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1 Introduction
Building efficient quantum computing algorithms is an active, emerging area of research. The
Deutsch-Jozsa algorithm [8] was the first instance of a quantum algorithm outperforming the best
classical algorithm. After this algorithm, many quantum algorithms are proposed with speed-
up compared to algorithms on conventional computers to solve challenging mathematical problems,
such as integer factorization [20] and unstructured search [10]. Due to various applications of math-
ematical optimization and the computational challenges on classical computers, several quantum
computing optimization algorithms were developed such as the Quantum Approximation Opti-
mization Algorithm (QAOA) for quadratic unconstrained binary optimization (QUBO) [9], and
Quantum Interior Point Methods (QIPMs) for linear optimization problems (LOPs) [17].

QIPMs are analogous to classical Interior Points Methods (IPMs) that use Quantum Linear
System Algorithms (QLSAs) to solve the Newton system at each iteration. Before reviewing the
results related to QIPMs for linear optimization (or linear programming), let’s define LOPs and
some of their characteristics.

Definition 1 (Linear Optimization Problem: Standard Form). For b ∈ Rm, c ∈ Rn, and matrix
A ∈ Rm×n with rank(A) = m, the LOP is defined as

(P)
min cTx,

s.t. Ax = b,

x ≥ 0,

(D)

max bT y,

s.t. AT y+s = c,

s ≥ 0,

where x ∈ Rn is the vector of primal variables, and y ∈ Rm, s ∈ Rn are vectors of the dual variables.
Problem (P ) is called the primal problem and problem (D) is called the dual problem.

LOPs can also be presented in other forms, e.g., in canonical form.
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Definition 2 (Linear Optimization Problem: Canonical Form). For b ∈ Rm′
, c ∈ Rn′

, and matrix
A ∈ Rm′×n′

, the canonical formulation of LOP is

(P′)

min c′Tx,

s.t. A′x ≥ b′,
x ≥ 0,

(D′)

max b′T y,

s.t. A′T y ≤ c′,
y ≥ 0.

The standard and canonical forms are equivalent, and one can derive both forms for any LOP.
By choosing a basis in a standard-form problem, we can derive the equivalent canonical form. In
this case, the canonical form has n′ = n−m variables and m′ = m constraints. An LOP in canonical
form can be transformed into standard form just by adding slack variables. We are going to use
the standard form, unless we notify that the canonical form is used. The set of primal-dual feasible
solutions is defined as

PD =
{
(x, y, s) ∈ Rn × Rm × Rn : Ax = b, AT y + s = c, (x, s) ≥ 0

}
.

Then, the set of interior feasible solutions is

PD0 =
{
(x, y, s) ∈ PD : (x, s) > 0

}
.

By the Strong Duality Theorem [19], all optimal solutions, if there exist any, belong to the set PD∗

defined as
PD∗ =

{
(x, y, s) ∈ PD : xT s = 0

}
.

For decades, Interior Point Methods (IPMs) have been widely employed to solve LOPs due
to their polynomial complexity and fast convergence [23]. At each iteration of IPMs, a linear
system of equations, the so-called Newton system, needs to be solved. The prevailing approach is
using Cholesky factorization to solve the Normal Equation System (NES) [19], but some papers
study inexact IPMs in which the Newton system is solved inexactly by iterative methods such as
Conjugate Gradient methods [18]. Due to the development of quantum computing and its promise
to solve linear systems fast but inexactly, inexact variants of IPMs have attracted greater interest
than before. Most papers on inexact IPMs used Infeasible IPMs (I-IPMs), since inexact Newton
steps may lead to infeasibility [16]. Recently, an Inexact Feasible IPM (IF-IPM) is proposed using
a novel representation of the Newton system, the so-called Orthogonal Subspaces Systems (OSS)
[17]. This IF-IPM attains the best iteration complexity of exact IPMs.

