnl.gov 708

https://dx.doi.org/10.1021/acs.jcim.0c00337
J. Chem. Inf. Model. XXXX, XXX, XXX—=XXX



Journal of Chemical Information and Modeling

pubs.acs.org/jcim

709 Author

710 Xiu Yang — Department of Industrial and Systems Engineering,
711 Lehigh University, Bethlehem, Pennsylvania 18015, United
712 States

713 Complete contact information is available at:
714 https://pubs.acs.org/10.1021/acs.jcim.0c00337

715 Notes
716 The authors declare no competing financial interest.

717 l ACKNOWLEDGMENTS

718 This work was supported by the U.S. Department of Energy,
719 Office of Science, Office of Advanced Scientific Computing
720 Research as part of the Collaboratory on the Physics-Informed
721 Learning Machines for Multiscale and Multiphysics Problems
722 (PhILMs) project. Pacific Northwest National Laboratory is
723 operated by Battelle for the DOE under Contract DE-ACO0S-
724 76RL01830.

72s I REFERENCES

726 (1) John, S. T.; Csanyi, G. Many-Body Coarse-Grained Interactions
727 Using Gaussian Approximation Potentials. J. Phys. Chem. B 2017, 121,
728 10934—10949.

729 (2) Sidky, H.; Whitmer, J. K. Learning free energy landscapes using
730 artificial neural networks. J. Chem. Phys. 2018, 148, 104111.

731 (3) Chmiela, S.; Sauceda, H. E.; Muller, K.-R;; Tkatchenko, A.
732 Towards exact molecular dynamics simulations with machine-learned
733 force fields. Nat. Commun. 2018, 9, 3887.

734 (4) Tang, Y.-H; Zhang, D; Karniadakis, G. E. An atomistic
735 fingerprint algorithm for learning ab initio molecular force fields. J.
736 Chem. Phys. 2018, 148, 034101.

737 (5) Gong, Z.; Wu, Y.; Wu, L.; Sun, H. Predicting Thermodynamic
738 Properties of Alkanes by High-Throughput Force Field Simulation
739 and Machine Learning. J. Chem. Inf. Model. 2018, 58, 2502—2516.
740 (6) Noé, F.; Tkatchenko, A.; Miiller, K; Clementi, C. Machine
741 Learning for Molecular Simulation. Annu. Rev. Phys. Chem. 2020, 71,
742 361—-390.

743 (7) Ishiyama, T.; Imamura, T.; Morita, A. Theoretical Studies of
744 Structures and Vibrational Sum Frequency Generation Spectra at
745 Aqueous Interfaces. Chem. Rev. 2014, 114, 8447—8470.

746 (8) Piradashvili, K.; Alexandrino, E. M.; Wurm, F. R.; Landfester, K.
747 Reactions and Polymerizations at the Liquid—Liquid Interface. Chem.
748 Rev. 2016, 116, 2141—2169.

749 (9) Liu, S. J; Li, Q; Shao, Y. H. Electrochemistry at micro- and
750 nanoscopic liquid/liquid interfaces. Chem. Soc. Rev. 2011, 40, 2236—
751 2253.

752 (10) Nagata, Y.; Ohto, T.; Backus, E. H. G,; Bonn, M. Molecular
753 Modeling of Water Interfaces: From Molecular Spectroscopy to
754 Thermodynamics. J. Phys. Chem. B 2016, 120, 3785—3796.

755 (11) Johnson, C. M. Baldelli S. Vibrational Sum Frequency
756 Spectroscopy Studies of the Influence of Solutes and Phospholipids at
757 Vapor/Water Interfaces Relevant to Biological and Environmental
758 Systems. Chem. Rev. 2014, 114, 8416—8446.

759 (12) Winter, B. Liquid microjet for photoelectron spectroscopy.
760 Nucl. Instrum. Methods Phys. Res., Sect. A 2009, 601, 139—150.

