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Abstract

A tight continuous relaxation is a crucial factor in solving mixed integer
formulations of many NP-hard combinatorial optimization problems. The
(weighted) max k-cut problem is a fundamental combinatorial optimization
problem with multiple notorious mixed integer optimization formulations. In
this paper, we explore four existing mixed integer optimization formulations
of the max k-cut problem and show that the continuous relaxation of a
binary quadratic optimization formulation is: (i) stronger than that of two
mixed integer linear optimization formulations and (ii) at least as strong as a
mixed integer semidefinite optimization formulation. We also conduct a set
of experiments on the state-of-the-art solvers to assess the theoretical results
in practice. The computational results support our theoretical findings on
multiple sets of instances. Our codes and data are available on GitHub.

Keywords: the max k-cut problem, mixed integer optimization,
semidefinite optimization, continuous relaxation

1. Introduction

The continuous relaxation of a mixed integer optimization formulation
plays a fundamental role in the e�cient solution process of not only lin-
ear formulations, but also non-linear ones of a mixed integer optimization
problem [1]. The (weighted) max k-cut problem is a fundamental NP-hard
combinatorial optimization problem [2, 3] with multiple mixed integer linear
optimization formulations that su↵er either from weak relaxation or large
size. The max k-cut problem has a wide range of applications, including but
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not limited to statistical physics [4, 5], gas and power networks [6], data clus-
tering [7], and scheduling [8]. Given a graph G = (V,E) with edge weights w
and a positive integer number k � 2, the max k-cut problem seeks to find at
most k partitions such that the weights of edges with endpoints in di↵erent
partitions are maximized.

Motivated by the considerable e↵ect of the continuous relaxation strength
in solving mixed integer optimization formulations of the max k-cut to opti-
mality, we discuss multiple known optimization formulations of the max k-cut
problem in the literature: (i) a binary quadratic optimization (BQO) formu-
lation [8]; (ii) a vertex-based mixed integer linear optimization (V-MILO)
formulation; (iii) an edge-based mixed integer linear optimization (E-MILO)
formulation [9]; and (iv) a mixed integer semidefinite optimization (MISDO)
formulation [10]. We prove that the continuous relaxation of the BQO formu-
lation is: (i) stronger than that of the V-MILO and the E-MILO formulations
and (ii) at least as strong as a mixed integer semidefinite optimization for-
mulation. Further, we conduct a set of computational experiments to assess
our theoretical results in practice. Thanks to the recent advancements of
state-of-the-art solvers (e.g., Gurobi), the numerical results support most
of the theoretical ones. The continuous relaxation of the BQO formulation
provides a tighter upper bound compared to the other MILO formulations.
It also provides a high-quality upper bound for large-scale instances of the
problem that the continuous relaxation of the MISDO formulation struggles
to achieve.

2. Mixed Integer Optimization Formulations

Motivated by solving a scheduling problem, Carlson and Nemhauser [8]
proposed a BQO formulation for the max k-cut problem. Let n := |V |
and m := |E| respectively be the number of vertices and edges of graph
G = (V,E). Furthermore, we define P := {1, . . . , k} as the set of partitions
and wuv 2 R as the edge weights for {u, v} 2 E. For every vertex v 2 V and
every partition j 2 P , binary variable xvj is one if vertex v is assigned to
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partition j and zero otherwise. Then, the BQO formulation is as follows.

max
X

{u,v}2E

wuv

 
1�

X

j2P

xujxvj

!
(1a)

(BQO) s.t.
X

j2P

xvj = 1 8v 2 V (1b)

x 2 {0, 1}n⇥k. (1c)

Objective function (1a) maximizes the number of cut edges, and constraints (1b)
imply that each vertex must be assigned to exactly one partition. Carlson
and Nemhauser [8] proved that an optimal solution of the continuous relax-
ation of BQO formulation (1) can be converted into an optimal solution of
its binary variant with the same objective value.

