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Abstract

A stochastic-gradient-based interior-point algorithm for minimizing a continuously differentiable ob-
jective function (that may be nonconvex) subject to bound constraints is presented, analyzed, and
demonstrated through experimental results. The algorithm is unique from other interior-point meth-
ods for solving smooth (nonconvex) optimization problems since the search directions are computed
using stochastic gradient estimates. It is also unique in its use of inner neighborhoods of the feasible
region—defined by a positive and vanishing neighborhood-parameter sequence—in which the iterates are
forced to remain. It is shown that with a careful balance between the barrier, step-size, and neighborhood
sequences, the proposed algorithm satisfies convergence guarantees in both deterministic and stochastic
settings. The results of numerical experiments show that in both settings the algorithm can outperform
a projected-(stochastic)-gradient method.

1 Introduction

The interior-point methodology is one of the most effective approaches for solving continuous constrained
optimization problems. In the context of (deterministic) derivative-based algorithmic strategies, interior-
point methods offer convergence guarantees from remote starting points [11, 21, 27], and in both convex
and nonconvex settings such algorithms can offer good worst-case iteration complexity properties [7, 21].
Furthermore, many of the most popular software packages for solving large-scale continuous optimization
problems are based on interior-point methods [1, 11, 24, 25, 26, 27], and these have been used to great effect
for many years.

Despite the extensive literature on theoretical and practical benefits of interior-point methods in the
context of (deterministic) derivative-based algorithms for solving (non)convex optimization problems, to
the best of our knowledge there has not yet been one that has been shown rigorously to offer convergence
guarantees when neither function nor derivative evaluations are available, and instead only stochastic gradient
estimates are employed. (An interior-point stochastic-approximation method was proposed and tested in [12],
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but as we mention in Remark 3.3 on page 14, the claimed asymptotic-convergence guarantee in [12] overlooks
a critical issue related to the step sizes.) In this paper, we propose, analyze, and present the results of
experiments with such an algorithm. Randomized algorithms for minimizing a linear function over a convex
set have been proposed [2, 19], but the setting and the techniques those algorithms employ are distinct from
the ones considered in this paper.

For a straightforward presentation of our proposed strategy and its convergence guarantees, we focus
on the case of constrained optimization with bound constraints only. That said, our algorithmic strate-
gies have been designed so that they may be extended for solving problems with continuous (potentially
nonlinear) equality and/or inequality constraints as well. For example, since interior-point methods handle
inequality constraints through the introduction of an additional objective function term that is weighted
by a barrier parameter and a continuation strategy that reduces the barrier parameter iteratively, one
might consider extending our algorithmic ideas using the recently proposed stochastic algorithms for solving
equality-constrained optimization presented in [4, 5, 3, 6, 15, 14, 16, 17, 18, 23]. The main challenge to
address in such potential extensions is the one that we address in this paper, namely, that derivatives of
the barrier function are not Lipschitz continuous in the interior of a set of bound constraints. We focus
primarily on the setting of minimizing an objective that may be nonconvex. Upon seeing our algorithm, a
reader may wonder if a simpler variant has convergence guarantees. However, we discuss in Section 4 why
the challenges that we overcome in the general (potentially nonconvex) setting are not readily avoided with
a simpler variant, even in the strongly convex setting.

1.1 Contributions

We propose, analyze, and provide the results of numerical experiments with a stochastic-gradient-based
interior-point method for solving (potentially nonconvex) bound-constrained optimization problems. Al-
though not considered in this paper, our proposed algorithm can form the basis for a variety of algorithms
for solving problems with nonlinear equality and inequality constraints. Our algorithm involves multiple
unique features compared to other derivative-based interior-point methods that have been proposed and an-
alyzed in the literature. Overall, the main contributions of our proposed algorithm, analysis, and experiments
are the following.

(i) Our algorithm employs a prescribed monotonically nonincreasing and vanishing barrier parameter se-
quence. In this manner, the algorithm does not rely on the ability to compute values for derivative-based
stationarity tests, as is done in derivative-based interior-point methods for deciding whether to decrease
the barrier parameter in a given iteration. This is significant since stationarity measures cannot be
computed accurately in the stochastic setting that we consider.

(ii) Our algorithm does not employ a fraction-to-the-boundary rule. Such a rule is critical for convergence
guarantees of other derivative-based interior-point methods for solving nonconvex problems (see, e.g.,
[11, 27]), since it ensures that—with respect to a threshold that depends on the barrier parameter
value—the iterates do not get too close to the boundary of the feasible region. This, in turn, ensures
that the iterates remain in a region in which derivatives of the barrier function are Lipschitz continuous.
By contrast, in our proposed algorithm, we present a unique strategy that involves keeping each iterate
within an inner neighborhood of the feasible region. Over a run of the algorithm, these neighborhoods
are defined by a monotonically nonincreasing and vanishing sequence.

(iii) Our algorithm does not rely on step acceptance criteria (e.g., using line searches, trust regions, regu-
larization, etc.) that in turn rely on exact objective function evaluations. This is significant since such
evaluations are intractable in various settings of interest; see, e.g., [9]. That said, as is common for
other stochastic optimization algorithms, our convergence guarantees rely on knowledge of problem-
dependent quantities, including a Lipschitz constant for the gradient of the objective. (In practice, the
problem-dependent quantities that our algorithm requires can be estimated using (stochastic) function
and/or derivative values.)
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(iv) We present general sets of conditions under which the algorithm’s barrier, neighborhood, and step size
sequences are balanced so as to ensure convergence guarantees in both deterministic and stochastic
settings.

(v) We show by a representative comparison that, in deterministic and stochastic settings, the algorithm
can outperform a projected-(stochastic)-gradient method.

One aspect that limits the applicability of our work is that, for the stochastic setting, we assume that the
errors of the stochastic gradient estimators are bounded by a known value. Convergence guarantees have
been established under looser assumptions in unconstrained settings [9], but since unique challenges arise in
the constrained setting, we consider ours a significant first step in the design and analysis of interior-point
algorithms for constrained stochastic optimization.

1.2 Notation

We use R to denote the set of real numbers, R to denote the set of extended-real numbers (i.e., R :=
R ∪ {−∞,∞}), and R≥a (resp., R>a, R<a, or R≤a) to denote the set of real numbers greater than or equal
to (resp., greater than, less than, or less than or equal to) a ∈ R. We append a superscript to such a set
to denote the space of vectors or matrices whose elements are restricted to the indicated set; e.g., we use
Rn to denote the set of n-dimensional real vectors and Rm×n to denote the set of m-by-n-dimensional real
matrices. We use Sn ⊂ Rn×n to denote the set of n-by-n-dimensional real symmetric matrices. We use
N := {1, 2, . . . } to denote the set of positive integers and, given n ∈ N, we denote [n] := {1, . . . , n}.

Given B ⊆ Rn, we use int(B) to denote the interior of B. We use 1 to denote a vector of ones whose length
is determined by the context in which it appears. Given (A,B) ∈ Sn × Sn, we write A ⪰ B (resp., A ≻ B)
to indicate that A − B ∈ Sn is positive semidefinite (resp., positive definite). Given l ∈ Rn, we use Ψ(l)
to denote the extended-real-valued diagonal matrix whose (i, i)-element is equal to li for all i ∈ [n]. Given
a sequence of real-valued vectors {µk} and M ⊆ Rn, we write {µk} ⊂ M to indicate that µk ∈ M for all
k ∈ N. Moreover, for a real-number sequence, we write {µk} ↘ 0 to indicate that (a) {µk} ⊂ R>0, (b)
{µk} is monotonically nonincreasing, and (c) the limit of {µk} is zero. Given sequences {ak} ⊂ R≥0 and
{bk} ⊂ R>0, we write {ak} = O(bk) (resp., {ak} = Θ(bk)) to indicate that there exists C ∈ R>0 (resp.,
(c, C) ∈ R>0 × R>0) such that ak ≤ Cbk (resp., cbk ≤ ak ≤ Cbk) for all sufficiently large k ∈ N. Given
such sequences, we write {ak} = o(bk) to indicate that {ak/bk} → 0. Notice that in this paragraph and
throughout the paper we use a subscript either to indicate an element index (of a vector or matrix) or an
index of a sequence. In all such cases, the meaning of a subscript is clear from the context.

The algorithm that we propose is iterative in the sense that any given run of the algorithm produces
an iterate sequence (of real-valued vectors) {xk} ⊂ Rn. Like for the iterate sequence, we append a positive
integer as a subscript for a quantity to denote its value during an iteration of an algorithm. Multiple
subscripts are used in some cases, as needed; e.g., the ith element of the kth iterate xk ∈ Rn is denoted as
xk,i ∈ R and the (i, i)-element of a matrix Hk ∈ Sn is denoted as Hk,i,i.

At times, we express algebraic operations using quantities with infinite magnitude, namely, −∞ and
∞. In such cases, we adopt natural conventions. In particular, given a ∈ R, we let ∞ − a = ∞ and
a− (−∞) =∞, and, given a ∈ R>0, we let a ·∞ =∞ and a/∞ = 0. Given a pair of nonnegative extended-
real-number-valued vectors (a, b) ∈ Rn≥0 × Rn≥0, we write a ⊥ b to indicate that ai = 0 and/or bi = 0 for all
i ∈ [n].

1.3 Organization

Our main problem of interest, namely, minimizing a potentially nonconvex continuous function over a set
of bound constraints, is stated formally along with a presentation of our main algorithm in Section 2. Our
convergence analyses for this algorithm are presented in Section 3. In Section 4, we discuss the obstacles of
proving a convergence guarantee for a simpler variant of our algorithm, even in the strongly convex setting.
The results of numerical experiments are presented in Section 5 and concluding remarks are provided in
Section 6.
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2 Algorithm

Our main problem of interest is to minimize an objective function over a feasible region that we denote as
B := [l, u] ≡ {x ∈ Rn : l ≤ x ≤ u}, where (l, u) ∈ Rn × Rn with li < ui for all i ∈ [n]. We assume that at
least one element of (l, u) is finite, so the problem is indeed constrained. For the sake of generality, we only
require that the objective has as its domain an open set B+ containing B. Denoting this objective function
as f : B+ → R, we write our problem of interest as

min
x∈Rn

f(x) subject to x ∈ B := [l, u]. (1)

We make the following assumption pertaining to this (potentially nonconvex) f .

Assumption 2.1. The objective function f : B+ → R is continuously differentiable over B+, bounded below
by finf ∈ R over B, and bounded above by fsup ∈ R over B. In addition, its gradient function ∇f : B+ → Rn
is Lipschitz continuous with respect to the 2-norm over B with constant ℓ∇f,B ∈ R>0 and is bounded in
2-norm (resp., ∞-norm) over B by κ∇f,B,2 ∈ R>0 (resp., κ∇f,B,∞ ∈ R>0).

Assumption 2.1 is mostly standard. The nonstandard aspect is the assumption that f is bounded above over
B; this is a relatively loose assumption to handle extreme cases in the stochastic setting. The existence of
κ∇f,B,∞ follows from that of κ∇f,B,2, and vice versa, but we define both for the sake of notational convenience.