761 (13) Lee, C.; McCammon, J. A; Rossky, P. J. The structure of liquid
762 water at an extended hydrophobic surface. J. Chem. Phys. 1984, 80,
763 4448—445S.

764 (14) Nair, A. R; Sathian, S. P. Studies on the effect of curvature on
765 the surface properties of nanodrops. J. Mol. Lig. 2014, 195, 248—254.
766 (15) Chiu, S.-W.; Scott, H. L.; Jakobsson, E. A Coarse-Grained
767 Model Based on Morse Potential for Water and n-Alkanes. J. Chem.
768 Theory Comput. 2010, 6, 851—863.

769 (16) van der Spoel, D.; van Maaren, P. J.; Caleman, C. GROMACS
770 molecule and liquid database. Bioinformatics 2012, 28, 752—753.

(17) Mayoral, E; Goicochea, A. G. Modeling the temperature 771
dependent interfacial tension between organic solvents and water 772
using dissipative particle dynamics. J. Chem. Phys. 2013, 138, 094703. 773

(18) Yesylevskyy, S. O.; Schafer, L. V.; Sengupta, D.; Marrink, S. J. 774
Polarizable Water Model for the Coarse-Grained MARTINI Force 775
Field. PLoS Comput. Biol. 2010, 6, e1000810. 776

(19) Lobanova, O.; Avendano, C.; Lafitte, T.; Muller, E. A.; Jackson, 777
G. SAFT-gamma force field for the simulation of molecular fluids: 4. 778
A single-site coarse-grained model of water applicable over a wide 779
temperature range. Mol. Phys. 2015, 113, 1228—1249. 780

(20) Ghoufi, A.; Malfreyt, P.; Tildesley, D. J. Computer modelling of 781
the surface tension of the gas-liquid and liquid-liquid interface. Chem. 782
Soc. Rev. 2016, 45, 1387—1409. 783

(21) Zubillaga, R. A; Labastida, A; Cruz, B; Martinez, J. C.; 784
Sanchez, E.; Alejandre, J. Surface Tension of Organic Liquids Using 785
the OPLS/AA Force Field. J. Chem. Theory Comput. 2013, 9, 1611— 786
1615. 787

(22) Peter, C.; Kremer, K. Multiscale simulation of soft matter 788
systems - from the atomistic to the coarse-grained level and back. Soft 789

Matter 2009, S, 4357—4366. 790
(23) Marrink, S. J.; Tieleman, D. P. Perspective on the Martini 791
model. Chem. Soc. Rev. 2013, 42, 6801—6822. 792

(24) Stephan, S.; Thol, M.; Vrabec, J.; Hasse, H. Thermophysical 793
Properties of the Lennard-Jones Fluid: Database and Data Assess- 794
ment. J. Chem. Inf. Model. 2019, 59, 4248—4265. 795

(25) Brini, E.; Algaer, E. A,; Ganguly, P.; Li, C.; Rodriguez-Ropero, 796
F,; van der Vegt, N. F. A. Systematic coarse-graining methods for soft 797
matter simulations — a review. Soft Matter 2013, 9, 2108—2119. 798

(26) Garay, P. G.; Barrera, E. E; Pantano, S. Post-Translational 799
Modifications at the Coarse-Grained Level with the SIRAH Force 800
Field. J. Chem. Inf. Model. 2020, 60, 964—973. 801

(27) Sanyal, T.; Shell, M. S. Transferable Coarse-Grained Models of 02
Liquid—Liquid Equilibrium Using Local Density Potentials Opti- 803
mized with the Relative Entropy. J. Phys. Chem. B 2018, 122, 5678— 804
5693. 805

(28) Dunn, N. J. H.; Noid, W. G. Bottom-up coarse-grained models 806
that accurately describe the structure, pressure, and compressibility of 807
molecular liquids. J. Chem. Phys. 2015, 143, 243148. 808

(29) Bejagam, K. K; Singh, S.; An, Y.; Berry, C.; Deshmukh, S. A. 809
PSO-Assisted Development of New Transferable Coarse-Grained sio
Water Models. J. Phys. Chem. B 2018, 122, 1958—1971. 811

