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The max :-cut problem is a challenging combinatorial optimization problem that generalizes the max-cut problem and arises in
applications such as statistical physics and scheduling. A Hamiltonian formulation of the max :-cut problem allows using quantum
computing devices to �nd feasible solutions for the problem. However, unlike the max cut problem (i.e., the max :-cut problem
with : = 2), the Hamiltonian formulation of the max :-cut problem is not unique regarding its penalty coe�cients in the objective
function. This means penalty coe�cients can signi�cantly a�ect the performance of quantum computing devices. In this paper, we
propose and fully characterize two Hamiltonian formulations of the max :-cut problem and compare them computationally. Our
computational results show the superiority of the Hamiltonian formulation with tighter penalty coe�cients when applied to the
quantum approximate optimization algorithm (QAOA). The code and data used for these numerical experiments are publicly available
on GitHub.
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1 INTRODUCTION

The max :-cut problem is among the challenging NP-hard problems [17, 27] with multiple notorious optimization
formulations in the literature. Carlson and Nemhauser [6] introduced a binary quadratic optimization (BQO) formu-
lation for the max :-cut problem to solve a scheduling problem. They formulated the min :-partition problem that is
combinatorially equivalent to the max :-cut problem; however, they are di�erent in terms of approximability [10].
Given a graph ⌧ = (+ , ⇢) with edge weightsF and a positive integer number : � 2, the max :-cut problem seeks to
�nd at most : partitions such that the weights of edges with endpoints in di�erent partitions are maximized. While we
can employ existing optimization formulations to solve the problem on classical solvers, one needs to convert classical
formulations to quadratic unconstrained binary optimization (QUBO) to “solve” them via quantum algorithms like the
quantum approximate optimization algorithm (QAOA).

In aQUBO formulation of an optimization formulation, we have only one objective function, and all constraints of the
optimization formulation are moved to the objective function of the QUBO formulation so that any infeasible solution
is penalized. In the quantum context, one important research question is developing e�cient QUBO formulations for
“solving” combinatorial optimization problems [32]. For more information about QUBO formulations, interested readers
are referred to [19, 29]. Once the constrained problem has been formulated as a QUBO problem, it can be converted to a
Hamiltonian formulation. Had�eld [20] provided a general framework for converting the classical representation of a
pseudo-Boolean objective function 5 into its Hamiltonian �5 . In this paper, we propose new QUBO formulations for
the max :-cut problem and compare them with a naive QUBO formulation of the problem in a quantum context.

Authors’ addresses: Ramin Fakhimi, fakhimi@lehigh.edu, Quantum Computing and Optimization Lab, Lehigh University, Bethlehem, Pennsylvania, USA,
18015; Hamidreza Validi, Industrial, Manufacturing & Systems Engineering, Texas Tech University, , Lubbock, Texas, USA, hvalidi@ttu.edu; Illya V.
Hicks, Computational Applied Mathematics and Operations Research, Rice University, Houston, Texas, USA; Tamás Terlaky; Luis F. Zuluaga, Quantum
Computing and Optimization Lab, Lehigh University, Bethlehem, Pennsylvania, USA, 18015.
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In recent years, quantum computing has gained signi�cant attention due to its potential to provide exponential
speedup over classical computers in solving certain optimization problems [1–3, 12, 15, 16, 21, 25]. In particular, the
quantum approximate optimization algorithm known as QAOA algorithm has shown promising results in solving the
quadratic unconstrained binary optimization (QUBO) formulations [5, 8, 23, 30]. QAOA performance on constrained
problems depends on the choice of penalty terms. In addition, it depends on the number of qubits used to represent the
problem. While QAOA is mostly considered for the max cut problem, there is growing interest in using it to solve the
generalized max :-cut problem [18, 28].

This paper explores the boundaries of the QAOA to “solve” the max :-cut problem. In Section 2, we provide a brief
background on the max :-cut problem and quantum computing. In Section 3, we introduce two quadratic unconstrained
binary optimization formulations with tight penalty coe�cients. A set of computational results is provided in Section 4.
Section 5 concludes the paper and provides directions for future research works.

2 PRELIMINARIES

The max k-cut problem aims to partition the vertex set of a graph into : � 2 partitions such that the weight of the
cut edges (i.e., edges whose endpoints belong to di�erent partitions) is maximized. When : = 2, the problem becomes
the well-known max cut problem. Carlson and Nemhauser [6] introduced the following BQO formulation for the max
:-cut problem. Given a graph ⌧ = (+ , ⇢), we de�ne = B |+ | and< B |⇢ | as the number of its vertices and edges,
respectively. Furthermore, let % B {1, . . . ,:} be the set of partitions. For every vertex E 2 + and every partition 9 2 % ,
binary variable GE 9 is one if vertex E is assigned to partition 9 and zero otherwise. Then the max :-cut problem can be
formulated as

max
’

{D,E}2⇢

FDE

 
1 �

’
92%

GD 9GE 9

!
(1a)

s.t.
’
92%

GE 9 = 1 8E 2 + (1b)

G 2 {0, 1}=⇥: . (1c)

Objective function (1a) maximizes the number of cut edges, and constraints (1b) imply that each vertex must be assigned
to exactly one partition. Now we introduce a reduced variant of the BQO formulation: R-BQO. In this formulation, the
number of variables are reduced by =. For every vertex E 2 + and partition : 2 % (the last partition), we de�ne

GE: B 1 �
’

92%\{: }

GE 9 . (2)

The R-BQO formulation is as follows.

max
’

{D,E}2⇢

FDE

"
1 �

’
92%\{: }

GD 9GE 9 �

 
1 �

’
92%\{: }

GD 9

!  
1 �

’
92%\{: }

GE 9

!#
(3a)

s.t.
’

92%\{: }

GE 9  1 8E 2 + (3b)

G 2 {0, 1}=⇥ (:�1) . (3c)
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3 QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION FORMULATIONS

One way to solve the max :-cut problem on a quantum computing device is to formulate it as a quadratic unconstrained
binary optimization problem. QUBO reformulations of many combinatorial optimization problems can be obtained by
penalizing the violation of the constraints of a mixed integer optimization formulation in the objective function. Several
studies have explored the QUBO formulation for various optimization problems. Padberg [26] conducted a polyhedral
study on a general QUBO formulation for the max cut problem and its naive continuous relaxation. Butenko [4]
proposed a QUBO formulation for the maximum independent set problem. Dunning et al.[9] evaluated the performance
of di�erent heuristic algorithms for solving the max cut problem using the QUBO formulation. Quintero et al.[31]
proposed a QUBO formulation for the maximum :-colorable subgraph problem.

Now we provide some notations. We de�ne edge subsets ⇢� B
�
{D, E} 2 ⇢ | FDE < 0

 
and ⇢+ B

�
{D, E} 2 ⇢ | FDE >

0
 
. For every vertex E , we also de�ne the following notations.

# +

⌧ (E) B
n
D 2 #⌧ (E)

��FDE > 0
o
, and # �⌧ (E) B

n
D 2 #⌧ (E)

��FDE < 0
o
,

3+E B
’

D2# +

⌧ (E)

FDE, and 3�E B
’

D2# �⌧ (E)

FDE . (4)

We propose two QUBO formulations: (i) QUBO formulation corresponding to the BQO formulation (1), and (ii)
R-QUBO formulation corresponding to the R-BQO formulation (3).