Under Assumption 2.1, specifically under the assumption that f is continuously differentiable over an
open set containing the feasible region B, it follows that if x ∈ Rn is a minimizer of (1), then there must
exist (y, z) ∈ Rn × Rn such that (x, y, z) satisfies the Karush-Kuhn-Tucker (KKT) conditions given by

∇f(x)− y + z = 0, 0 ≤ (x− l) ⊥ y ≥ 0, and 0 ≤ (u− x) ⊥ z ≥ 0. (2)

Defining the index sets of finite bounds as L := {i ∈ [n] : li > −∞} and U := {i ∈ [n] : ui < ∞}, x ∈ Rn
implies that xi − li = ∞ > 0 for all i ∈ [n] \ L and ui − xi = ∞ > 0 for all i ∈ [n] \ U , meaning that (2)
and our definition of the operator ⊥ in Section 1.2 require that yi = 0 for all i ∈ [n] \ L and zi = 0 for all
i ∈ [n] \ U .

Central ideas of the interior-point methodology are to replace inequality constraints with a parameterized
barrier function in the objective, and to solve the original constrained optimization problem through a
continuation approach by driving the barrier parameter to zero. For example, using a so-called log-barrier
in the context of (1), this amounts to introducing the barrier parameter µ ∈ R>0 and using the log-barrier-
augmented function ϕ : int(B)× R>0 → R given by

ϕ(x, µ) = f(x)− µ
∑
i∈L

log(xi − li)− µ
∑
i∈U

log(ui − xi). (3)

(We use a log-barrier function throughout the paper, although one might extend our algorithm and analysis
for other barrier functions as well.) Given µ ∈ R>0 and letting ∇xϕ denote the gradient operator of ϕ with
respect to its first argument, a minimizer of the barrier-augmented function ϕ(·, µ) over int(B) must satisfy

0 = ∇xϕ(x, µ) ≡ ∇f(x)− µΨ(x− l)−11+ µΨ(u− x)−11. (4)

A traditional interior-point method for derivative-based nonconvex optimization would involve fixing the
barrier parameter at a value µ ∈ R>0, employing an unconstrained optimization method to minimize ϕ(·, µ)
until an approximate stationarity tolerance is satisfied (with a safeguard such as a fraction-to-the-boundary
rule to ensure that the iterates remain within int(B)), then reducing the barrier parameter and repeating
the procedure in an iterative manner. However, for our purposes, we avoid the need to check a stationarity
tolerance, since this would require an evaluation of a gradient of the objective (see (4)), which we presume
is intractable to obtain.

Our proposed algorithm, by contrast, employs a prescribed positive barrier parameter sequence {µk} ↘ 0
and a line-search-free strategy for generating the positive step size sequence {αk} ⊂ R>0. We state the
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algorithm in a generic manner, but in our analyses in Section 3 we reveal specific requirements that these
sequences must satisfy to yield convergence guarantees in deterministic and stochastic settings. In addition,
rather than rely on a safeguard such as a fraction-to-the-boundary rule—which presents challenges in terms of
ensuring convergence guarantees in a stochastic setting since such a rule would enforce an iterate-dependent
bound on the steps—our algorithm employs a rule that ensures that, for all k ∈ N, the subsequent iterate
remains sufficiently within int(B) by a prescribed margin. For this, we introduce

N[l,u](θ) := {x ∈ Rn : l + θ ≤ x ≤ u− θ}, (5)

and, for all k ∈ N, have the algorithm ensure xk+1 ∈ N[l,u](θk) for some θk ∈ R>0. The positive sequence
{θk} ↘ 0, base value θ0 ∈ R>θ1 , and initial point x1 ∈ Rn must be prescribed for each run of the algorithm,
and the latter two must satisfy

x1 ∈ N[l,u](θ0) and θ0 <
∆
2 , where ∆ := min

{
∆̄,min

i∈[n]
(ui − li)

}
∈ R>0 (6)

for some ∆̄ ∈ R>0, where ∆̄ is introduced merely to ensure that ∆ is finite.
The search direction computation in our proposed algorithm is the main aspect that distinguishes be-

tween the deterministic and stochastic settings. Specifically, letting gk denote a stochastic gradient estimate
computed with respect to xk (see Section 3.3), we denote the gradient (estimate) for the barrier-augmented
function by

qk :=

{
∇f(xk)− µkΨ(xk − l)−11+ µkΨ(u− xk)−11 (deterministic)

gk − µkΨ(xk − l)−11+ µkΨ(u− xk)−11 (stochastic).

Then, for (λk,min, λk,max) ∈ R>0 × R>0 with λk,min ≤ λk,max and diagonal Hk ∈ Sn with λk,maxI ⪰ Hk ⪰
λk,minI, the search direction dk ∈ Rn is dk = −H−1

k qk.
A complete statement of our proposed interior-point method (IPM) for solving problem (1) with pre-

scribed parameter sequences (i.e., barrier-parameter sequence {µk}, neighborhood-parameter sequence {θk},
step-size-bound sequences {αk,max} and {γk,max}, and eigenvalue-bound sequences {λk,min} and {λk,max})
is stated as Algorithm 1. We have written Algorithm 1 in a generic manner that demonstrates flexibility
in the required parameter sequences. Our analyses in the next section prescribe additional rules for these
sequences that lead to convergence guarantees.

Algorithm 1 IPM with Prescribed Parameter Sequences

Require: {µk} ↘ 0; {θk} ↘ 0; {αk,max} ⊂ R>0; {γk,max} ⊂ (0, 1]; {λk,min} ⊂ R>0 and {λk,max} ⊂ R>0

such that λk,min ≤ λk,max for all k ∈ N; and x1 ∈ N[l,u](θ0) for some θ0 ∈ R>θ1 satisfying (6)
1: for k = 1, 2, . . . do
2: choose diagonal Hk ∈ Sn such that λk,maxI ⪰ Hk ⪰ λk,minI
3: compute dk ← −H−1

k qk
4: choose αk ∈ (0, αk,max]
5: compute γk ← max{γ ∈ (0, γk,max] : xk + γαkdk ∈ N[l,u](θk)}
6: set xk+1 ← xk + γkαkdk
7: end for

Remark 2.1. One could extend our algorithm and analysis to allow, for all k ∈ N, the employment of
non-diagonal Hk and/or the option to set xk+1 by searching further along the piecewise linear path defined
by the projections of xk + γαkdk onto N[l,u](θk) over γ ∈ (0, γk,max]. In such a setting, one needs to ensure
that the barrier-augmented function decrease lemmas that appear in our analyses in Section 3.2 and 3.3
(namely, Lemmas 3.5 and 3.12, respectively) guarantee decreases of the same order in terms of the algorithmic
parameters. This can be done, for example, by ensuring that the angle between the resulting direction and −qk
is acute and bounded away from 90◦ by a threshold that is independent of k and that the norm of the direction
and −qk are proportional uniformly over all k ∈ N. However, since such extensions would only obfuscate
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our analysis (specifically, Lemma 3.6) without adding significant value to our conclusions, we consider the
simpler procedures in Algorithm 1, which has the features that would drive convergence in such algorithm
variants as well.

Remark 2.2. Algorithm 1 is written as a primal interior-point method in the sense that each search direction
is computed from an n-by-n “Newton-like” system. One could also consider a primal-dual interior-point
method where the sequence of Lagrange multiplier estimates, say {(yk, zk)} (see (2)), act as independent
components of the iterates. To ensure convergence guarantees for a deterministic version of such a method,
one can employ our strategies for the parameter sequences as long as safeguards are included to ensure
that yk and zk remain within appropriately defined neighborhoods of µkΨ(xk − l)−11 and µkΨ(u− xk)−11,
respectively, for all k ∈ N. Similar safeguards have been used in the literature; see, e.g., [27, Section 2.2].
However, convergence guarantees for such a method in the stochastic setting do not follow readily from
our analysis for Algorithm 1; hence, overall, we do not consider a primal-dual interior-point variant of
Algorithm 1 in this paper.

3 Convergence Analyses

We analyze the behavior of Algorithm 1 under Assumption 2.1 as well as the following assumption.

Assumption 3.1. The iterate sequence {xk} of Algorithm 1 is contained in an open set X ⊆ int(B) over
which distances of iterate components to finite bounds are bounded in the sense that, for some χ ∈ R>1, one
has for all k ∈ N that xk,i − li ≤ χ for all i ∈ L and ui − xk,i ≤ χ for all i ∈ U .

The bounds required for Assumption 3.1 to hold are not restrictive for practical purposes. Indeed, while
Assumption 3.1 requires that χ ∈ R>0 exists, it can be arbitrarily large and knowledge of it is not required
by the algorithm; see upcoming Lemma 3.1.

3.1 Preliminary Results

In this subsection, we provide preliminary results that are required for our analyses of Algorithm 1 for the
deterministic and stochastic settings, which are considered separately in the subsequent subsections.

Our first lemma essentially shows that derivatives of the barrier-augmented function are unaffected by
scaling of the displacements from finite bounds that appear in the barrier function. For the lemma, we
introduce the function ϕ̃ : int(B) × R>0 → R that one obtains by scaling the barrier terms by χ−1 (see
Assumption 3.1), namely,

ϕ̃(x, µ) = f(x)− µ
∑
i∈L

log ((xi − li)/χ)− µ
∑
i∈U

log ((ui − xi)/χ) . (7)

Important relationships between ϕ and ϕ̃ and the derivatives of these functions with respect to their first
argument are the subject of this first lemma.

Lemma 3.1. For all (x, µ) ∈ X ×R>0, one finds ϕ̃(x, µ) = ϕ(x, µ)+µM ≥ finf , so ∇xϕ(x, µ) = ∇xϕ̃(x, µ),
where M ∈ R>0 is independent of x and µ. Moreover, for any (µ, µ̄) ∈ R>0 ×R>0 with µ̄ < µ, one has that

ϕ̃(x, µ̄) < ϕ̃(x, µ) for all x ∈ X .

Proof. The first desired equation follows from the definitions of ϕ(·, µ) and ϕ̃(·, µ) in (3) and (7), respectively,
and the fact that, for any δ ∈ R>0, one finds (since χ ∈ R>1) that − log(δ/χ) = − log(δ)+ log(χ). Then, the

fact that ϕ̃(x, µ) ≥ finf for all (x, µ) ∈ X ×R>0 follows by Assumption 2.1 and the fact that (xi−li)/χ ∈ [0, 1]
for all i ∈ L and (ui− xi)/χ ∈ [0, 1] for all i ∈ U . Next, the desired conclusions pertaining to the derivatives
of ϕ(·, µ) and ϕ̃(·, µ) follow from the first conclusion. The final desired conclusion follows from the fact that,
for all x ∈ X , one finds that (xi − li)/χ ∈ [0, 1] for all i ∈ L and (ui − xi)/χ ∈ [0, 1] for all i ∈ U .
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A consequence of Lemma 3.1 is that, for any k ∈ N such that the true gradient of the objective ∇f(xk)
is used in the definition of qk, the search direction computation in Algorithm 1 produces a descent direc-
tion for ϕ̃(·, µk) from xk (recall that Hk ≻ 0) even without explicit knowledge of the bound χ defined in
Assumption 3.1.

We now prove that the scaled barrier-augmented function has a gradient that satisfies a Lipschitz-
continuity property over the line segment between any two points in a neighborhood of the type that is
defined for the algorithm. The result also shows that the corresponding Lipschitz constant depends on how
close the elements of the points are to their corresponding lower and/or upper bounds, which, as shown in
our subsequent analysis, is a fact that can be exploited by our algorithm.

Lemma 3.2. For any (µ, θ, θ̄) ∈ R>0×R>0×R>0 with θ̄ ∈ (0, θ], (x, x) ∈ N[l,u](θ)×N[l,u](θ̄), and γ ∈ [0, 1],
one finds that

∥∇xϕ̃(x+ γ(x− x), µ)−∇xϕ̃(x, µ)∥2 ≤ γℓ∇f,B,µ,x,x∥x− x∥2, (8)

where ℓ∇f,B,µ,x,x := ℓ∇f,B + µa(x, x)−1 + µb(x, x)−1 with

ai(x) := xi − li; a+i (x, x) := min{xi − li, xi − li}; a(x, x) := min
i∈[n]
{ai(x)a+i (x, x)}

bi(x) := ui − xi; b+i (x, x) := min{ui − xi, ui − xi}; b(x, x) := min
i∈[n]
{bi(x)b+i (x, x)}.