Some recent papers investigate Quantum Interior Point Methods (QIPMs) for LOPs. First,
Kerenidis and Prakash [12] used Block Encoding and Quantum RAM (QRAM) for finding a ζ-
optimal solution with O(n2

ϵ2 κ̄
3 log( 1ζ )) complexity, where κ̄ is a bound for the condition num-

ber of the Newton systems, ϵ is the QLSA’s error bound, and ζ is the final complementarity
gap. Casares and Martin-Delgado [5] used QLSA and developed a Predictor-correcter QIPM with
O(L√n(n +m)∥M̄∥F κ̄2

ϵ2 ) complexity, where L is the binary length of input data and ∥M̄∥F is an
upper bound on the Frobenius norm of the coefficient matrix of Newton system. Both papers used
exact IPMs, which is not a valid choice for inexact QLSAs. To find an exact optimal solution,
1
ϵ and κ̄ increase exponentially, leading to exponential complexities. To address these problems,
Mohammadisiahroudi et al. [16] developed an II-QIPM using QLSA efficiently with O(n4Lκ2A)
time complexity, where the constant κA is the condition number of matrix A. In [16], an Iterative
Refinement method (IRM) is used that made possible to replace the condition number of Newton
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systems with the condition number of input matrix A. To improve this time complexity, Moham-
madisiahroudi et al. [17] proposed a short-step IF-QIPM for solving LOPs using QLSAs to solve
the OSS system.

The structure of this article is as follows. Quantum linear algebra is reviewed in Section 2.
Then, two convergent QIPMs, II-QIPM and IF-QIPM are presented in Sections 3 and 4, respec-
tively. Section 5 presents an Iterative Refinement Method (IRM) that helps to use limited-precision
quantum oracles to solve LOPs exactly. Finally, a discussion regarding the complexity of different
QIPMs along with the directions for improving them is provided in Section 6.

2 Quantum Linear Algebra
The first quantum linear system algorithm (QSLA) was the algorithm of Harrow, Hassidim and
Loyd [11], which takes as input a sparse, square, Hermitian matrix M , and prepares a state |z⟩ =
|M−1σ⟩ that is proportional to the solution of the linear system Mz = σ. Let κM denote the
condition number of M . The complexity of HHL algorithm is Õd

(
τ2κ2

M

ϵ

)
, where d is the dimension

of the problem, τ is the maximum number of non-zeros found in any row of M , ϵ is the target bound
on the error, and the Õ notation suppresses the polylogarithmic factors in the "Big-O" notation
in terms of the subscripts. This complexity bound shows a speed-up w.r.t dimension, although it
depends on an upper bound for the condition number κM of the coefficient matrix. Following a
number of improvements to the HHL algorithm [1, 22, 21, 7], the current state-of-the-art QLSA
is attributed to Charkraborty et al. [6], who use variable-time amplitude estimation and so-called
block-encoded matrices, while HHL algorithm uses sparse-encoding model [11]. The block-encoding
model was formalized in [14], and it assumes that one has access to unitaries that store the coefficient
matrix in their top-left block:

U =

(
M/ψ ·
· ·

)
,

where ψ ≥ ∥M∥ is a normalization factor chosen to ensure that U has operator norm at most 1.
With assuming the access to QRAM, the QLSA of [6] has Õd,κM , 1ϵ

(κMψ) complexity.
QLSAs provide a quantum state proportional to the solution. We cannot extract the classical

solution by a single measurement. We need Quantum Tomography Algorithms (QTAs) to extract
the classical solution. There are several papers improving QTAs, and the best QTA [2] has O(dϱϵ )
complexity, where ϱ is a bound for the norm of the solution.

Theorem 1. The QLSA of [6] and the QTA of [2] can finds an inexact solution z̃, with ∥σ−Mz̃∥ ≤
ϵ, in Õd,κM , 1ϵ

(dκM
∥σ∥
ϵ ) time complexity.

Proof. The proof follows from the analysis done in Section 2 of [16].