3.1 QUBO formulation

We �rst propose a QUBO formulation inferred from the BQO formulation. In other words, we move constraints (1b) of
the BQO formulation to the objective function and penalize them by a vector 2 2 R=+. Our proposed QUBO formulation
is as follows.

max
G2{0,1}=⇥:

@(G) B
’

{D,E}2⇢

FDE

 
1 �

’
92%

GD 9GE 9

!
�

’
E2+

2E

 ’
92%

GE 9 � 1
!2
. (5)

An optimal solution of the QUBO formulation (5) is not necessarily a feasible solution of the max :-cut problem. We
propose Algorithm 1 that converts any binary point Ĝ 2 {0, 1}=⇥: to a feasible solution of the max :-cut problem.
In this algorithm, vertex sets �0 and �1 represent the set of vertices with no assigned partition and multiple assigned
partitions, respectively. The while loop assigns vertices with the same multiple assignments to a partition that locally
maximizes the objective function over their incident edges with negative weights. Lines 5–13 runs in O(:=<). The last
for loop assigns vertices with no assignment to a partition that locally maximizes the objective function. Lines 14–16
runs in O(:<). In total, Algorithm 1 takes time O(:=<).

Lemma 3.1 provides a tight lower bound for the penalty vector 2 in QUBO formulation (5).

L���� 3.1. Let 2 be a penalty vector and Ĝ be an optimal solution of theQUBO formulation (5). If 2E � max
�
3+
E/:,�3�E/2

 
for every vertex E 2 + , then Algorithm 1 returns a feasible solution of the BQO formulation that is optimal for QUBO.

P����. Let @(G) = @1 (G) + @2 (G) with

@1 (G) B
’

{D,E}2⇢

FDE

 
1 �

’
92%

GD 9GE 9

!
, and @2 (G) B �

’
E2+

2E

 ’
92%

GE 9 � 1
!2
. (6)
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Algorithm 1 Conversion of an infeasible binary solution of the BQO (1) to a feasible solution

Require: (⌧, Ĝ, % )
1: let �0 B

⇢
E 2 +

��� Õ
92%

ĜE 9 = 0
�

2: let �1 B
⇢
E 2 +

��� Õ
92%

ĜE 9 > 1
�

3: Ḡ  Ĝ
4: ✓  1
5: while �1 < ú do
6: let 0 2 �1
7: ⇠✓ B

�
D 2 �1 | ĜD 9 = Ĝ09 ,89 2 %

 
8: ⇢✓ B

n
{D, E} 2 ⇢�

�� {D, E} \⇠✓ < úo
9: %✓ B

�
9 2 % | Ĝ09 = 1

 
10: let B 2 argmin

92%✓

⇢ Õ
{D,E}2⇢✓

FDEĜD 9 ĜE 9
�

11: �x ḠD 9 = 0, for every vertex D 2 ⇠✓ and every partition 9 2 %✓ \ {B}
12: �1  �1 \⇠✓
13: ✓  ✓ + 1
14: for every vertex E 2 �0 do
15: let B 2 argmin

92%

⇢ Õ
D2#⌧ (E)

FDEḠD 9
�

16: �x ḠEB = 1
17: return Ḡ

Suppose that Ĝ represents an optimal binary solution of the QUBO formulation in which there is a vertex E 2 + with
multiple partitions; that is,

Õ
92% ĜE 9 > 1. Let CE B

Õ
92% ĜE 9 . The following claim shows every vertex is assigned to at

most two partitions in the solution represented by Ĝ .

C���� 1. For every vertex E 2 + , we have CE  2.

P����. Suppose not. Then, there is a vertex E 2 + such that CE � 3. Without loss of generality, we assume that
#⌧ (E) < ú; that is, 3+E � 3�E > 0. We also de�ne Ǧ 2 {0, 1}=⇥: as follows: for every vertex D 2 + \ {E} and every
partition 9 2 % , we set ǦD 9 B ĜD 9 . Let 8 2 % with ĜE8 = 1. Then we set ǦE8 B 0 and ǦE 9 B ĜE 9 for every partition
9 2 % \ {8}. Thus, we have

@1 (Ǧ) � @1 (Ĝ) =
’

D2#⌧ (E)

’
92%

FDEĜD 9 ĜE 9 �
’

D2#⌧ (E)

’
92%

FDEǦD 9 ǦE 9 (7a)

=
’

D2# +

⌧ (E)

FDEĜD8 ĜE8 +
’

D2# �⌧ (E)

FDEĜD8 ĜE8 (7b)

� 0 + 3�E , (7c)
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where equality (7a) holds by the de�nition of @1 (·), and inequality (7c) holds since
Õ
D2# +

⌧ (E) FDEĜD8 ĜE8 � 0. Finally,

@(Ǧ) � @(Ĝ) =
⇥
@1 (Ǧ) � @1 (Ĝ)

⇤
+

⇥
@2 (Ǧ) � @2 (Ĝ)

⇤
� 3�E + 2E

h
(CE � 1)2 � (CE � 2)2

i
= 3�E + 2E (2CE � 3)

� 3�E +max
⇢
3+E
:
,�

3�E
2

�
(2CE � 3)

�

8>>><
>>>:
3�E �

3�E
2 (2CE � 3) = 3�E (2.5 � CE) > 0 if 3�E < 0,

3+E
: (2CE � 3) > 0 if 3�E = 0.

Here, the �rst inequality holds by inequality (7c). The second inequality holds by the assumption of the lemma. Finally,
the last strict inequalities hold because 3+E � 3�E > 0 and CE � 3 by the assumption. This contradicts the fact that Ĝ is an
optimal solution of (5). Hence, CE  2. ⌅

Recall ⇢✓ =
�
{D, E} 2 ⇢� | {D, E} \⇠✓ < ú

 
from line 8 of Algorithm 1. Furthermore, we have �1 = [A✓=1⇠✓ with A be

the number of ⇠✓ sets de�ned in line 7 of the algorithm. For every partition-based class ✓ 2 [A ], we de�ne ⇢0✓ and ⇢
00
✓ as

edges with exactly one endpoint in ⇢✓ and both endpoints in ⇢✓ , respectively.

⇢0✓ =
�
{D, E} 2 ⇢✓ | {D, E} * ⇠✓

 
, and ⇢00✓ =

�
{D, E} 2 ⇢✓ | {D, E} ✓ ⇠✓

 
, (8)

where ⇢✓ = ⇢0✓ [ ⇢
00
✓ and ⇢0✓ \ ⇢

00
✓ = ú. Note that %✓ = { 91, 92} when Ĝ is an optimal solution because we already proved

that |%✓ |  2. We also de�ne edge sets ⇢̂0✓ ✓ ⇢0✓ and ⇢̃
0
✓ ✓ ⇢0✓ with endpoints assigned to partitions 91 and 92, respectively.

⇢̂0✓ B
�
{D, E} 2 ⇢0✓ | ĜD 91 = ĜE 91

 
, and ⇢̃0✓ B

�
{D, E} 2 ⇢0✓ | ĜD 92 = ĜE 92

 
, (9)

where ⇢̂0✓ \ ⇢̃0✓ = ú and ⇢̂0✓ [ ⇢̃0✓ ✓ ⇢0✓ . We note that ⇢̂0✓ [ ⇢̃0✓ contains edges whose endpoints belong to exactly one
common partition. Without loss of generality, suppose that’

{D,E}2⇢̂0✓

FDE �
’

{D,E}2⇢̃0✓

FDE . (10)

Figure 1 illustrates a solution of the QUBO formulation for the max 3-cut problem with its associated sets de�ned above.
Let G̃ be the output of Algorithm 1 up to line 14. Now we provide a lower bound for @1 (G̃) � @1 (Ĝ).