Moreover, one finds that ℓ∇f,B,µ,x,x ≤ ℓ∇f,B,µ,θ,θ̄ := ℓ∇f,B + 2µθ−1θ̄−1 ∈ R>0.

Proof. For arbitrary such (µ, θ, θ̄, x, x, γ), (4) and Lemma 3.1 imply

∥∇xϕ̃(x+ γ(x− x), µ)−∇xϕ̃(x, µ)∥2
≤ ∥∇f(x+ γ(x− x))−∇f(x)∥2

+ µ∥((Ψ(x− l) + γΨ(x− x))−1 −Ψ(x− l)−1)1∥2
+ µ∥((Ψ(u− x)− γΨ(x− x))−1 −Ψ(u− x)−1)1∥2.

Considering the latter two terms, for arbitrary i ∈ [n], one has

1
xi+γ(xi−xi)−li −

1
xi−li = γ(xi−xi)

(xi+γ(xi−xi)−li)(xi−li) ≤
γ(xi−xi)

ai(x)a
+
i (x,x)

and similarly that (ui − xi − γ(xi − xi))−1 − (ui − xi)−1 ≤ γ(xi − xi)bi(x)−1b+i (x, x)
−1. By Assumption 2.1

and these bounds over all i ∈ [n], the desired conclusion follows.

Remark 3.1. Lemma 3.2 and all of our subsequent analysis could be based on the simpler, but more conserva-
tive ℓ∇f,B,µ,θ,θ̄ rather than ℓ∇f,B,µ,x,x in (8). Similarly, the step-size rule that we present in upcoming Param-

eter Rule 3.1 could be based on the simpler, but more conservative 2θ−1θ̄−1 rather than a(x, x)−1+b(x, x)−1.
However, these tighter bounds have the effect of allowing larger step sizes, which is beneficial in the numerical
experiments presented in Section 5. Hence, we make these choices to have consistency between our analysis
and numerical experimentation.

The following consequence of Lemma 3.2 is central to our analysis.

Lemma 3.3. For any (µ, θ, θ̄) ∈ R>0×R>0×R>0 with θ̄ ∈ (0, θ] and (x, x) ∈ N[l,u](θ)×N[l,u](θ̄), one finds
with ℓ∇f,B,µ,x,x ∈ R>0 is defined in Lemma 3.2 that

ϕ̃(x, µ) ≤ ϕ̃(x, µ) +∇xϕ̃(x, µ)T (x− x) + 1
2ℓ∇f,B,µ,x,x∥x− x∥

2
2.

Proof. For arbitrary (µ, θ, θ̄, x, x) satisfying the conditions of the lemma, it follows with the Fundamental
Theorem of Calculus and the Cauchy-Schwarz inequality that

ϕ̃(x, µ)− ϕ̃(x, µ)
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=

∫ 1

0

∂ϕ̃(x+γ(x−x),µ)
∂γ dγ =

∫ 1

0

∇xϕ̃(x+ γ(x− x), µ)T (x− x)dγ

= ∇xϕ̃(x, µ)T (x− x) +
∫ 1

0

(∇xϕ̃(x+ γ(x− x), µ)−∇xϕ̃(x, µ))T (x− x)dγ

≤ ∇xϕ̃(x, µ)T (x− x) + ∥x− x∥2
∫ 1

0

∥∇xϕ̃(x+ γ(x− x), µ)−∇xϕ̃(x, µ)∥2dγ.

Hence, the desired conclusion follows along with Lemma 3.2 and since
∫ 1

0
γdγ = 1

2 .

The prior lemma motivates the following parameter rule that we make going forward. We remark at this
stage that, for our analysis of the deterministic setting in the next subsection, one can consider αk,max ←∞
for all k ∈ N so that the step size is always set to be the first term in the minimum in (9). However, for
the stochastic setting, our analysis requires a more conservative choice for {αk,max}; see Section 3.3. Hence,
we introduce {αk,max} at this stage, and carry it through our analysis, to maintain consistency between the
deterministic and stochastic settings.

Parameter Rule 3.1. For all k ∈ N, the algorithm has

αk,max ≥ αk,min, where αk,min :=
λk,min

ℓ∇f,B+2µkθ
−2
k

,

and the algorithm sets

αk ← min
{
λk,min

ℓ∇f,B,k
, αk,max

}
, (9)

where αk,pre ← λk,min

ℓ∇f,B+µka(xk,xk)−1+µkb(xk,xk)−1 ,

γ̄k ← max{γ ∈ (0, γk,max] : xk + γαk,predk ∈ N[l,u](θk)},
and ℓ∇f,B,k ← ℓ∇f,B + µka(xk, xk + γ̄kαk,predk)

−1 + µkb(xk, xk + γ̄kαk,predk)
−1.

The following lemma shows that the step-size rule in Parameter Rule 3.1 employs a denominator, namely,
ℓ∇f,B,k, that serves as an upper bound for the Lipschitz constant seen in Lemmas 3.2 and 3.3. An implication
of this fact is that the inequalities in these lemmas hold with that constant replaced by ℓ∇f,B,k, and another
implication, stated in the lemma, is that the step size is contained in a prescribed interval. (The proof reveals
that an important property of αk,pre is that it can be computed prior to αk, yet is ensured to be an upper
bound for the value of αk that will be computed.)

Lemma 3.4. For all k ∈ N, with ℓ∇f,B,µk,xk,xk+1
defined as in Lemma 3.2 and ℓ∇f,B,k defined as in

Parameter Rule 3.1, one finds that

ℓ∇f,B,µk,xk,xk+1
≤ ℓ∇f,B,k ≤ ℓ∇f,B,µk,θk−1,θk ≤ ℓ∇f,B + 2µkθ

−2
k , (10)

from which it follows that the step size in Parameter Rule 3.1 has αk ∈ [αk,min, αk,max].

Proof. Consider arbitrary k ∈ N. To prove the first inequality in (10), it follows from the definitions in
Lemma 3.2 that it is sufficient to prove that, for all i ∈ [n],

a+i (xk, xk+1) ≥ a+i (xk, xk + γ̄kαk,predk) (11a)

and b+i (xk, xk+1) ≥ b+i (xk, xk + γ̄kαk,predk). (11b)

Toward this end, let us first show that γkαk ≤ γ̄kαk,pre. Denoting (with min ∅ =∞)

δlk(αk) := min
{
li+θk−xk,i

αkdk,i
: dk,i < 0, i ∈ [n]

}
and δuk (αk) := min

{
ui−θk−xk,i

αkdk,i
: dk,i > 0, i ∈ [n]

}
,

9



the definition of γk in line 5 of Algorithm 1 yields γk = min{γk,max, δ
l
k(αk), δ

u
k (αk)}. Thus, γkαk =

min{γk,maxαk, δ
l
k(1), δ

u
k (1)}. Similarly, by the definition of γ̄k in Parameter Rule 3.1, one finds that γ̄kαk,pre =

min{γk,maxαk,pre, δ
l
k(1), δ

u
k (1)}. Hence, since a(xk, xk+ γ̄kαk,predk) ≤ a(xk, xk) and b(xk, xk+ γ̄kαk,predk) ≤

b(xk, xk) imply αk ≤ αk,pre, one finds γkαk ≤ γ̄kαk,pre, as desired. Now, for i ∈ [n] with dk,i < 0,

a+i (xk, xk+1) = xk+1,i − li = xk,i + γkαkdk,i − li
≥ xk,i + γ̄kαk,predk,i − li = a+i (xk, xk + γ̄kαk,predk),

while for i ∈ [n] with dk,i ≥ 0, a+i (xk, xk+1) = xk,i − li = a+i (xk, xk + γ̄kαk,predk). Therefore, (11a) holds.
One finds that (11b) holds with a similar derivation. Consequently, the first desired inequality in (10) holds.
The remaining desired inequalities in (10) follow by the definitions in Lemma 3.2, Parameter Rule 3.1, and
{θk} ↘ 0.

The step-size choice in Parameter Rule 3.1 depends on the Lipschitz constant ℓ∇f,B (amongst other
quantities prescribed and/or computed in Algorithm 1), which can be any Lipschitz constant for ∇f over B
(i.e., it does not need to be the minimal such Lipschitz constant). This choice is reasonable for practical
purposes since such a value can be computed or estimated in practice. Overall, this choice of step size in
Parameter Rule 3.1 can be viewed as a generalization of the Θ(1/ℓ∇f,B)-type step-size rules common in
unconstrained (deterministic and stochastic) optimization.

Remark 3.2. Observe that Lemma 3.2 reveals that convergence guarantees in the context of an interior-
point method do not follow readily from the standard arguments for a (stochastic-)gradient-based method for
unconstrained optimization. In particular, even though the lemma shows that the gradient of the (scaled)
barrier-augmented function is Lipschitz continuous over N[l,u](θ) for any θ ∈ R>0, the Lipschitz constant
(for a given µ ∈ R>0) can diverge as θ ↘ 0. Hence, ensuring convergence requires a careful balance between
the barrier-parameter sequence, step-size sequence, and neighborhood-parameter sequence, as revealed in our
subsequent analyses.

3.2 Deterministic Setting

We now focus on convergence guarantees that can be shown for Algorithm 1 in the deterministic setting, i.e.,
when qk is computed using ∇f(xk) for all k ∈ N. We begin by proving a set of generic results, then conclude
with observations about specific choices for the parameter sequences that yield convergence guarantees with
respect to stationarity measures.

We first provide a decrease lemma for the shifted barrier-augmented function, which is reminiscent of a
standard decrease lemma for a gradient-based method in the context of unconstrained optimization. The
particular form of this result is a consequence of the choice of the step size stated in Parameter Rule 3.1.

Lemma 3.5. For all k ∈ N, one finds that

ϕ̃(xk+1, µk+1)− ϕ̃(xk, µk) ≤ − 1
2γkαk∥∇xϕ̃(xk, µk)∥

2
H−1

k

.

Proof. For all k ∈ N, Lemmas 3.3 and 3.4, the value of xk+1 in line 6 of Algorithm 1, and the conditions on
Hk in line 2 of Algorithm 1 imply

ϕ̃(xk+1, µk)− ϕ̃(xk, µk)
≤ ∇xϕ̃(xk, µk)T (xk+1 − xk) + 1

2ℓ∇f,B,µk,xk,xk+1
∥xk+1 − xk∥22

≤ −∇xϕ̃(xk, µk)T (γkαkH−1
k ∇xϕ̃(xk, µk)) +

1
2ℓ∇f,B,k∥γkαkH

−1
k ∇xϕ̃(xk, µk)∥

2
2

≤ − γkαk∥∇xϕ̃(xk, µk)∥2H−1
k

+ 1
2γ

2
kα

2
kλ

−1
k,minℓ∇f,B,k∥∇xϕ̃(xk, µk)∥

2
H−1

k

= − γkαk(1− 1
2γkαkλ

−1
k,minℓ∇f,B,k)∥∇xϕ̃(xk, µk)∥

2
H−1

k

.
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Now, one finds under Parameter Rule 3.1 that the parameter sequences yield

αkℓ∇f,B,k ≤ λk,min =⇒ γkαkℓ∇f,B,k ≤ λk,min ⇐⇒ 1
2 ≤ 1− 1

2γkαkλ
−1
k,minℓ∇f,B,k.

