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Abstract

In this paper, we introduce a multiobjective genetic algorithm (MOGA) for generating political

redistricting plans. Unlike all existing MOGAs for redistricting, and most other heuristic algorithms

for redistricting, our MOGA produces plans that maximize similarity to an existing plan. Our focus on

similarity with a given plan addresses the real-life phenomenon that new redistricting plans are typically

created with the previous plan in mind. As part of our algorithm, in order to promote plans that resemble

some given original plan, we utilize a new initialization method for setting the initial population of the

MOGA. In addition to similarity with the given plan, our algorithm considers the classic objectives of

population deviation and compactness, and returns a set of redistricting plans that are nondominated

in these three objectives. Our numerical experiments demonstrate the effectiveness of our MOGA in

generating redistricting plans that balance the objectives of similarity, compactness, and population

deviation.

keywords: redistricting, elections, democracy, similarity, voting

1 Introduction

In this paper, we describe a new multiobjective heuristic algorithm for the political districting problem.

The political districting problem is the process of grouping individual voters into electoral districts. In

the United States, each congressional district elects a single representative to advocate for its interests in

Congress. Specifically, we focus on the redistricting problem, in which voters are regrouped into electoral

districts from some pre–existing grouping. In the US, this process occurs every ten years, following the US

Census, in between which the population of districts can change. While the political redistricting problem
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is relevant to elections in many nations, and can occur at either the national or local level, we will primarily

apply our method to redistricting for the United States House of Representatives. The terms “districting”

and “redistricting” are often used interchangeably, in our paper and in the literature as a whole.

Redistricting plans are evaluated by several criteria. First, a plan is expected to have low population

deviation among its districts, meaning each district in the plan has roughly the same number of inhabitants

as other districts. Also, the districts of a plan must be geographically contiguous—that is, given two points

in a district, there must exist a path between these two points that is contained within the district. Plans

can also have other desirable properties, including “compactness,” which is a measure of the shape of a

district, and how close its voters are to one another. To these three criteria, we introduce a fourth, namely,

similarity.

Thus, the heuristic method that we present in this paper returns sets of feasible redistricting plans that are

contiguous, and which balance three objectives: minimizing population deviation, maximizing compactness,

and maximizing similarity with some base plan P0. While similarity is not a legal constraint in the same

manner as population deviation or contiguity, and is not as emphasized in the relevant literature as criteria

such as compactness, it is apparent that in practice, new redistricting plans are typically based on the

previous plan. As a result, just as redistricting plans with high population deviations or low compactness

scores are unlikely to be adopted by state legislatures, proposed plans that are highly dissimilar from the

previously used plan may be unlikely to receive consideration. Both voters and politicians prefer districts

that do not change much from one plan to the next, as we discuss in Section 2.3, and demonstrate empirically

in Section 2.4.

We use the Precinct Pairs Change similarity measure from Becker and Gold [7] to evaluate the similarity

between two redistricting plans, and we maximize the value of this measure in our heuristic. As a result, our

heuristic produces plans with districts that are contiguous, compact, roughly equally populous, and resemble

a given base plan. Our new multiobjective genetic algorithm is the first multi-objective genetic algorithm

(MOGA) to produce plans which address similarity with some base plan P0. Our MOGA utilizes a new

method for initializing the population of the genetic algorithm. Our initialization method creates a set of

plans based on the base plan P0, using it as a starting point, then applies sets of randomized perturbations

that maintain contiguity and decrease the population deviation of the plan.

This paper is organized as follows. Section 2 explains the political process behind redistricting and

the requirements for feasible plans. This section will also motivate and explain our similarity measure for

comparing two given redistricting plans. For each state, plans from the previous redistricting cycle will be

compared with plans from the current redistricting cycle, in order to demonstrate the typically high level

of similarity between the two. The results strongly suggest that similarity with the previous plan is an

expected feature of redistricting plans in the United States. Section 3 describes previous work in algorithms

2



for generating redistricting plans. In Section 4 we describe our new multiobjective heuristic method for

generating redistricting plans. In Section 5, we present the results of several experiments which demonstrate

the effectiveness of our method. Finally, Section 6 offers concluding remarks.

2 The political redistricting problem

2.1 Introduction

Redistricting is a crucial part of national and state politics in the US, as it can impact which political party

has a majority in government. First, at the national level, the US House of Representatives and the US

Senate control many of the functions of the US government. While US Senators win their seats in statewide

elections, and therefore do not require districting plans, US House representatives earn their jobs by winning

elections in their respective districts within each state. Following each Congressional election, which occur

in even-numbered years, the majority party in the House of Representatives similarly controls which bills

are passed to the US Senate. Thus, the majority party in the House of Representatives is positioned to

enact its agenda, from crucial budgetary proposals to impeachment votes. The majority party in both

chambers (House and Senate) also controls committee assignments and which legislators will be the leaders

of those committees. Since the outcome of US House of Representative elections is impacted by redistricting,

redistricting itself plays a role in the actions taken by US Congress. US states also have their own legislatures,

most of which feature an upper house analogous to the US Senate, and a lower house analogous to the US

House of Representatives.

Redistricting is done every ten years in the United States following the US Census. Most state legislatures

create their state’s redistricting plans—one plan for its lower house, one for its upper house, and one for its

US Congressional districts.1 In theory, the goal of redistricting is to create a set of contiguous, similarly

populated districts that preserve communities and satisfy conditions such as the Voting Rights Act of 1965,

i.e., they must be drawn in a way that does not disadvantage people of any particular race [6]. Each

state has its own procedure for determining its redistricting plans. For example, as of 2020, Michigan used

an independent commission consisting of Democrats, Republicans, and non-partisan commissioners who

combined data from previous elections and community input to draw a new plan [2]. In most other states,

however, there is no such independent commission, and the majority party in the state legislature controls the

redistricting process—they can propose the state’s redistricting plans with little outside input or influence.

During the redistricting process, plans approved by state legislatures are subject to review. For example,

in many states, they are subject to veto by the state’s governor, although a state legislature with a large

1States with only three electoral votes, and therefore only a single congressional district, do not need to create a redistricting
plan for US Congress. Nebraska, which has three US Congressional districts, is the lone state with a unicameral (one house)
state legislature, and thus requires only two redistricting plans.
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majority can override the governor’s veto, as occurred in Kentucky in 2021 [29]. The approved redistricting

plan can also be brought to the Supreme Court of that particular state for review. In the 2018 court case

League of Women Voters of Pennsylvania v. Commonwealth of Pennsylvania, the Pennsylvania Supreme

Court ruled that the 2012–2021 redistricting plan approved by the Pennsylvania General Assembly (lower

house) violated the Free and Equal Elections Clause of the Pennsylvania Constitution due to the plan unfairly

benefiting a political party. The Pennsylvania Supreme Court removed the plan that had been in place for

several years, and replaced it with a plan featuring much more compact districts and fewer counties split

between districts [1].

The geographic units grouped into districts by states during redistricting are called “voting precincts,”

and can be formed using any geographical criteria. These voting precincts do not need to be based on US

Census data, such as census tracts or census blocks (which are smaller than census tracts). While most states

do not define rules for the size and shape of units used for redistricting, Iowa and West Virginia require that

counties are not split in their US House redistricting plan [10]. Therefore, for these two states, redistricting

is done at the county level, with each county being assigned to a Congressional district.

Since voting precinct data is not readily available to researchers, algorithms are typically tested using

census tracts (e.g., Validi et al. [42], Vanneschi et al. [43], Lara-Caballero et al. [21]) or using census blocks.

When solving the redistricting problem using an optimization model, especially as a mixed integer problem,

the type of geographic unit considered affects the performance of the algorithm. When smaller units are

used (for example, census blocks instead of census tracts), then a lower minimum population deviation is

typically possible, due to an increase in the number of feasible plans. However, using smaller units typically

increases solver time, especially for MIPs, where more units implies more decision variables and constraints

in the resulting model.

The politicians in charge of the redistricting process in each state are faced with a multiobjective opti-

mization problem, balancing population deviation, district compactness, similarity with the previous decade’s

plan, number of splits of counties or municipalities, number of majority-minority districts, as well as several

measures of partisan fairness. Therefore, the politicians and their political parties have used various forms

of (exact or approximate) optimization when creating plans. For instance, many state legislatures have used

mapping software such as Maptitude [24] to create redistricting plans and evaluate their population devi-

ation, compactness, and partisan fairness metrics. This software has a feature that automatically creates

compact and contiguous districts that satisfy a given population deviation constraint. Similarly, in 2021,

the Montana State Legislature encouraged citizens to submit plans via Dave’s Redistricting App, which also

reports metrics associated with the submitted plans [4]. Other states have used basic redistricting software

to automatically generate new plans that optimize statistical criteria [25]. However, McDonald and Altman

[25] note that state legislatures are often reluctant to fully hand over the redistricting process to any soft-
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ware or algorithm, since software may not be able to identify and preserve communities of interest and other

political expectations that may exist. Therefore, legislators may prefer an automated redistricting algorithm

that considers a previous plan, with all of its communities of interest and unique features, and aims to create

a desirable plan from this existing plan while changing the plan as little as possible. This is the distinctive

feature of the multiobjective genetic algorithm we present in Section 4, which maximizes similarity with

some previous plan while minimizing population deviation and maximizing compactness.