1

Ĝ11 = 1
Ĝ12 = 1
Ĝ13 = 02

Ĝ21 = 1
Ĝ22 = 0
Ĝ23 = 1

3
Ĝ31 = 0
Ĝ32 = 1
Ĝ33 = 1

4

Ĝ41 = 1
Ĝ42 = 1
Ĝ43 = 0 5

Ĝ51 = 0
Ĝ52 = 1
Ĝ53 = 0

6
Ĝ61 = 0
Ĝ62 = 0
Ĝ63 = 0

�1

�1
�1

�1

�1
�1

Fig. 1. A solution of the QUBO formulation for the max 3-cut problem with (i) ⇠1 = {1, 4}, ⇠2 = {2}, and ⇠3 = {3}; (ii) %1 =
{1, 2}, %2 = {1, 3}, and %3 = {2, 3}, (iii) ⇢1 =

�
{1, 2}, {1, 3}, {1, 4}, {4, 5}, {4, 6}

 
, ⇢2 =

�
{1, 2}

 
, and ⇢3 =

�
{1, 3}

 
, (iv) ⇢01 =�

{1, 2}, {1, 3}, {4, 5}, {4, 6}
 
, ⇢001 =

�
{1, 4}

 
, and (v) ⇢̂01 =

�
{1, 2}

 
, and ⇢̃01 =

�
{1, 3}, {4, 5}

 
.

C���� 2. @1 (G̃) � @1 (Ĝ) �
Õ
✓2 [A ]

h Õ
{D,E}2⇢̂0✓

FDE +
Õ

{D,E}2⇢00✓
FDE

i
.
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P����. For ease of notation, we de�ne 1DE B
Õ
92% ĜD 9 ĜE 9 �

Õ
92% G̃D 9 G̃E 9 for every edge {D, E} 2 ⇢.

@1 (G̃) � @1 (Ĝ) =
’

{D,E}2⇢

’
92%

FDEĜD 9 ĜE 9 �
’

{D,E}2⇢

’
92%

FDEG̃D 9 G̃E 9 (11a)

=
’

{D,E}2⇢

FDE1DE (11b)

=
’

{D,E}2⇢�
FDE1DE +

’
{D,E}2⇢+

FDE1DE (11c)

�

’
{D,E}2⇢�

FDE1DE + 0 (11d)

�

’
✓2 [A ]

’
{D,E}2⇢✓

FDE1DE +
’

⇢�\(⇢1[· · ·[⇢A )

FDE1DE (11e)

=
’
✓2 [A ]

’
{D,E}2⇢✓

FDE1DE + 0 (11f)

=
’
✓2 [A ]

" ’
{D,E}2⇢0✓

FDE1DE +
’

{D,E}2⇢00✓

FDE1DE

#
(11g)

=
’
✓2 [A ]

" ’
{D,E}2⇢̃0✓[⇢̂

0

✓

FDE1DE +
’

{D,E}2⇢0✓ \(⇢̃
0

✓[⇢̂
0

✓ )

FDE1DE +
’

{D,E}2⇢00✓

FDE1DE

#
(11h)

=
’
✓2 [A ]

" ’
{D,E}2⇢̃0✓[⇢̂

0

✓

FDE1DE + 0 +
’

{D,E}2⇢00✓

FDE1DE

#
(11i)

=
’
✓2 [A ]

" ’
{D,E}2⇢̂0✓

FDE +
’

{D,E}2⇢00✓

FDE

#
. (11j)

Here, inequality (11d) holds because (i) Ĝ � G̃ implies
Õ
92% ĜD 9 ĜE 9 �

Õ
92% G̃D 9 G̃E 9 � 0, and (ii) FDE � 0 for every

edge {D, E} 2 ⇢+. Inequality (11e) holds because we might have ✓1 2 [A ] and ✓2 2 [A ] for which ⇢✓1 \ ⇢✓2 < ú;
that is, some negative edges can be double counted in the �rst term of the inequality. For example, see Figure 1 in
which (i) ⇢1 \ ⇢2 = {1, 2} and (ii) ⇢� \ (⇢1 [ ⇢2 [ ⇢3) = {5, 6}. Equality (11f) holds because 1DE = 0 for every edge
{D, E} 2 ⇢� \ (⇢1 [ · · · [ ⇢A ). Note that ĜD 9 = G̃D 9 and ĜE 9 = G̃E 9 for every edge {D, E} 2 ⇢� \ (⇢1 [ · · · [ ⇢A ) and
every partition 9 2 % . Equality (11g) holds by de�nitions (8). Equality (11h) holds by de�nitions (9). Equality (11i) holds
because (i) ⇢̃0✓ \ ⇢̂

0
✓ = ú, and (ii) 1DE = 0 for every edge {D, E} 2 ⇢0✓ \ (⇢̃

0
✓ [ ⇢̂

0
✓ ). Note that

Õ
92% ĜD 9 ĜE 9 =

Õ
92% G̃D 9 G̃E 9 = 0

for every edge {D, E} 2 ⇢0✓ \ (⇢̃
0
✓ [ ⇢̂

0
✓ ). Finally, equality (11j) holds because the algorithm implies that for every ✓ 2 [A ],

we have the following cases.

(i) 1DE =
Õ
92% ĜD 9 ĜE 9 �

Õ
92% G̃D 9 G̃E 9 = 1 � 1 = 0 for every {D, E} 2 ⇢̃0✓ ,

(ii) 1DE =
Õ
92% ĜD 9 ĜE 9 �

Õ
92% G̃D 9 G̃E 9 = 1 � 0 = 1 for every {D, E} 2 ⇢̂0✓ , and

(iii) 1DE =
Õ
92% ĜD 9 ĜE 9 �

Õ
92% G̃D 9 G̃E 9 = 2 � 1 = 1 for every {D, E} 2 ⇢00✓ .

⌅

Furthermore, we provide a lower bound for @2 (G̃) � @2 (Ĝ).

C���� 3. @2 (G̃) � @2 (Ĝ) � �
Õ
✓2 [A ] 0.5

h Õ
{D,E}2⇢0✓

FDE + 2
Õ

{D,E}2⇢00✓
FDE

i
.
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P����. We have

@2 (G̃) � @2 (Ĝ) = �
’
E2+

2E

" ’
92%

G̃E 9 � 1
!2
�

 ’
92%

ĜE 9 � 1
!2#

(12a)

= �
’
E2�1

2E

" ’
92%

G̃E 9 � 1
!2
�

 ’
92%

ĜE 9 � 1
!2#

(12b)

=
’
E2�1

2E (12c)

� �

’
✓2 [A ]

’
E2⇠✓

0.53�E (12d)

= �
’
✓2 [A ]

0.5
" ’
{D,E}2⇢0✓

FDE + 2
’

{D,E}2⇢00✓

FDE

#
. (12e)

Here, equality (12b) holds because ĜE 9 = G̃E 9 for every vertex E 2 + \ �1 and every partition 9 2 % . Equality (12c)
holds because we have

Õ
92% ĜE 9 = 2 for every vertex E 2 �1. Inequality (12d) holds because by assumption we have

2E � �0.53�E for every vertex E 2 �1. Equality (12e) holds by de�nitions (8). ⌅

The following claim shows that G̃ is an optimal solution of the QUBO formulation (5).

C���� 4. @(G̃) � @(Ĝ) � 0.