Thus, one finds from above that ϕ̃(xk+1, µk) − ϕ̃(xk, µk) ≤ − 1
2γkαk∥∇xϕ̃(xk, µk)∥

2
H−1

k

. Combining this

inequality with Lemma 3.1, which since µk+1 < µk shows that ϕ̃(xk+1, µk+1) < ϕ̃(xk+1, µk), one reaches the
desired conclusion.

We now prove a critical lower bound on each element of the sequence {γk}.

Lemma 3.6. For all k ∈ N, define

γk,min := min

1,

λk,min

 1
2µk∆

µk+
1
2κ∇f,B,∞∆

−θk


αk(κ∇f,B,∞+µkθ

−1
k−1)

 (12)

and suppose γk,max ∈ [γk,min, 1]. Then, for all k ∈ N, γk ≥ γk,min.

Proof. Recall that the algorithm ensures, for all k ∈ N, that

xk ∈ N[l,u](θk−1) ⇐⇒ l + θk−1 ≤ xk ≤ u− θk−1. (13)

For all k ∈ N and i ∈ [n], let γk,i := max{γ ∈ (0, γk,max] : xk,i + γαkdk,i ∈ [li + θk, ui − θk]} so that
γk ← mini∈[n] γk,i. Considering arbitrary k ∈ N and i ∈ [n], let us suppose that dk,i < 0 and prove a
lower bound on γk,i that is independent of the index i ∈ [n]. One would find—although we omit details for
brevity—that the same lower bound for γk,i can be proved when dk,i > 0 in a similar manner. All of this,
along with the fact that γk,i = γk,max when dk,i = 0, leads to the desired conclusion.

Consider arbitrary k ∈ N and i ∈ [n] and, as previously stated, suppose that dk,i < 0. If i /∈ L, then it
follows that γk,i = γk,max. Hence, we proceed under the assumption that i ∈ L. If xk,i+γk,maxαkdk,i ≥ li+θk,
then γk,i = γk,max. Otherwise, the algorithm ensures xk,i+γk,iαkdk,i = li+θk, and (13) and Assumption 2.1
give

γk,i =
xk,i−li−θk

αk[Hk]
−1
i,i (∇if(xk)−µk(xk,i−li)−1+µk(ui−xk,i)−1)

≥ xk,i−li−θk
αk[Hk]

−1
i,i (∇if(xk)+µk(ui−xk,i)−1)

≥ λk,min(xk,i−li−θk)
αk(|∇if(xk)|+µkθ

−1
k−1)

. (14)

The remainder of our analysis in this case hinges on providing a positive lower bound for xk,i − li. First, if
i ∈ L and i /∈ U , then one finds that dk,i < 0 means

[Hk]
−1
i,i

(
−∇if(xk) + µk

xk,i−li

)
< 0

⇐⇒
(
−∇if(xk) + µk

xk,i−li

)
< 0 ⇐⇒ ∇if(xk) > 0 and xk,i − li > µk

|∇if(xk)| .

Second, if i ∈ L ∪ U , then one finds with ∆i := ui − li that

dk,i = [Hk]
−1
i,i

(
−∇if(xk) + µk

xk,i−li −
µk

ui−xk,i

)
< 0

⇐⇒ −∇if(xk) + µk

xk,i−li −
µk

∆i−(xk,i−li) < 0

⇐⇒ µk

(
∆i−2(xk,i−li)

(xk,i−li)(∆i−(xk,i−li))

)
< ∇if(xk)

⇐⇒ ∇if(xk)(xk,i − li)2 − (2µk +∇if(xk)∆i)(xk,i − li) + µk∆i < 0.

Given this inequality, there are three subcases to consider depending on ∇if(xk).

11



(i) Suppose ∇if(xk) = 0. Then, xk,i − li > 1
2∆i.

(ii) Suppose ∇if(xk) < 0. Then, by the quadratic formula, it follows that

xk,i − li < µk

∇if(xk)
+ ∆i

2 −
√

µ2
k

(∇if(xk))2
+

∆2
i

4 (15a)

or xk,i − li > µk

∇if(xk)
+ ∆i

2 +

√
µ2
k

(∇if(xk))2
+

∆2
i

4 . (15b)

In fact, the upper bound on xk,i − li stated in (15a) is not possible since

µk

∇if(xk)
+ ∆i

2 −
√

µ2
k

(∇if(xk))2
+

∆2
i

4

≤ µk

∇if(xk)
+ ∆i

2 −
√

µ2
k

(∇if(xk))2
+ 2 µk

∇if(xk)
∆i

2 +
∆2

i

4

≤ µk

∇if(xk)
+ ∆i

2 −
∣∣∣ µk

∇if(xk)
+ ∆i

2

∣∣∣ ≤ 0

while the algorithm ensures xk,i − li > 0. Hence, (15b) must hold in this case, from which it follows
(by dropping the 1

4∆
2
i term) that xk,i − li > 1

2∆i.

(iii) Suppose ∇if(xk) > 0. Then, by the quadratic formula, it follows that

xk,i − li > µk

∇if(xk)
+ ∆i

2 −
√

µ2
k

(∇if(xk))2
+

∆2
i

4 . (16)

Define ak,i :=
µ2
k

(∇if(xk))2
+2 µk

∇if(xk)
∆i

2 +
∆2

i

4 and bk,i :=
µ2
k

(∇if(xk))2
+

∆2
i

4 , and observe that ak,i > bk,i > 0

while the right-hand side of (16) is equal to s(ak,i)−s(bk,i), where s(·) :=
√
· is the square root function.

By the mean value theorem, there exists a real number c ∈ [bk,i, ak,i] such that one finds

s(ak,i)− s(bk,i) = s′(c)(ak,i − bk,i), where s′(c) = 1
2
√
c
≥ 1

2
√
ak,i

.

Hence, one has from (16) that

xk,i − li > s(ak,i)− s(bk,i) ≥ ak,i−bk,i

2
√
ak,i

=

µk

∇if(xk)
∆i

2
µk

∇if(xk)
+

∆i

2

=
1
2µk∆i

µk+
1
2∇if(xk)∆i

.

Combining the results above when i ∈ L, one finds that dk,i < 0 implies

xk,i − li ≥ min

{
µk

|∇if(xk)| ,
∆i

2 ,
1
2µk∆i

µk+
1
2 |∇if(xk)|∆i

}
=

1
2µk∆i

µk+
1
2 |∇if(xk)|∆i

.

Combining this inequality, (14), the facts that maxi∈[n] |∇if(xk)| ≤ κ∇f,B,∞ and ∆ ≤ mini∈[n] ∆i, and the
monotonicity of ρz

τ+ωz with respect to z when ρ, τ , and ω are positive, one reaches the desired conclusion.

The prior lemma motivates the following rule that we make going forward. Similarly as for the choice of
the step size (recall Parameter Rule 3.1), the remainder of our analysis for the deterministic setting can use
γk,max ← 1 for all k ∈ N, but for the stochastic setting our analysis requires a more conservative choice for
{γk,max}.

Parameter Rule 3.2. For all k ∈ N, with γk,min from (12), γk,max ∈ [γk,min, 1].

We now prove a generic convergence theorem for Algorithm 1 in a deterministic setting. We follow this
theorem with a corollary that provides specific choices of the parameter sequences that ensure that the
conditions of the theorem hold.
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Theorem 3.1. Suppose that Assumptions 2.1 and 3.1 and Parameter Rules 3.1 and 3.2 hold. If, further,
the parameter sequences of Algorithm 1 yield

∞∑
k=1

γkαk =∞, (17)

then
lim inf
k→∞

∥∇xϕ̃(xk, µk)∥2H−1
k

= 0, (18)

meaning that if there exists r ∈ R>0 such that λk,max ≤ r for all k ∈ N, then

lim inf
k→∞

∥∇xϕ̃(xk, µk)∥22 = 0. (19)

Additionally, if such r exists, the sequence {µkθ−1
k−1} is bounded, and there exists a set K ⊆ N of infinite

cardinality such that {∇ϕ̃(xk, µk)}k∈K → 0 and {xk}k∈K → x for some x ∈ B, then the limit point x is a
KKT point for (1) in the sense that there exists (y, z) ∈ Rn × Rn such that (x, y, z) satisfies (2).

Proof. It follows from Lemma 3.1 that ϕ̃ is bounded below by finf over X ×R>0. Then, one finds by summing
the expression in Lemma 3.5 over k ∈ N that

∞ > ϕ̃(x1, µ1)− finf ≥
∞∑
k=1

(ϕ̃(xk, µk)− ϕ̃(xk+1, µk+1)) ≥
∞∑
k=1

γkαk

2 ∥∇xϕ̃(xk, µk)∥
2
H−1

k

.

If there exists ϵ ∈ R>0 and kϵ ∈ N such that ∥∇xϕ̃(xk, µk)∥2H−1
k

≥ ϵ for all k ∈ N with k ≥ kϵ, then

the conclusion above contradicts (17). Hence, it follows that such ϵ and kϵ do not exist, meaning that
(18) holds, as desired. Now, if there exists r ∈ R>0 such that λk,max ≤ r for all k ∈ N, then 0 =

lim infk→∞ ∥∇xϕ̃(xk, µk)∥2H−1
k

≥ lim infk→∞ r−1∥∇xϕ̃(xk, µk)∥22, from which (19) holds, as desired. Now

suppose that such r exists, {µkθ−1
k−1} is bounded, and there exists an infinite-cardinality set K ⊆ N as

described in the theorem. By Lemma 3.1, it follows that {∇ϕ(xk, µk)}k∈K → 0 as well. Using this limit and,
for all k ∈ K, defining the auxiliary sequences

yk := µkΨ(xk − l)−11 and zk := µkΨ(u− xk)−11, (20)

it follows that {(xk, yk, zk)}k∈K ⊂ Rn × Rn × Rn satisfies

{xk}k∈K → x and {∥∇f(xk)− yk + zk∥2}k∈K → 0. (21)

Next, for all k ∈ N, it follows from xk ∈ N[l,u](θk−1) (see Algorithm 1) that one has 0 ≤ yk,i = µk

xk,i−li ≤
µk

θk−1

and 0 ≤ zk,i = µk

ui−xk,i
≤ µk

θk−1
. Since {µkθ−1

k−1} is bounded by assumption, it follows that {yk}k∈K and

{zk}k∈K are bounded. Then, the Bolzano-Weierstrass Theorem gives the existence of an infinite subsequence
of indices Ky,z ⊆ K and vectors y ∈ Rn and z ∈ Rn such that

{yk}k∈Ky,z
→ y and {zk}k∈Ky,z

→ z. (22)

Using these limits, (20), and {µk} ↘ 0, it follows that

yi = 0 for all i ∈ [n] with xi ̸= li

and zi = 0 for all i ∈ [n] with xi ̸= ui.
(23)

Combining x ∈ B, Ky,z ⊆ K, and (20)–(23), it follows that x is a KKT point for (1) since the tuple (x, y, z)
satisfies (2), thus completing the proof.
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The following corollary shows that there exist choices of the parameter sequences such that the conditions
of Theorem 3.1 hold.