Theorem 1 (Carlson and Nemhauser [8]). An optimal solution of the BQO
formulation (1) is also optimal for its continuous relaxation.

One can linearize the BQO formulation (1) to develop a MILO for-
mulation of the max k-cut problem that is called the vertex-based MILO
(V-MILO) formulation in this paper. For every edge {u, v} 2 E, binary vari-
able yuv is one if the endpoints of edge {u, v} belong to di↵erent partitions;
that is {u, v} is a cut edge, and zero otherwise.

max
X

{u,v}2E

wuvyuv (2a)

s.t.
X

j2P

xvj = 1 8v 2 V (2b)

(V-MILO) xuj � xvj  yuv
xvj � xuj  yuv 8{u, v} 2 E, j 2 P (2c)

xuj + xvj + yuv  2 8{u, v} 2 E, j 2 P (2d)

x 2 {0, 1}n⇥k (2e)

y 2 {0, 1}m. (2f)

Objective function (2a) maximizes the total weight of cut edges. Con-
straints (2b) imply that every vertex is assigned to exactly one partition.
Constraints (2c) imply that if endpoints of an edge belong to di↵erent parti-
tions, then it is a cut edge. Constraints (2d) imply that if the endpoints of
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an edge belong to the same partition, then the edge cannot be a cut edge.
Despite the reasonable size of formulation (2) having kn +m variables and
n+3km constraints, it su↵ers from weak continuous relaxation and symmetry
issues [6].

Another classical MILO formulation is a large edge-based MILO (E-MILO)
formulation with

�
n
2

�
variables and 3

�
n
3

�
+
�

n
k+1

�
constraints [9, 11]. Although

the continuous relaxation of this formulation provides a relatively tight up-
per bound in practice, classical solvers struggle to solve even medium-size
instances of the max k-cut problem to optimality [12]. For every set S, we
employ

�
S
2

�
to denote all subsets of S with size 2. For every pair of vertices

{u, v} 2
�
V
2

�
, we define binary variable zuv as follows: zuv is one if vertices u

and v belong to the same partition, and zero otherwise.

max
X

{u,v}2E

wuv(1� zuv) (3a)

s.t. zuv + zvw  1 + zuw
zuw + zuv  1 + zvw

(E-MILO) zvw + zuw  1 + zuv 8{u, v, w} ✓ V (3b)
X

{u,v}2(Q2)

zuv � 1 8Q ✓ V, |Q| = k + 1 (3c)

z 2 {0, 1}(
n
2). (3d)

Objective function (3a) maximizes the total weight of cut edges. Con-
straints (3b) imply that for every set {u, v, w} ✓ V , if pairs {u, v} and
{v, w} belong to a partition, then vertices u and w also belong to the same
partition. Constraints (3c) imply that vertex set V must be partitioned into
at most k partitions. Because of the large number of constraints (3c), one can
add them on the fly [13]. Chopra and Rao [11] conducted a polyhedral study
on the max k-cut problem and proposed several facet-defining inequalities
for the E-MILO formulation. They also studied the V-MILO and E-MILO
formulations for the min k-cut problem and developed multiple facet-defining
inequalities for both formulations [9].

Further, Wang and Hijazi [12] propose a reduced E-MILO (RE-MILO)
formulation that is constructed as follows: (i) graph G is extended to a
chordal graph, (ii) all maximal cliques of the chordal graph are found, (iii)
binary variables z are created only for the edge set of the chordal graph,
and (iv) constraints (3b)–(3c) are added only for the maximal cliques. The
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number of variables and constraints in their formulation is fewer than or
equal to that of the E-MILO formulation (3). However, for dense graphs in
which the chordalized graph is complete, they are the same as the E-MILO
formulation. They show that their formulation outperforms the E-MILO
formulation when the chordalized graph is sparse.