Recently, an IRM using a QLSA+QTA as a subroutine for solving linear systems achieved
an exponential speedup w.r.t. precision compared to QLSA+QTA to extract a classical solution
with the same precision [15]. The IRM+QLSA+QTA algorithm provides a classical solution ac-
curately in the sparse-encoding model with Õ(dτκM log(∥σ∥ϵ )) complexity, where τ is the sparsity
parameter of matrix M . While this complexity bound depends on sparsity τ compared to the
direct use of QLSA+QTA, it has better dependence on precision and it is more suitable for noisy
intermediate-scale quantum (NISQ) devices. For simplicity, we use QLSA+QTA directly and im-
prove the precision by an IRM outside QIPMs [16, 17] as described in Section 5.
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3 Inexact-Infeasible QIPM
To speed up IPMs, Mohammadisiahroudi et al. [16] used QLSAs to solve the Newton system at
each iteration of IPMs. QLSAs inherently produce inexact solutions. Thus, one approach for using
QLSA efficiently is to develop an Inexact Infeasible QIPM (II-QIPM). In [16], they utilized the
IPM proposed by Kojima et al. [13] with inexact Newton steps calculated by a QLSA. For any
0 < γ1 < 1 and 0 < γ2, the authors defined the neighborhood of the central path as

N (γ1, γ2) =
{
(x, y, s) ∈ Rn+m+n : (x, s) ≥ 0, ∥(RP , RD)∥ ≤ γ2

xT s

n
,

xisi ≥ γ1
xT s

n
for i ∈ {1, . . . , n}

}
,

where RP = b−Ax, and RD = c−AT y − s. The II-QIPM is designed to find a ζ-optimal solution
which belongs to set

PDI(ζ) =
{
(x, y, s) ∈ Rn+m+n : (x, s) ≥ 0, ∥(RP , RD)∥ ≤ ζ, x

T s

n
≤ ζ
}
.

Given (xk, yk, sk) ∈ N (γ1, γ2) and 0 < β1 < 1, let µk = (xk)T sk

n , then the Newton system is defined
as

A∆xk = b−Axk,
AT∆yk +∆sk = c−AT yk − sk,

Xk∆sk + Sk∆xk = β1µ
ke−Xksk,

(FNS)

where e is the all-one vector with appropriate dimension, Xk = diag(xk), and Sk = diag(sk).
Instead of solving the full Newton system (FNS), we may solve the Augmented system or the
Normal Equation System (NES). In the following, we use the NES formulated as

Mk∆yk = σk, (NES)

where

Dk = (Xk)1/2(Sk)−1/2,

Mk = A(Dk)2AT ,

σk = A(Dk)2c−A(Dk)2AT yk − β1µkA(Sk)−1e+Rk
P = b− β1µkA(Sk)−1e+A(Dk)2Rk

D.

The NES has a smaller size, m, than the FNS. Further, the matrix of the NES is symmetric and
positive definite, thus Hermitian. Consequently, QLSAs can solve the NES efficiently. By its nature,
a QLSA generates an inexact solution ∆̃yk with error bound ∥∆yk − ∆̃yk∥ ≤ ϵk. This error leads
to residual rk, thus we have

Mk∆̃yk = σk + rk,

where rk =Mk(∆̃yk−∆yk). After finding ∆̃yk, the inexact ∆̃xk and ∆̃sk are computed classically
as

∆̃sk = c−AT yk − sk −AT ∆̃yk,

∆̃xk = β1µ
k(Sk)−1e− xk − (Sk)−1Xk∆̃sk.

(1)
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Since ∆̃sk and ∆̃xk are directly calculated by equations (1), one can verify that (∆̃xk, ∆̃sk, ∆̃yk)
satisfies

A∆̃xk = b−Axk + rk,

AT ∆̃yk + ∆̃sk = c−AT yk − sk,
Xk∆̃sk + Sk∆̃xk = β1µ

ke−Xksk.

(2)

To have an II-QIPM using (NES) with iteration complexity O(n2L), the residual norm must
decrease at least O(λmin(A)

√
n log n) time faster than (xk)T sk, where λmin(A) is the smallest sin-

gular value of A [25]. Since tight residual bound leads to the high complexity of QLSA+QTA, in
[16], the authors used a modification of the NES which leads to O(n2L) iteration complexity of the
proposed II-QIPM, where the residual is decreasing with the rate of O(

√
µk).