2.2 Redistricting plan criteria

Several numerical criteria are considered when state legislatures evaluate a redistricting plan. In the US

Supreme Court case Wesberry v. Sanders (1964), the Court ruled that “as nearly as practicable, one man’s

vote in a congressional election is to be worth as much as another’s” [44]. Since then, state legislatures have

paid close attention to the population deviation of their plans. Specifically, they are interested in plans with

low population deviation— that is, plans with districts having roughly equal population. We will use the

following numerical definition of population deviation (PD):

PD =
K∑

k=1

|popk − µ|, (1)

where K is the number of districts, popk is the population of district k in the plan, and µ is the target

population for each district (the population of the state divided byK). Several US states define the maximum

population deviation level allowed for their redistricting plans [42]. For example, in Iowa, the population

deviation of its US congressional redistricting plan must be less than 1% of the target populations [10]. In

practice, this implies that the population deviation of a feasible Iowa plan must be less than or equal to about

6000. Many other states have constitutional requirements for maximum population deviation; for example,

Colorado’s state constitution imposes a constraint on the difference between the most populous district

and least populous district in its state senatorial and state representative districts [37]. Also, in practice,

many redistricting plans, including Pennsylvania’s US congressional redistricting plan, feature districts whose

populations differ from the target population by at most one voter.2 In [21], mean deviation (MD) is used:

MD =

K∑

k=1

|popk − µ|
Kµ

. (2)

This metric gives the average relative deviation from the target population µ across all K districts for a

given plan. The multiobjective heuristic for redistricting that we present in Section 4 considers population

2If µ is the target population, then each district has population µ−1, µ, or µ+1. This level of equality is difficult to achieve
when redistricting is done at the census tract level, which is the level considered by our algorithm, but is easier to achieve when
using smaller voting precincts, as is commonly done is practice.
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deviation, as defined by (1). However, for three problem instances with a large number of districts, we

evaluate plans using the mean deviation measure defined by (2).

Another recognized measure for redistricting plans is the geometric compactness of its districts. One

popular method of measuring compactness in an optimization setting is unit dispersion, which calculates

the sum of the distances of each unit in a district from its geographical center [33]. A number of geometric

compactness measures have also been proposed. One measure is the Reock compactness score, first presented

by Reock [32]. This simple measure takes the ratio of the area of the district to the area of the smallest circle

that contains the district. A rating close to 1 indicates a higher level of compactness. A different measure

that has been used by redistricting commissions such as the Arizona Independent Redistricting Commision

is the Polsby-Popper score [31, 28]. This measure of compactness for a district D, which also takes a value

between 0 and 1, is calculated as follows:

PP (D) =
4πA(D)

P (D)2
, (3)

where A(D) is the area of district D and P (D) is its perimeter. As with the Reock compactness score, a lower

value is indicative of a less compact district. A redistricting plan with consistently low Reock compactness

scores and Polsby-Popper scores may be indicative of partisan manipulation. The multiobjective heuristic

for redistricting that we present in Section 4 considers the Polsby-Popper score for compactness, as defined

by (3).

Other redistricting criteria exist for determining a given plan’s feasibility. For example, recently, emphasis

has been placed on minimizing the number of counties that are split between multiple districts. Iowa and

West Virginia are two states which forbid the splitting of counties in their US congressional redistricting

plans. In other states, the unnecessary splitting of counties has been used by courts as a basis for ruling

that a plan is illegal. An example of this in the 2018 cycle occurred in Ohio [5]. In addition, Section 2 of

the US Voting Rights Act ensures that redistricting plans must be drawn in a way that does not unfairly

impact voters of any particular race. The landmark US Supreme Court case Shaw v. Reno (1993) also ruled

that gerrymandering on the basis on race is prohibited by the Voting Rights Act [40]. There exist other

measures, including measures for evaluating partisan fairness like the efficiency gap [34], partisan symmetry

[35], and competitiveness of districts in the plan, such as those presented in [35].

2.3 Similarity between redistricting plans

In practice, another factor considered in selecting a new redistricting plan is whether the new plan resembles

the previous decade’s enacted plan. In this paper, we say that two plans are “similar” if few voters change

districts from the first plan to the next (we will introduce a more formal definition of similarity below).
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(a) Mississippi base plan P0 with
population deviation 357145

(b) Mississippi solution plan with
population deviation 3988

Figure 1: Mississippi map comparison: Similarity Score = 0.858

The two plans shown in Figure 1 demonstrate the concept of similarity. While our definition of similarity

is based on voters and not geography, in this case, the similar district boundaries between the two plans

demonstrate the similarity in each district’s electorate before and after redistricting. On the other hand, the

redistricting plan shown in Figure 13 of Section 8 shows two plans that are less similar to each another. Note

that our definition of similarity accounts only for similarity of population, and not necessarily similarity in

geographical regions covered by the districts of each plan.

In decennial redistricting, there is a strong political motivation for maximizing similarity between the

previous decade’s plan and the next decade’s plan. It may be confusing for voters if many of them change

districts between plans [45]. At the time of redistricting, the voters of each state have elected their current

representatives in the previous election; therefore, many voters may prefer to remain in their current district

so that they are represented by the same congressperson. McKee et al. [26] provide statistical evidence of how

the representative–constituent relationship is adversely impacted by redistricting plans that are dissimilar to

the plan of the previous decade. Their analysis suggests that redrawn voters (voters whose district changed

from one decade to the next) are less likely to know the name, gender, and race of their representative. They

are also less likely to approve of their representative, and more likely to believe that redistricting in their

state was conducted in unfair manner. The authors conclude by claiming that the much of the literature

of political redistricting has been focused on the difficult-to-quantify ideas of “partisan fairness,” at the

cost of considering the politically significant and more straightforward notion of preserving representative–

constituent relationships during redistricting.
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It is also worth noting that similarity has been explicitly mentioned in court rulings as a desirable attribute

of redistricting plans, especially when Democratic and Republican legislators are unable to compromise on a

plan [7]. For example, in the ruling of Colleton County Council v. McConnell (2001), the US District Court

in charge of drawing the South Carolina State House plan said that they had been “seeking to preserve the

core [of the district of the previous plan] of each existing district where possible ... adding or subtracting

population surrounding the core in a compact and contiguous manner” [36].

Incumbent legislators at the time of redistricting also have a motivation to preserve the districts of the

original plan. If a given congressperson’s district is very different under the new plan, then they will have

to represent a very different group of voters than they are accustomed to representing. This could force

them to change their campaign strategy for re-election or to reevaluate their policy priorities [45]. One of

the foundational papers in redistricting heuristics, Nagel [30], stated that practical experience suggests that

when incumbent legislators evaluate new plans, they are concerned with how changes will impact their own

districts. In a review of contemporary literature on political redistricting, Williams [45] commented that “a

new political redistricting plan that resembles the old plan may be more socially and politically acceptable

than a totally reworked scheme.”

Several measures have been proposed for measuring similarity between two redistricting plans. Abrishami

et al. [3] present a similarity measure for comparing two graph partitions, and uses political redistricting as

the primary setting for demonstrating the measure. Bozkaya et al. [8] present a multiobjective tabu-search

heurstic for generating redistricting plans, and include similarity with some original plan as an objective.

It uses a similarity measure based measuring the overlap of districts between the two plans. Recently,

Becker and Gold [7] presented over a dozen new similarity measures for comparing the populations of two

redistricting plans. One measure of similarity presented in the paper is called the Precinct Pairs Change

measure. This measure tracks the share of all people who previously shared a district, but under the new

plan are in different districts. For instance, suppose that prior to redistricting, District 1 is composed of

10000 inhabitants. Then, there are
(
10000

2

)
pairs of voters in the original District 1 who will either remain

in the same district or will be broken into separate districts in redistricting. For our analysis, will use the

Precinct Pairs Change measure with the slight modification that the share of all people who share the same

district will be measured. The similarity for an individual district in Plan X under a new Plan Y , as well

as the similarity between two full plans X and Y , can described mathematically as follows:

∆(d, Y ) =

∑
k∈DY

(
y(d,k)

2

)
(
x(d)
2

) (4)

∆(X,Y ) =
1

DX

∑

d∈DX

∑
k∈DY

(
y(d,k)

2

)
(
x(d)
2

) , (5)

8



where the notation is as follows:

• ∆(d, Y ): Precinct Pairs Change score for district d in Plan X under Plan Y

• ∆(X,Y ): Precinct Pairs Change score for Plans X and Y (the average proportion of neighbor pairs

maintained under new plan Y across all districts in the original plan X)

• DX is the set of districts in plan X

• DX is the number of districts in plan X

• x(d) is the population of district d

• y(d, k) is the number of voters from district d ∈ DX that are in district k ∈ DY in plan Y .

Suppose that after redistricting, 6000 of the 10000 voters in our example district remain in District 1, but

3000 are moved to District 2, and 1000 are moved to District 3. Then,
(
6000
2

)
+

(
3000
2

)
+

(
1000
2

)
pairs of the

original
(
10000

2

)
pairs are preserved in the new plan. This district would have a Precinct Pairs Change score

of (
6000
2

)
+
(
3000
2

)
+
(
1000
2

)
(
10000

2

) = 0.459̄.

If a district’s population is P in Plan X and there are K districts in both Plan X and Plan Y , then the

lowest Precinct Pairs Change score possible for an individual district is 1/K, which is attained when the P

members of the district in Plan X are placed evenly among the K districts of Plan Y .

Note that ∆(X,Y ) ≈ 1 implies a high degree of similarity between the two plans, while ∆(X,Y ) ≈ 0

implies low similarity. This paper will occasionally discuss the individual district Precinct Pairs Change

value (4), but we are primarily interested in the full-plan Precinct Pairs Change value (5). Note also that

the Precinct Pairs Change measure can be calculated for a single district d ∈ DX by fixing d and removing

the summation, as well the 1/DX constant. Lastly, note that if a district’s population decreases from plan

X to plan Y , than it cannot achieve a “perfect” score of 1.0, since it is forced to move some of its population

to other districts. On the other hand, if a district gains in population from plan X to plan Y , it can achieve

a score of 1.0 despite adding people it did not contain previously, so long as it contains all of the same people

as in the previous plan.