We also provide an existing mixed integer semidefinite optimization (MIS-
DO) formulation [14]. For every (u, v) 2 V ⇥ V , binary variable Zuv is one
if vertices u and v belong to the same partition. Then the formulation is as
follows.

max
X

{u,v}2E

wuv(1� Zuv) (4a)

(MISDO) s.t. Zvv = 1 8v 2 V (4b)

kZ ⌫ eeT (4c)

Z 2 {0, 1}n⇥n. (4d)

Interested readers are encouraged to refer to [15, 16, 12, 17] for more details
on semidefinite optimization and mixed integer semidefinite optimization for-
mulations of the max k-cut.

3. A Theoretical Comparison of Relaxations

In this section, we provide theoretical comparisons between the continu-
ous relaxations of BQO formulation (1) and formulations (2)-(4). For analy-
sis purposes, we introduce y variables to the BQO formulation (1): for every
edge {u, v} 2 E, variable yuv equals one if {u, v} is a cut edge.

yuv = 1�
X

j2P

xujxvj 8{u, v} 2 E. (5)

Furthermore, we define the set of lifted continuous relaxation of the BQO
formulation as follows.

Ry

BQO
:=

⇢
(x, y) 2 [0, 1]n⇥k ⇥ Rm

���

(x, y) satisfies constraints (1b) and (5)

�
.

The following remark shows that we do not need to impose 0-1 bounds
on y variables.
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Remark 1. Constraints y 2 [0, 1]m are implied by the BQO formulation (1)
and constraints (5).

To see this, consider a point (x̂, ŷ) 2 Ry

BQO
. For every edge {u, v} 2 E,

we have

ŷuv = 1�
X

j2P

x̂ujx̂vj � 1�
X

j2P

x̂uj = 1� 1 = 0.

The first equality holds by constraints (5). The inequality holds because,
for any partition j 2 P , we have xvj  1. The second equality holds by
constraints (1b). Furthermore, we have

ŷuv = 1�
X

j2P

x̂ujx̂vj  1� 0 = 1.

The first equality holds by constraints (5). The inequality holds because for
any partition j 2 P , and any vertex v 2 V , we have xvj � 0.

First, we prove Lemma 1 that will be used in our further analyses. We
define [n] := {1, . . . , n} for every n 2 Z++.

Lemma 1. Let a 2 [0, 1]n with n � 2. Then, we have

1�
X

i2[n]

ai +
X

{i,j}2([n]
2 )

aiaj � 0. (6)

Proof. We prove the claim by induction. First, we show that the inequality
holds for the base case n = 2. In this case, we have

1� a1 � a2 + a1a2 = (1� a1)(1� a2) � 0. (7)

The inequality (7) holds because for every i 2 {1, 2}, we have 1� ai � 0.
Now suppose that inequality (6) holds for n = s � 2 (induction hypoth-

esis). It su�ces to show that it also holds for n = s+ 1.

0 
 
1�

X

i2[s]

ai +
X

{i,j}2([s]2 )

aiaj

!
(1� as+1) (8a)

= 1�
X

i2[s+1]

ai +
X

{i,j}2([s+1]
2 )

aiaj � as+1

X

{i,j}2([s]2 )

aiaj (8b)

 1�
X

i2[s+1]

ai +
X

{i,j}2([s+1]
2 )

aiaj. (8c)
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Inequality (8a) holds by induction hypothesis and because 1 � as+1 � 0.
Inequality (8c) holds as �as+1

P

{i,j}2([s]2 )
aiaj  0.

Now we define the polytope of the continuous relaxation of the V-MILO
formulation (2) as follows.

RV-MILO :=

⇢
(x, y) 2 [0, 1]n⇥k ⇥ [0, 1]m

���

(x, y) satisfies constraints (2b)–(2d)

�
.

Theorem 2 shows that the continuous relaxation of the BQO formulation
is stronger than that of the V-MILO formulation.

Theorem 2. Ry

BQO
⇢ RV-MILO.

Proof. Let point (x̂, ŷ) 2 Ry

BQO
. First, we are to show that (x̂, ŷ) 2 RV-MILO.