Since A has full row rank, one can choose an arbitrary basis B̂, and calculate A−1

B̂
, Â = A−1

B̂
A,

and b̂ = A−1

B̂
b. This calculation needs O(m2n) arithmetic operations and happens just one time as

preprocessing before the iterations of IPMs. The cost of this preprocessing is dominated by the cost
of II-QIPM, but it can be reduced by using the structure of A. For example, if the problem is in the
canonical form, there is no need for this preprocessing. In the rest of this paper, all methodology is
applied to the preprocessed problem with input data (Â, b̂, c), where Â includes an identity matrix.
Now, the (NES) can be modified to

M̂kzk = σ̂k, (MNES)

where

M̂k = (Dk
B̂
)−1A−1

B̂
Mk((Dk

B̂
)−1A−1

B̂
)T = (Dk

B̂
)−1Â(Dk)2((Dk

B̂
)−1Â)T ,

σ̂k = (Dk
B̂
)−1A−1

B̂
σk = (Dk

B̂
)−1b̂− β1µk(Dk

B̂
)−1Â(Sk)−1e+ (Dk

B̂
)−1Â(Dk)2(c−AT yk − sk).

(3)

By the following procedure, one can find the Newton direction by solving (MNES) inexactly
with QLSA+QTA.

Step 1. Find z̃k such that M̂kz̃k = σ̂k + r̂k and ∥r̂k∥ ≤ η
√

µk

√
n

.

Step 2. Calculate ∆̃yk = ((Dk
B̂
)−1A−1

B̂
)T z̃k.

Step 3. Calculate vk = (vk
B̂
, vk

N̂
) = (Dk

B̂
r̂k, 0).

Step 4. Calculate ∆̃sk = c−AT yk − sk −AT ∆̃yk.

Step 5. Calculate ∆̃xk = β1µ
k(Sk)−1e− xk − (Dk)2∆̃sk − vk.

The following Lemma shows how the inexact solution of (MNES) leads to residual only in the last
equation of the Newton system.

Lemma 1 (Lemma 4.1 in [16]). For the Newton direction (∆̃xk, ∆̃yk, ∆̃sk), we have

A∆̃xk = b−Axk,
AT ∆̃yk + ∆̃sk = c−AT yk − sk,

Xk∆̃sk + Sk∆̃xk = β1µ
ke−Xksk − Skvk.

(4)
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To have a convergent IPM, we need ∥Skvk∥∞ ≤ ηµk, where 0 ≤ η < 1 is an enforcing parameter.

Lemma 2 (Lemma 4.2 in [16]). For the Newton direction (∆̃xk, ∆̃yk, ∆̃sk), if the residual ∥r̂k∥ ≤
η

√
µk

√
n

, then ∥Skvk∥∞ ≤ ηµk.

To solve the MNES, M̂k and σ̂k need to be calculated. Calculating M̂k and σ̂k classically costs
O(n3) and O(n2) arithmetic operations, respectively. To reduce the cost per iteration, M̂k can be
calculated in the quantum machine as M̂k = (Ek)TEk efficiently [6], where Ek = (Dk

B̂
)−1ÂDk.

Calculating Ek classically costs just O(n2) arithmetic operations. Based on Theorem 1, the follow-
ing theorem presents the complexity of solving the (MNES) system by utilizing the QLSA of [6]
and QTA of [2].

Lemma 3 (Lemma 4.3 in [16]). The QLSA by [6] and the QTA by [2] can build the (MNES) system,

and produce a solution z̃k for the (MNES) system satisfying ∥r̂k∥ ≤ η
√

µk

√
n

with Õn,κk
E , 1

µk
(m
√
n

κk
E∥σ̂k∥√

µk
)

complexity, where κkE is the condition number of Ek.

