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Abstract

Optimization problems constrained by partial differential equations (PDEs) naturally
arise in scientific computing, as those constraints often model physical systems or the simu-
lation thereof. In an implicitly constrained approach, the constraints are incorporated into
the objective through a reduced formulation. To this end, a numerical procedure is typically
applied to solve the constraint system, and efficient numerical routines with quantifiable cost
have long been developed. Meanwhile, the field of complexity in optimization, that estimates
the cost of an optimization algorithm, has received significant attention in the literature, with
most of the focus being on unconstrained or explicitly constrained problems.

In this paper, we analyze an algorithmic framework based on quadratic regularization for
implicitly constrained nonlinear least squares. By leveraging adjoint formulations, we can
quantify the worst-case cost of our method to reach an approximate stationary point of the
optimization problem. Our definition of such points exploits the least-squares structure of the
objective, leading to an efficient implementation. Numerical experiments conducted on PDE-
constrained optimization problems demonstrate the efficiency of the proposed framework.

1 Introduction

PDE-constrained optimization problems arise in various scientific and engineering fields where
the objective is to find the optimal distribution of a given quantity while satisfying physi-
cal or mathematical laws described by PDEs, such as heat conduction or electromagnetic
waves [1, 18, 13, 20]. Similar constrained formulations have also received recent interest from
the machine learning community, as they opened new possibility for building neural network
architectures [17]. A popular approach to handle PDE constraints is the so-called reduced for-
mulation, in which the constraints are incorporated into the objective and become implicit.
By properly accounting for the presence of these constraints while computing derivatives, it be-
comes possible to generalize unconstrained optimization techniques to the implicitly constrained
setting [18].
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Algorithms designed for implicitly-constrained optimization in scientific computing are typi-
cally based on careful problem representation, that allow for the use of linear algebra routines in
very high dimensions. The cost of the associated operations in terms of floating-point number
calculations or memory use is often at the core of an efficient implementation. Nevertheless,
the analysis of these methods usually does not account for the cost of the optimization routines
themselves, and rather provides asymptotic convergence results. Although these guarantees cer-
tify that a given method is capable of reaching a solution of the problem, they do not quantify
how fast an algorithm can be at satisfying a desired stopping criterion, or its performance under
a constrained computational budget.

Providing such guarantees is the idea behind worst-case complexity analysis, a technique that
has gained significant traction in the optimization community over the past decade, especially
in the nonconvex setting [6]. A complexity bound characterizes the worst-case performance
of a given optimization scheme according to a performance metric (e.g., number of iterations,
derivative evaluations, etc) and a stopping criterion (e.g., approximate optimality, predefined
budget, etc). Recent progress in the area has switched from designing optimization techniques
with complexity guarantees in mind to studying popular algorithmic frameworks through the
prism of complexity, with several results focusing on the least-squares setting [3, 4, 5, 10]. Despite
this connection to practical considerations, complexity guarantees have yet to be fully explored,
especially in the context of implicitly-constrained optimization.

In this paper, we study an algorithmic framework for least-squares problems with implicit
constraints. Our approach leverages the particular structure of the objective in order to com-
pute derivatives, and encompasses popular algorithms for nonlinear least squares such as the
Levenberg-Marquardt method [15]. Under standard assumptions for this class of methods, we
establish complexity guarantees for our framework. In a departure from standard literature,
our analysis is based on a recently proposed stationarity criterion for least-squares problems [5].
To the best of our knowledge, these results are the first of their kind for implicitly constrained
problems. In addition, our complexity results improve over bounds recently obtained in the
unconstrained setting [4], thereby advancing our understanding of complexity guarantees for
least-squares problems. Numerical experiments on PDE-constrained problems illustrate the
practical relevance of the proposed stationarity criterion, and show that our framework handles
both small and large residual problems, as well as nonlinearity in the implicit constraints.

The rest of this paper is organized as follows. In Section 2, we present our formulation of
interest, and discuss how its least-squares structure is used to design our algorithmic framework.
We establish complexity guarantees for several instances of our proposed method in Section 3.
In Section 4, we investigate the performance of our algorithm on classical benchmark problems
from PDE-constrained optimization. We finally summarize our work in Section 5.