We show that (x̂, ŷ) satisfies constraints (2c). For every edge {u, v} 2 E and
every partition j 2 P , we have

ŷuv = 1�
X

i2P

x̂uix̂vi (9a)

=
X

i2P

x̂ui �
X

i2P

x̂uix̂vi (9b)

= x̂uj +
X

i2P\{j}

x̂ui � x̂ujx̂vj �
X

i2P\{j}

x̂uix̂vi (9c)

� x̂uj +
X

i2P\{j}

x̂ui � x̂vj �
X

i2P\{j}

x̂uix̂vi (9d)

= x̂uj � x̂vj +
X

i2P\{j}

x̂ui(1� x̂vi) (9e)

� x̂uj � x̂vj. (9f)

Equality (9a) holds by constraints (5). Equality (9b) follows from con-
straint (1b). Inequality (9d) holds because x̂uj  1. Inequality (9f) holds
because

P
i2P\{j} x̂ui(1� x̂vi) � 0.
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Finally, we show that (x̂, ŷ) satisfies constraints (2d). For every edge
{u, v} 2 E and every partition j 2 P , we have

ŷuv = 1�
X

i2P

x̂uix̂vi (10a)

= 1� x̂ujx̂vj �
X

i2P\{j}

x̂uix̂vi (10b)

 2� 1� x̂ujx̂vj (10c)

 2� (x̂uj + x̂vj). (10d)

Equality (10a) holds by constraints (5). Inequality (10c) holds by inequal-
ity (7) in Lemma 1 and

P
i2P\{j}

x̂uix̂vi � 0.

Now, we are to show that there exists a point (x̂, ŷ) 2 RV-MILO such that
(x̂, ŷ) 62 Ry

BQO
. For every v 2 V , let x̂v1 = x̂v2 = 0.5. For every vertex

v 2 V and every partition j 2 {3, 4, . . . , k}, we define x̂vj = 0. Furthermore,
for every edge {u, v} 2 E, we define ŷuv = 1. It is simple to check that
(x̂, ŷ) in RV-MILO. So, point (x̂, ŷ) 2 RV-MILO \Ry

BQO
because (x̂, ŷ) violates

constraints (5). Thus, the proof is complete.

The following remark shows the V-MILO formulation has a weak relax-
ation.

Remark 2. The optimal objective of the continuous relaxation for the V-MILO
formulation (2) is equal to

P
{u,v}2E max{wuv, 0}.

To see this, note that an optimal solution (x⇤, y⇤) for the continuous
relaxation of the V-MILO formulation (2) is obtained by setting x⇤

vj =
1

k for
every v 2 V and j 2 P . Also for every edge {u, v} 2 E, we set y⇤uv to 1 if
wuv > 0 and 0 otherwise.

To conduct a theoretical comparison between the continuous relaxations
of the BQO and E-MILO formulations, we lift the dimensionality of the BQO
by introducing new z variables.

zuv :=
X

j2P

xujxvj, 8{u, v} 2
✓
V

2

◆
. (11)

We define the set of lifted continuous relaxation of the BQO formulation in
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z-space as follows.

Rz

BQO
:=

⇢
(x, z) 2 [0, 1]n⇥k ⇥ R(

n
2)
���

(x, z) satisfies constraints (1b) and (11)

�
.

We also define the polytope of the E-MILO formulation as follows.

RE-MILO :=

⇢
z 2 [0, 1](

n
2)
��� z satisfies constraints (3b)–(3c)

�
.

We show that the continuous relaxation of a projection of the lifted BQO
formulation on the z space is stronger than that of the E-MILO formulation.

Theorem 3. projz Rz

BQO
⇢ RE-MILO for n > k.

Proof. Consider a point (x̂, ẑ) 2 Rz

BQO
. We are to show that ẑ 2 RE-MILO.

For every set {u, v, w} ✓ V , we show that point ẑ satisfies constraints (3b).