Corollary 3.1. Suppose that Assumptions 2.1 and 3.1 and Parameter Rules 3.1 and 3.2 hold. Then, there
exist parameter choices for Algorithm 1 such that the infinite series in (17) is unbounded and {µkθ−1

k−1}
is bounded; e.g., these consequences follow if for some r ∈ R>0, t ∈ [−1, 0), and µ1 ∈ R>0 with µ1 >
1
2 θ0κ∇f,B,∞∆

1
2∆−θ0

the algorithm has µk = µ1k
t, θk−1 = θ0k

t, αk,max ← ∞, γk,max ← 1, and r ≤ λk,min ≤ λk,max

for all k ∈ N. Thus, with these choices, the lower limit in (18) holds, and if there exists r ∈ R≥r such
that λk,max ≤ r for all k ∈ N, then the lower limit in (19) holds. Finally, if all of the aforementioned
choices of the parameter sequences are made and there exists an infinite-cardinality set K ⊆ N such that
{∇ϕ̃(xk, µk)}k∈K → 0 and {xk}k∈K → x for some x ∈ B, then the limit point x is a KKT point for (1).

Proof. Under Parameter Rules 3.1 and 3.2, Lemmas 3.4 and 3.6 imply that with the parameter choices given
in the corollary, one finds that

γkαk ≥ rmin

 1
ℓ∇f,B+2µ1θ

−2
0 kt(k+1)−2t

,

1
2µ1∆k

t

µ1kt+
1
2κ∇f,B,∞∆

−θ0(k+1)t

κ∇f,B,∞+µ1θ
−1
0


=: rmin{βk, ηk}. (24)

With respect to the sequence {βk}, one finds for all k ∈ N that

kt(k + 1)−2t ≤ kt(2k)−2t = 2−2tk−t. (25)

For the sequence {ηk}, one finds with (6) and since t < 0 that, for all k ∈ N,

1
2µ1∆k

t

µ1kt+
1
2κ∇f,B,∞∆

− θ0(k + 1)t ≥
1
2µ1∆k

t

µ1kt+
1
2κ∇f,B,∞∆

− θ0kt

=

(
1
2µ1∆

µ1kt+
1
2κ∇f,B,∞∆

− θ0
)
kt

≥
(

1
2µ1∆

µ1+
1
2κ∇f,B,∞∆

− θ0
)
kt, (26)

where one finds that (6) (i.e., θ0 <
∆
2 ) and

µ1 >
1
2 θ0κ∇f,B,∞∆

1
2∆−θ0

imply
1
2µ1∆

µ1+
1
2κ∇f,B,∞∆

> θ0.

Hence, combining (24), (25), and (26), there exists c ∈ R>0 such that

γkαk ≥ rmin{βk, ηk} ≥ rckt, (27)

and since t ∈ [−1, 0), one concludes that the infinite series in (17) is unbounded.
Finally, for all k ∈ N, it follows from the given parameter choices that one finds µkθ

−1
k−1 = µ1θ

−1
0 for all

k ∈ N, so {µkθ−1
k−1} ≡ {µ1θ

−1
0 } is bounded, as claimed.

Remark 3.3. Related to Remark 3.2, we observe that the claimed asymptotic convergence guarantee in [12]
overlooks a critical issue in terms of the step sizes. The method in [12] employs step sizes that, amongst other
considerations, ensure that each iterate remains feasible. The claimed convergence guarantee then assumes
that the step sizes are unsummable. However, when the step sizes need to be reduced to maintain feasibility,
one cannot presume that the resulting step sizes are unsummable. This issue is overlooked in [12], but—
through a careful balance between the barrier-parameter, step-size, and neighborhood parameter sequences in
our algorithm—we find in Corollary 3.1 that there exist parameter choices such that (17) holds. We also
carry this property forward for the stochastic setting, as seen in Section 3.3.
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We conclude this subsection by observing that if B is bounded, then {xk} has a convergent subsequence
and, under the stated conditions in Corollary 3.1, an infinite-cardinality set K of the type described in the
corollary is guaranteed to exist.

3.3 Stochastic Setting

We now provide a convergence guarantee for Algorithm 1 in a stochastic setting when, in every run for
all k ∈ N, qk is computed using an unbiased stochastic gradient estimate gk with bounded error; see up-
coming Assumption 3.2. Formally, we consider the stochastic process defined by the algorithm, namely,
{(Xk, Gk, Qk, Hk, Dk,Γk, Ak,Γk)}, where, for all k ∈ N, the random variables correspond to the iterate Xk,
stochastic gradient estimator Gk, stochastic barrier-augmented function gradient Qk, scaling matrix Hk,
direction Dk, neighborhood enforcement parameter Γk, step size Ak, and neighborhood enforcement pa-
rameter Γk. A realization of this process is {(xk, gk, qk, Hk, dk, γ̄k, αk, γk)}, as in Algorithm 1. (Here, we
have introduced a slight abuse of notation in terms of Hk, which acts as both a random variable and its
realization. We prefer this slightly abused notation rather than introduce additional notation; it should not
lead to confusion since, for our analysis in this subsection—which considers Hk as a random variable for all
k ∈ N—ultimately relies on the fact that the eigenvalues of the elements of {Hk} can be bounded by the
prescribed bound sequences {λk,min} and {λk,max}.) The behavior of any run of the algorithm is determined
by the initial conditions (including that X1 = x1) and the sequence of stochastic gradient estimators {Gk}.
Let F1 denote the σ-algebra defined by the initial conditions and, for all k ∈ N with k ≥ 2, let Fk denote the
σ-algebra defined by the initial conditions and the random variables {G1, . . . , Gk−1}, a realization of which
determines the realizations of {Xj}kj=1 and {(Gj , Qj , Dj ,Γj , Aj ,Γj)}k−1

j=1 . In this manner, the sequence {Fk}
is a filtration.

For our analysis in this subsection, we continue to make Assumptions 2.1 and 3.1, where for Assump-
tion 3.1 we assume that the set X and real number χ are uniform over all possible realizations of the
stochastic process. In terms of the stochastic gradient estimators and scaling matrices, we make the follow-
ing assumption.

Assumption 3.2. For all k ∈ N, one has E[Gk|Fk] = ∇f(Xk). In addition, there exists (σ2, σ∞) ∈
R≥0 × R≥0 such that, for all k ∈ N, one has

∥Gk −∇f(Xk)∥2 ≤ σ2 and ∥Gk −∇f(Xk)∥∞ ≤ σ∞.

Finally, for all k ∈ N, the matrix Hk ∈ Sn is Fk-measureable.

In Assumption 3.2, the existence of σ∞ follows from that of σ2, and vice versa, but we introduce both of
these values for the sake of notational convenience. It follows under Assumption 3.2 that, for all k ∈ N, one
has ∥Gk∥∞ ≤ κ∇f,B,∞ + σ∞.

In terms of the algorithmic choices that we consider in our present analysis, we state the following rule
that can be seen as a slightly modified combination of Parameter Rules 3.1 and 3.2. Overall, unlike in
the deterministic setting where one can prove convergence guarantees (see Theorem 3.1 and Corollary 3.1)
using αk,max ← ∞ and γk,max ← 1 for all k ∈ N and without knowledge of κ∇f,B,∞ appearing in the
definition of γk,min in Lemma 3.6, for the stochastic setting our analysis requires more conservative choices
and information. Specifically, we employ the following rule.

Parameter Rule 3.3. With prescribed {αk,buff} ⊂ R>0 and {γk,buff} ⊂ R>0 such that {αk,buff} = O(k2t)
and {γk,buff} = O(kt) for some t ∈ [−1,− 1

2 ), the algorithm employs for all k ∈ N the prescribed (i.e., not
random) values

αk,min :=
λk,min

ℓ∇f,B+2µkθ
−2
k

, γk,min := min

1,

λk,min

 1
2µk∆

µk+
1
2 (κ∇f,B,∞+σ∞)∆

−θk


αk,max(κ∇f,B,∞+σ∞+µkθ

−1
k−1)

 ,
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αk,max := αk,min + αk,buff , and γk,max := min{1, γk,min + γk,buff},

and makes the (run-and-iterate-dependent) choice αk ← min
{
λk,min

ℓ∇f,B,k
, αk,max

}
.

Since the barrier parameter sequence {µk} and neighborhood parameter sequence {θk} are prescribed
and Lemmas 3.1, 3.2, and 3.3 hold independently of any algorithm, it follows that the result of Lemma 3.4
holds in the present setting. We formalize this fact in the following lemma, the proof of which is omitted
since it would follow the same line of argument as the proof of Lemma 3.4 stated previously.

Lemma 3.7. For all k ∈ N, with ℓ∇f,B,µk,Xk,Xk+1
defined as in Lemma 3.2 and ℓ∇f,B,k defined as in

Parameter Rule 3.1, one finds that

ℓ∇f,B,µk,Xk,Xk+1
≤ ℓ∇f,B,k ≤ ℓ∇f,B,µk,θk−1,θk ≤ ℓ∇f,B + 2µkθ

−2
k ,

from which it follows that Parameter Rule 3.3 guarantees Ak ∈ [αk,min, αk,max].

We also have that the following result, similar to Lemma 3.6, holds in the present setting. The proof is
omitted since it would follow the same line of argument as the proof of Lemma 3.6, the primary differences
being that, for all k ∈ N, one has Ak ≤ αk,max and in place of |∇if(xk)| ≤ κ∇f,B,∞ one can employ
|Gk,i| ≤ κ∇f,B,∞ + σ∞.

Lemma 3.8. For all k ∈ N, Parameter Rule 3.3 guarantees Γk ∈ [γk,min, γk,max].

Our next lemma provides a preliminary upper bound on the expected per-iteration change in the shifted
barrier-augmented function.

Lemma 3.9. For all k ∈ N, one finds that

ϕ̃(Xk+1, µk+1)− ϕ̃(Xk, µk)

≤ − ΓkAk∥∇xϕ̃(Xk, µk)∥2H−1
k

+ ΓkAk∇xϕ̃(Xk, µk)
TH−1

k (∇xϕ̃(Xk, µk)−Qk)

+ 1
2Γ

2
kA

2
kλ

−1
k,minℓ∇f,B,k∥Qk∥

2
H−1

k

.

Proof. Similarly as in the proof of Lemma 3.5, for all k ∈ N, one finds from Lemmas 3.3 and 3.7, line 6 of
Algorithm 1, and line 2 of Algorithm 1 that

ϕ̃(Xk+1, µk)− ϕ̃(Xk, µk)

≤ ∇xϕ̃(Xk, µk)
T (Xk+1 −Xk) +

1
2ℓ∇f,B,µk,Xk,Xk+1

∥Xk+1 −Xk∥22
≤ −∇xϕ̃(Xk, µk)

T (ΓkAkH
−1
k Qk) +

1
2ℓ∇f,B,k∥ΓkAkH

−1
k Qk∥22

≤ − ΓkAk∇xϕ̃(Xk, µk)
TH−1

k Qk +
1
2Γ

2
kA

2
kλ

−1
k,minℓ∇f,B,k∥Qk∥

2
H−1

k

.

Adding and subtracting −ΓkAk∥∇xϕ̃(Xk, µk)∥2H−1
k

on the right-hand side and using the fact that Lemma 3.1

and µk+1 < µk imply that ϕ̃(Xk+1, µk+1) < ϕ̃(Xk+1, µk), one reaches the desired conclusion.

Our next lemma provides an upper bound on the conditional expectation of the middle term on the
right-hand side of the inequality in Lemma 3.9.