2 Least-squares optimization with implicit constraints

In this paper, we discuss algorithms for least-squares problems of the form

min
u∈Rd

J(y, u) :=
1

2
∥R(y, u)∥2 subject to c(y, u) = 0, (1)

that involves both the variable u as well as a vector of auxiliary variables y. We are interested
in problems where it is possible to (numerically) solve the constraint equation c(y, u) = 0 to
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obtain a unique solution y given u. Problem (1) can then be reformulated as

min
u∈Rd

J(y(u), u) =
1

2
∥R(y(u), u)∥2, (2)

where the constraint arises implicitly in the formulation [12]. In PDE-constrained optimization,
the constraint is a PDE, that can be solved given a value for the control vector u to yield a state
vector y(u). In that setting, problem (2) is often called the reduced formulation [18, Chapter 1].

In this paper, we depart from classical literature by focusing on the least-squares nature of
the problem. To this end, we describe in Section 2.1 how derivatives can be computed by the
adjoint approach for problem (2) while leveraging the problem structure. Our algorithm is then
given in Section 2.2.

2.1 Computing adjoints for a least-squares problem

In this section, we derive an adjoint formula associated with the reduced formulation (2). To
this end, we make the following assumption on our problem, which is a simplified version of a
standard requirement in implicitly constrained problems [12].

Assumption 2.1 For any u ∈ Rd, the following properties hold.

(i) There exists a unique vector y(u) such that c(y, u) = 0.

(ii) The functions J and c are continuously differentiable.

(iii) The Jacobian of c with respect to its first argument, denoted by cy(·, ·), is invertible at any
(y, u) such that c(y, u) = 0.

We now describe our approach for computing the Jacobian GR(y(u), u) given u, based on
the adjoint equation. In what follows, we let Ĵ(u) := J(y(u), u) and R̂(u) = R(y(u), u).

Algorithm 1 Computing the gradient via adjoint equations

1: Given u, solve c(y, u) = 0 for y(u).
2: Solve the adjoint equation

cy(y(u), u)
Tλ = −∇yJ(y(u), u)

for λ(u).
3: Compute ∇Ĵ(u) = ∇uJ(y(u), u) + cu(y(u), u)

Tλ(u).

Using the least-squares structure, we obtain the following expressions for the derivatives

{
∇yJ(y(u), u) = Gy(y(u), u)

TR(y(u), u)
∇uJ(y(u), u) = Gu(y(u), u)

TR(y(u), u),
(3)

where Gy(y, u) and Gu(y, u) are the Jacobian matrices with respect to y and u.
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Using this formula within Algorithm 1 leads to

∇Ĵ(u) = ∇uJ(y(u), u) + cu(y(u), u)
Tλ(u)

= Gu(y(u), u)
TR(y(u), u) + cu(y(u), u)

Tλ(u)

= Gu(y(u), u)
TR(y(u), u)− cu(y(u), u)

T
[
cy(y(u), u)

T
]†∇yJ(y(u), u)

= Gu(y(u), u)
TR(y(u), u)− cu(y(u), u)

T
[
cy(y(u), u)

T
]†
Gy(y(u), u)

TR(y(u), u)

=
[
Gu(y(u), u)−Gy(y(u), u)cy(y(u), u)

†cu(y(u), u)
]T

R(y(u), u)

=
[
Gu −Gycy(y(u), u)

†cu(y(u), u)
]T

R(y(u), u).

According to this expression, we can identify the Jacobian of R̂(u). Denoting this Jacobian by
Ĝ(u), we have

Ĝ(u) := Gu −Gycy(y(u), u)
†cu(y(u), u). (4)

Using these formulas, we can adapt Algorithm 1 to account for our particular problem
structure, leading to Algorithm 2.

Algorithm 2 Computing the Jacobian via adjoint equations

1: Given u, solve c(y, u) = 0 for y(u).
2: Solve the equation

cy(y(u), u)ζ = −Ku

for ζ(u).
3: Compute Ĝ(u) = Gu +Gyζ(u).

2.2 Algorithmic framework

We propose a regularization framework that accounts for the implicitly constrained, least-squares
nature of the problem. Algorithm 3 describes the framework, which builds on the Levenberg-
Marquardt paradigm [15] and more generally on quadratic regularization techniques.