The multiobjective heuristic for redistricting that we present in Section 4 considers similarity as a measure,

using our modification of the Precinct Pairs Change measure (5). For the remainder of the paper, we will

refer to the Precinct Pairs Change measure as “the similarity score.”
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2.4 Analyzing similarity in 2022–2031 United States redistricting

Though the philosophical importance of considering similarity across plans is clear, we also motivate its

importance by analyzing the degree to which actual districting plans resemble the previous plan. Although

similarity is not often discussed as an explicit requirement when evaluating plans, it is clear from examining

states’ currently enacted plans that similarity to the previously-used plan is a desirable attribute. In this

section, for each state with available data, we compare the redistricting plan of the previous decade (the plan

used from 2012–2021) to the most recently adopted plan (in effect from 2022–2031). This data is reported

in Table 4. In the the second column, the number of districts in each state are given. In the third column,

the population deviation of each previous plan using the 2020 Census population is recorded, rounded to the

nearest integer value. In many cases, districts of the previous plan will be overpopulated or underpopulated,

creating the need for redistricting. In addition, the similarity scores (5) are calculated between the previous

and new plans. That is, in the fourth column, the average individual district similarity score is reported. The

most-preserved district (maximum individual district similarity score) and least-preserved district (minimum

individual district similarity score) are reported in the fifth and sixth columns. The results in Table 1 compare

US House maps between decades. Similar results for State Senates and State Houses/Assemblies are given

in the Appendix (Section 10). The numerical results here are calculated from DRA [14], which stores data

from previous and currents plans, including how districts from the previous plan overlap with districts from

the current plan. Certain states do not have data for this comparison. Examples include states with only

one US congressional district during the 2012–2021 redistricting cycle, and states such as New Jersey and

Arizona, which use the same districts for their State House and State Senate. Results from Vermont are not

considered at any of the three levels, since the relevant data are not included in DRA [14].

These results show that for most US states, there is a high degree of similarity between the previous

plan and the newly enacted plan, at all three levels of redistricting. In many instances, some districts of the

previous plan receive individual similarity scores of 1.000. Table 2 reports average, maximum, and minimum

values of similarity statistics across the 43 US states requiring redistricting in the previous decade. In 34

of these 43 states, there is a district in the original plan with similarity score over 0.90 under the newer

plan. Similarly, 28 original plans feature a district with similarity score over 0.95 in the new plan, and 20

original plans feature a district with similarity score over 0.99 in the new plan. In Figure 2, we can see a high

degree of similarity between Connecticut’s previous and current US House districting plans. For instance,

Connecticut’s 2nd congressional district, encompassing the western portion of the state, is almost unchanged.

The previous territory is preserved, and the new boundary only expands the previous boundary. Similarly,

consider the plans in Figure 3. The district boundaries are highly similar between the previous and current

US House districting plans. For instance, Kentucky’s 3rd Congressional district has an individual similarity

score in the previous plan with under the new plan of 0.977.
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State K (2012–2021) Deviation Sim Score High Ind. Sim. Low Ind. Sim.
Alabama 7 184236 0.891 0.977 0.780
Arkansas 4 205534 0.862 0.927 0.734
Arizona 9 277638 0.578 0.751 0.356
California 53 1407899 0.600 1.000 0.278
Colorado 7 168593 0.615 0.830 0.391
Connecticut 5 61244 0.962 1.000 0.934
Florida 27 993372 0.598 0.964 0.272
Georgia 14 418169 0.682 0.968 0.360
Hawai’i 2 4370 0.996 1.000 0.991
Idaho 2 70621 0.964 1.000 0.929
Illinois 18 418978 0.480 0.755 0.183
Indiana 9 225448 0.736 1.000 0.381
Iowa 4 122731 0.739 0.785 0.671
Kansas 4 115642 0.774 1.000 0.584
Kentucky 6 178780 0.859 0.992 0.712
Louisiana 6 171849 0.932 1.000 0.879
Maine 2 46046 0.926 0.954 0.897
Maryland 8 189353 0.504 0.778 0.206
Michigan 14 328890 0.521 0.912 0.325
Massachusetts 9 189353 0.504 0.778 0.256
Minnesota 8 199638 0.863 0.964 0.781
Mississippi 4 131741 0.924 0.998 0.836
Missouri 8 209729 0.698 0.939 0.387
Nebraska 3 106312 0.871 1.000 0.792
Nevada 4 178000 0.657 1.000 0.419
New Hampshire 2 17906 0.987 1.000 0.975
New Jersey 14 296306 0.692 0.960 0.448
New Mexico 3 22550 0.624 0.667 0.571
New York 27 659139 0.598 1.000 0.269
North Carolina 13 645614 0.509 0.915 0.279
Ohio 16 279558 0.702 0.940 0.371
Oklahoma 5 152829 0.793 0.998 0.603
Oregon 6 47742 0.577 0.653 0.405
Pennsylvania 18 446919 0.826 1.000 0.377
Rhode Island 2 11200 0.982 0.993 0.971
South Carolina 6 240200 0.866 0.961 0.716
Tennessee 9 398133 0.710 1.000 0.351
Texas 36 1981204 0.531 0.946 0.149
Utah 4 130537 0.752 0.835 0.624
Virginia 11 426306 0.573 0.829 0.294
Washington 10 164174 0.795 1.000 0.456
West Virginia 3 54639 0.825 1.000 0.500
Wisconsin 8 135849 0.901 1.000 0.318

Table 1: Map comparison statistics: US House, 2012–2021 to 2022–2031
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Mean Max Min
Full-Plan Similarity Score 0.752 0.995 0.480

Max. Individual District Similarity Score 0.933 1.000 0.653

Table 2: Summary of similarity scores between 2012–2021 plans and 2022–2031 plans (for the 43 US States
requiring redistricting in the 2012–2021 redistricting cycle)

(a) Connecticut 2012–2021 [38]

(b) Connecticut 2022–2031 [38]

Figure 2: Connecticut US House Plan Comparison
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(a) Kentucky 2012–2021 [39]

(b) Kentucky 2022–2031 [39]

Figure 3: Kentucky US House Plan Comparison
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Since, in many instances, new redistricting plans are created from the previous plan, it is crucial that

algorithms for producing redistricting plans consider the notion of similarity with some base plan P0. As we

will demonstrate in Section 5, if similarity is not explicitly considered, it is unlikely that the plans produced

will be similar to some arbitrary base plan. Therefore, it is evident that algorithms for generating redistricting

plans should aim to produce plans that, in addition to meeting other criteria, are based on the previously

used districting plan. Motivated by these results, our multiobjective genetic algorithm, described in detail in

Section 4, generates plans that, while maximizing the typically-considered measures, also maximize similarity

to a previously created plan.

3 Related work

3.1 MIP approaches

Given the societal importance of redistricting, many researchers have proposed methods for generating

redistricting plans which perform well in terms of population deviation and compactness. Specifically, some

have formulated the redistricting problem as a mixed integer program (MIP). In 1965, Hess et al. [19]

proposed an integer programming formulation that separated geographic units into districts of roughly equal

population, constrained to some level of tolerance. In the objective function, the sum of the distances from

each unit to the “center” of its assigned district is minimized. This objective promotes compact solutions,

but there are no constraints enforcing contiguity. As a result, solutions to the Hess model would have to be

manually edited to produce contiguous redistricting plans. Later, researchers would produce MIPs which

enforced contiguity through their constraints. For example, Shirabe [33] presented several new models,

each with network flow-based contiguity constraints. Given the adjacency graph of the units, treating the

units as nodes and their adjacencies as arcs, their definition of contiguity ensured that the subgraph on the

units/nodes in each district is connected. While this model accomplished its goal of enforcing contiguity, it

failed to solve large instances of the redistricting problem (instances with adjacency graphs having thousands

of nodes/arcs), since the set of constraints grows exponentially as the number of nodes and arcs increase.

Other MIP models with and without contiguity constraints have been proposed, including those of Caro

et al. [9], who studied redistricting of school districts, and Gentry and Chow [15], who proposed a MIP

formulation for the problem of determining optimal organ donation allocation.

Enforcing contiguity was long thought to be the “bottleneck” preventing large instances of the political

redistricting problem from being solved to optimality by a MIP. However, recently, Validi et al. [42] showed

that contiguity can more easily be enforced by using cut generation, and that solving the LP root relaxations

is what prevents many large instances of the problem from being solved. Their paper uses the concept of

a-b separators to generate cuts which remove discontiguous solutions from the set of feasible regions defined
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by the Hess model. Their results are the best to date among MIP approaches, in that they solve census

tract-level instances of the redistricting problem for states that had not been previously been solved. For

example, using their cut generation method, they solved the census-level Indiana instance (1,511 census

tracts, over 2 million binary decision variables) of the problem to optimality [42].

3.2 Heuristics

Despite this recent progress, for many practical instances, the redistricting problem cannot be solved to

optimality using any current MIP formulation. For example, California has over 8,000 census tracts [41],

meaning that the formulation presented by Validi et al. [42] would require over 64 million binary decision

variables. As a result of the challenges associated with using MIPs for the political redistricting problem,

many researchers have developed heuristic methods for generating valid plans. Heuristics have been developed

for the problem for as long as MIP approaches have been proposed. Nagel [30] proposed a heuristic based

on swapping units on the borders between districts to minimize population deviation. When discussing

practical implementation, the author proposes using the previous decade’s redistricting plan as the starting

point, which is altered until the resulting plan’s population deviation falls within a predefined tolerance.

While the paper only presents results for small instances, many heuristics have drawn inspiration from this

approach. Other, more recent papers, including those by Kaiser [20] and Hayes [18], also used “swapping”

approaches, but only report solutions with impractically high population deviations. Our method, presented

in Section 4, uses a swapping procedure to reduce population deviation in plans.

Bozkaya et al. [8] presents a tabu search heuristic for generating redistricting plans from some original

plan. Several objectives, such as compactness, population deviation, and similarity, were considered. This

is one of the few existing approaches to consider similarity as an objective. To measure the similarity of a

new plan with the original plan, the largest overlap between each district in the new plan with some district

in the original plan is recorded. Results for a small example are reported, but this approach is unlikely

to scale to larger problems. Previously, Mehrotra et al. [27] introduced a column generation algorithm for

producing near-optimal plans. Preprocessing and a customized branching rule for solving the problem are

presented. Their proposed algorithm is tested on the county-level South Carolina instance, a relatively

small problem. In 2011, Gurnee and Shmoys [17] proposed a column generation heuristic that is based on

finding feasible districts within subdivisions of a given state. Unlike an exact column generation approach,

which is subject to difficulties like degeneracy in the master problem, their approach focuses on generating

quality columns/districts. Their results produced large ensembles of districting plans for large instances

of the redistricting problems. The authors use this large set of produced plans to show how statistics like

expected partisan control of a state’s districts vary between states. Ensemble approaches such as this and

in Deford et al. [13] generate large sets of plans for comparison against existing plans in order to provide

15



evidence of fairness or of partisan manipulation. In Validi et al. [42], in addition to the proposed MIP model

and associated cut generation technique, the authors also proposed a local search heuristic for generating

near-optimal redistricting plans at the census tract-level from an initial plan.