For solving LOPs, the II-QIPM of [16] is presented as Algorithm 1. In this algorithm, we use
QLSA and QTA to solve the MNES.

Algorithm 1 II-QIPM

1: Choose ζ > 0, γ1 ∈ (0, 1),0 < η < β1 < β2 < 1,
2: Choose ω ≥ max{1, ∥x∗, s∗∥∞}.
3: k ← 0, (x0, y0, s0)← (ωe, 0e, ωe), µ0 = ω2, and γ2 ← ∥(R0

p,R
0
D)∥

µ0

4: while (xk, yk, sk) /∈ PDI(ζ) do
5: µk ← (xk)T sk

n

6: Calculate Ek ← (Dk
B̂
)−1ÂDk and σ̂k by (3)

7: ϵkQLSA ← η

√
µk

2
√
n∥σk∥ and ϵkQTA ← η

√
µk

2
√
n∥σk∥

8: (∆xk,∆yk,∆sk)← solve MNES(β1) by QLSA+QTA with precision ϵkQLSA and ϵkQTA

9:

α̂k ← max
{
ᾱ ∈ [0, 1] | for all α ∈ [0, ᾱ] we have

(
(xk, yk, sk) + α(∆xk,∆yk,∆sk)

)
∈ N (γ1, γ2) and

(xk + α∆xk)T (sk + α∆sk) ≤
(
1− α(1− β2)

)
(xk)T sk

}

10: (xk+1, yk+1, sk+1)← (xk, yk, sk) + α̂k(∆xk,∆yk,∆sk)
11: if ∥xk+1, sk+1∥∞ > ω then
12: return Primal or dual is infeasible.
13: k ← k + 1

14: return (xk, yk, sk)

It can be verified easily that e.g., β1 = 0.5, β2 = 0.9995, η = 0.4 and γ1 = 0.5 yield a valid
choice in Algorithm 1. The general scheme of II-QIPM is similar to the classical long-step I-IPM in
which at each iteration we solve the (MNES) system with QLSA and QTA along with an Armijo
line search to ensure the next step remains in the N (γ1, γ2) neighborhood of the central path.
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Theorem 2 (Theorem 4.1 in [16]). If Algorithm 1 does not terminate in line 11, then it reaches a
solution in PDI(ζ) at most O(n2 log ω

ζ ) iterations.

The most expensive classical operations at each step of II-QIPM are some metarix-vector multi-
plications, which cost O(n2) arithmetic operations. The cost of quantum operations of an iteration
is given by Lemma 3, and it is bounded by Õn,κÂ, 1ζ

(n2
κÂ

ζ4 ) throughout the II-QIPM using bounds
on κkE and ∥σ̂k∥ analyzed in [16]. Thus, the total time complexity of the II-QIPM [16] as presented
in Algorithm 1 is

Õn,κÂ, 1ζ

(
n4
κÂ
ζ4

)
.

As we can see the complexity of classical feasible IPMs (F-IPMs) is better, w.r.t both dimension
and final precision, than the one of an II-QIPM. In the next section, an IF-QIPM is reviewed which
has better complexity than other classical and quantum IPMs.

4 Inexact-Feasible QIPM
Small-neighborhood short-step F-IPMs have the best computational complexity, which can be fur-
ther enhanced by solving the Newton system with QLSA+QTAs at each iteration. In order to
investigate this opportunity, [17] proposed a novel IF-IPM. In each step of IPMs, there are three
choices of linear systems to calculate the Newton step: Augmented system (AS), Normal Equation
System (NES), and Full Newton System (FNS). Solving any of these three systems inexactly leads
to residuals in the primal and/or dual feasibility equations. In [17], an inexact feasible IPM is de-
veloped by constructing a new system that offers a primal-dual feasible step based on a basis from
orthogonal subspaces, avoiding the additional cost associated with II-IPMs. With this motivation,
the authors utilized a short-step feasible IPM with inexact Newton steps.

For a feasible interior solution (xk, yk, sk) ∈ PD0, the (FNS) system can be simplified as

A∆xk = 0,

AT∆yk +∆sk = 0,

Xk∆sk + Sk∆xk = βµke−Xksk.