Note that the subproblem in (3) is in itself a (linear) least-squares problem when Hk+γk ⪰ 0.
Algorithm 3 can be instantiated into several frameworks. When Hk is the zero matrix, then

the method can be viewed as an instance of proximal gradient. When Hk = GT
kGk, the method

is a regularized Gauss-Newton iteration, similar to the Levenberg-Marquardt method. Other
formulas, such as quasi-Newton updates, could also be used without the need for second-order
information.

The kth iteration of Algorithm 3 will be called successful if uk+1 ̸= uk, and unsuccessful
otherwise.

3 Complexity analysis

In this section, we investigate the theoretical properties of Algorithm 3. Our goal consists in
reaching a vector uk such that

∥R(y(uk), uk)∥ ≤ ϵR or
∥GR(y(uk), uk)

TR(y(uk), uk)∥
∥R(y(uk), uk)∥

≤ ϵg. (6)
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Algorithm 3 Regularization method for constrained least squares

Require: Initial iterate u0 ∈ Rn; initial parameter γ0 > 0; minimum regularization parameter
0 < γmin ≤ γ0; step acceptance threshold η ∈ (0, 1).

1: Solve the constraint c(y, u0) = 0 for y to obtain y(u0).
2: Evalue R0 = R(y(u0), u0).
3: for k = 0, 1, 2, . . . do
4: Compute a step sk as an approximate solution to the following problem

min
s∈Rn

mk(uk + s) :=
1

2
∥Rk∥2 + gTk s+

1

2
sT(Hk + γkI)s, (5)

where gk is the gradient of Ĵ at uk and Hk ∈ Rn×n is a symmetric matrix.
5: Solve the constraint c(y, uk + sk) = 0 for y to obtain y(uk + sk).
6: Compute the ratio of actual to predicted decrease in f defined as

ρk ←
Ĵ(uk)− Ĵ(uk + sk)

mk(uk)−mk(uk + sk)
.

7: if ρk ≥ η then
8: Set uk+1 ← uk + sk and γk+1 ← max{0.5γk, γmin}.
9: Solve the constraint c(y, uk+1) = 0 for y to obtain y(uk+1).

10: Evalue Rk+1 = R(y(uk+1), uk+1) and the Jacobian Gk+1 = GR(y(uk+1), uk+1).
11: else
12: Set uk+1 ← uk and γk+1 ← 2γk.
13: end if
14: end for

This scaled gradient condition was previously used for establishing complexity guarantees for
algorithms applied to nonlinear least-squares problems [4, 5, 11].

Section 3.1 provides an iteration complexity bound for all instances of the algorithm.

3.1 Iteration complexity

We begin by a series of assumptions regarding the reduced formulation (2).

Assumption 3.1 The function Ĵ : u 7→ J(y(u), u) is continuously differentiable in u. More-
over, the gradient of Ĵ with respect to u is L-Lipschitz continuous for L > 0.

Note that the first part of Assumption 3.1 holds when R is a continuously differentiable
function.

Assumption 3.2 There exists a positive constant MH > 0 such that ∥Hk∥ ≤MH for all k.

Assumption 3.2 is trivially satisfied when Hk is the zero matrix, or whenever the iterates are
contained in a compact set. When Hk is the full Hessian matrix, MH = L is a valid choice.

Assumption 3.3 For any iteration k, the matrix Hk is chosen as a positive semidefinite matrix
and gk is chosen as the exact gradient gk = GT

kRk.
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Note that both the zero matrix and the Gauss-Newton matrixGT
kGk are positive semidefinite,

and thus satisfy Assumption 3.3.

Lemma 3.1 Let Assumptions 3.1,3.2 and 3.3 hold. Suppose that the subproblem (5) is solved
exactly at iteration k. Then,

sk = −(Hk + γkI)
−1GT

kRk (7)

where I is the identity matrix in Rd×d. Moreover,

mk(uk)−mk(uk + sk) ≥
1

2

∥GT
kRk∥2

MH + γk
. (8)

Proof. Under Assumption 3.3, the subproblem (5) is a strongly convex quadratic subprob-
lem. It thus possesses a unique global minimum given by −(Hk+γkI)

−1GT
kRk, which is precisely

(7). Using this formula for sk, we obtain

mk(uk)−mk(uk + sk) ≥ −RT
kGksk −

1

2
sTk (Hk + γkI)sk

= RT
kGk(Hk + γkI)

−1GT
kRk −

1

2
RT

kGk(Hk + γkI)
−1GT

kRk

=
1

2
RT

kGk(Hk + γkI)
−1GT

kRk

≥ 1

2

∥GT
kRk∥2

∥Hk + γkI∥
.