3.3 Multiobjective genetic algorithms

A genetic algorithm (GA) is a type of evolutionary algorithm that mimics the process of natural evolution

on a set of solutions, maximizing or minimizing some objective function. This metaheuristic features several

biologically-inspired operations that are performed on the set of candidate solutions, known as the population.

These operations include selection, in which members of the population are chosen based on their “fitness”

to participate in the next operation, crossover. In crossover, two candidate solutions are combined to form

two new candidate solutions. Then, in mutation, candidate solutions are altered in a process analogous to

biological mutation.

In a multiobjective genetic algorithm, the selection step requires defining a rule for comparing candidate

solutions with more than one objective. Deb et al. [11] propose a nondominated sorting procedure for ranking

the fitness of candidates with two or more objectives, based on building nondominated fronts and evaluating

of the position of candidates within these fronts. The candidate solutions to a given problem must be encoded

in way that allows the problem to be solved as a GA; in Section 4, we describe how Vanneschi et al. [43]

encodes the political redistricting problem as a GA.

Xiao [46] proposed a genetic algorithm for “geographic optimization” problems, including political re-

districting. The paper discussed how to incorporate problem specific knowledge into the GA, such as a

pre-existing contiguous plan. Subsequently, Liu et al. [22] introduced a GA with a new mutation operation,

shifting multiple units at a time, and a crossover operation similar to that of Xiao [46]. The authors used

this GA within a parallel computing setting, and consider three objectives: population deviation, compact-

ness, and partisan competitiveness (using voting data from previous elections). They provided results for a

single instance of the political redistricting problem—the North Carolina census tract-level instance (2590

nodes/tracts). The authors compared the performance in this example to several existing heuristics, includ-

ing some mentioned in Section 3.2. Later, Lara-Caballero et al. [21] introduced a new multiobjective genetic

algorithm (MOGA), which, like Liu et al. [22], considers three objectives. However, the three objectives

considered are mean deviation (as in (2)), population range (difference between the population of the most

populous district and the population of the least populous district), and compactness. The GA is encoded

similarly to the previously mentioned methods, and the initial population is determined by choosing K

units, where K is the desired number of districts, to form K initial districts, with the other units unassigned.

Then, unassigned units on the borders of these districts are iteratively assigned to the districts which they

border. Two versions of this MOGA are presented, one using the NSGA-II [11] fitness criteria for selection,
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and one using the SPEA-II fitness criteria. In the new crossover operation this MOGA proposes, a “repair”

method for fixing discontiguous districts was proposed. A modified version of this repair process will be

used in our proposed method. The mutation operation used is similar to that of Vanneschi et al. [43] which

will be described in detail in the next subsection. This MOGA produced compact, contiguous plans with

low population deviation for the three largest census tract-level problem instances (California, Texas, New

York). For the California example, nondominated plans with mean deviation of roughly 0.002 were reported,

equivalent to a population deviation of 67743.2.

Another MOGA approach for generating nondominated sets of politcal redistricting plans is described

by Vanneschi et al. [43]. Our method, described in the next section, uses a similar GA encoding, crossover

operation, and mutation operation as those presented in Vanneschi et al. [43], although we add certain

enhancements, such an improved method for generating the initial GA population. Their MOGA considers

two objectives—population deviation, as defined by (1), and compactness—as well as some features which do

not appear in our proposed method. For instance, in the final stage of each generation of the Vanneschi GA, a

variable neighborhood search (VNS) is performed the plans in the GA population. Incremental improvements

to the plans in the GA population were made by solving local search problems around selected units. In

addition, the Vanneschi MOGA also copies the best plan from the previous generation to the GA population

of the next generation, without crossover or mutation being applied. The authors demonstrated their results

on 5 US states of various sizes, showing that for each considered problem instance, their method produces

compact plans with low population deviation. The largest problem instance the authors considered was the

census tract-level Pennsylvania instance, whose adjacency graph features 3218 nodes (tracts) and 8984 arcs.

Although Lara-Caballero et al. [21] show similar performance on larger instances, the Vanneschi MOGA is

described in detail in this section since our MOGA uses some of the same GA operations, including crossover

and mutation.

4 Proposed method

In this section, we describe our multiobjective genetic algorithm (MOGA) for generating sets of redistricting

plans. Our method uses a new initialization procedure for generating a set of feasible plans for the initial

population of the genetic algorithm, which then uses the crossover and mutation operators proposed by

Vanneschi et al. [43]. The MOGA considers three objectives:

• minimizing population deviation, as measured by (1)

• maximizing compactness, as measured by the minimum Polsby-Popper score (3) across all districts

• maximizing full-plan similarity, as measured by (5)
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At the end of each generation of the GA, our method performs an iterative improvement to population

deviation on each plan, similarly to Nagel [30]. Following the last generation of the genetic algorithm, our

method returns entire set of nondominated plans for consideration.

Our method uses the GA encoding used proposed by Vanneschi et al. [43], which is described as follows.

For an instance of the problem, the number of geographical units (census tracts) in the state in question is

known. Calling this value S, a redistricting plan is encoded as an array s of length S, where the ith entry

takes value ki, where ki is the district to which unit i is assigned. For example, if the third unit within a

state is assigned to district 2 within a candidate solution s, then s(3) = 2.

In the redistricting problem, an adjacency graph G = (N ,A) is used to represent the units in the plan

and their adjacencies. The nodes N of the plan are the geographical units that will be separated into

districts. For our analysis and experiments, N is the set of tracts defined by the 2010 US Census that

compose the given state, and the set of arcs A represents adjacency relationships between the tracts. Using

a definition from graph theory, a contiguous district k is a district whose nodes Nk are such that the induced

subgraph Gk of G on the set of nodes Nk is a single connected component.

4.1 Initialization

The initialization procedure, described by Algorithm 1 in Section 7, produces an initial population to be

used in the first iteration of the genetic algorithm. Given a desired population size N , the procedure begins

by creating N copies of the base plan P0. For each of these copies, several iterations of the main swapping

step are carried out. We define S(k) to be the set of districts that border district k ∈ K, where K is the set

of districts. We also define N(a, b) to be the set of units in district a ∈ K that border district b ∈ K. For

each plan we do the following until an iteration count limit is reached: two districts of the plan are selected

to receive and provide swaps of units on their border. First, we select a district kgain from K according to

a user-defined discrete probability distribution Pgain. Our method will add units to this district. Since it is

desirable to decrease population deviation via the swaps in this step, the discrete probability distribution

Pgain should be chosen so that less populous districts have a higher probability of being selected. Given the

selection of kgain, we construct the set S(kgain) of districts which border kgain. Then, our method randomly

selects a second district klose from S(kgain) according to another user-defined discrete probability distribution

Plose. In order to encourage a decrease in population deviation, Plose should be chosen so that more populous

districts in S(kgain) have higher probability of selection. Once kgain and klose have been chosen, we identify

set of units N(klose, kgain) in klose which border kgain. We transfer the set N(klose, kgain) from klose to kgain,

regardless of whether this transfer produces a discontiguous district.

In the final step of each iteration of the initialization procedure, we use a simple procedure to identify

and repair any discontiguities within the current plan caused by the transfer of units in N(klose, kgain).
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The repairing is done as in [21]. First, we examine each district k ∈ K, where K is the set of districts,

to determine whether it is contiguous (by counting the components of its induced subgraph Gk). Once a

district k is identified as discontiguous, the smallest connected component of Gk is identfied. The set Sk

of units within this smallest component that border some district other than k in the full graph G is also

defined. Then, we transfer each unit in Sk to the district (other than k) which it borders. If the unit does not

border some district other than k, we randomly choose another unit and transfer it to a neighboring district.

Our method identifies these sets Sk and transfers them to other districts until every unit in the component

has been reassigned. We repeat this transfer process for the smallest remaining connected component of Gk

until only one connected component remains. Once only one connected component remains, the district k

is contiguous. The swapping and repair process is illustrated in Figure 4.

Because this procedure uses the initial plan P0 as its starting point, the procedure produces an initial

population of plans that are more similar to P0 than would be obtained using the randomized method

presented in Vanneschi et al. [43]. The selection and crossover steps of the genetic algorithm, described

in the next subsection, also promote similarity within in the population of plans. A comparison between

similarity scores of nondominated plans generating using our MOGA and the Vanneschi et al. [43] MOGA

is presented in Section 5.

Our experimentation shows that temporarily allowing for discontiguities improved the performance of the

initialization method. Our first implementation, which we later rejected, offered units from klose to kgain one

at a time, and only completed the transfer if it maintained contiguity of each district in the plan. Using this

approach sometimes restricts the set of possible swaps. For example, consider the units labeled A and B in

Figure 4. Figure 4b shows that if unit B is to be transferred to the Blue district, then unit A is disconnected

from the Purple district. If temporary discontiguities are not allowed, then unit B could not be transferred.

Enclave units like this are common in certain US states, often arising as municipal entities called boroughs

within townships. Other enclave units are present near the border of the Blue and Purple districts—when

this is the case, the set of non-transferable units form a barrier between the two districts. Therefore, for

units to be transferred between these two districts, the swaps are required to squeeze through gaps between

non-transferable units, sometimes resulting in long, snake-like chains of units in the resulting districts. These

chains negatively impact a district’s compactness score under most compactness measures (including (3)), as

they increase the ratio of the district’s perimeter to its area, and increase the distance of its units from each

other. Figure 5 demonstrates the difference in performance when allowing and disallowing for temporary

discontiguities—without them, compactness seems to suffer, with long tendrils of units forming in some

districts. The performance gap is larger in states with more enclave units. For instance, in the Pennsylvania

example shown, allowing for temporary contiguities is more beneficial, as doing so avoids the pitfall of non-

transferable districts and the resulting tendrils. However, in the Georgia example (Section 5, Figure 12),
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(a) Original unit assignment, with Blue district chosen
as kgain, Purple district chosen as klose

(b) Set of Blue/Purple Districts border units in the Pur-
ple district identified (in green).