(Feasible-FNS)

Let ai be the i’th column of the matrix A. We define set B ⊆ {1, . . . , n} as the index set of
m linearly independent columns of A, and AB = [ai]i∈B . Since A has full row rank, m linearly
independent columns of A exist. Thus, the matrix AB is non-singular, and A−1

B , as the inverse of
AB exits. For ease of exposition, it may be assumed w.l.g. that matrix AB is formed by the first m
columns of matrix A. By pivoting on matrix A =

[
AB AN

]
, we can construct Â =

[
I A−1

B AN

]
.

We also construct matrices V ∈ Rn×(n−m) and W ∈ Rn×m as follows

V =

[
A−1

B AN

−I

]
, W = AT .

Calculating V needs O(mn2) arithmetic operations. If the LOP is defined in canonical formulation,
then there is no need to pay this cost. In practice, most of the constraints are inequalities and their
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slack variables can be used to form basis AB which reduces this preprocessing cost. However, by
the following reformulation, one can avoid this preprocessing cost for standard formulation:

min cTx,

s.t. Ax+ x′ = b,

−Ax+ x′′ = −b,
x, x′, x′′ ≥ 0,

V =



A
−A
−I


 ,

Here, we have a basis given by x′ and x′′ without extra computation. The price we pay is that the
number of equality constraints doubles and the number of variables becomes n+2m, i.e., triples in
the worst case. Vector wj is the j’th column of matrix W (or the j’th row of matrix A), and vector
vi denotes the i’th column of matrix V .

Lemma 4 (Lemma 2.1 in [17]). Vectors wj form a basis for the row space of A and vectors vi form
a basis for the null space of A. Consequently, for any j ∈ {1, . . . ,m} and any i ∈ {1, . . . , n −m},
we have wT

j vi = 0.

Based on Lemma 4, using (λk)T = (λk1 , . . . , λ
k
n−m), we reformulate (Feasible-FNS) as

∆xk = V λk, (5a)

∆sk = −AT∆yk, (5b)

Xk∆sk + Sk∆xk = βµke−Xksk. (5c)

Substituting ∆xk and ∆sk in equation (5c) leads to

−XkAT∆yk + SkV λk = βµke−Xksk, (OSS)

which has n equations, n − m variables in λk, and m variables in ∆yk. After solving the (OSS)
equation, ∆xk and ∆sk are calculated by equations (5a) and (5b).

Lemma 5. The linear systems (Feasible-FNS) and (OSS) are equivalent.

Due to the construction of the (OSS), the proof of Lemma 5 is obvious. Consequently, the
system (OSS) has a unique solution because system (Feasible-FNS) has a unique solution [19].

Let (λ̃k, ∆̃yk) be an inexact solution of the system (OSS). Then, ∆̃xk and ∆̃sk can be calculated
by equations (5a) and (5b). For the solution (∆̃xk, ∆̃sk, ∆̃yk), we have

∆̃xk = V λ̃k,

∆̃s =W ∆̃yk,

Xk∆̃sk + Sk∆̃xk = βµke−Xksk + rk,

(6)

where rk = SkV (λ̃k−λk)−XAT (∆̃yk−∆yk), and (λk,∆yk) stands for the exact solution of (OSS).
Regardless of the error in solving the (OSS), we have ∆̃xk ∈ Null(A) and ∆̃sk ∈ Row(A). Thus,
for any step length α ∈ (0, 1], we have

A(xk + α∆̃xk) = 0,

AT (yk + α∆̃yk) + (sk + α∆̃sk) = 0,
(7)
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which means that the inexact Newton step calculated by solving the (OSS) preserves both primal
and dual feasibility. This feature of the (OSS) enables us to develop an IF-QIPM. As the coefficient
matrix of the (OSS) is not symmetric, to solve the (OSS) by QLSA+QTAs, we must build the
system Mkz′k = σ′k where

M ′k =
1

∥Mk∥

[
0 Mk

(Mk)T 0

]
, z′k =

(
0
zk

)
, and σ′k(β) =

1

∥Mk∥

(
σk(β)
0

)
, (8)

where Mk =
[
−XkAT SkV

]
and σk(β) = βµke−Xksk. The new system can be implemented in

a quantum setting and solved by QLSA since M ′k is a Hermitian matrix and ∥M ′k∥ = 1. Similar
to II-QIPMs, we use the QTA of [2] to extract the classical solution. Theorem 3 presents the
complexity bound for QLSA by [6] to solve the OSS system.