By Assumption 3.2, we have

∥Hk + γk∥ ≤ ∥Hk∥+ γk ≤MH + γk.

Hence, we have

mk(uk)−mk(uk + sk) ≥
1

2

∥GT
kRk∥2

MH + γk
,

as required. □
Our second ingredient for a complexity proof consists in bounding the value of the regular-

ization parameter.

Lemma 3.2 Let Assumptions 3.1, 3.3 and 3.2 hold. Then,

(i) If k is the index of an unsuccessful iteration, then γk < L
2(1−η) .

(ii) For any iteration k,

γk ≤ γmax := max

{
1, γ0,

L

1− η

}
. (9)

Proof. Suppose that the kth iteration is unsuccessful, i.e. that ρk < η. Then, one has

η(mk(uk + sk)−mk(uk)) < Ĵ(uk + sk)− Ĵ(uk). (10)
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Using Assumption 3.1, a Taylor expansion of Ĵ around uk yields

Ĵ(uk + sk)− Ĵ(uk) ≤ ∇Ĵ(uk)Tsk +
L

2
∥sk∥2

= gTk sk +
L

2
∥sk∥2

= mk(uk + sk)−mk(uk)−
1

2
sTk (Hk + γkI)sk +

L

2
∥sk∥2

≤ mk(uk + sk)−mk(uk) +
L

2
∥sk∥2,

where the last inequality holds because of Assumption 3.3. Combining this inequality with (10),
we obtain that

η(mk(uk + sk)−mk(uk)) < Ĵ(uk + sk)− Ĵ(uk)

⇒ η(mk(uk + sk)−mk(uk)) < mk(uk + sk)−mk(uk) +
L

2
∥sk∥2

⇒ (1− η)(mk(uk)−mk(uk + sk)) <
L

2
∥sk∥2.

From Lemma 3.1, we obtain both an expression for sk and a bound on the left-hand side. Noting
that

∥sk∥ ≤
∥GT

kRk∥
∥Hk + γkI∥

≤ ∥G
T
kRk∥

MH + γk
,

we obtain

(1− η)(mk(uk)−mk(uk + sk)) <
L

2
∥sk∥2

⇐ (1− η)

2

∥GT
kRk∥2

MH + γk
<

L

2

∥GT
kRk∥2

(MH + γk)2

⇔ 1− η

2(MH + γk)
<

L

2(MH + γk)2

⇔ γk <
L

(1− η)
−MH <

L

(1− η)
.

Overall, we have shown that if the kth iteration is unsuccessful, then necessarily γk < L
(1−η) .

By a contraposition argument, we then obtain that γk ≥ L
(1−η) implies that the iteration is

successful and that γk+1 ≤ γk. Combining this observation with the initial value of γ0 and the
update mechanism for γk, we find that γk can never exceed max{γ0, L

1−η} ≤ γmax, proving the
desired result. □

Note that we define γmax to be greater than or equal to 1 to simplify our bounds later on.
We now provide our first iteration complexity bound, that focuses on successful iterations.

Lemma 3.3 Let Assumptions 3.1, 3.3 and 3.2 hold. Let ϵg ∈ (0, 1), and let Sϵg ,ϵR denote the
set of successful iterations for which uk does not satisfy (6). Then,

∣∣Sϵg ,ϵR

∣∣ ≤
⌈
CS log(2Ĵ(u0)ϵ

−2
R )ϵ−2

R

⌉
+ 1, (11)

where CS = 2(MH+γmax)
η .
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Proof. Let k ∈ Sϵg ,ϵR . By definition, the corresponding iterate uk satisfies

∥Rk∥ ≥ ϵR and
∥GT

kRk∥
∥Rk∥

≥ ϵg. (12)

Moreover, since k corresponds to a successful iteration, we have ρk ≥ η, i.e.