P����. By Claims 2 and 3, we have

@(G̃) � @(Ĝ) �
’
✓2 [A ]

" ’
{D,E}2⇢̂0✓

FDE +
’

{D,E}2⇢00✓

FDE

#
�

’
✓2 [A ]

0.5
" ’
{D,E}2⇢0✓

FDE + 2
’

{D,E}2⇢00✓

FDE

#

= 0.5
’
✓2 [A ]

" ’
{D,E}2⇢̂0✓

FDE �
’

{D,E}2⇢̃0✓

FDE �
’

{D,E}2⇢0✓ \(⇢̂
0

✓[⇢̃
0

✓ )

FDE

#
� 0.

Here, the last inequality holds by (i) inequality (10), and (ii) the fact thatFDE < 0 for every edge {D, E} 2 ⇢0✓ \ (⇢̂
0
✓ [ ⇢̃

0
✓ ).

Hence, Algorithm 1 returns an optimal solution of the QUBO formulation (1) such that every vertex is assigned to at
most one partition. ⌅

Let Ḡ be the output of Algorithm 1.

C���� 5. @(Ḡ) � @(G̃) � 0.

P����. Suppose that G̃ represents an optimal solution in which a vertex E 2 + is assigned to no partition; that is,Õ
92% G̃E 9 = 0. By line 15 of Algorithm 1, let B be a partition with minimum value of

Õ
D2#⌧ (E) FDEG̃D 9 among all 9 2 % .

By line 16 of the algorithm, we have ḠEB = 1. By de�nitions (6), we have

@1 (Ḡ) � @1 (G̃) = �
’

D2#⌧ (E)

FDEG̃DB , and @2 (Ḡ) � @2 (G̃) = 2E . (13)

Then, we have the following cases.

(i)
Õ
D2#⌧ (E) FDEG̃DB � 0. Hence,

2E �
3+E
:
� min

92%

( ’
D2# +

⌧ (E)

FDEG̃D 9

)
� min

92%

( ’
D2#⌧ (E)

FDEG̃D 9

)
=

’
D2#⌧ (E)

FDEG̃DB . (14)
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Here, the �rst inequality holds by assumption. The second inequality holds because (i) the minimum value of a
set of numbers is less than or equal to their average, and (ii) every vertex is assigned to at most one partition.
The last inequality holds because for every vertex D 2 # �⌧ (E), we haveFDE < 0. The last equality holds by the
de�nition of B . So, we have 2E �

Õ
D2#⌧ (E) FDEG̃DB � 0. Then, @(Ḡ) � @(G̃) � 0 by lines (13) and (14).

(ii)
Õ
D2#⌧ (E) FDEG̃DB < 0. By line (13), it follows that @(Ḡ) � @(G̃) � 0.

⌅

By Claims 4 and 5, @(Ḡ) � @(Ĝ) � 0. So, Ḡ is also an optimal solution of the QUBO formulation (5). ⇤

We note that the value of tight penalty coe�cients compared to naïve ones is reduced from $ (<) to $ (=). The
following theorem shows that Algorithm 1 returns an optimal solution of the BQO formulation (1) if an optimal solution
of the QUBO formulation (5) is provided.

T������ 3.2. Let Ĝ be an optimal solution of the QUBO formulation (5) with 2E � max
�
3+
E/:,�3�E/2

 
for every vertex

E 2 + . Algorithm 1 returns an optimal solution of the BQO formulation (1).

P����. Let Ḡ be a point returned by Algorithm 1 applied on optimal solution Ĝ . Further, assume that G⇤ represents
an optimal solution of the max :-cut problem. Since Ĝ is an optimal solution of the QUBO formulation (5), we have
(i) @(Ĝ) � @(Ḡ), and (ii) @(Ĝ) � @(G⇤). By Lemma 3.1, we have (iii) @(Ḡ) � @(Ĝ). By (i) and (iii), @(Ĝ) = @(Ḡ). Hence,
@(Ḡ) � @(G⇤) by (ii). Note that Ḡ is feasible for the BQO formulation (1) by Lemma 3.1; so, we have @(Ḡ)  @(G⇤). Thus,
@(Ĝ) = @(Ḡ) = @(G⇤) and Ḡ is also an optimal solution of the BQO formulation (1). ⇤

It should be noted that if 2E > max
�
3+
E/:,�3�E/2

 
for every vertex E 2 + , then an optimal solution of the QUBO

formulation (5) is also optimal for the BQO formulation (1). Example 3.3 shows that there are some instances of the
max :-cut problem for which Theorem 3.1 does not hold if we have 2E < max

�
3+
E/:,�3�E/2

 
for some vertex E 2 + .

Example 3.3. Figure 2 illustrates an instance of the max 3-cut problem with the optimal objective value of 7. Let G⇤ be
an optimal solution with G⇤11 = G⇤31 = G⇤41 = 1, G⇤22 = 1, and G⇤53 = 1. See the leftmost side of Figure 2 for an illustration.
Furthermore, the QUBO formulation (5) of the max 3-cut problem is written as follows.

@(G) = 7 �
’

{D,E}2⇢

FDE
�
GD1GE1 + GD2GE2 + GD3GE3

�
�

’
E2+

2E
�
GE1 + GE2 + GE3 � 1

�2 . (15)

Note that 21 = ��22 = 1, 22 = 23 = max
� 6
3 ,

1
2
 
= 2, and 24 = 25 = 3

3 = 1. Then, we have @(G⇤) = 7. Now, we change 25
from 1 to 1 � n for some n > 0. Then, Ĝ is an optimal solution for the QUBO formulation (15) with Ĝ11 = Ĝ31 = Ĝ41 = 1
and Ĝ22 = 1. Further, Ĝ51 = Ĝ52 = Ĝ53 = 0. See Figure 2 (center) for an illustration. However, this implies Ĝ is an infeasible
solution for the max 3-cut problem with @(Ĝ) = 7 + n and @(Ĝ) > @(G⇤).

Similarly, we change 21 from 1 to 1 � n for some n > 0. Then, G̃ is an optimal solution for the QUBO formulation (15)
with G̃11 = G̃12 = 1, but it is an infeasible solution of the max 3-cut problem with @(G̃) = 7 + n and @(G̃) > @(G⇤). See the
rightmost side of Figure 2 for an illustration. Hence, an inappropriate choice of 2 might not provide a solution with the
optimal objective value for the max :-cut problem. This implies that our proposed lower bounds for penalty coe�cients
are tight for some instances.
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1
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1

1
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�1
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1

1
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1

1

Fig. 2. Optimal solutions of the QUBO formulation for the max 3-cut problem with di�erent penalty coe�icients: (le�) an optimal
solution G⇤ of the BQO formulation with 21 = 25 = 1, (center) an infeasible solution Ĝ of the BQO formulation with 21 = 1 and
25 = 1 � n , and (right) an infeasible solution G̃ of the BQO formulation with 21 = 1 � n and 25 = 1.

One can always set a “big” penalty vector 2 in QUBO formulation (5) to ensure that there is an optimal solution of
the unconstrained formulations such that it represents a feasible solution of the max :-cut problem. The following
remark provides naïve penalty coe�cients for the QUBO formulation (5).

R����� 1. For any vertex E 2 + , penalty coe�cient 2E = 3+E �3
�
E ensures an optimal solution of theQUBO formulation (5)

that represents a feasible solution of the max :-cut problem.