(c) Units inN(klose, kgain) transferred from klose (Purple
district) to kgain (Blue district) (d) Discontiguity repaired - assigned to Blue district

Figure 4: Transfer/Repair during Initialization
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(a) Base Indiana Plan P0

(b) Generated initial GA population plan - Without tem-
porary discontiguities/repair

(c) Generated initial GA population plan - With tempo-
rary discontiguities/repair

Figure 5: Initial Plan Generation

there are far fewer enclave units, the performance of the two initialization methods was observed to be more

similar.

When choosing the probability distributions Pgain and Plose, there is a tradeoff between initializing low-

deviation plans and creating a diverse initial population. If Pgain places weight evenly on each district for

receiving unit transfers, then the resulting plans are less likely to resemble one other, at the cost of less

reduction to population deviation. However, if higher weights are given to the less populous districts than

to highly populous districts, then the resulting plans will have lower population deviations, though the plans

will make more unit transfers, and therefore each plan is likely to resemble other plans within the initial GA

population. We set Pgain to have more weight on underpopulated districts, but give positive weight to every
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district. We discuss these details in Section 5.

4.2 Parent selection, crossover, mutation, and selection of next generation

Following the initialization procedure, the first generation of the GA begins. The crossover operation which

we will use for our method, which is presented in Vanneschi et al. [43], is designed to combine candidate

solutions in a way that preserves the contiguity of the districts in each plan. The operation works in two

steps:

1. The tournament selection procedure (described later in this section) selects two plans. These plans are

labelled p1 and p2.

2. For every unit i with p1(i) = kgain and p2(i) = klose, our method does the following:

• In p1, if assigning unit i to district klose results in a contiguous plan with no empty districts, then

set p1(i) = klose. Likewise, in p2, if assigning unit i to district kgain results in a contiguous plan

with no empty districts, then set p2(i) = kgain.

Defining pm as the probability of a unit mutating, the following mutation operation for a given plan is

also proposed by Vanneschi et al. [43] and is used in our approach:

• For each unit i in the plan, with probability pm, we move unit i from its current district to a bordering

district if doing so does not violate the contiguity of the plan, and does not produce an empty district.

Both the crossover and mutation operations ensure that the contiguity of each of the plans in the GA

population is preserved throughout the generations of the GA.

We use the following method to sort and rank the plans within the GA population. Given a set P of N

plans, these plans are sorted into fronts {F1, F2, . . . , FJ}, with F1 being the nondominated front, F2 being

the nondominated front if the plans in F1 were removed from P , and so on. The |F1| plans within the set F1

are ranked by the proximity of their population deviation to some “target” population deviation value, with

the nearest plan being ranked first within P , and the furthest plan being ranked |F1|st. Vanneschi et al.

[43] compute the median population deviation among plans in the front and uses this as the “target” by

which plans in the front are compared. In contrast, in our algorithm, we generate the target M according

to a uniform distribution U [a, b], where a is the lowest population deviation among plans in F1, and b is

the highest population deviation among plans in F1. We break ties arbitrarily. We continue this process in

the next front F2. The median of the second nondominated front M2 is determined similarly, and the plans

within F2 are assigned ranks |F1|+ 1 through |F2|. We repeat this ranking method for each of the J fronts

until each of the |N | plans have received a rank.

22



Our ranking method is illustrated in Figure 6b, while an example of the ranking approach used in [43] in

is shown in Figure 6a. Note that the sorting method does not directly consider the compactness objective.

For this reason, the “2-objective” Pareto Front is shown in Figures 6a, 6b, and other figures relating to the

ranking of plans. We define the 2-objective Pareto front as the subset of the overall (3-objective) Pareto front

of plans that are nondominated when considering only the population deviation and similarity objectives.

This approach differs from the nondominated sorting algorithm defined in Deb et al. [11], but we found that

using our sorting method provides good experimental results. The motivation for randomizing the target

point is to encourage diversity among the plans that are selected for crossover. Since the ranking method

used by Vanneschi et al. [43] always sets the target point as the median, it may be biased towards plans

with middling population deviation. Results on the diversity of plans produced by our method are given

in Section 5. Our method also uses this modified ranking method to rank the plans at the end of each

generation. If the size of the GA population is |N |, then |N |/2 crossover operations are executed to produce

a new population to which the mutation operation is then applied. Our modified nondominated algorithm

is illustrated in Algorithm 2.

We use this nondominated sorting algorithm at two stages in our MOGA. First, it is used in the tourna-

ment selection step for determining the plans that are used in the crossover, then again at the end of each

generation when determining the population of the next generation. The tournament selection procedure

selects two plans at a time, p1 and p2 from the population P for crossover. First, our method chooses p1

by randomly drawing three plans from the set P , then applying the previously mentioned sorting method.

The 1st ranked plan among these is the winner of the tournament, and is chosen as p1. The plan p2 is

selected similarly. Note that N/2 selection/crossover steps are carried out in each generation of the GA.

The nondominated sorting algorithm is also used after mutation, at the end of each generation to determine

which plans will be carried over into the next generation. Since we generally seek to improve the quality of

plans from one generation to the next, we do the following (as in Vanneschi et al. [43]): We take the union

of the GA population at the start of the generation (P1) with the GA population after selection, crossover,

and mutation have been performed (P2), to form a set P ′ of cardinality 2N . The nondominated sorting

algorithm described previously is then applied to P ′, assigning each plan in the set a rank from 1 to 2N ,

where N is the size of the GA population. The N highest-ranked plans are chosen as P ′′, the set of plans

to be carried over into the next generation of the GA. After applying the iterative improvement heuristic to

these plans, described in the next subsection, we carry over this set of plans into the next generation of the

GA. Algorithm 2 in Section 7 outlines the steps of our MOGA.
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(a) Vanneschi/NSGA-II sorting method

(b) Our nondominated sorting approach, randomly selecting target
points for each front (in red)

Figure 6: Ranking Methods
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4.3 Iterative improvement to population deviation

After forming the GA population P ′′ through crossover and mutation, we apply a simple heuristic to each

plan p ∈ P ′′ to decrease the population deviation of plan p. For each plan p ∈ P ′′, several iterations of a

swapping procedure similar to that of Nagel [30] are performed. For the selected plan p, in each iteration

of the swapping step, two districts of the plan are selected. Two neighboring districts kgain and klose are

selected in the manner described in the initialization method from Section 4.1, using user-defined probability

distributions Pgain and Plose. Once kgain and klose are chosen, the set of units N(klose, kgain) in klose which

border kgain is found. In a randomly generated order, each i ∈ N(klose, kgain) is checked, one at time, for

whether its transfer to district klose would result in a discontiguous plan. If the resulting plan would be

contiguous, then we transfer unit b from kgain to klose. Also, for each unit i ∈ N(klose, kgain), the effect

of the potential transfer on population deviation is checked—if population deviation would increase, the

transfer is cancelled and two new districts kgain and klose are chosen. At the end of this process, the iteration

is complete. For each plan p ∈ P ′′, this iterative population deviation improvement heuristic runs for a

predetermined number of iterations, or until a predefined tolerance (sufficiently low population deviation) is

reached.

Our full method is described in Algorithm 2 of Section 7. The initialization algorithm is given by

Algorithm 1. After the last generation of the GA, our method returns the full set of nondominated plans

created throughout the run of the GA.

4.4 Multiobjective nondominated set measures

We are interested in comparing the “quality” of the Pareto fronts found by our heuristic compared to those

from other methods. Roughly speaking, a Pareto front is of higher quality if it is “steep,” meaning that as

we move from one point (solution) to another, we obtain a large improvement in one objective with only a

small degradation of the other. Steepness in this sense is a desirable property and is one way to evaluate

how well a heuristically generated Pareto front approximates the true one.

Therefore, we introduce four measures of Pareto front quality. The definitions below assume that the

Pareto front is plotted with population deviation (which we want to minimize) on the x-axis and similarity

(which we want to maximize) on the y-axis, but the definitions can be adapted for other objective functions

or their senses.

• 1-2 Slope: The slope between the two points with lowest population deviation in the set of nondomi-

nated plans.

• 1-M Slope: The slope between the point with lowest population deviation and the point with median

population deviation among plans with ≤ 1% population deviation.
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• 1-F Slope: The slope between the point with lowest population deviation and the point with highest

population deviation among plans with ≤ 1% population deviation.

• Area Under Curve: The area underneath the part of the Pareto front containing plans with population

deviation less than the predefined “low deviation” cutoff.

High values of these slope measures indicate that, on the 2-objective Pareto front, there is steep tradeoff

between population deviation and similarity scores among plans in the nondominated set. That is, we can

locate two plans in the nondominated set with high difference in similarity scores, but low difference in

population deviation.

Figure 7 demonstrates the three slope measures. Figures 8 and 9 show that a nondominated set with a

higher “area under curve” value is more likely to contain a diverse set of plans. The slopes reported will

represent change in similarity over the change in tens of thousands of voters for population deviation.

Figure 7: Slope measure description

5 Results

In this section, we present computational results that show the effectiveness of our proposed heuristic algo-

rithm, comparing the performance of our method with that of the method presented in Vanneschi et al. [43]

where possible. In particular:

1. We report average-case results for the census-tract level redistricting problem for each of the 44 US

states that currently require decennial redistricting. We also compare our results with the Vanneschi
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Figure 8: Area under curve measure

Figure 9: Comparison of areas under curve

MOGA on the 5 states for which they report results. The average-case statistics of the returned

nondominated plans are reported.

2. We demonstrate how the population deviation of the base plan affects the quality of the results returned

by our method.

For each instance of the problem, we ran our MOGA 20 times. The tables in subsequent sections report

the average performance of our method across these 20 runs. In particular, we report:

• Run time: average solution time, in seconds.

• Population deviation of initial plan P0: as demonstrated in Section 5.2, this value can impact the

performance of the algorithm.
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Parameter Setting
GA population size N 30
GA generation count 15
Target population (total state population) / |K|
Low-deviation cutoff 0.01µ
Crossover rate 0.6
Mutation rate 0.15
Max. iteration count for initialization method 0.1× (number of tracts)
Max. iteration count for iterative improvement 0.04× (number of tracts)

Table 3: Table of Parameter Settings

• ND Plans: number of nondominated plans produced.