Lemma 3.10. For all k ∈ N, one finds that

E[ΓkAk∇xϕ̃(Xk, µk)
TH−1

k (∇xϕ̃(Xk, µk)−Qk)|Fk]
≤ (γk,minαk,buff + γk,buffαk,min + γk,buffαk,buff)λ

−1
k,min(κ∇f,B,2 + 2

√
nµkθ

−1
k−1)σ2.
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Proof. Let Ik be the event that Pk := ∇xϕ̃(Xk, µk)
TH−1

k (∇xϕ̃(Xk, µk) − Qk) ≥ 0 and let Ick be the com-
plementary event that Pk < 0. By Assumption 3.2, Parameter Rule 3.3, the Law of Total Expectation,
E[Pk|Fk] = 0, and Lemmas 3.7 and 3.8,

E[ΓkAkPk|Fk]
= E[ΓkAkPk|Fk ∧ Ik]P[Ik|Fk] + E[ΓkAkPk|Fk ∧ Ick]P[Ick|Fk]
≤ γk,maxαk,maxE[Pk|Fk ∧ Ik]P[Ik|Fk] + γk,minαk,minE[Pk|Fk ∧ Ick]P[Ick|Fk]
≤ γk,minαk,min(E[Pk|Fk ∧ Ik]P[Ik|Fk] + E[Pk|Fk ∧ Ick]P[Ick|Fk])

+ (γk,minαk,buff + γk,buffαk,min + γk,buffαk,buff)E[Pk|Fk ∧ Ik]P[Ik|Fk]
= (γk,minαk,buff + γk,buffαk,min + γk,buffαk,buff)E[Pk|Fk ∧ Ik]P[Ik|Fk].

By the Cauchy-Schwarz inequality and Assumptions 2.1 and 3.2, one has

E[Pk|Fk ∧ Ik]P[Ik|Fk]
≤ E[∥H−1

k ∇xϕ̃(Xk, µk)∥2∥∇xϕ̃(Xk, µk)−Qk∥2|Fk ∧ Ik]P[Ik|Fk]
= E[∥H−1

k ∇xϕ̃(Xk, µk)∥2∥Gk −∇f(Xk)∥2|Fk ∧ Ik]P[Ik|Fk]
≤ λ−1

k,min(κ∇f,B,2 + 2
√
nµkθ

−1
k−1)σ2,

which combined with the result above yields the desired conclusion.

Our next lemma provides an upper bound on the last term on the right-hand side of the inequality in
Lemma 3.9.

Lemma 3.11. For all k ∈ N, one finds that

1
2Γ

2
kA

2
kλ

−1
k,minℓ∇f,B,k∥Qk∥

2
H−1

k

≤ 3
4Γ

2
kA

2
kλ

−1
k,minℓ∇f,B,k∥∇xϕ̃(Xk, µk)∥2H−1

k

+ 3
2γ

2
k,maxα

2
k,maxλ

−2
k,minσ

2
2 .

Proof. Consider arbitrary k ∈ N. Since for any (a, b) ∈ Rn×Rn, the fact that ∥ 12a− b∥
2
H−1

k

≥ 0 implies that

∥a+ b∥2
H−1

k

≤ 3
2∥a∥

2
H−1

k

+ 3∥b∥2
H−1

k

, it follows that

1
2∥Qk∥

2
H−1

k

= 1
2∥∇xϕ̃(Xk, µk) +Qk −∇xϕ̃(Xk, µk)∥2H−1

k

≤ 3
4∥∇xϕ̃(Xk, µk)∥2H−1

k

+ 3
2∥Qk −∇xϕ̃(Xk, µk)∥2H−1

k

≤ 3
4∥∇xϕ̃(Xk, µk)∥2H−1

k

+ 3
2λ

−1
k,minσ

2
2 .

Hence, the conclusion follows by Parameter Rule 3.3 and Lemmas 3.7 and 3.8.

Combining the prior three lemmas, we obtain the following result. This result is reminiscent of Lemma 3.5,
but accounts for the stochastic gradient errors.

Lemma 3.12. For all k ∈ N, one finds that

E[ϕ̃(Xk+1, µk+1)|Fk]− ϕ̃(Xk, µk)

≤ − 1
4γk,minαk,min∥∇xϕ̃(Xk, µk)∥2H−1

k

+ (γk,minαk,buff + γk,buffαk,min + γk,buffαk,buff)λ
−1
k,min(κ∇f,B,2 + 2

√
nµkθ

−1
k−1)σ2

+ 3
2γ

2
k,maxα

2
k,maxλ

−2
k,minσ

2
2 .
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Proof. Consider arbitrary k ∈ N. Combining Lemmas 3.9, 3.10, and 3.11,

E[ϕ̃(Xk+1, µk+1)|Fk]− ϕ̃(Xk, µk)

≤ − E[ΓkAk(1− 3
4ΓkAkλ

−1
k,minℓ∇f,B,k)∥∇xϕ̃(Xk, µk)∥2H−1

k

|Fk]

+ (γk,minαk,buff + γk,buffαk,min + γk,buffαk,buff)λ
−1
k,min(κ∇f,B,2 + 2

√
nµkθ

−1
k−1)σ2

+ 3
2γ

2
k,maxα

2
k,maxλ

−2
k,minσ

2
2 .

Now, one finds under Parameter Rule 3.3 that

Ak ≤ λk,min

ℓ∇f,B,k
=⇒ 1− 3

4ΓkAkλ
−1
k,minℓ∇f,B,k ≥ 1− 3

4Γk ≥
1
4 .

Thus, from above, Parameter Rule 3.3, and Lemma 3.7, the conclusion follows.

We now show that if the parameter sequences are chosen similarly as in Corollary 3.1, then the coefficients
in the upper bound proved in Lemma 3.12 satisfy critical properties for proving our ultimate convergence
guarantee.

Lemma 3.13. If for t ∈ [−1,− 1
2 ) in Parameter Rule 3.3 and for some r ∈ R>0 and µ1 ∈ R>0 with

µ1 >
1
2 θ0(κ∇f,B,∞+σ∞)∆

1
2∆−θ0

the algorithm has µk = µ1k
t, θk−1 = θ0k

t, and r ≤ λk,min ≤ λk,max for all k ∈ N,

then there is (k̃, c, C) ∈ N × R>0 × R>0 with

E[ϕ̃(Xk+1, µk+1)|Fk]− ϕ̃(Xk, µk) ≤ −rckt∥∇xϕ̃(Xk, µk)∥2H−1
k

+ Ck2t

for all k ∈ N with k ≥ k̃.

Proof. Under the conditions and Parameter Rule 3.3, one has for all k ∈ N that

γk,minαk,min ≥ min

αk,min,

αk,minλk,min

 1
2µk∆

µk+
1
2 (κ∇f,B,∞+σ∞)∆

−θk


(αk,min+αk,buff )(κ∇f,B,∞+σ∞+µkθ

−1
k−1)


=: min{αk,min, η̂k}.

The proof can now proceed similarly as in the proof of Corollary 3.1. In particular, with the given parameter
choices and by (25), one finds for all k ∈ N that

αk,min ≥ r

ℓ∇f,B+2µ1θ
−2
0 kt(k+1)−2t

≥ r

ℓ∇f,B+2µ1θ
−2
0 2−2tk−t

, (28)

so there exists ĉ ∈ R>0 such that αk,min ≥ ĉkt for all k ∈ N. Hence, since {αk,buff} = O(k2t) and t < 0, it

follows that there exists k̂ ∈ N such that αk,buff ≤ αk,min for all k ∈ N with k ≥ k̂, which in turn means that

αk,min

αk,min+αk,buff
≥ 1

2 for all k ∈ N with k ≥ k̂. (29)

For the sequence {η̂k}, one finds with (6), t < 0, and a similar derivation as in the proof of Corollary 3.1
that there exists c̃ ∈ R>0 such that, for all k ∈ N,

1
2µk∆

µk+
1
2 (κ∇f,B,∞+σ∞)∆

− θk ≥ c̃kt. (30)

Combining (28)–(30), there exists c ∈ R>0 such that 1
4γk,minαk,min ≥ rckt for all k ∈ N with k ≥ k̂. On

the other hand, the conditions of the lemma and Parameter Rule 3.3 imply for all k ∈ N that λ−1
k,min ≤ r−1,

µkθ
−1
k−1 = µ1θ

−1
0 , and

αk,min =
λk,min

ℓ∇f,B+2µ1θ
−2
0 kt(k+1)−2t

≤ λk,min

ℓ∇f,B+2µ1θ
−2
0 (k+1)−t

. (31)

18



Combining these facts and Parameter Rule 3.3, one finds {γk,minαk,buffλ
−1
k,min} = O(k2t), {γk,buffαk,minλ

−1
k,min} =

O(k2t), {γk,buffαk,buffλ−1
k,min} = o(k2t), and finally { 32γ

2
k,maxα

2
k,maxλ

−2
k,min} = O(k2t), so the desired conclusion

follows from Lemma 3.12.

We now prove our main convergence theorem for the stochastic setting.

Theorem 3.2. Suppose that Assumptions 2.1 and 3.1 and Parameter Rule 3.3 hold, and that the parameter
sequences are chosen as in Lemma 3.13. Then,

lim inf
k→∞

∥∇xϕ̃(Xk, µk)∥2H−1
k

= 0 almost surely,

meaning that if there exists r ∈ R>0 such that λk,max ≤ r for all k ∈ N, then

lim inf
k→∞

∥∇xϕ̃(Xk, µk)∥22 = 0 almost surely.

Consequently, if all of the aforementioned choices of the parameter sequences are made and, in a given run
of the algorithm generating a realization of the iterate sequence {xk} there exists an infinite-cardinality set
K ⊆ N such that {∇ϕ̃(xk, µk)}k∈K → 0 and {xk}k∈K → x for some x ∈ B, then the limit point x is a KKT
point for (1).

Proof. By the Law of Total Expectation, it follows from Lemma 3.13 that there exists (k̃, c, C) ∈ R>0×R>0

such that, for all k ∈ N with k ≥ k̃, one has

E[ϕ̃(Xk+1, µk+1)]− E[ϕ̃(Xk, µk)] ≤ −rcktE[∥∇xϕ̃(Xk, µk)∥2H−1
k

] + Ck2t.

Summing for k ∈ {k̃, . . . , k̃ +K}, it follows along with Lemma 3.1 that

finf − E[ϕ̃(xk̃, µk̃)] ≤ E[ϕ̃(Xk+1, µk+1)]− E[ϕ̃(xk̃, µk̃)]

≤ −rc
k̃+K∑
k=k̃

ktE[∥∇xϕ̃(Xk, µk)∥2H−1
k

] + C

k̃+K∑
k=k̃

k2t,

which after rearrangement yields

k̃+K∑
k=k̃

ktE[∥∇xϕ̃(Xk, µk)∥2H−1
k

] ≤ 1
rc (E[ϕ̃(xk̃, µk̃)]− finf) +

C
rc

k̃+K∑
k=k̃

k2t.

Under Assumptions 2.1 and 3.1 and since t ∈ [−1,− 1
2 ), the right-hand side of this inequality converges to a

finite limit as K → ∞. Since
∑∞
k=1 k

t = ∞, one finds along with the nonnegativity of ∥∇xϕ̃(Xk, µk)∥2H−1
k

and Fatou’s lemma that

0 = lim inf
k→∞

E[∥∇xϕ̃(Xk, µk)∥2H−1
k

] ≥ E[lim inf
k→∞

∥∇xϕ̃(Xk, µk)∥2H−1
k

] = 0.

Consider the random variable L := lim infk→∞ ∥∇xϕ̃(Xk, µk)∥2H−1
k

. By nonnegativity of ∥∇xϕ̃(Xk, µk)∥2H−1
k

and the Law of Total Expectation, it follows from above that 0 = E[L] ≥ P[L > 0]E[L|L > 0], so 0 =
P[L > 0] = P[lim infk→∞ ∥∇xϕ̃(Xk, µk)∥2H−1

k

> 0], which is the first desired conclusion. The second desired

conclusion follow from the fact that if r exists as stated, then ∥ · ∥2
H−1

k

≥ r−1∥ · ∥22 for all k ∈ N. The last

desired conclusion follows using the same argument as in the proof of Theorem 3.1.