Theorem 3 (Theorem 4.1 of [17]). Given the linear system (OSS), QLSA of [6] and QTA of [2]
provide a solution (λ̃k, ∆̃yk) with residual rk, where ∥rk∥ ≤ ηµk, in at most Õn,κA, 1

µk
(n2 κA

(µk)2
) total

time.

Algorithm 2 is the IF-QIPM of [17] with a classical short-step IPM structure, where QLSA
and QTA is used to solve the (OSS) system. Similar to other F-IPMs, the authors used a small
neighborhood of the central path, with θ ∈ [0, 1), defined as

N (θ) =
{
(x, y, s) ∈ PD0 : ∥XSe− xT s

n
e∥2 ≤ θ

xT s

n

}
.

For IF-QIPM, the set of ζ-optimal solution is definded as PDF (ζ) = {(x, y, s) ∈ PD : xT s
n ≤ ζ}.

Theorem 4 shows that the IF-QIPM attains the best iteration complexity of exact IPMs.

Algorithm 2 IF-QIPM using QLSA

1: Choose ζ > 0, η = 0.1, θ = 0.3 and β = (1− 0.11√
n
).

2: k ← 0
3: Choose initial feasible interior solution (x0, y0, s0) ∈ N (θ)
4: while (xk, yk, sk) /∈ PDF (ζ) do
5: µk ← (xk)T sk

n
6: (Mk, σk(β))←build system (8)
7: ϵQLSA ← ηµk

2∥σk(β)∥

8: ϵQTA ← ηµk

2∥σk(β)∥
9: (λk,∆yk)← solve the (Mk, σk(β)) using QLSA and QTA

10: ∆xk = V λk and ∆sk = −AT∆yk

11: (xk+1, yk+1, sk+1)← (xk, yk, sk) + (∆xk,∆yk,∆sk)
12: k ← k + 1

return (xk, yk, sk)

Theorem 4 (Theorem 2.6 in [17]). The IF-QIPM produces a solution in PDF (ζ) after at most
O(√n log(µ0

ζ )) iterations.
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Detailed complexity of IF-QIPM in [17] showes that the cost of classical operations at each
iteration is O(n2), the cost of quantum operations is Õn,κA, 1ζ

(n2 κA

ζ2 ), and the total time complexity
of the IF-QIPM is

Õn,κA, 1ζ
(n2.5

κA
ζ2

).

For details of the complexity analysis of this IF-QIPM, the reader is referred to [17]. This time
complexity includes 1

ζ2 , which indicates the exponential time for finding an exact solution. In the
next section, we discuss how an IRM can address this issue.

5 Application of the Iterative Refinement Method
As first used in the complexity analysis of Ellipsoid Method, one can find the exact optimal solution
by using a rounding procedure on solution of an IPM with 1

ζ = 2O(L) [19], where

L = mn+m+ n+
∑

i,j

⌈log(|aij |+ 1)⌉+
∑

i

⌈log(|ci|+ 1)⌉+
∑

j

⌈log(|bj |+ 1)⌉.