(30) Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R. Extended 812
coarse-grained dipole model for polar liquids: Application to bulk and 813
confined water. Phys. Rev. E: Stat. Phys, Plasmas, Fluids, Relat. 814
Interdiscip. Top. 2018, 98, 052135. 815

(31) Molinero, V.; Moore, E. B. Water Modeled As an Intermediate 816
Element between Carbon and Silicon. J. Phys. Chem. B 2009, 113, 817

4008—4016. 818
(32) Orsi, M. Comparative assessment of the ELBA coarse-grained 819
model for water. Mol. Phys. 2014, 112, 1566—1576. 820

(33) Shinoda, W.; Devane, R; Klein, M. L. Multi-property fitting s21
and parameterization of a coarse grained model for aqueous 822
surfactants. Mol. Simul. 2007, 33, 27—36. 823

(34) Seo, S.; Shinoda, W. SPICA Force Field for Lipid Membranes: s24
Domain Formation Induced by Cholesterol. J. Chem. Theory Comput. 825
2019, 1S, 762-774. 826

(35) Shinoda, W.; DeVane, R; Klein, M. L. Coarse-grained 827
molecular modeling of non-ionic surfactant self-assembly. Soft Matter 828
2008, 4, 2454—2462. 829

(36) Shinoda, W.; DeVane, R; Klein, M. L. Zwitterionic Lipid 830
Assemblies: Molecular Dynamics Studies of Monolayers, Bilayers, and 831
Vesicles Using a New Coarse Grain Force Field. J. Phys. Chem. B 832

2010, 114, 6836—6849. 833
(37) Shinoda, W.; DeVane, R; Klein, M. L. Coarse-grained force 834
field for ionic surfactants. Soft Matter 2011, 7, 6178—6186. 835

(38) Miyazaki, Y.; Okazaki, S.; Shinoda, W. pSPICA: A Coarse- 836
Grained Force Field for Lipid Membranes Based on a Polar Water 837
Model. J. Chem. Theory Comput. 2020, 16, 782—793. 838

https://dx.doi.org/10.1021/acs.jcim.0c00337
J. Chem. Inf. Model. XXXX, XXX, XXX—=XXX



Journal of Chemical Information and Modeling

pubs.acs.org/jcim

839 (39) Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de
840 Vries, A. H. The MARTINI Force Field: Coarse Grained Model for
841 Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812—7824.
842 (40) Monticelli, L.; Kandasamy, S. K; Periole, X.; Larson, R. G.;
843 Tieleman, D. P.; Marrink, S. J. The MARTINI Coarse-Grained Force
844 Field: Extension to Proteins. J. Chem. Theory Comput. 2008, 4, 819—
845 34.

846 (41) Neyt, J. C.; Wender, A.; Lachet, V.; Ghoufi, A,; Malfreyt, P.
847 Quantitative Predictions of the Interfacial Tensions of Liquid-Liquid
848 Interfaces through Atomistic and Coarse Grained Models. J. Chem.
849 Theory Comput. 2014, 10, 1887—99.

850 (42) Ndao, M.; Devémy, J.; Ghoufi, A.; Malfreyt, P. Coarse-Graining
8s1 the Liquid—Liquid Interfaces with the MARTINI Force Field: How Is
852 the Interfacial Tension Reproduced? J. Chem. Theory Comput. 20185,
853 11, 3818—3828.

854 (43) Avendafo, C.; Lafitte, T.; Adjiman, C. S.; Galindo, A.; Miiller,
8ss E. A; Jackson, G. SAFT-gamma Force Field for the Simulation of
856 Molecular Fluids: 2. Coarse-Grained Models of Greenhouse Gases,
857 Refrigerants, and Long Alkanes. J. Phys. Chem. B 2013, 117, 2717—
858 2733.