ẑuv + ẑvw =
X

j2P

x̂ujx̂vj +
X

j2P

x̂vjx̂wj (12a)

=
X

j2P

x̂vj(x̂uj + x̂wj) (12b)


X

j2P

x̂vj(1 + x̂ujx̂wj) (12c)

=
X

j2P

x̂vj +
X

j2P

x̂vj(x̂ujx̂wj) (12d)

= 1 +
X

j2P

x̂vj(x̂ujx̂wj) (12e)

 1 +
X

j2P

x̂ujx̂wj (12f)

= 1 + ẑuw. (12g)

Equality (12a) holds by definition (11). Inequality (12c) holds by inequal-
ity (7) in Lemma 1. Equality (12e) holds by constraints (1b). Inequality (12f)
holds by the fact that x̂vj  1. Equality (12g) holds by definition (11).
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Furthermore, we show that point ẑ satisfies constraints (3c). For every
vertex set Q ✓ V with |Q| = k + 1, we have

X

{u,v}2(Q2)

ẑuv =
X

{u,v}2(Q2)

X

j2P

x̂ujx̂vj (13a)

=
X

j2P

 X

{u,v}2(Q2)

x̂ujx̂vj

!
(13b)

�
X

j2P

 X

u2Q

x̂uj � 1
!

(13c)

=
X

u2Q

X

j2P

x̂uj � k (13d)

= k + 1� k = 1. (13e)

Equality (13a) holds by definition (11). Inequality (13c) holds by Lemma 1.
Equality (13e) holds by constraints (1b) and because |Q| = k + 1.

Finally, for every {u, v} 2
�
V
2

�
, we show that 0  ẑuv  1. Because for

every vertex v 2 V and every partition j 2 P we have x̂vj � 0, it follows
that ẑuv � 0. For every {u, v} 2

�
V
2

�
, we show that ẑuv  1.

ẑuv =
X

j2P

x̂ujx̂vj 
X

j2P

x̂uj = 1.

The first equality holds by definition (11). The inequality holds because
x̂vj  1 for every vertex v 2 V and every partition j 2 P . The last equality
holds by constraints (1b). This implies that projz Rz

BQO
✓ RE-MILO.

Now we show that the inclusion is strict for any non-trivial instance of
the max k-cut problem with n > k. For every {u, v} 2

�
V
2

�
, we define ẑuv

as a point that belongs to the polytope of the E-MILO formulation; that is,
ẑ 2 RE-MILO.

ẑuv :=
2

k(k + 1)
.

For every vertex v 2 V , let xv 2 [0, 1]k be the assignment vector of vertex v.
By definition (11), we have

ẑuv = x̂
T
u x̂v = kx̂uk2kx̂vk2 cos ✓̂uv. (14)
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By constraints (1b), we have kx̂vk1 = 1. Then for every vertex v 2 V , we
have

1p
k
 kx̂vk2  1. (15)

The first inequality holds because kx̂vk2 reaches its minimum when x̂vj =
1

k
for every partition j 2 P .

By lines (14) and (15), we have

2

k(k + 1)
 cos ✓̂uv 

2

k + 1
.

For every {u, v} 2
�
V
2

�
, this implies that we have the following relations

because k � 2.

arccos

 
1p
k

!
< arccos

 
2

k + 1

!
 ✓̂uv  arccos

 
2

k(k + 1)

!
. (16)

Consider k+1 vectors in Rk
+
and let ✓min be the minimum angle between all

vector pairs. It follows that the maximum value of ✓min is arccos
⇣

1
p
k

⌘
. This

case happens when k vectors are located on the axes, and one vector is located
at the center of the positive orthant. Without loss of generality, consider k
unit vectors on k di↵erent axes in Rk

+
and a vector with all entries equal to 1

p
k
.