To get an exact optimal solution, the time complexity of both II-QIPM and IF-QIPM contain an
exponential term O( 1ζ ) = O(2L). To address this problem, we can fix ζ = 10−2 and improve the
precision by an Iterative Refinement method (IRM) in O(L) iterations [16]. Here, we discuss the
IR-IF-QIPM of [17]. The reader can also find an IR-II-QIPM in [16] with a partially different IRM.
Let us consider an LOP in standard form with (A, b, c). Let ∇ > 1 be a scaling factor. Given a
feasible solution (x, y, s) ∈ PD, the refining problem is defined as

min
x̂
∇sT x̂,

s.t. Ax̂ = 0,

x̂ ≥ −∇x,

max
ŷ,ŝ
−∇xT ŝ,

s.t. AT ŷ+ŝ = ∇s,
ŝ ≥ 0,

(9)

One can easily reformulate this problem to a standard LOP by changing variables.

Lemma 6 (Lemma 4.4 in [17]). If (x̂, ŷ, ŝ) is a ζ-optimal solution for the refining problem (9) with
(x, y, s) ∈ PD and xr = x + 1

∇ x̂, y
r = y + 1

∇ ŷ, and sr = c − AT yr, then (xr, yr, sr) ∈ PDF (
ζ
∇2 ),

i.e. (xr, yr, sr) is a ζ
∇2 -optimal solution for the LOP (A, b, c).

Based on the idea of Lemma 6, an IR-IF-QIPM is developed as Algorithm 3.

Algorithm 3 IR-IF-QIPM

Require:
(
A ∈ Rm×n, b ∈ Rm, c ∈ Rn, ζ̂ < ζ < 1

)

1: k ← 0 and ∇0 ← 1
2: (x0, y0, s0)← solve (A, b, c) using IF-QIPM with ζ precision
3: while (xk, yk, sk) /∈ PDF (ζ̂) do
4: ∇k ← 1

(xk)T sk

5: (x̂k, ŷk, ŝk)← solve (9) with (A,∇kxk,∇ksk) using IF-QIPM with ζ precision
6: xk+1 ← xk + 1

∇k x̂
k, yk+1 ← yk + 1

∇k ŷ
k, and sk+1 = c−AT yk+1

7: k ← k + 1

10



The following theorem shows that, considering precision, the number of iterations of IR is
logarithmic. One can use ζ = 10−2 and ζ̂ = 2−2L to get an exact solution of an LOP.

Theorem 5 (Theorem 4.5 of [17]). The IR-IF-QIPM finds a ζ̂-optimal solution using at most
O( log(ζ̂)log(ζ) ) inquiry to IF-QIPM with precision ζ.

The total time complexity of finding an exact optimal solution with IR-IF-QIPM is

O(n2.5LκA).

For more details of the complexity analysis of IR-IF-QIPM, please consult [17].

6 Conclusions
As Table 1 shows, using the result of [17], the best theoretical bound for solving LOPs is improved
w.r.t dimension for the first time, while the complexity still depends on the constant condition
number of A, κA. In addition, the IR-IF-QIPM has much better time complexity than IR-II-QIPM
for solving LOPs.

Table 1: Complexity of classical and quantum IPMs

Algorithm System LS Solver Complexity
Best Theoretical bound NES Partial Update O(n3L)

Feasible IPM NES Cholesky O(n3.5L)
IR-II-QIPM NES QTA+QLSA O

(
n4LκA

)

IR-IF-QIPM OSS QTA+QLSA O
(
n2.5LκA

)

The IRM that uses IF-QIPM with low precision reduces dependence on both inexactness of
QLSA+QTAs and the growing condition number of the Newton systems. The IRM+QLSA+QTA
of [15] can also be used to solve the Newton system accurately; however, an outer IRM is still needed
to address the exponential complexity caused by the condition number of the Newton system.
Another beneficial direction is to study preconditioning or regularizing the Newton systems to
mitigate the impact of the condition number in QIPMs. The IF-QIPM of [17] was the first attempt
to have an inexact but feasible IPM to solve LOPs by modifying the Newton system to guarantee
the feasibility of the inexact solution. An IF-QIPM and an II-QIPM were also developed for
other optimization problems, such as Linearly Constrained Quadratic Optimization (LCQO) [24],
Semidefinite Optimization (SDO) [3], and Second Order Cone Optimization (SOCO) [4]. Further
developments may include QIPMs for other optimization problems.
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