859 (44) Avendafio, C.; Lafitte, T.; Galindo, A.; Adjiman, C. S.; Jackson,
860 G.; Miiller, E. A. SAFT-gamma Force Field for the Simulation of
861 Molecular Fluids. 1. A Single-Site Coarse Grained Model of Carbon
862 Dioxide. J. Phys. Chem. B 2011, 115, 11154—11169.

863 (45) Lobanova, O.; Mejia, A; Jackson, G.; Miiller, E. A. SAFT-
864 gamma force field for the simulation of molecular fluids 6: Binary and
865 ternary mixtures comprising water, carbon dioxide, and n-alkanes. J.
866 Chem. Thermodyn. 2016, 93, 320—336.

867 (46) Herdes, C; Ervik, A.; Mejia, A.; Miiller, E. A. Prediction of the
868 water/oil interfacial tension from molecular simulations using the
869 coarse-grained SAFT-gamma Mie force field. Fluid Phase Equilib.
870 2018, 476, 9—15.

871 (47) Muller, E. A; Jackson, G. Force-Field Parameters from the
872 SAFT-y Equation of State for Use in Coarse-Grained Molecular
873 Simulations. Annu. Rev. Chem. Biomol. Eng. 2014, S, 405.

874 (48) Mejia, A.; Herdes, C.; Muller, E. A. Force Fields for Coarse-
875 Grained Molecular Simulations from a Corresponding States
876 Correlation. Ind. Eng. Chem. Res. 2014, 53, 4131—4141.

877 (49) Potter, T. D.; Tasche, J.; Wilson, M. R. Assessing the
878 transferability of common top-down and bottom-up coarse-grained
879 molecular models for molecular mixtures. Phys. Chem. Chem. Phys.
880 2019, 21, 1912—1927.

881 (50) Scherer, C.; Scheid, R.; Andrienko, D.; Bereau, T. Kernel-Based
882 Machine Learning for Efficient Simulations of Molecular Liquids. J.
883 Chem. Theory Comput. 2020, 16, 3194—3204.

884 (51) Wang, J; Chmiela, S; Miiller, K; Noé, F.; Clementi, C.
885 Ensemble learning of coarse-grained molecular dynamics force fields
886 with a kernel approach. J. Chem. Phys. 2020, 152, 194106.

887 (52) Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N. E,;
888 de Fabritiis, G.; Noé¢, F.; Clementi, C. Machine Learning of Coarse-
889 Grained Molecular Dynamics Force Fields. ACS Cent. Sci. 2019, S,
890 755—767.

891 (53) Underwood, T. R; Greenwell, H. C. The Water-Alkane
892 Interface at Various NaCl Salt Concentrations: A Molecular
893 Dynamics Study of the Readily Available Force Fields. Sci. Rep.
894 2018, 8, 352.

895 (54) Abascal, J. L. F.; Vega, C. A general purpose model for the
896 condensed phases of water: TIP4P/200S. J. Chem. Phys. 2005, 123,
897 234508S.

898 (55) Martin, M. G.; Siepmann, J. I. Transferable Potentials for Phase
899 Equilibria. 1. United-Atom Description of n-Alkanes. J. Phys. Chem. B
900 1998, 102, 2569—2577.

901 (56) Ashbaugh, H. S; Liu, L.; Surampudi, L. N. Optimization of
902 linear and branched alkane interactions with water to simulate
903 hydrophobic hydration. J. Chem. Phys. 2011, 135, 054510.

904 (57) Kaminski, G.; Jorgensen, W. L. Performance of the AMBERY4,
90s MMFF94, and OPLS-AA Force Fields for Modeling Organic Liquids.
906 J. Phys. Chem. 1996, 100, 18010—18013.