For example, the maximum values of ✓min are 45� and arccos
⇣

1
p
3

⌘
⇡ 54.7�

for k = 2 and k = 3, respectively.
Since all vectors x̂v are in the positive orthant and n > k, there are

vectors x̂a and x̂b with ✓̂ab  arccos
⇣

1
p
k

⌘
. However, this contradicts the

first inequality of line (16). Thus, there is no feasible solution of the BQO
formulation that satisfies definition (11). This completes the proof.

Wang and Hijazi [12] prove that their reduced E-MILO (RE-MILO) for-
mulation is as strong as the projection of the E-MILO formulation on the
edges of an extended chordal graph. Further, their computational experi-
ments show the superiority of the RE-MILO over the E-MILO for sparse
chordal graphs.

Now we define the continuous relaxation of the MISDO formulation (4)
as follows.

RMISDO :=
n
Z 2 [0, 1]n⇥n

�� Z satisfies constraints (4b)–(4c)
o
.
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To conduct a theoretical comparison between the continuous relaxations of
the BQO and MISDO formulations, we lift the dimensionality of the BQO
formulation by introducing a new symmetric matrix Z 2 Rn⇥n defined as
follows.

Z := Dx +
X

j2P

xjx
T
j , (17)

with Dx be a diagonal matrix and Dx
vv = 1�

P
j2P x2

vj. For every partition
j 2 P , we redefine vector xj 2 [0, 1]n such that xjv = xvj. For comparison
purposes, we also define RZ

BQO
.

RZ

BQO
:=

⇢
(x, Z) 2 [0, 1]n⇥k ⇥ Rn⇥n

���

(x, Z) satisfies constraints (1b) and (17)

�
.

Eisenblätter [10] developed a semidefinite formulation for the max k-
cut problem and showed that its continuous relaxation is strong. However,
they declare that continuous relaxations of the semidefinite optimization and
E-MILO formulations have exclusive points. Furthermore, de Sousa et al. [18]
propose MISDO-based constraints for the E-MILO formulation to strengthen
its relaxation. The following theorem compares the relaxation strength of the
MISDO formulation against an extension of the BQO formulation.

Theorem 4. projZ RZ

BQO
✓ RMISDO.

Proof. For any fractional solution x 2 [0, 1]n⇥k, we have
P

j2P x2

vj  1 by
constraints (1b). Thus, kDx ⌫ 0 and Z 2 [0, 1]n⇥n by definition (17). Matrix
k
P

j2P xjx
T
j � eeT is positive-semidefinite if and only if for every vector

b 2 Rn, we have

bT
 
k
X

j2P

xjx
T
j � eeT

!
b � 0.

We define

�j := bTxj 8j 2 P, and ↵ := bT e. (18)

It su�ces to show k
P

j2P xjx
T
j � eeT ⌫ 0. We can rewrite constraints (1b)

as
P

j2P xj = e. Thus, we have
X

j2P

�j =
X

j2P

bTxj = bT
X

j2P

xj = bT e = ↵. (19)
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So, we have that

bT
 
k
X

j2P

xjx
T
j � eeT

!
b = k

X

j2P

�2

j � ↵2

= k
X

j2P

�2

j �
 X

j2P

�j

!2

=
X

{i,j}2(P2)

�
�i � �j

�2 � 0.

The first equality holds by definitions (18). The second equality holds by
line (19). This completes the proof.

4. Computational Experiments

In this section, we conduct a set of experiments to evaluate our theoret-
ical results in practice. In better words, we compare the relaxations of the
discussed formulations using state-of-the-art solvers. We run the computa-
tional experiments on a machine with Dual Intel Xeon® CPU E5-2630 @
2.20 GHz (20 cores) and 64 GB of RAM. We have developed the Python
package MaxKcut [19] to conduct the computational experiments. We em-
ploy Gurobi 10.0.0 [13] to solve our mixed integer optimization formulations.
We also use MOSEK 10.0.27 [20] to run our experiments for the MISDO for-
mulation. In both Gurobi and MOSEK solvers, we set the number of threads
and time limit to 10 and 3,600 seconds, respectively.