3.2 R-QUBO formulation

Similar to the R-BQO formulation (3), we propose a reduced QUBO (R-QUBO) formulation. We de�ne partition set
%̄ B % \ {:}. The R-QUBO formulation with =(: � 1) binary variables is provided below.

max
G2{0,1}=⇥ (:�1)

@̄(G) B
’

{D,E}2⇢

FDE

"
1 �

’
92%̄

GD 9GE 9 �

 
1 �

’
92%̄

GD 9

!  
1 �

’
92%̄

GE 9

!#
�

’
E2+

2E
’

{8, 9 }2(%̄2)

GE8GE 9 . (16)

For : = 2, it is worth noting that the penalty term disappears because
�%̄
2
�
= ú. We also propose Algorithm 2 that

converts any infeasible binary solution Ĝ 2 {0, 1}=⇥ (:�1) of the R-BQO formulation (3) to a feasible solution. Similar to
Algorithm 1, Algorithm 2 has time complexity O(:=<).

Algorithm 2 Conversion of an infeasible binary solution of the R-BQO (3) to a feasible solution

Require: (⌧, Ĝ, %̄ )
1: � B

⇢
E 2 +

�� Õ
92%̄

ĜE 9 > 1
�

2: Ḡ  Ĝ
3: ✓  1
4: while � < ú do
5: ⇠✓ B

�
D 2 � | ĜD 9 = Ĝ09 ,89 2 %̄

 
6: ⇢✓ B

n
{D, E} 2 ⇢

��{D, E} \⇠✓ < úo
7: %̄✓ B

�
9 2 %̄ | Ĝ09 = 1

 
8: let B 2 argmin

92%̄✓

⇢ Õ
{D,E}2⇢✓

FDEḠD 9 ḠE 9
�

9: �x ḠD 9 = 0 for every vertex D 2 ⇠✓ and every partition 9 2 %̄✓ \ {B}
10: �  � \⇠✓
11: ✓  ✓ + 1
12: return Ḡ

Lemma 3.4 provides a tight lower bound for the penalty vector 2 in R-QUBO formulation (16).
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L���� 3.4. Let 2 be a penalty vector and Ĝ be an optimal solution of the R-QUBO formulation (16). If 2E � 3+E � 3
�
E for

every vertex E 2 + , then Algorithm 2 returns a feasible solution of the R-BQO formulation that is optimal for R-QUBO.

P����. Let Ĝ 2 {0, 1}=⇥ (:�1) be a binary solution of the R-QUBO formulation with some vertices assigned to more
than one partition. Assume that Ḡ is a feasible solution of the R-BQO formulation returned by Algorithm 2. We have
� = [A✓=1⇠✓ with A be the number of ⇠✓ sets de�ned in line 5 of Algorithm 2. We note that for every ✓ 2 [A ], (i) vertex
set ⇠✓ is a set of vertices that are assigned to the same multiple partitions, and (ii) without loss of generality assume
every vertex D 2 ⇠✓ is assigned to a less or equal number of partitions than that of any vertex E 2 ⇠✓+1. For any G and
any edge {D, E} 2 ⇢, we de�ne function ⌘DE (G) as follows.

⌘DE (G) = FDE

"’
92%̄

GD 9GE 9 +

 
1 �

’
92%̄

GD 9

!  
1 �

’
92%̄

GE 9

!#

For every vertex E 2 + , we de�ne CE B
Õ
92%̄ ĜE 9 . For every edge {D, E} 2 ⇢, (i) let CDE B

Õ
92%̄ ĜD 9 ĜE 9 ; and (ii) terms

⌘DE (Ĝ) and ⌘DE (Ḡ) are simpli�ed as follows.

⌘DE (Ĝ) = FDE
⇥
CDE + (1 � CD ) (1 � CE)

⇤
, (17a)

⌘DE (Ḡ) =

8>>>><
>>>>:

FDE
Õ
92%̄

ḠD 9 ḠE 9 CD + CE < 0

FDE CD + CE = 0


8>>>>>><
>>>>>>:

FDE min{CDE, 1} CD + CE < 0,FDE > 0

0 CD + CE < 0,FDE  0

FDE CD + CE = 0.

(17b)

Here, inequality (17b) holds because (i) Ḡ is feasible for the max :-cut problem and (ii) Ḡ  Ĝ . Now, we recall the
positive edge set as ⇢+ B

�
{D, E} 2 ⇢ | FDE > 0

 
.

C���� 6.
Õ

{D,E}2⇢+
⇥
⌘DE (Ĝ) � ⌘DE (Ḡ)

⇤
� �

Õ
E2�

Õ
D2# +

⌧ (E) FDE (CE � 1)
CE
2 .

P����. For every edge {D, E} 2 ⇢+, we bound ⌘DE (Ĝ) � ⌘DE (Ḡ) by lines (17) as follows:

(i) if {D, E} ✓ � , then ⌘DE (Ĝ) � ⌘DE (Ḡ) � 0 because ⌘DE (Ḡ)  FDE min{CDE, 1}  FDE , and

⌘DE (Ĝ) = FDE
⇥
CDE + (CD � 1) (CE � 1)

⇤
� FDE

⇥
0 + (2 � 1) (2 � 1)

⇤
= FDE .

(ii) ifmin{CD , CE} = 0 andmax{CD , CE} > 1, then ⌘DE (Ĝ)�⌘DE (Ḡ) = FDE
�
1�max{CD , CE}

�
because CDE = min{CD , CE} =

0, ⌘DE (Ḡ)  FDE min{CDE, 1} = 0, and

⌘DE (Ĝ) = FDE
⇥
0 + (1 �max{CD , CE})(1 �min{CD , CE})

⇤
= FDE

�
1 �max{CD , CE}

�
.

(iii) if min{CD , CE} = 1 and max{CD , CE} > 1, then ⌘DE (Ĝ) � ⌘DE (Ḡ) � FDE
�
1 � max{CD , CE}

�
because ⌘DE (Ḡ) 

FDE min{CDE, 1}  FDECDE , and

⌘DE (Ĝ) = FDE
⇥
CDE + (1 �max{CD , CE})(1 �min{CD , CE})

⇤
= FDECDE .

We also haveFDE � 0 and max{CD , CE} > 1, thus

⌘DE (Ĝ) � ⌘DE (Ḡ) � 0 � FDE
�
1 �max{CD , CE}

�
.

(iv) if {D, E} \ � = ú, then ⌘DE (Ĝ) � ⌘DE (Ḡ) = 0 because ⌘DE (Ĝ) = ⌘DE (Ḡ) by Algorithm 2.
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Now we de�ne ⇢̄+ as the set of positive edges with exactly one endpoint assigned to multiple partitions (i.e.,
⇢̄+ B

�
{D, E} 2 ⇢+ | |{D, E} \ � | = 1

 
). Hence, we have’

{D,E}2⇢+

⇥
⌘DE (Ĝ) � ⌘DE (Ḡ)

⇤
�

’
{D,E}2⇢̄+

FDE (1 �max{CD , CE}) (18a)

=
’
E2�

’
D2# +

⌧ (E)\�

FDE (1 �max{CD , CE}) (18b)

=
’
E2�

’
D2# +

⌧ (E)\�

FDE (1 � CE) (18c)

�

’
E2�

’
D2# +

⌧ (E)

FDE (1 � CE) (18d)

� �

’
E2�

’
D2# +

⌧ (E)

FDE (CE � 1)
CE
2
. (18e)

Here, inequality (18a) holds by items (i)–(iv). Inequality (18d) holds because (i) for every vertex E 2 � we have CE � 2 ,
and (ii)FDE � 0 for every edge {D, E} 2 ⇢+. Inequality (18e) holds because for every vertex E 2 � we have CE � 2. ⌅

We recall the negative edge set as ⇢� B
�
{D, E} 2 ⇢ | FDE < 0

 
. For every ✓ 2 [A ], we de�ne ⇢�✓ as follows. We note

that each edge set ⇢�✓ is de�ned as the incident edges with negative weights corresponding to each vertex set ⇠✓ such
that ⇢�✓ s are mutually exclusive.