• Low Dev. ND plans: number of plans whose population deviation is less than 1 percent of the target

population for each district. For instance, the target population of a district in Georgia is 681,820.

Therefore, for Georgia, low-deviation plans are plans with population deviation below 6818.

• Min. Dev. Min. Sim. Min. Comp.: minimum population deviation, similarity score, and compactness

score (lowest Polsby-Popper score across districts) among plans in the nondominated set having low

population deviation.

• Med. Dev. Min. Sim. Min. Comp.: median population deviation, similarity score, and compactness

score (lowest Polsby-Popper score across districts) among plans in the nondominated set having low

population deviation.

Table 3 describes the parameters associated with our MOGA and the chosen values used in our experi-

ments.

In addition to the parameter settings listed in Table 3, we must also define the probability distributions

Pgain and Plose for initialization and iterative improvement steps (see Section 4.1). Suppose the districts are

sorted in increasing order of population, so that kn is the nth least populous district. We set Pgain(kn) =

1.5Pgain(kn+1) for n ∈ {1, ..., |K| − 1}. Under this definition, the probability that kn is selected is 50%

greater than the probability that the next-most-populous district, kn−1, is chosen. For example, if there

are K = 3 districts, then Pgain(1) = 9/19, Pgain(2) = 6/19, and Pgain(3) = 4/19. Similarly, the discrete

probability distribution Plose is defined over the districts in S(kgain) as 1.5Plose(kn) = Plose(kn+1) for n ∈
{1, ..., |S(kgain)| − 1}, where kn is the nth most populous district in S(kgain). These distributions are chosen

so that less populous districts have a greater chance of being selected as the district kgain to receive unit

transfers, and more populous districts which border kgain are more likely to be selected as the district klose

transferring units into district kgain.
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These parameters were chosen after several rounds of testing. Increasing the number of plans in the

population, and/or the number of generations, tends to increase the size of the returned nondominated set.

Increasing mutation rate tends to increase diversity among plans in the nondominated set, but tends to

increase population deviation in the nondominated set.

For the California, Texas, and New York problem instances, we use mean deviation (2) rather than the

(absolute) population deviation to measure spread of district populations. The high number of districts

in these problems made achieving a sufficiently low population deviation unrealistic. For example, in the

California problem instance, the target population is 651378. In order to achieve a population deviation of

less than 6513.78, the population of each district would have to vary from the target population by 125.25,

on average. 7997 of the 8057 of California’s census tracts have population greater than 125, and many

have population greater than 10000. Balancing the population deviation to within 1 percent of the target

population is therefore highly challenging, and possibly infeasible. Therefore, while for most problems we

define a low-deviation plan as one having population having less than 1 percent of the target population,

for the California, Texas, and New York problem instances, we require the average deviation across districts

k ∈ K from the target population µ to be less than 1% of µ.

5.1 Performance: tract-level instances

In this section, we apply our algorithm to the US Congressional tract-level redistricting problem for each

of the 44 states with more than one district. These experiments are conducted using available 2010 tract-

level and US Census data from DeFord [12]. The maps produced in Section 8 were rendered using the

GeoPandas Python package GeoPandas [16] and the shape file data compiled at Lykhovyd [23]. However,

for each problem instance, we use the number of districts assigned by the 2020 reapportionment, since 2020

US Census data was not available in DeFord [12]. This means that the problem instances of Vermont,

South Dakota, North Dakota, Alaska, and Wyoming, and Delaware are omitted, as they only comprise one

congressional district.

For our analysis, we perform 20 runs of each problem instance. For each problem instance, we create a

base plan P0 using a modified version of the plan initialization method from Vanneschi et al. [43]. We do not

consider the actual plan from the previous decade, since most of these plans are constructed using voting

precincts, which are not made of census tracts, census blocks, or any geographical units for which we have

US Census or adjacency data.

Table 4 reports general statistics for each problem instance. The results show that all instances of the

problem can be solved in a matter of minutes by our MOGA. As expected, run time is shorter for smaller

instances, such as New Hampshire and Montana, and is longer for the largest of problem instances, such

as Pennsylvania, Florida, or California. In larger problem instances, we see that more of the returned
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State Nodes Arcs Districts Run Time (seconds) ND Plans Low Dev. ND Plans
Alabama 1181 3295 7 234.3 48.9 35.5
Arkansas 696 1858 4 111.4 36.0 34.8
Arizona 1526 3930 9 357.3 47.8 41.4
California 8057 22069 52 9969.2 114.0 55.5
Colorado 1249 3360 8 156.7 40.9 34.4

Connecticut 833 2319 5 168.7 37.9 30.8
Florida 4245 11585 28 822.3 62.2 15.4
Georgia 1969 5491 14 384.4 117.2 34.8
Hawai’i 243 694 2 331.3 54.0 53.0
Idaho 298 792 2 74.4 48.0 47.0
Illinois 3123 8323 17 1159.3 59.6 20.1
Indiana 1511 4116 9 257.0 63.6 36.8
Iowa 825 2151 4 74.1 45.4 39.4

Kansas 770 2005 4 57.9 54.1 48.4
Kentucky 1115 3040 6 181.0 66.0 44.7
Louisiana 1148 3190 6 368.8 59.6 43.9
Maine 358 999 2 29.1 32.6 31.6

Maryland 1406 3788 8 243.3 58.8 41.7
Massachusetts 1478 4189 9 281.4 40.3 38.5

Michigan 2813 7438 13 534.4 52.5 41.3
Minnesota 1338 3640 8 180.0 60.1 47.3
Mississippi 664 1784 4 62.1 51.6 36.9
Missouri 1393 3743 8 120.9 56.9 37.4
Montana 271 706 2 10.3 41.4 41.4
Nebraska 532 1369 3 102.3 43.5 39.4
Nevada 687 1781 4 123.4 52.9 37.5

New Hampshire 295 786 2 38.6 37.1 36.1
New Jersey 2010 5575 12 297.3 69.5 28.3
New Mexico 499 1335 3 36.7 35.0 34.0
New York 4919 13474 26 2878.3 107.2 21.8

North Carolina 2195 6103 14 779.7 107.8 14.6
Ohio 2952 8159 15 564.3 53.2 24.4

Oklahoma 1046 2765 5 171.2 53.2 46.7
Oregon 834 2316 6 110.2 50.1 38.4

Pennsylvania 3218 8984 17 1716.3 50.8 16.4
Rhode Island 244 654 2 33.1 37.7 36.7
South Carolina 1103 3063 6 149.9 51.8 40.5

Tennessee 1497 4127 9 554.7 74.0 17.1
Texas 5265 14092 38 3185.6 81.4 55.2
Utah 588 1605 4 58.0 54.5 45.0

Virginia 1907 5263 11 322.8 76.4 29.3
Washington 1458 4061 10 278.2 76.7 31.7
West Virginia 484 1266 2 21.9 37.2 36.2
Wisconsin 1409 3857 8 236.6 37.5 30.8

Table 4: Average statistics across 20 runs: Summary Data
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State Min. Dev. Med. Dev. Min. Comp Med. Comp. Min. Sim. Med. Sim. P0 Dev.
Alabama 1063 2155 0.074 0.140 0.649 0.735 787347
Arkansas 335 1464 0.054 0.070 0.808 0.904 207164
Arizona 1538 5837 0.048 0.088 0.489 0.616 2074789
California 22606 35679 0.018 0.022 0.506 0.521 18368083
Colorado 1175 2265 0.056 0.094 0.526 0.601 1253058

Connecticut 1188 2564 0.072 0.149 0.754 0.846 618853
Florida 1611 4922 0.039 0.062 0.465 0.499 6395205
Georgia 4639 6075 0.023 0.036 0.514 0.555 4564367
Hawai’i 2 258 0.032 0.052 0.737 0.756 132302
Idaho 5 435 0.048 0.078 0.509 0.561 140416
Illinois 4614 6451 0.031 0.049 0.476 0.532 5475499
Indiana 2427 4288 0.035 0.062 0.480 0.565 1932278
Iowa 563 2029 0.063 0.137 0.693 0.759 1046275

Kansas 451 1498 0.080 0.176 0.684 0.728 990488
Kentucky 1094 2244 0.025 0.045 0.594 0.664 2920792
Louisiana 963 2117 0.020 0.041 0.518 0.567 2770968
Maine 10 239 0.080 0.120 0.839 0.969 9311

Maryland 1363 2895 0.036 0.062 0.463 0.595 2267736
Massachusetts 1769 3772 0.043 0.089 0.538 0.607 1186597

Michigan 2861 4925 0.058 0.103 0.587 0.659 2995620
Minnesota 1769 3722 0.043 0.089 0.539 0.607 2229427
Mississippi 476 1605 0.067 0.106 0.801 0.856 357351
Missouri 2316 4316 0.056 0.084 0.633 0.799 688041
Montana 29 257 0.141 0.257 0.909 0.939 62151
Nebraska 117 880 0.078 0.137 0.687 0.851 417665
Nevada 289 1215 0.054 0.105 0.666 0.707 1300569

New Hampshire 29 874 0.138 0.236 0.891 0.971 15582
New Jersey 3138 5670 0.035 0.062 0.558 0.675 2265207
New Mexico 86 541 0.129 0.210 0.863 0.964 40414
New York 7989 11925 0.022 0.031 0.469 0.512 10766558

North Carolina 3857 5807 0.028 0.039 0.501 0.550 3680340
Ohio 4157 5980 0.043 0.074 0.574 0.642 3346747

Oklahoma 492 1747 0.048 0.085 0.640 0.827 354235
Oregon 1304 2555 0.041 0.076 0.674 0.776 669806

Pennsylvania 4893 6273 0.026 0.040 0.542 0.602 3722652
Rhode Island 25 1585 0.179 0.272 0.852 0.961 16453
South Carolina 790 1996 0.037 0.070 0.616 0.729 1168030

Tennessee 3133 4551 0.023 0.035 0.519 0.552 2644482
Texas 13557 20174 0.021 0.029 0.547 0.565 8561460
Utah 438 1471 0.060 0.122 0.666 0.760 951181

Virginia 2834 4693 0.041 0.049 0.561 0.603 2613543
Washington 2441 4531 0.025 0.052 0.523 0.558 2157684
West Virginia 45 972 0.078 0.122 0.917 0.967 44908
Wisconsin 1816 3389 0.054 0.102 0.593 0.666 1592858