We run our experiments on the following sets of instances: (i) band [12],
(ii) spinglass [12], (iii) Color02 [21], and (iv) Steiner-160 [22] (in total 97
di↵erent instances). We classify these instances into di↵erent classes based
on the number of vertices (from 50 to 250) and their density (from 5 percent
to 100 percent). Thanks to the spatial branch and bound algorithm, Gurobi
can solve a nonconvex formulation to global-✏ optimality; however, we stop
the solving process whenever the solver reaches the one-hour time limit. We
scale the upper bounds by the best obtained upper bound to report the
results. Furthermore, we use the geometric mean of the scaled upper bound
for every batch of instances. The code, instances, and results are available
on GitHub [19].

Because of the large number of clique constraints in the RE-MILO for-
mulation (i.e., a sparse variant of the E-MILO model (3) proposed by Wang
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and Hijazi [12]) for large-scale instances, it is not practical to add all of them
upfront. Thus, we initially relax the clique constraints in the RE-MILO
formulation to avoid memory shortage. After solving the relaxed formula-
tion to optimality, we iteratively add the most violated constraints using the
dual Simplex method and solve the problem. We stop whenever there is not
enough free memory. For small instances with n  100, all the clique con-
straints are added upfront. We note that the solving process of all instances
with n > 100 reaches the time limit.

Figure 1 provides a summary of our results with instances on the hori-
zontal axis and the geometric mean of the scaled relaxed objective value on
the vertical axis. For k 2 {3, 4}, we solve the following models.

(i) The BQO formulation (1);

(ii) the continuous relaxation of the BQO formulation (1);

(iii) the continuous relaxation of the V-MILO formulation (2);

(iv) the continuous relaxation of the RE-MILO formulation;

(v) the continuous relaxation of the MISDO formulation (4).

Figure 1 shows the superiority of the BQO formulation and its relaxed
variant over both V-MILO and RE-MILO formulations when k 2 {3, 4}. This
observation matches the results of Theorems 2 and 3. We also observe that
the upper bound obtained by solving the BQO formulation (1) outperforms
its continuous relaxation for most sets of instances while they both have the
same optimal objective value by Theorem 1.

Figure 1 illustrates the inferiority of the relaxation of the V-MILO formu-
lation (2) over all other formulations for all sets of instances when k 2 {3, 4}.
This behavior is justifiable by Remark 2. We also observe that the relaxed
MISDO formulation (4) provides a tight convex relaxation. For sparse in-
stances, it performs similarly to the relaxed RE-MILO formulation. MOSEK
employs the interior point method (IPM) to solve the semidefinite optimiza-
tion formulations [20]. For a given instance with n vertices, the IPM requires
the solution of a linear system in RO(n2

)⇥O(n2
) at every iteration. These

extremely large linear systems exhaust all the memory as the algorithm con-
verges to an optimal solution, and their condition numbers grow [23]. Re-
gardless of the decent performance of the MISDO formulation (4) on small
and medium-sized instances, it is not practical for solving instances with
more than 200 vertices.
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Figure 1: The geometric mean of the scaled upper bound obtained by di↵erent methods in an hour time

limit (n represents the number of vertices, and d denotes the graph density in percentage).

5. Conclusion

Motivated by the importance of continuous relaxation in the solution pro-
cess of the mixed integer optimization formulations of NP-hard problems,
we compared the continuous relaxations of four well-known formulations of
a fundamental combinatorial optimization problem, that is the max k-cut
problem. We proved that the continuous relaxation of a binary quadratic
optimization formulation is tighter than other existing formulations; specifi-
cally, vertex-based and edge-based mixed integer linear optimization formu-
lations. Interestingly, we observed that our numerical experiments support
most of the theoretical ones. As a future work, one might be interested
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in comparing the nonlinear optimization formulations of other combinato-
rial optimization problems with convex counterparts. While many believe
that convex formulations may outperform in practice, our results show that
this might not be true any more thanks to recent advances in non-convex
optimization solvers.
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