(58) Zhang, Y.; Feller, S. E; Brooks, B. R.; Pastor, R. W. Computer 907
simulation of liquid/liquid interfaces. I. Theory and application to 908
octane/water. J. Chem. Phys. 1995, 103, 10252—10266. 909

(59) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. 910
LINCS: A linear constraint solver for Mol. Simulat.s. . Comput. Chem. 911
1997, 18, 1463—1472. 912

(60) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; 913
Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 914
199§, 103, 8577—8593. 915

(61) Biscay, F.; Ghoufi, A;; Goujon, F.; Lachet, V.; Malfreyt, P. 916
Calculation of the surface tension from Monte Carlo simulations: 917
Does the model impact on the finite-size effects? J. Chem. Phys. 2009, 918
130, 184710. 919

(62) Partay, L. B.; Hantal, G.; Jedlovszky, P.; Vincze, A.; Horvai, G. 920
A new method for determining the interfacial molecules and 921
characterizing the surface roughness in computer simulations. 922
Application to the liquid—vapor interface of water. J. Comput. Chem. 923
2008, 29, 945—956. 924

(63) Sega, M.; Fabian, B.; Horvai, G.; Jedlovszky, P. How Is the 925
Surface Tension of Various Liquids Distributed along the Interface 926
Normal? . Phys. Chem. C 2016, 120, 27468—27477. 927

(64) Sega, M.; Kantorovich, S. S.; Jedlovszky, P.; Jorge, M. The 928
generalized identification of truly interfacial molecules (ITIM) 929
algorithm for nonplanar interfaces. J. Chem. Phys. 2013, 138, 044110. 930

(65) Sega, M.; Hantal, G.; Fabian, B.; Jedlovszky, P. Pytim: A python 931
package for the interfacial analysis of Mol. Simulat.s. J. Comput. Chem. 932
2018, 39, 2118-2128. 933

(66) Mitrinovic, D. M.; Tikhonov, A. M,; Li, M,; Huang, Z.; 934
Schlossman, M. L. Noncapillary-Wave Structure at the Water-Alkane 935
Interface. Phys. Rev. Lett. 2000, 85, 582—58S. 936

(67) Hantal, G.; Darvas, M.; Partay, L. B.; Horvai, G.; Jedlovszky, P. 937
Molecular level properties of the free water surface and different 938
organic liquid/water interfaces, as seen from ITIM analysis of 939
computer simulation results. J. Phys.: Condens. Matter 2010, 22, 940
284112. 941

(68) Bresme, F.; Chacon, E.; Tarazona, P.; Tay, K. Intrinsic 942
Structure of Hydrophobic Surfaces: The Oil-Water Interface. Phys. 943
Rev. Lett. 2008, 101, 056102. 944

(69) Bresme, F.; Chacon, E.; Tarazona, P. Molecular dynamics 945
investigation of the intrinsic structure of water-fluid interfaces via the 946
intrinsic sampling method. Phys. Chem. Chem. Phys. 2008, 10, 4704— 947
4718. 948

(70) Bresme, F.; Chacon, E.; Tarazona, P. Force-field dependence 949
on the interfacial structure of oil—water interfaces. Mol. Phys. 2010, 950
108, 1887—1898. 951

(71) Roddy, J. W.; Coleman, C. F. Solubility of water in 952
hydrocarbons as a function of water activity. Talanta 1968, 1S, 953
1281-1286. 954

(72) Nicolas, J. P.; Smit, B. Molecular dynamics simulations of the 9ss
surface tension of n-hexane, n-decane and n-hexadecane. Mol. Phys. 956
2002, 100, 2471—-2475. 957

(73) Irving, J. H.; Kirkwood, J. G. The Statistical Mechanical Theory 958
of Transport Processes. IV. The Equations of Hydrodynamics. J. 959
Chem. Phys. 1950, 18, 817—829. 960

(74) Ghoufi, A.; Goujon, F.; Lachet, V.; Malfreyt, P. Expressions for 961
local contributions to the surface tension from the virial route. Phys. 962
Rev. E 2008, 77, 031601. 963

(75) Lovett, R.; Baus, M. A molecular theory of the Laplace relation 964
and of the local forces in a curved interface. J. Chem. Phys. 1997, 106, 965
635—644. 966