Ĵ(uk)− Ĵ(uk + sk) ≥ η (mk(uk)−mk(uk + sk)) ≥ η
∥GT

kRk∥2
2(MH + γk)

≥ η
∥GT

kRk∥2
2(MH + γmax)

,

where we used the results of Lemmas 3.1 and 3.2 to bound the model decrease and γk, respec-
tively. Combining the last inequality with (12) leads to

Ĵ(uk)− Ĵ(uk + sk) ≥
η

2(MH + γmax)
∥GT

kRk∥2

=
η

2(MH + γmax)

∥GT
kRk∥2
∥Rk∥2

∥Rk∥2

≥ η

2(MH + γmax)
ϵ2g∥Rk∥2

=
η

MH + γmax
ϵ2gĴ(uk),

where the last line follows by definition of Ĵ(uk). Since η
MH+γmax

ϵ2g ∈ (0, 1) by definition of all
quantities involved, we obtain that

(
1− η

MH + γmax
ϵ2g

)
Ĵ(uk) ≥ Ĵ(uk+1). (13)

Let now Skϵg ,ϵR := {ℓ < k|ℓ ∈ Sϵg ,ϵR}. Recalling that the iterate only changes on successful

iterations and that the function Ĵ is bounded below by 0, we obtain that

(
1− η

MH + γmax
ϵ2g

)∣∣∣Sk
ϵg,ϵR

∣∣∣
Ĵ(u0) ≥ Ĵ(uk)

(
1− η

MH + γmax
ϵ2g

)∣∣∣Sk
ϵg,ϵR

∣∣∣
Ĵ(u0) ≥

1

2
ϵ2R,

where the last line uses k ∈ Sϵg ,ϵR . Taking logarithms and re-arranging, we arrive at

∣∣∣Skϵg ,ϵR
∣∣∣ ln

(
1− η

MH + γmax
ϵ2g

)
≥ 2 ln

(
ϵ2R/(2Ĵ(u0))

)

∣∣∣Skϵg ,ϵR
∣∣∣ ≤

2 ln
(
ϵ2R/(2Ĵ(u0)

)

ln
(
1− η

MH+γmax
ϵ2g

)

≤ 2 ln
(
2Ĵ(u0)ϵ

−2
R

) MH + γmax

η
ϵ−2
g ,

where the last inequality comes from − ln(1 − t) ≥ t for any t ∈ (0, 1). As a result, we obtain
that ∣∣Sϵg ,ϵR

∣∣ ≤ 1 + 2 ln
(
2Ĵ(u0)ϵ

−2
R

) MH + γmax

η
ϵ−2
g ,

where the additional 1 accounts for the largest iteration in Sϵg ,ϵR . □
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Lemma 3.4 Under the assumptions of Lemma 3.3, let Uϵg ,ϵR be the set of unsuccessful iterations
for which (6) does not hold. Then,

∣∣Uϵg ,ϵR
∣∣ ≤ ⌈1 + log2 (γmax)⌉

∣∣Sϵg ,ϵR
∣∣ . (14)

Proof. The proof tracks that of [7, Lemma 2.5] for the trust-region case. Between two
successful iterations, the value of γk only increases by factors of 2. Combining this observation
with the fact that γk ≤ γmax per Lemma 3.2 and accounting for the first successful iteration
leads to the final result. □

Combining Lemmas 3.3 and 3.4 finally yields our main complexity result.

Theorem 3.1 Under Assumptions 3.1, 3.3 and 3.2, the number of successful iterations (and
Jacobian evaluations) before reaching an iterate satisfying (6) satisfies

|Sϵg ,ϵR | = O
(
log(ϵ−1

R )ϵ−2
g

)
(15)

and the total number of iterations (and residual evaluations) before reaching such an iterate
satisfies

|Sϵg ,ϵR |+ |Uϵg ,ϵR | = O
(
log(ϵ−1

R )ϵ−2
g

)
. (16)

The result of Theorem 3.1 improves over that obtained by Bergou et al [4] in a more general
setting, and is consistent with that in Gould et al [11], where a series of results with vanishing
dependencies in ϵR were established. Our result retains a logarithmic dependency but does not
depend on increasingly larger constants.