⇢�✓ B
n
{D, E} 2 ⇢�

��{D, E} \⇠✓ < ú, {D, E} \⇠✓ 0 = ú, ✓0 < ✓,8✓0 2 [A ]
o
.

In other words, for every ✓ 2 [A ] we de�ne ⇢�✓ as the set of negative edges with (i) at least one endpoint, say D, in⇠✓ , (ii)
no endpoint belongs to set⇠1 [ · · ·[⇠✓�1 and (iii) the other endpoint is assigned to a less or equal number of partitions
than that of vertex D. For every ✓ 2 [A ], recall that (i) vertex set ⇠✓ is de�ned by line 5 of Algorithm 2, and (ii) for every
vertex E 2 ⇠✓ partition set %̄✓ is the set of partitions to which vertex E is assigned (see line 7 of Algorithm 2). We also
partition edge set ⇢�✓ to negative edge sets ⇢�✓1, ⇢

�
✓2, ⇢

�
✓3, and ⇢

�
✓4 as follows.

⇢�✓1 B
�
{D, E} 2 ⇢�✓ | {D, E} \⇠✓ 0 < ú, {D, E} \⇠✓ < ú, and %̄✓ 0 ⇢ %̄✓

 
,

⇢�✓2 B
�
{D, E} 2 ⇢�✓ | {D, E} \⇠✓ 0 < ú, {D, E} \⇠✓ < ú, and %̄✓ 0 6 %̄✓

 
,

⇢�✓3 B
�
{D, E} 2 ⇢�✓ | {D, E} ✓ ⇠✓

 
,

⇢�✓4 B
�
{D, E} 2 ⇢�✓ | {D, E} \ (+ \ � ) < ú

 
.

Here, set ⇢�✓1 represents the set of negative edges with (i) both endpoints assigned to multiple partitions and (ii) the set
of assigned partitions of one endpoint is a proper subset of the assigned partitions of the other endpoint. For example in
Figure 3, ⇢�11 =

�
{1, 2}, {1, 3}

 
and ⇢�21 = ⇢�31 = ú. Set ⇢

�
✓2 is the set of negative edges with (i) both endpoints assigned

to multiple partitions, (ii) one endpoint is assigned to partition set %̄✓ and the other endpoint is assigned to a partition
9 2 %̄✓ 0 \ %̄✓ such that |%̄✓ 0 |  |%̄✓ |. In Figure 3, ⇢�12 = ú, ⇢�22 =

�
{2, 3}

 
and ⇢�32 = ú. Set ⇢�✓3 is the set of negative

edges such that both endpoints are assigned to a partition set with a size of at least 2. In Figure 3, ⇢�13 =
�
{1, 4}

 
and

⇢�23 = ⇢�33 = ú. Set ⇢
�
✓4 is the set of negative edges with exactly one endpoint assigned to multiple partitions. In Figure 3,

⇢�14 =
�
{4, 5}, {4, 6}

 
and ⇢�24 = ⇢�34 = ú.
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1
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Ĝ12 = 1
Ĝ13 = 12

Ĝ21 = 1
Ĝ22 = 0
Ĝ23 = 1

3
Ĝ31 = 0
Ĝ32 = 1
Ĝ33 = 1
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Ĝ41 = 1
Ĝ42 = 1
Ĝ43 = 1 5

Ĝ51 = 0
Ĝ52 = 0
Ĝ53 = 0

6
Ĝ61 = 0
Ĝ62 = 1
Ĝ63 = 0
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�1
�1�1

�1

�1
�1

Fig. 3. A solution of the R-QUBO formulation for the max 4-cut problem with (i)⇠1 = {1, 4},⇠2 = {2}, and⇠3 = {3}; (ii) %̄1 = {1, 2, 3},
%̄2 = {1, 3}, and %̄3 = {2, 3}, (iii) ⇢�1 =

�
{1, 2}, {1, 3}, {1, 4}, {4, 5}, {4, 6}

 
, ⇢�2 =

�
{2, 3}

 
, and ⇢�3 = ú.

C���� 7.
Õ

{D,E}2⇢�
⇥
⌘DE (Ĝ) � ⌘DE (Ḡ)

⇤
is bounded below by

’
✓2 [A ]

" ’
{D,E}2⇢�✓1

FDE
�
CDCE �max{CD , CE} + 1

�
+

’
{D,E}2⇢�✓2

FDE
�
CDCE �max{CD , CE}

�

+

’
{D,E}2⇢�✓3

FDECDE (CDE � 1) +
’

{D,E}2⇢�✓4

FDE

#
. (19)

P����. For every edge {D, E} 2 ⇢� , we bound ⌘DE (Ĝ) � ⌘DE (Ḡ) by lines (17) as follows:

(i) if edge {D, E} 2 ⇢�✓1, then we have ⌘DE (Ĝ) �⌘DE (Ḡ) � FDE
�
CDCE �max{CD , CE} + 1

�
because CDE = min{CD , CE} and

⌘DE (Ḡ)  0 and

⌘DE (Ĝ) = FDE
�
CDE + CDCE � CD � CE + 1

�
= FDE

�
CDCE �max{CD , CE} + 1

�
;

(ii) if edge {D, E} 2 ⇢�✓2, then we have ⌘DE (Ĝ) � ⌘DE (Ḡ) � FDE
�
CDCE � max{CD , CE}

�
because CDE  min{CD , CE} � 1

and ⌘DE (Ḡ)  0 and

⌘DE (Ĝ) = FDE
�
CDE + CDCE � CD � CE + 1

�
� FDE

�
CDCE �max{CD , CE}

�
;

(iii) if edge {D, E} 2 ⇢�✓3, then we have ⌘DE (Ĝ) � ⌘DE (Ḡ) = FDECDE (CDE � 1) because we assign both endpoints of
{D, E} to the same partition by Algorithm 2 and we have CDE = CD = CE and

⌘DE (Ĝ) = FDE
�
CDE + CDCE � CD � CE + 1

�
= FDE

�
C2DE � CDE + 1

�
, and ⌘DE (Ḡ) = FDE ;

(iv) if edge {D, E} 2 ⇢�✓4, then we have ⌘DE (Ĝ) � ⌘DE (Ḡ) � FDE since CDE  1 and ⌘DE (Ḡ)  0 and

⌘DE (Ĝ) = FDE
�
CDE + CDCE � CD � CE + 1

�
= FDE

�
CDE + CDCE �min{CD , CE} �max{CD , CE} + 1

�

=

8>>><
>>>:
FDE (1 �max{CD , CE}) if min{CD , CE} = 0,

FDECDE if min{CD , CE} = 1,

� FDE .

(v) if {D, E} 2 ⇢� \ [✓2 [A ]⇢�✓ , then ⌘DE (Ĝ) � ⌘DE (Ḡ) = 0 because ⌘DE (Ĝ) = ⌘DE (Ḡ) by Algorithm 2.

By items (i)–(v),
Õ

{D,E}2⇢�
⇥
⌘DE (Ĝ) � ⌘DE (Ḡ)

⇤
is bounded below by (19). ⌅
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Let @̄(G) = @̄1 (G) + @̄2 (G) with

@̄1 (G) B
’

{D,E}2⇢

FDE

"
1 �

’
92%̄

GD 9GE 9 �

 
1 �

’
92%̄

GD 9

!  
1 �

’
92%̄

GE 9

!#
(20a)

@̄2 (G) B �
’
E2+

2E
’

{8, 9 }2(%̄2)

GE8GE 9 . (20b)

Now we show that the R-QUBO objective value of Ḡ is greater than or equal to that of Ĝ .