(76) Vanegas, J. M,; Torres-Sanchez, A.; Arroyo, M. Importance of 967
Force Decomposition for Local Stress Calculations in Biomembrane 968

Mol. Simulat.s. J. Chem. Theory Comput. 2014, 10, 691—702. 969
(77) Admal, N. C.; Tadmor, E. B. A Unified Interpretation of Stress 970
in Molecular Systems. J. Elasticity. 2010, 100, 63—143. 971

(78) Ollila, O. H. S.; Risselada, H. J.; Louhivuori, M.; Lindahl, E.; 972
Vattulainen, I; Marrink, S. J. 3D Pressure Field in Lipid Membranes 973
and Membrane-Protein Complexes. Phys. Rev. Lett. 2009, 102, 974
078101. 975

https://dx.doi.org/10.1021/acs.jcim.0c00337
J. Chem. Inf. Model. XXXX, XXX, XXX—=XXX



Journal of Chemical Information and Modeling

pubs.acs.org/jcim

976 (79) Malijevsky, A.; Jackson, G. A perspective on the interfacial
977 properties of nanoscopic liquid drops. J. Phys.: Condens. Matter 2012,
978 24, 464121.

979 (80) Nicolas, J. P.; de Souza, N. R. Molecular dynamics study of the
980 n-hexane—water interface: Towards a better understanding of the
981 liquid—liquid interfacial broadening. J. Chem. Phys. 2004, 120, 2464—
982 2469.

983 (81) Zeppieri, S.; Rodriguez, J.; Lopez de Ramos, A. L. Interfacial
984 Tension of Alkane + Water Systems. J. Chem. Eng. Data 2001, 46,
98s 1086—1088.

986 (82) Takahashi, H.; Morita, A. A molecular dynamics study on inner
987 pressure of microbubbles in liquid argon and water. Chem. Phys. Lett.
988 2013, 573, 35—40.

989 (83) Ghoufi, A.; Malfreyt, P. Local pressure components and surface
990 tension of spherical interfaces. Thermodynamic versus mechanical
991 definitions. I. A mesoscale modeling of droplets. J. Chem. Phys. 2011,
992 135, 104108S.

993 (84) Xiu, D.; Karniadakis, G. The Wiener—Askey Polynomial Chaos
994 for Stochastic Differential Equations. SIAM J. Sci. Comput. 2002, 24,
995 619—644.

996 (85) Lei, H.; Yang, X.; Zheng, B.; Lin, G.; Baker, N. A. Constructing
997 surrogate models of complex systems with enhanced sparsity:
998 quantifying the influence of conformational uncertainty in bio-
999 molecular solvation. Multiscale Model. Simul. 2015, 13, 1327—1353.
1000 (86) Li, Z.; Bian, X; Yang, X,; Karniadakis, G. E. A comparative
1001 study of coarse-graining methods for polymeric fluids: Mori-Zwanzig
1002 vs. iterative Boltzmann inversion vs. stochastic parametric optimiza-
1003 tion. J. Chem. Phys. 2016, 145, 044102.

1004 (87) Gerstner, T.; Griebel, M. Numerical integration using sparse
1005 grids. Numer. Algorithms. 1998, 18, 209—232.

1006 (88) Xiu, D.; Hesthaven, J. High-Order Collocation Methods for
1007 Differential Equations with Random Inputs. SIAM J. Sci. Comput.
1008 200S, 27, 1118—1139.

1009 (89) Stone, M. Cross-Validatory Choice and Assessment of
1010 Statistical Predictions. J. R. Stat. Soc. Series. B 1974, 36, 111—147.
1011 (90) He, X.; Shinoda, W.; DeVane, R.; Klein, M. L. Exploring the
1012 utility of coarse-grained water models for computational studies of
1013 interfacial systems. Mol. Phys. 2010, 108, 2007—2020.

—_

—

https://dx.doi.org/10.1021/acs.jcim.0c00337
J. Chem. Inf. Model. XXXX, XXX, XXX—=XXX