Results similar to Theorem 3.2 have been proved for the stochastic gradient method in the unconstrained
setting [9]. In fact, for the stochastic gradient method in an unconstrained setting, one can prove under
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conditions that are similar to ours that the gradient of the objective function convergences to zero almost
surely; this is stronger than a lim inf result of the type in Theorem 3.2. However, such results rely on
the gradient of the objective function being Lipschitz continuous. In our setting, we have the Lipschitz-
continuity-type property in Lemma 3.2, but the gradient of the (shifted) barrier function is not globally
Lipschitz over B, meaning that such a result in the unconstrained setting does not carry over to our present
setting.

4 Obstacles for a Simplified Algorithm

A reader may wonder if convergence guarantees can be proved for a simpler variant of our algorithm, namely,
one that simply employs projections onto the inner neighborhoods of the feasible region. After all, in the
setting of (strongly) convex optimization, convergence guarantees exist for projected-(stochastic)-gradient
methods; see, e.g., [20]. In this section, we argue that the situation is not straightforward, and even though
one may extend our algorithm and analysis to consider a less conservative strategy (recall Remark 2.1), one
runs into obstacles when trying to provide a convergence guarantee for a variant of our algorithm that simply
uses a projection of xk + αkdk for all k ∈ N.

Let us consider the setting when f is ψ-strongly convex for some ψ ∈ R>0, and let us consider a simplified
variant of our algorithm, where, for all k ∈ N,

Hk = I, αk = 1
ℓ∇f,B+2µkθ

−2
k

, and xk+1 ← ProjN[l,u](θk)
(xk − αk∇xϕ(xk, µk)), (32)

where ProjS(·) denotes the orthogonal projection operator on convex S ⊆ Rn. For reasons seen in our
subsequent analysis, suppose for all k ∈ N that

θk ≤ cµk, where c := min
i∈L∪U

{(
κ∇f,B,∞ + 2µ1

ui−li

)−1
}
. (33)

Following a standard approach in the convex optimization literature, let us attempt to prove convergence
of the algorithm defined by (32)–(33) by showing that the distance to the unique solution of (1), call it
x∗ ∈ Rn, vanishes. Since each iteration of the algorithm makes a step toward minimizing ϕ̃(·, µk), it is
natural to approach the analysis by considering the distance between the unique minimizer of this function
to x∗. A typical result in the literature is that, for sufficiently small barrier parameter values, this distance
is proportional to µk. For concreteness, we state the following result; for further discussion and a proof, see
[28].

Proposition 4.1. Suppose that Assumptions 2.1 and 3.1 hold and the objective f is ψ-strongly convex. Let
x∗ ∈ Rn be the unique point such that (2) holds for some (y∗, z∗) ∈ Rn × Rn and let xk ∈ Rn denote the
unique minimizer of ϕ̃(·, µk) : Rn → R for all k ∈ N. Then, for all sufficiently large k ∈ N, it holds that
∥xk − (x∗ + µkζ)∥2 = O(µ2

k), where the vector ζ ∈ Rn is defined independently from {µk}.

Let us now show the expected result that with the step-size choice in (33), the iterate update in (32)
corresponds to a step toward the unique minimizer of ϕ̃(·, µk).

Proposition 4.2. Suppose that Assumptions 2.1 and 3.1 hold, the objective f is ψ-strongly convex, and the
algorithm employs the update in (32)–(33). Let xk ∈ Rn denote the unique minimizer of ϕ̃(·, µk) : Rn → R
for all k ∈ N. Then, for all k ∈ N, one finds that xk ∈ N[l,u](θk−1) ⊂ N[l,u](θk), xk+1 ∈ N[l,u](θk),
and xk ∈ N[l,u] (cµk), where c ∈ R>0 is defined as in (33). Consequently, it follows for all k ∈ N that
(xk, xk+1, xk) ∈ N[l,u](θk)×N[l,u](θk)×N[l,u](θk) and

∥xk+1 − xk∥22 ≤ (1− αkψ)∥xk − xk∥22.

Proof. That xk ∈ N[l,u](θk−1) ⊂ N[l,u](θk) and xk+1 ∈ N[l,u](θk) hold for all k ∈ N follows from (32) and
the fact that {θk} ↘ 0. Now consider arbitrary k ∈ N and observe from the definition of xk and Lemma 3.1
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that it is the unique vector such that (4) holds with x = xk and µ = µk. Let us prove the desired conclusion
that xk ∈ N[l,u](cµk) by proving that cµk is a lower bound for sk,i := min{xk,i − li, ui − xk,i} for all i ∈ [n].
Consider arbitrary i ∈ [n]. If i /∈ L ∪ U , then sk,i = ∞ ≥ cµk, as desired. If i ∈ L \ U , then (4) and
Assumption 2.1 imply that xk,i − li = µk/∇if(xk) ≥ µk/κ∇f,B,∞, which again yields that sk,i ≥ cµk. Using
a similar argument, the bound also holds for i ∈ U \ L. Finally, if i ∈ L ∩ U , then assuming without loss of
generality that xk,i ≤ (ui + li)/2, it follows that 1/(ui − xk,i) ≤ 2/(ui − li), so (4) yields

1
xk,i−li = ∇if(xk)

µk
+ 1

ui−xk,i
≤ ∇if(xk)

µk
+ 2

ui−li = ∇if(xk)(ui−li)+2µk

µk(ui−li) ,

which along with Assumption 2.1 and sk,i = xk,i− li yields the desired conclusion. (If xk,i ≥ (ui+ li)/2, the
conclusion follows using a similar argument with sk,i = ui − xk,i.)

It has been shown that (xk, xk+1, xk) ∈ N[l,u](θk) × N[l,u](θk) × N[l,u](θk), as desired. Consequently,

using an argument similar to the proof of Lemma 3.2, ∇ϕ̃(·, µk) is Lipschitz over N[l,u](θk) with constant

ℓ∇f,B + 2µkθ
−2
k , which with the choice of αk, the fact that ϕ̃(·, µk) is ψ-strongly convex for all k ∈ N, and

[10, Eq. (3.14)] yields

0 ≤ ϕ̃(xk+1, µk)− ϕ̃(xk, µk)
≤ 1

αk
(xk − xk+1)

T (xk − xk)− 1
2αk
∥xk − xk+1∥22 −

ψ
2 ∥xk − xk∥

2
2.

Therefore, it follows that

∥xk+1 − xk∥22 = ∥xk+1 − xk + xk − xk∥22
= ∥xk+1 − xk∥22 + 2(xk+1 − xk)T (xk − xk) + ∥xk − xk∥22
≤ ∥xk+1 − xk∥22 − ∥xk − xk+1∥22 − αkψ∥xk − xk∥22 + ∥xk − xk∥22
= (1− αkψ)∥xk − xk∥22,

which is the final desired conclusion.

Let us now use the prior two results to show a relationship between consecutive distances from an iterate
to the solution of (1) that holds for all k ∈ N.

Proposition 4.3. Suppose that Assumptions 2.1 and 3.1 hold, the objective f is ψ-strongly convex, and the
algorithm employs the updates in (32)–(33). Then, for all sufficiently large k ∈ N and ζ ∈ Rn defined as in
Proposition 4.1, one has

∥xk+1 − x∗∥2 ≤
√
1− αkψ∥xk − x∗∥2 + 2µk∥ζ∥2 +O(µ2

k). (34)

Proof. Combining Propositions 4.1 and 4.2 and the triangle inequality, one has

∥xk+1 − x∗∥2 ≤ ∥xk+1 − xk∥2 + ∥xk − x∗∥2
≤

√
1− αkψ∥xk − xk∥2 + ∥xk − x∗∥2

≤
√

1− αkψ(∥xk − x∗∥2 + ∥xk − x∗∥2) + ∥xk − x∗∥2
≤

√
1− αkψ∥xk − x∗∥2 + 2µk∥ζ∥2 +O(µ2

k),

as desired.

At first glance, the result of Proposition 4.3 might appear to be useful since {µk} ↘ 0 also implies that
{αk} ↘ 0. Unfortunately, however, the last two terms on the right-hand side of (34) obstruct an ability to
prove that {xk} → x∗, even in this strongly convex and deterministic setting. To see this, note that the
recurrence defined by (34) has the form of sequences {uk}, {vk}, and {ek} such that

uk+1 ≤ vkuk + ek, uk ∈ R≥0, vk ∈ [0, 1), and ek ∈ R>0 for all k ∈ N.
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Such a recurrence yields {uk} → 0 if
∑∞
k=1(1− vk) =∞ and limk→∞ ek/(1− vk) = 0; see, e.g., [22, pg. 45].

However, with vk :=
√
1− αkψ and ek := Cµk for some C ∈ R>0 (for simplicity), and for example supposing

that θk = cµk for all k ∈ N (see (33)), one indeed finds
∑∞
k=1(1− vk) =∞, but

Cµk

1−
√
1−αkψ

= Cµk

1−
√

1− ψ

ℓ∇f,B+2c−2µ−1
k

k→∞−−−−→ C4c−2

ψ > 0.

Consequently, Proposition 4.3 does not readily lead to a convergence guarantee for the simplified algorithm
stated in (32)–(33). One might modify the algorithm and/or analysis in this section to reach such a guarantee
in the deterministic setting upon which one might build a convergence theory for a stochastic algorithm, but
we contend that the ultimate conclusions would only be comparable to those for the algorithm analyzed in
Section 3, perhaps with the extensions mentioned in Remark 2.1.

5 Numerical Results

Our numerical experiments serve two main purposes: (1) we demonstrate that our (stochastic)-interior-point
method, which we refer to as SIPM, is reliable over a well known set of test problems, and (2) we compare
the performance of SIPM with a projected-(stochastic)-gradient method, which we refer to as PSGM. We
implemented a set of test problems and the algorithms in Matlab. The experiments were conducted on the
High Performance Computing cluster at Lehigh University with Matlab R2021b using the Deep Learning
Toolbox.

5.1 Test problems

We tested the algorithms by training prediction models for binary classification using data from LIBSVM
[13]. From LIBSVM, we selected the 43 binary classification datasets with training data file size at most
8 GB; for these, the numbers of features are in the range [2, 47263] and the numbers of data points are
in the range [44, 5000000]. We provide results pertaining to training data, and for those datasets with
corresponding testing data, we provide results pertaining to that data as well. Each dataset from LIBSVM
consists of A ∈ Rm×nf and b ∈ {−1, 1}m, where m is the number of data points and nf is the number of
features.

To cover both a convex and a nonconvex objective, we consider two models: (1) logistic regression and
(2) a neural network with one hidden layer and a cross-entropy loss function. For training a (convex) logistic
regression model, the number of optimization variables is the number of features plus one for the bias term,
i.e., n = nf + 1. The (nonconvex) neural network model consists of a fully connected hidden layer with
h neurons and tanh activation and a fully connected output layer with sigmoid activation. The number of
optimization variables is the number of weights plus bias terms at each node in the hidden and output layers,
so n = (nf +2)h+1, where h := max{2,min{⌈nf

2 ⌉, 100}}. For both models, we set l = −1×1 and u = 1×1,
which causes many bounds to be active at a solution. Table 1 (pg. 24) shows the number of variables for
each problem, i.e., objective and dataset pair.