C���� 8. @̄(Ḡ) � @̄(Ĝ) � 0.

P����. We can bound @̄1 (Ḡ) � @̄1 (Ĝ) as follows (i) because @̄1 (Ḡ) � @̄1 (Ĝ) =
Õ

{D,E}2⇢
⇥
⌘DE (Ĝ) � ⌘DE (Ḡ)

⇤
, and (ii) by

Claims 6 and 7.

@̄1 (Ḡ) � @̄1 (Ĝ) �
’
✓2 [A ]

" ’
{D,E}2⇢�✓1

FDE
�
CDCE �max{CD , CE} + 1

�
+

’
{D,E}2⇢�✓2

FDE
�
CDCE �max{CD , CE}

�

+

’
{D,E}2⇢�✓3

FDECDE (CDE � 1) +
’

{D,E}2⇢�✓4

FDE

#
�

’
E2�

’
D2# +

⌧ (E)

FDE (CE � 1)
CE
2
. (21)

Furthermore, we have the following arguments for @̄2 (Ḡ) � @̄2 (Ĝ).

@̄2 (Ḡ) � @̄2 (Ĝ) =
’
E2�

✓
CE
2

◆ " ’
D2# +

⌧ (E)

FDE �
’

D2# �⌧ (E)

FDE

#
(22a)

=
’
E2�

✓
CE
2

◆ ’
D2# +

⌧ (E)

FDE �
’
✓2 [A ]

’
E2⇠✓

✓
CE
2

◆ " ’
D2# �⌧ (E)\(�\⇠✓ )

FDE +
’

D2# �⌧ (E)\⇠✓

FDE

+

’
D2# �⌧ (E)\�

FDE

#
(22b)

=
’
E2�

✓
CE
2

◆ ’
D2# +

⌧ (E)

FDE �
’
✓2 [A ]

" ’
{D,E}2⇢�✓1[⇢

�

✓2

FDE

"✓
CD
2

◆
+

✓
CE
2

◆#
+

’
{D,E}2⇢�✓3

FDECDE (CDE � 1)

+

’
{D,E}2⇢�✓4

FDE max

(✓
CD
2

◆
,

✓
CE
2

◆) #
(22c)

�

’
E2�

✓
CE
2

◆ ’
D2# +

⌧ (E)

FDE �
’
✓2 [A ]

" ’
{D,E}2⇢�✓1[⇢

�

✓2

FDE

"✓
CD
2

◆
+

✓
CE
2

◆#
+

’
{D,E}2⇢�✓3

FDECDE (CDE � 1)

+

’
{D,E}2⇢�✓4

FDE

#
. (22d)

Here, equality (22c) holds by de�nitions of the partitions of ⇢�✓ . Recall that edge sets ⇢
�
✓ s are mutually exclusive. Fur-

thermore, as we shift from the vertex-based summation in equality (22b) to the edge-based summation in equality (22c),
we need to consider the corresponding vertex coe�cients

�CD
2
�
+
�CE
2
�
for a given edge {D, E} 2 ⇢� . Inequality (22d) holds

because
�CE
2
�
� 1 for every vertex E 2 � ; so, max

��CD
2
�
,
�CE
2
� 
� 1 for every ✓ 2 [A ] and every edge {D, E} 2 ⇢�✓4.
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By inequalities (21) and (22d), we have

@̄(Ḡ) � @̄(Ĝ) �
’
✓2 [A ]

" ’
{D,E}2⇢�✓1

FDE
�
CDCE �max{CD , CE} + 1

�
+

’
{D,E}2⇢�✓2

FDE
�
CDCE �max{CD , CE}

� #

�

’
✓2 [A ]

’
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FDE
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+ 2max{CD , CE} � CD � CE
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Here, the last inequality holds because for every ✓ 2 [A ] and every {D, E} 2 ⇢�✓1, we have (i) (CD � CE)
2
� 1 and (ii)

max{CD , CE} � min{CD , CE} + 1. In other words, we have

(CD � CE)
2
+ 2max{CD , CE} � CD � CE � 2 � 1 + (max{CD , CE} +min{CD , CE} + 1) � CD � CE � 2 = 0.

⌅

This �nishes the proof. ⇤

We note that the value of tight penalty coe�cients compared to naïve ones is reduced from $ (:2<) to $ (=). The
following theorem shows that Algorithm 2 returns an optimal solution of the R-BQO formulation (3) if an optimal
solution of the R-QUBO formulation (16) is provided.

T������ 3.5. Suppose Ĝ is an optimal solution for the R-QUBO formulation (16) with 2E � 3+E � 3
�
E for every vertex

E 2 + . Algorithm 2 returns a binary optimal solution of R-BQO formulation (3).

P����. The proof is similar to the proof of Theorem 3.2. ⇤

It should be noted that if 2E > 3+E �3
�
E for every vertex E 2 + , then an optimal solution of the R-QUBO formulation (16)

is also a feasible solution for the R-BQO formulation (3). Example 3.6 shows that there is an instance of the max :-cut
problem for which Theorem 3.4 is violated if 2E < 3+E � 3

�
E holds for some vertex E 2 + .

Example 3.6. Figure 4 illustrates an instance of the max 3-cut problem with the optimal objective value of 6. Let G⇤

be an optimal solution with G⇤21 = G⇤31 = 1, G⇤11 = G⇤12 = 0, G⇤41 = G⇤42 = 0, and G⇤52 = 1. See the left side of Figure 4 for an
illustration.

Furthermore, the corresponding R-QUBO formulation is as follows

@̄(G) = 5 �
’

{D,E}2⇢

FDE

" ’
92{1,2}

GD 9GE 9 +

 
1 �

’
92{1,2}

GD 9

!  
1 �

’
92{1,2}

GE 9

!#
�

’
E2+

2EGE1GE2 .

Let 22 = 23 = 4 and 2E = 2 for every E 2 {1, 4, 5}. Here, we have @̄(G⇤) = 6. Now, we change 22 from 4 to 4 � n for
some n > 0. Let Ĝ be an optimal solution of the modi�ed R-QUBO with Ĝ21 = Ĝ22 = 1, Ĝ31 = Ĝ32 = 1, and ĜE 9 = 0 for



On Hamiltonians of the max :-cut problem 15

E 2 {1, 4, 5} and 9 2 {1, 2}. Then, we have @̄(Ĝ) = 6 + n for the modi�ed R-QUBO formulation. Because @̄(Ĝ) � @̄(G⇤),
an optimal solution of the max 3-cut is not optimal for the modi�ed R-QUBO formulation. Thus, there is an instance for
which penalty coe�cients are tight.

1
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3

4 5

1

1

�1

1 1

1 1

1

2

3

4 51

1

1

�1

1 1

1 1

Fig. 4. Optimal solutions of the R-QUBO formulation for the max 3-cut problem with di�erent penalty coe�icients: (le�) an optimal
solution G⇤ of the BQO formulation with 21 = 24 = 25 = 2 and 22 = 23 = 4, and (right) an infeasible solution Ĝ of the BQO formulation
a�er changing 22 from 4 to 4 � n .

The following remark provides naïve penalty coe�cients for the R-QUBO formulation (16).

R����� 2. For any vertex E 2 + , penalty coe�cient 2E = : (3+E �3
�
E ) ensures there is an optimal solution of the R-QUBO

formulation (16) that represents a feasible solution of the max :-cut problem.