Table 5: Average statistics across 20 runs: Population deviation, compactness, similarity
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State 1-2 Slope 1-M Slope 1-F Slope Area Under Curve
Alabama 1.57 0.74 0.39 0.78
Arkansas 0.32 0.05 0.04 0.95
Arizona 2.51 0.97 0.58 0.66
California 0.09 0.01 0.01 0.70
Colorado 1.38 0.33 0.29 0.64

Connecticut 6.93 1.24 0.97 0.87
Florida 0.08 0.05 0.02 0.62
Georgia 4.04 2.01 0.58 0.63
Hawai’i 18.13 0.92 0.10 0.76
Idaho 7.74 7.74 7.74 0.86
Illinois 0.71 0.83 0.32 0.59
Indiana 0.75 0.32 0.21 0.63
Iowa 0.98 0.37 0.19 0.75

Kansas 1.75 0.46 0.32 0.74
Kentucky 2.00 0.34 0.19 0.70
Louisiana 4.35 0.53 0.17 0.61
Maine 41.89 5.76 3.19 1.00

Maryland 5.84 1.08 0.28 0.65
Massachusetts 1.95 1.14 0.38 0.71

Michigan 1.57 0.21 0.23 0.69
Minnesota 0.47 0.36 0.24 0.67
Mississippi 0.87 0.35 0.12 0.88
Missouri 1.04 0.82 0.50 0.85
Montana 11.25 0.29 0.08 0.95
Nebraska 7.74 1.83 0.37 0.89
Nevada 2.06 1.69 0.57 0.74

New Hampshire 8.40 2.54 1.07 1.00
New Jersey 0.35 0.48 0.25 0.68
New Mexico 10.52 8.15 1.33 0.99
New York 1.12 0.62 0.52 0.66

North Carolina 0.06 0.12 0.44 0.69
Ohio 0.28 0.29 0.22 0.70

Oklahoma 7.91 2.57 1.14 0.88
Oregon 5.41 4.31 4.12 0.83

Pennsylvania 0.34 0.42 0.27 0.66
Rhode Island 2.05 1.51 0.38 1.00
South Carolina 2.94 0.85 0.35 0.80

Tennessee 0.45 0.43 0.24 0.67
Texas 0.01 0.02 0.02 0.64
Utah 1.82 0.74 1.11 0.12

Virginia 0.90 0.29 0.11 0.68
Washington 0.38 0.30 0.13 0.61
West Virginia 4.45 0.83 0.27 1.00
Wisconsin 0.45 0.35 0.23 0.69

Table 6: Average statistics across 20 runs: Slope data. Results are multiplied by 104.
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Figure 10: Example 2-objective Pareto Front using our method (blue) vs. the Vanneschi method (red)

nondominated plans, on average, tend to fall outside of the low-deviation threshold. However, for all of the

states, our MOGA returns several low population deviation plans.

Table 5 shows the average statistics among low-devation nondominated plans. The table also lists the

population deviation of the base plan P0 used for each state. We can see that solution quality is better for the

smaller problem instances as well—on average, population deviations in the returned set of nondominated

plans for the smaller problem instances tend to be lower than for larger problem instances. Similarly, the

average minimum and median compactness values in the nondominated set across in 20 runs are higher for

larger problem instances. For problem instances with larger population deviations in their base plan P0, the

results showed lower similarity in the returned plans. The relationship between the population deviation of

P0 and similarity scores is examined further in Section 5.2.

Figure 11 describes an example of a low-deviation, nondominated plan and its accompanying base plan,

along with some relevant statistics. In this Missouri example (Figure 11) in which the pair of plans has

similarity score greater than 0.8, the resemblance between the base and solution plan is easily visible. In

the Pennsylvania example (Figure 14), the similarity score between the two plans is lower (0.628), likely

in part due to the high population deviation of the base plan. However, the districts of the nondominated

plan produced by the genetic algorithm are still clearly based on the districts of the base plan, with several
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(a) Missouri base plan P0 with popula-
tion deviation 688094

(b) Solution plan with population devia-
tion 3914

Figure 11: Missouri map comparison: Similarity Score = 0.827

districts in the southeastern region of the state largely intact. The results also show that several of our

nondominated plans for California, Texas, and New York have mean deviation of less than 0.2 percent of

the target population, which is lower than that of any plan reported by Lara-Caballero et al. [21].

Some of the 44 tract-level problem instances that we consider have unique characteristics which needed to

be handled outside of the previously described framework. For example, in the California problem instance,

certain tracts representing islands are not adjacent to any tracts on the mainland. As a result, any proposed

plan is labeled as discontiguous by the algorithm, which prevents several operations (such as swapping during

initialization, crossover, and mutation) from working as intended. Similarly, in the Florida problem instance,

an island tract in the Florida Keys archipelago is not adjacent to any other tract. To resolve this issue, we

removed these tracts prior to running the genetic algorithm, then added them to the nearest districts in the

finished plans produced by the genetic algorithm. We address neighborless units in New York, Rhode Island,

and California similarly. In these examples, the island tracts assigned to districts after the final generation

of the genetic algorithm have an insignificant effect on performance, since these tracts are unpopulated or

sparsely populated.

A different customization was needed for solving the Hawai’i problem instance, whose tracts are divided

into two equally populous units. Since Hawai’i is an archipelago consisting of 8 main islands, the correspond-

ing tract adjacency graph is disconnected and separated into 8 connected components. In practice, the most

populous island, O’ahu, is the only district which is split between the two districts, while the other 7 islands

share a common district. Therefore, to produce solutions that satisfy this practical constraint and to avoid

the problem of disconnected components, the tracts from the other 7 islands are removed from the tract

set and adjacency graph, and are assigned to the 1st district. The remaining O’ahu tracts are then divided

between the two districts by the MOGA. The results in Table 5 use this approach; the tract and arc counts
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Our Method Vanneschi et al. [43]
State Median Similarity 1-2 1-M 1-F AUC Median Similarity 1-2 1-M 1-F AUC
NH 0.97 8.40 2.54 1.07 1.00 0.62 6.33 0.18 0.11 0.63
NE 0.85 7.74 1.83 0.37 0.89 0.71 0.08 0.10 0.04 0.71
NM 0.76 0.98 0.37 0.19 0.75 0.65 0.04 0.03 0.04 0.63
ID 0.78 5.41 4.31 4.12 0.90 0.77 1.26 0.15 0.05 0.72

Table 7: Similarity/slope comparison - average results across 20 runs

given are only those contained within O’ahu.

For each problem instance, the average values of the slope and area under curve statistics defined in

Section 4 for each state are given in Table 6. Without context, these values are difficult to interpret.

Accordingly, we can compare these slope values returned by our method with the average slope values

returned by our implementation of the the Vanneschi method across 20 problem instances. Consider, for

example, a medium-sized problem instance such as Nebraska. Figure 10 shows the 2-objective (population

deviation and similarity) Pareto front on a set of nondominated plans generated by our method, as well

as the 2-objective Pareto front for a nondominated set resulting from of 1 of the 20 problem instances.

Table 7 reports average slopes across 20 runs of both our method and the Vanneschi method, for Nebraska

and a few other representative states. The “Median Similarity” column reports the average value of the

median similarity among the nondominated plans returned by each algorithm. These results demonstrate

that, unlike the Vanneschi method, our method can identify high-similarity plans. In addition, these results

show that for our method there is a steep tradeoff on the 2-objective Pareto curve between low deviation

plans and high-similarity plans.

5.2 Varying population deviation of base plan P0

Our initial experiments suggested that the population deviation in the base plan P0 affected the performance

of our MOGA, especially in producing plans similar to P0. Intuitively, a plan with higher population

deviation must be more significantly altered to meet legal requirements than a plan with low population

deviation. Therefore, the plans in the nondominated set returned by our algorithm are likely to have higher

similarity scores (with the base plan P0) when P0 has lower population deviation. To illustrate the effect

of population deviation of the base plan P0 on similarity of the output plans, we examine five Georgia

redistricting plans. Figures 12a and 12b show the districts of Plan 1 (population deviation 132051) and

Plan 4 (population deviation 698901). All five of these plans were generated using the initialization method

presented in Vanneschi et al. [43].

For each of these 5 base plans, we performed 20 runs of our method and observed the average similarity

scores of the low-devation non-dominated plans under each base plan P0. The results in Table 8 demonstrate
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Plan P0 Deviation Mean Similarity
1 132051 0.931
2 277855 0.909
3 521747 0.855
4 698901 0.833
5 1624123 0.781

Table 8: Statistics across 20 runs: Average similarity scores of nondominated low-deviation plans with P0.
“Low” population deviation: less than 6818

how the quality of solutions found by our method depends on the quality of the base plan P0. There is an

inverse relationship between similarity of the returned plans (with P0) and the population deviation of the

base plan.

Since quality of plans seems to depend on quality of the base plan P0, the results motivate the need for our

customized initialization method, which produces an initial GA population with low population deviation

plans. In this and in previous experiments, several of the base plans considered have population deviations

that are unrealistically high. The base plans used for our tract-level instance results were generated randomly

using the plan initialization method from Vanneschi et al. [43], which often struggles to create plans which

have a reasonably low population deviation. For instance, in the fifth experiment/row of Table 8, a plan

with population deviation of over 1.6 million is considered. In practical decennial redistricting, a base plan

is unlikely to have such a high population deviation, since ten years prior, the plan was likely required to

have roughly equal populations among its districts, and such large shifts in population within a state are

unlikely to occur. As demonstrated in Table 1, the population deviation of Georgia’s 2012–2021 plan using

2020 Census data is 418169 DRA [14]. In this experiment and the set of results in Section 5, the population

deviation of each P0 is often significantly higher than the real-world population deviations shown in Table 1.

That our method can produce sets of low-deviation, nondominated plans despite these high-deviation base

plans is evidence of its strength in handling difficult problem instances.