5.2 Implementation details

We generated x1 for each problem with elements drawn from a uniform distribution over [−0.01, 0.01]. This
point was fixed for all runs.

SIPM requires the problem-dependent parameters κ∇f,B,∞, ℓ∇f,B, and σ∞. For consistency across
our experiments in both the deterministic and stochastic settings, we employed estimates κ∇f,B,∞ and
ℓ∇f,B, which were set by: (1) temporarily setting these values to 1; (2) running 500 iterations of SIPM
using true gradients, these temporary values, and the remaining parameters set as in the next para-
graph; and (3) setting, at termination, the values as κ∇f,B,∞ ← maxk∈[500] {∥∇f(xk)∥∞} and ℓ∇f,B ←
maxk∈[500]\{1} {∥∇f(xk−1)−∇f(xk)∥2/∥xk−1 − xk∥2}. For the deterministic setting, we set σ∞ ← 0,
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whereas for the stochastic setting we employed an estimate σ∞ for each dataset, which was set by: (1)
generating 100 stochastic gradients at x1 with a mini-batch size of ⌈0.01m⌉ (which was also the mini-batch
size used in all of our experiments for the stochastic setting) and (2) setting σ∞ as the maximum∞-norm dif-
ference between each of these stochastic gradients and ∇f(x1). Once all of these values were computed—see
Table 1—they were fixed for all of our experiments.

Since the performance of an interior-point method is affected by the initial and final values of the barrier
parameter, we recommend choosing {µk} and {θk} based on the computational budget. Hence, let us define
maxiter as an iteration limit for the deterministic setting and maxiter = (number of epochs)/0.01 for the
stochastic setting, where for the former our experiments consider maxiter ∈ {100, 1000} and for the latter
our experiments consider the number of epochs in {1, 1000}. (Note that setting maxiter as above for the
stochastic setting is consistent with the mini-batch size of ⌈0.01m⌉.) Using this value, and letting g(x1)
denote the gradient (estimate) at the initial point in a run, the parameters for SIPM were set as

∆̄← 100, ∆← min{∆̄,min
i∈[n]
{ui − li}},

µ1 ← max
{
10−5,min

{
10−3∥g(x1)∥2

∥Ψ(u−x1)−1−Ψ(x1−l)−1∥2
, 1
}}

, and

θ0 ← min

{
min
i∈[n]
{xi − li},min

i∈[n]
{ui − xi}, θ̄0

}
, where θ̄0 ←

1
2
∆ +

κ∇f,B,∞+σ∞
µ1

,

as well as µk ← µ1sk and θk ← θ0sk for all k ∈ [maxiter], where {sk} is composed of equal-length repetitions
of the elements in {1, 0.1, · · · , 10−8/µ1}, i.e., {sk} = {1, . . . , 1, 0.1, . . . , 0.1, . . . , 10−8/µ1, . . . , 10

−8/µ1}. In
this manner, µ1 ensures that the initial search direction is not dominated by the log-barrier term, whereas
µmaxiter = 10−8 ensures that SIPM terminates with a prescribed small barrier parameter. For the remaining
parameters, the implementation used for all k ∈ N: Hk ← ℓ∇f,BI + µk(Ψ(xk − l))−2 + µk(Ψ(u − xk))−2,
λk,min ≥ ℓ∇f,B as the smallest eigenvalue of Hk, αk,buff ← (maxiter/k)1.1 ≥ 1, γk,buff ← (maxiter/k)0.55 ≥
1, and (αk, γk,max) as in Assumption 3.2. By choosing αk,buff and γk,buff in this manner, SIPM employs
αk = λk,min/ℓ∇f,B,k and γk,max = 1 for all k ∈ [maxiter]. Other formulas for αk,buff and γk,buff were tested;
the values above worked best for our experiments.

For PSGM, in order to have a direct comparison with SIPM, the step sizes were also set using the sequence
{sk} defined in the previous paragraph in such a manner that the initial and final step sizes for PSGM were
the same as those used by SIPM. We remark in passing that PSGM has convergence(-to-neighborhood)
guarantees when a fixed step size is used, but we did not experiment with such a choice since our aim is to
compare with SIPM, which is only defined for diminishing step sizes.

5.3 Comparison of SIPM and PSGM

All runs of both algorithms terminated when the iteration limit was reached. To compare performance, we
considered two measures at the final iterate: the objective value f(xmaxiter) (computed over the training set
and testing set, when available) and the norm of a projected gradient ∥ProjN[l,u](0)

(xmaxiter−∇f(xmaxiter))−
xmaxiter∥∞; see, e.g., [8]. (Even for the stochastic setting, the projected gradient at the final iterate was
computed using the true gradient for the purpose of our comparison.) In particular, for all runs and each
measure, we computed a relative performance measure; e.g., in terms of f , we use

rp :=
f(xSIPM

maxiter)−f(x
PSGM
maxiter )

max{f(xSIPM
maxiter),f(x

PSGM
maxiter ),1}

∈ [−1, 1] for p ∈ set of problems,

and likewise for the norm of the projected gradient. The values are within [−1, 1] since the final objective
values and projected-gradient norms are nonnegative.

Figure 1 provides relative performance measures for runs for solving (convex) logistic regression problems.
The bar plot in the first column is for final objective values with respect to the training data when maxiter =
100 and the plot in the middle column is for projected-gradient norms with respect to the training data when
maxiter = 100. These show that, within a relatively small iteration limit, SIPM can outperform PSGM.
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Table 1: Problem sizes and algorithmic parameters.

dataset
logistic regression neural network + cross-entropy loss

n ℓ∇f,B κ∇f,B,∞ σ∞ n ℓ∇f,B κ∇f,B,∞ σ∞

a1a 124 1.36 0.14 0.35 7751 3.12 0.25 0.34
a2a 124 1.38 0.14 0.22 7751 3.05 0.24 0.21
a3a 124 1.36 0.13 0.33 7751 3.01 0.20 0.29
a4a 124 1.37 0.14 0.16 7751 2.95 0.22 0.15
a5a 124 1.37 0.14 0.16 7751 2.99 0.19 0.15
a6a 124 1.36 0.13 0.11 7751 3.00 0.21 0.11
a7a 124 1.36 0.14 0.11 7751 2.97 0.20 0.09
a8a 124 1.36 0.13 0.09 7751 2.98 0.22 0.08
a9a 124 1.36 0.13 0.07 7751 3.00 0.23 0.07
australian 15 0.22 0.14 0.44 113 0.25 0.07 0.44
breast-cancer 11 0.22 0.15 0.51 61 0.28 0.11 0.51
cod-rna 9 0.88 0.02 0.05 41 0.25 0.12 0.05
colon-cancer 2001 1.66 0.10 0.68 200201 2.09 0.11 0.65
covtype 55 0.34 0.03 0.02 1513 4.00 0.45 0.02
diabetes 9 0.55 0.08 0.40 41 0.25 0.12 0.40
duke 7130 4.48 0.14 0.65 713101 21.69 0.75 0.53
fourclass 3 0.37 0.09 0.42 9 0.25 0.11 0.42
german 25 1.63 0.14 0.50 313 3.90 0.25 0.50
gisette scale 5001 6.27 0.50 0.26 500201 25.25 0.50 0.18
heart 14 0.15 0.08 0.56 106 0.25 0.06 0.56
ijcnn1 23 0.32 0.28 0.03 265 0.25 0.30 0.03
ionosphere scale 35 1.22 0.11 0.64 613 0.66 0.10 0.64
leu 7130 1.08 0.06 0.76 713101 6.69 0.89 0.72
liver-disorders 6 0.58 0.06 0.62 22 0.25 0.09 0.62
madelon 501 74.76 0.29 0.25 50201 9.08 0.50 0.25
mushrooms 113 1.30 0.13 0.17 6385 0.60 0.07 0.16
phishing 69 3.34 0.48 0.14 2381 4.52 0.54 0.13
rcv1 train 47237 0.05 0.02 0.12 4.72e+6 0.23 0.02 0.12
real-sim 20959 0.25 0.14 0.04 2.10e+6 0.25 0.14 0.04
skin nonskin 4 0.44 0.18 0.02 11 0.25 0.22 0.02
sonar scale 61 2.80 0.41 0.54 1861 4.17 0.41 0.53
splice 61 5.57 0.52 0.52 1861 6.46 0.52 0.52
SUSY 19 0.34 0.03 0.01 181 0.25 0.03 0.01
svmguide1 5 0.35 0.11 0.26 13 0.25 0.11 0.26
svmguide3 23 0.61 0.11 0.38 265 0.25 0.20 0.38
w1a 301 0.59 0.24 0.14 30201 0.34 0.35 0.13
w2a 301 0.60 0.23 0.12 30201 0.34 0.35 0.11
w3a 301 0.60 0.24 0.10 30201 0.34 0.35 0.09
w4a 301 0.60 0.24 0.10 30201 0.34 0.35 0.05
w5a 301 0.60 0.24 0.08 30201 0.34 0.35 0.08
w6a 301 0.61 0.23 0.05 30201 0.34 0.35 0.03
w7a 301 0.61 0.23 0.04 30201 0.34 0.35 0.03
w8a 301 0.61 0.23 0.03 30201 0.34 0.35 0.02

24



Figure 1: Relative performance of SIPM and PSGM in the deterministic setting when solving logistic re-
gression problems.

Figure 2: Relative performance of SIPM and PSGM in the deterministic setting when training neural network
models (with one hidden layer) with cross-entropy loss.

The bar plot in the third column is for projected-gradient norms with respect to the training data when
maxiter = 1000. This plot shows that, with a more substantial budget, both algorithms reach points that
are nearly stationary, which shows in the deterministic setting that SIPM is as reliable as PSGM. Figure 2
provides similar results for the (nonconvex) neural-network-training problems.

Figures 3 and 4 provide results for the stochastic setting in the form of box plots when each algorithm is
employed to solve each problem 10 times. The first rows in each figure consider runs over 1 epoch while the
second rows consider runs over 1000 epochs. The first columns are for training loss, the middle columns are
for projected-gradient norms over the training data, and the third columns are for testing loss. Corresponding
to the goals of our experiments, these results show that SIPM performs well compared to PSGM when the
budget is relatively small, and is as reliable as PSGM when the budget is large.

6 Conclusion

We have proposed, analyzed, and provided the results of numerical experiments with a stochastic interior-
point method for solving continuous bound-constrained optimization problems. The algorithm is unique in
various aspects (see Section 1.1). In future work, it will be interesting to pair the algorithmic strategies
proposed in this paper with stochastic approximation strategies for solving equality-constrained problems
toward the complete design of stochastic interior-point methods for solving generally constrained optimization
problems.
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Figure 3: Relative performance of SIPM and PSGM in the stochastic setting (over 10 runs for each problem)
when solving logistic regression problems. Among the 43 datasets considered for our test problems, there
are 26 with corresponding testing datasets (see last column)

Figure 4: Relative performance of SIPM and PSGM in the stochastic setting (over 10 runs for each problem)
when training neural network models (with one hidden layer) with cross-entropy loss.
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[27] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Math. Prog., 106(1):25–57, 2006.

[28] Stephen J Wright and Dominique Orban. Properties of the log-barrier function on degenerate nonlinear
programs. Mathematics of Operations Research, 27(3):585–613, 2002.

28


	Introduction
	Contributions
	Notation
	Organization

	Algorithm
	Convergence Analyses
	Preliminary Results
	Deterministic Setting
	Stochastic Setting

	Obstacles for a Simplified Algorithm
	Numerical Results
	Test problems
	Implementation details
	Comparison of SIPM and PSGM

	Conclusion