4 COMPUTATIONAL EXPERIMENTS

In this section, we evaluate the performance of the QAOA on the IBM quantum machines to solve the proposed
QUBO formulations of the max :-cut problem. We run the computational experiments on the IBM quantum machines
ibmq_montreal 1.11.31 and ibm_washington 1.6.13. IBM quantum machine ibmq_montreal has 27 qubits with median
CNOT and readout errors 1.071⇥ 10�2 and 1.800⇥ 10�2, respectively. Furthermore, its T1 (thermal relaxation time) and
T2 (dephasing time) are 85.2 us and 76.31 us, respectively. IBM quantum machine ibm_washington has 127 qubits with
median CNOT and readout errors 1.377 ⇥ 10�2 and 1.480 ⇥ 10�2, respectively. This machine has T1 and T2 of 92.3 us
and 80.43 us, respectively.

We have developed the Python package MaxKcut [11] to conduct the computational experiments. We employ QISKIT
Python package [22] to implement the QAOA for solving our proposed QUBO formulations. Due to the existing
restriction on the number of qubits, we conduct all experiments on Erdős-Rényi random graphs with = 2 {8, 30} and
: = 3. The generated Erdős-Rényi random graphs have density percentages of 20 and 80 with negative edge percentages
of 0 and 40. So, we generate eight instances in total. The absolute value of all edge weights is one. For every instance
n0_p1_neg2 , parameters 0, 1, and 2 denote the number of vertices, graph density, and the fraction of negative edges. To
alleviate the computational burden, we employ QAOA1 (i.e., the QAOA with one level) for solving the proposed QUBO
formulations. We use the COBYLA derivative-free optimization method to determine near-optimal values of W 2 [0, 2c]
and V 2 [0, c].

To construct the phase separation operator*% (W), we brie�y discuss Hamiltonian matrices corresponding to our
QUBO formulations. For more technical details on quantum circuits, interested readers are referred to Had�eld [20].

Let � and / be the Pauli matrices applied to a single qubit. Then for every vertex E 2 + and every partition 9 2 % ,
matrix �E 9 is de�ned as the Hamiltonian of binary clause GE 9 . For vertices D, E 2 + and partitions 8, 9 2 % , matrix �D8,E 9
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is de�ned as the Hamiltonian of binary clause GD8GE 9 .

�E 9 =
1
2
�
�E 9 � /E 9

�
, �D8,E 9 =

1
22

�
�D8 � /D8

�
⌦

�
�E 9 � /E 9

�
.

Furthermore, let �̄D 9,E 9 be the Hamiltonian matrix of (GE 9 � GD 9 )2, i.e.,

�̄D 9,E 9 =
1
2
�
�D 9 ⌦ �E 9 � /D 9 ⌦ /E 9

�
.

Finally, we de�ne the following Hamiltonian matrices �@ and �@̄ corresponding to simpli�ed versions of QUBO and
R-QUBO formulations, respectively.
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’
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2E
’

{8, 9 }2(%̄2)

�E8,E 9 .

The simpli�ed versions of QUBO and R-QUBO formulations are provided in Appendix A.
We run a quantum circuit 4,000 times (the maximum allowable number of shots in IBM quantum machines) to

calculate the expected value of the objective value in QAOA1 (i.e., QAOA with one level). We also investigate the e�ect
of tight and naïve penalty coe�cients on QUBO and R-QUBO formulations. We refer max

�
3+
E/:,�3�E/2

 
and 3+E � 3�E as

tight penalty coe�cients for QUBO and R-QUBO, respectively (see Theorems 3.2 and 3.5). For naïve penalty coe�cients,
we employ penalty coe�cients provided in Remarks 1 and 2.

E�ect of penalty coe�cients. IBM quantummachines failed several times in the optimization process of tuning circuits’
parameters. In these cases, we restarted the algorithm from the point it had stopped. Generally, the QAOA performance
in solving QUBO formulations with tight penalty coe�cients was more stable. In particular, the R-QUBO formulation
with naïve penalty coe�cients failed twice compared to its tight variants. The value of the penalty coe�cients can
a�ect the objective value of the QUBO formulation. We may have a worse objective value for the same infeasible
solution. To have a fair comparison, we fed all solutions obtained by QAOA to the respective tight formulations to
eliminate the e�ect of penalty coe�cients. Figure 5 demonstrates that QUBO and R-QUBO formulations with tight
penalty coe�cients have a slightly better expected solution quality than their naïve counterparts.
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Fig. 5. Expected objective value of QAOA1 for the weighted max 3-cut problems’ solutions fed to the tight variant of the corresponding
formulation.



On Hamiltonians of the max :-cut problem 17

E�ect of the problem instances. Figures 5 and 6 show that the percentage of negative-weight edges adversely a�ects
the performance of the QAOA. However, QAOA is almost indi�erent to graph density. Figure 6 shows that the QAOA
�nds optimal solutions for small instances with = = 8. The QAOA? is a ?-local algorithm whose output depends only on
the vertex’s radius ? neighborhood [24]. This characteristic is known as locality. It follows, therefore, QAOA works well
when the number of levels ? is su�ciently large [3, 7, 13, 14]. Recent studies show that the QAOA’s level ? needs to grow
at least logarithmically with problem size = for speci�c combinatorial optimization problems [13]. This characteristic
explains why QAOA performance drops as the instance size grows to = = 30.
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Fig. 6. The best objective value of QAOA1 for the weighted max 3-cut problems’ solutions fed to the tight variant of the corresponding
formulation.

QUBO vs. R-QUBO.. R-QUBO requires fewer qubits and has a smaller quantum circuit. This property makes it more
resilient in the face of quantum noise. In our experiments, when the QAOA is applied to the QUBO formulation (5), the
IBM quantum machines fail twice compared to the case when applied to R-QUBO formulation (16). Figure 5 shows that
the R-QUBOmodel consistently outperforms theQUBOmodel regarding the expected objective value. Two explanations
can be provided for this observation: (i) in the QUBO model, a vertex can be assigned to either no partition or multiple
partitions, while it can be assigned to at least one partition in the R-QUBO model; and (ii) the number of assignment
opportunities for every vertex is : in theQUBOmodel while it is :�1 in the R-QUBOmodel. On the other hand, Figure 6
shows that the tight QUBO formulation outperforms the naïve QUBO formulation and the R-QUBO formulations with
respect to the best solution found.

5 CONCLUSION AND FUTUREWORK

In this paper, we propose two quadratic unconstrained binary optimization models with tight penalty coe�cients.
We conduct a set of experiments on the QUBO models and compare them with each other computationally. This
paper explores the boundaries of classical and quantum solvers for the max :-cut problem. We see a wide range of
research directions: �nding optimal values for parameters W and V in QAOA circuits, proposing e�cient QUBO models
for other well-known mixed integer optimization models, and identifying speci�c structures of the graph for which
classical/quantum solver is the superior one.
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A APPENDICES

A.1 Simplified QUBO and R-QUBO formulations

The simpli�ed version of the QUBO formulation (5) is provided as follows.
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Here, the last equality holds because GE 9 2 {0, 1} for every vertex E 2 + and every partition 9 2 % ; so, we have G2E 9 = GE 9 .
Furthermore, the simpli�ed version of the R-QUBO formulation (16) is provided below.
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Here, the last equality holds because GE 9 2 {0, 1} for every vertex E 2 + and every partition 9 2 % ; so, we have GE 9 = G2E 9 .