6 Discussion and conclusion

In this paper, we motivated the need for considering similarity in algorithms for redistricting, both because

of the preferences of politicians and voters, and because, in practice, redistricting plans are typically based

on the previously used plan. We introduced a multiobjective genetic algorithm (MOGA) to find redistricting

plans that balance three objectives: compactness, population deviation, and similarity. Our experimental

results show that our MOGA generates sets of high-quality, nondominated redistricting plans. Our new

method for initializing the initial population of the genetic algorithms aids performance of the MOGA by

providing lower-deviation initial plans than would have been created using the existing methods, as well as
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(a) Georgia plan with population de-
viation 132051

(b) Georgia plan with population
deviation 698901

Figure 12: Georgia deviation map comparison

ensuring that the plans in the initial population resemble a given base plan. Since this initialization method

is separate from the crossover, mutation, and the other operations of this or any MOGA, it could be used to

initialize the starting population in other MOGAs for redistricting. Our experimental results suggest that

our method can quickly return high-quality redistricting plans for any realistically-sized problem instance.

Furthermore, our method produces plans that are similar to some base plan P0, which is a key criterion in

practical redistricting.

In future work, several modifications of our algorithm and the problem we studied could be consid-

ered. For instance, the crossover and mutation operations from Vanneschi et al. [43] could be replaced

with other crossover and mutation operations, such as those found in Xiao [46]. The recombination ap-

proach for crossover could potentially lead to better performance, especially in finding a more diverse set

of nondominated plans. Lastly, changing the similarity measure used, perhaps to one of the many other

measures introduced in Becker and Gold [7], could affect the performance of our algorithm. In addition,

while we did not consider objectives involving political party data, such as partisan composition of dis-

tricts,proportionality, partisan symmetry, and competitiveness, these could be considered by our method,

which is designed to accommodate an arbitrary number of objectives. Another important aspect of redis-

tricting that our work does not consider is fairness with respect to race, income, or other demographics. Our

MOGA could be adapted, for example, to encourage the formation of so-called majority-minority districts

that help protect that the voting power of minority groups, or preserve districts of this type from a previous

plan.

7 Algorithms
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Algorithm 1 Genetic Algorithm Population Initialization

1: N - desired population size
2: P0 - initial plan
3: M - max. number of iterations allowed
4: P [k] - set of units in district k of plan P
5: Loc[i] - district location of unit i
6: B[i][j] - Boundary set: set of units in district j that border district i
7: Initialize B, Loc, P
8: for i ∈ {1, . . . , N} do
9: Pi = P0

10: iter = 0
11: while iter < M do
12: iter = iter + 1
13: Sort districts from most to least populous.
14: Select district kgain according to probability distribution Pgain.
15: Create probability distribution Plose for selecting the neighboring district klose which will transfer

units to kgain
16: Select district klose to transfer border units to kgain, using Plose.
17: Border = B[kgain][klose]
18: Pi[klose] = Pi[klose] \Border
19: Pi[kgain] = Pi[kgain]

⋃
Border

20: for each unit u ∈ Border do
21: Loc[u] = kgain
22: end for
23: A[u] : set of nodes adjacent to u
24: for u ∈ Border do
25: for a ∈ A[u] do
26: B[Loc[a]][klose] = B[Loc[a]][klose] \ {u}
27: B[klose][Loc[a]] = B[klose][Loc[a]] \ {a}
28: B[kgain][Loc[a]] = B[kgain][Loc[a]] ∪ {a}
29: B[Loc[a]][kgain] = B[Loc[a]][kgain] ∪ {u}
30: end for
31: for k ∈ {1, . . . ,K} do
32: if u ∈ B[k][klose] then
33: B[k][klose] = B[k][klose] \ {u}
34: end if
35: end for
36: end for
37: end while
38: Repair discontiguities using method described in Section 4 [21]
39: end for
40: Return P
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Algorithm 2 New Multiobjective Heuristic

1: N - desired population size
2: G - desired number of generations
3: P0 - initial plan
4: P - Genetic algorithm population (set of redistricting plans)
5: P = Initialization(P0, N,M) (Section 4.1, Algorithm 1)
6: Nondom = ∅ : set of plans that are nondominated at the end of some generation g ∈ {1, . . . , G}
7: for g ∈ {1, . . . , G} do
8: Make copy P1 = P
9: for i ∈ {1, . . . , N/2} do

10: Select two plans from P1 according to selection procedure described in Section 4.2
11: Perform crossover to each pair of plans as described in Section 4.2
12: end for
13: Perform mutation on each plan in P1 as described in 4.2
14: P2 = P ∪ P1

15: Add nondominated plans in P1 to Nondom
16: Rank each of the 2|N | plans in P2 according to 4.2
17: Select N best plans as new population P
18: Perform iterative improvement to each plan in P as described in 4.3
19: end for
20: Find and return nondominated plans in Nondom

8 Maps

9 Appendix
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(a) Arizona base plan P0 with population deviation
1524923 (b) Solution plan with population deviation 4112

Figure 13: Arizona map comparison: Similarity Score = 0.538

(a) Pennsylvania base plan P0 with population
deviation 3722052 (b) Solution plan with population deviation 6290

Figure 14: Pennsylvania map comparison: Similarity Score = 0.628
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State Districts (2012–2021) Deviation under 2020 Census Avg. Sim. Max. Sim. Min. Sim.
AL 35 302523 0.774 1.000 0.512
AK 20 36906 0.686 1.000 0.406
AZ 30 459519 0.540 1.000 0.278
CA 40 1333660 0.604 1.000 0.252
CO 35 420133 0.576 1.000 0.145
CT 36 126420 0.942 1.000 0.527
DE 21 90641 0.695 0.945 0.466
FL 40 1183020 0.646 0.973 0.358
GA 56 625883 0.691 1.000 0.289
HI 25 123244 0.808 1.000 0.503
ID 35 171072 0.679 1.000 0.240
IL 59 442349 0.573 0.896 0.239
IN 50 359637 0.601 1.000 0.337
IA 50 230395 0.540 1.000 0.259
KS 40 186637 0.688 1.000 0.249
KY 38 253815 0.616 1.000 0.286
LA 39 313298 0.719 1.000 0.253
ME 35 68844 0.756 1.000 0.359
MD 47 369932 0.800 1.000 0.329
MA 40 345933 0.735 1.000 0.309
MI 38 592741 0.488 1.000 0.216
MN 67 260811 0.694 1.000 0.300
MS 52 233931 0.702 1.000 0.323
MO 34 335795 0.673 1.000 0.356
MT 50 60461 0.616 1.000 0.257
NE 49 151127 0.729 1.000 0.348
NV 21 230510 0.631 0.942 0.306
NH 24 32713 0.756 1.000 0.285
NJ 40 358824 0.736 1.000 0.289
NM 42 124385 0.648 0.994 0.241
NY 63 1292120 0.509 1.000 0.262
NC 50 880785 0.575 1.000 0.297
ND 47 133794 0.725 1.000 0.264
OH 33 574091 0.679 1.000 0.310
OK 48 309863 0.646 1.000 0.322
OR 30 157861 0.632 0.999 0.235
PA 50 717170 0.654 1.000 0.347
RI 38 31167 0.793 1.000 0.427
SC 46 570101 0.688 1.000 0.276
SD 35 71611 0.687 1.000 0.274
TN 33 493766 0.662 1.000 0.313
TX 31 1939900 0.646 1.000 0.323
UT 29 312059 0.774 1.000 0.369
VA 40 542862 0.425 0.765 0.239
WA 49 316015 0.670 0.955 0.367
WV 17 114309 0.702 1.000 0.473
WI 33 173844 0.863 1.000 0.640
WY 30 33389 0.730 1.000 0.318

Table 9: Map comparison statistics: State Senate, 2012–2021 vs. 2022–2031
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(a) New York base plan P0 with population de-
viation 10766558

(b) Solution plan with population deviation
7438

Figure 15: New York map comparison: Similarity Score = 0.484

10 Appendix

Data Availability Statement: The data and resources uses in our experimentation (DRA [14], Lykhovyd [23],

DeFord [12]) are available and with links provided in the References section.
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State Districts (2012–2021) Deviation under 2020 Census Avg. Sim. Max. Sim. Min. Sim.
AL 105 407488 0.670 1.000 0.285
AK 40 44322 0.706 1.000 0.277
AZ 30 459519 0.540 1.000 0.278
CA 80 1527170 0.582 0.960 0.246
CO 65 511124 0.572 1.000 0.233
CT 151 139332 0.803 1.000 0.320
DE 41 76904 0.818 1.000 0.239
FL 120 1386340 0.588 1.000 0.203
GA 180 768307 0.573 1.000 0.203
HI 51 146858 0.731 1.000 0.375
ID 35 171072 0.679 1.000 0.240
IL 118 515166 0.537 0.982 0.243
IN 100 378866 0.670 1.000 0.218
IA 100 253790 0.588 1.000 0.229
KS 125 214949 0.740 1.000 0.228
KY 100 290155 0.569 1.000 0.195
LA 105 376002 0.739 1.000 0.241
ME 151 68922 0.742 1.000 0.230
MI 110 598263 0.496 1.000 0.206
MN 134 294195 0.626 1.000 0.266
MS 122 278716 0.758 1.000 0.213
MO 163 419428 0.529 1.000 0.233
NE 49 151127 0.729 1.000 0.348
NV 42 295288 0.553 0.965 0.329
NJ 40 358824 0.736 1.000 0.289
NM 70 140200 0.642 1.000 0.198
NY 150 705556 0.793 1.000 0.270
NC 120 969887 0.621 1.000 0.241
OH 99 669981 0.595 1.000 0.232
OK 101 359949 0.714 1.000 0.254
OR 60 172884 0.619 1.000 0.259
PA 203 658332 0.588 1.000 0.258
RI 75 40439 0.868 1.000 0.378
SC 124 591401 0.717 1.000 0.288
SD 37 110042 0.693 1.000 0.274
TN 99 561846 0.707 1.000 0.229
TX 150 2986150 0.644 1.000 0.277
UT 75 375546 0.706 1.000 0.329
VA 100 572734 0.478 1.000 0.266
WA 49 316015 0.670 0.955 0.367
WV 67 799200 0.557 1.000 0.167
WI 99 219666 0.758 1.000 0.324
WY 60 43161 0.724 1.000 0.345

Table 10: Map comparison statistics: State House, 2012–2021 vs. 2022–2031
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