To end this section, we provide a result tailored to our implicit constrained setup, and the
operations that are performed throughout the course of the algorithm.

Corollary 3.1 Under the assumptions of Theorem 3.1, the number of solves of the implicit
constraint for y is

1 + |Sϵg ,ϵR |+ |Uϵg ,ϵR | = O
(
log(ϵ−1

R )ϵ−2
g

)
, (17)

while the number of adjoint solves (using Algorithm 2) is

1 + |Sϵg ,ϵR | = O
(
log(ϵ−1

R )ϵ−2
g

)
. (18)

3.2 Inexact variants

We now consider solving the subproblem (7) in an inexact fashion. Such a procedure is classical
in large-scale optimization, and would apply in the case of a nonzero Hk.

Assumption 3.4 For any iteration k, the step sk is chosen so as to satisfy

(Hk + γkI)sk = −gk + tk, ∥tk∥ ≤ θ

√
γk

∥Hk∥+ γk
∥gk∥ (19)

for θ ∈ [0, 1).

Assuming that the linear system is solved to the accuracy expressed in condition (19), one
can establish the following result.
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Lemma 3.5 Let Assumptions 3.3, 3.2 and 3.4 hold. For any iteration k, the step sk satisfies

∥sk∥ ≤
(1 + θ)∥GT

kRk∥
γk

(20)

and

mk(uk)−mk(uk + sk) ≥
1− θ2

2

∥GT
kRk∥2

MH + γk
. (21)

Proof. Using Assumption 3.4 gives

∥tk∥ ≤ θ

√
γk

∥Hk∥+ γk
∥GT

kRk∥ ≤ θ∥GT
kRk∥.

Since sk = (Hk + γkI)
−1(−gk + tk) by construction, we obtain

∥sk∥ =
∥∥(Hk + γkI)

−1(−gk + tk)
∥∥ ≤ ∥gk∥+ ∥tk∥

∥Hk + γkI∥

≤ (1 + θ)
∥gk∥

∥Hk∥+ γk

≤ (1 + θ)∥GT
kRk∥

γk
,

proving (20).
We now use this ineqality together with the definition of sk to bound the model decrease:

mk(uk)−mk(uk + sk) = −gTk sk −
1

2
sTk (Hk + γkI)sk

= −gTk (Hk + γkI)
−1(−gk + tk)−

1

2
(−gk + tk)

T(Hk + γkI)
−1(−gk + tk)

=
1

2
gTk (Hk + γkI)

−1gk −
1

2
tTk (Hk + γkI)

−1tk.

Using Cauchy-Schwarz inequality, we obtain on one hand

gTk (Hk + γkI)
−1gk ≥

∥gk∥2
∥Hk + γkI∥

≥ ∥gk∥2
∥Hk∥+ γk

,

while on the other hand

tTk (Hk + γkI)
−1tk ≤

∥tk∥2
∥Hk + γkI∥

≤ ∥tk∥
2

γk
≤ θ2∥gk∥2
∥Hk∥+ γk

,

where the last inequality comes from Assumption 3.4. As a result, we arrive at

mk(uk)−mk(uk + sk) ≥
1

2

∥gk∥2
∥Hk∥+ γk

− θ2

2

∥gk∥2
∥Hk∥+ γk

=
1− θ2

2

∥gk∥2
∥Hk∥+ γk

≥ 1− θ2

2

∥gk∥2
MH + γk

,

using Assumption 3.2 to bound ∥Hk∥. This proves (21). □
Similarly to the exact case, we now prove that the regularization parameter is bounded from

above.
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Lemma 3.6 Let Assumptions 3.1, 3.2, 3.3 and 3.4 hold. Then,

(i) If k is the index of an unsuccessful iteration, then γk < L(1+θ)2

(1−η)(1−θ2)
.

(ii) For any iteration k,

γk ≤ γinmax := max

{
1, γ0,

L(1 + θ)2

(1− η)(1− θ2)

}
. (22)

Proof. By the same reasoning as in the proof of Lemma 3.2, we know that for any unsuc-
cessful iteration, we have

(1− η)(mk(uk)−mk(uk + sk)) <
L

2
∥sk∥2. (23)

Using now the properties (20) and (21) in (23), we obtain:

(1− η)(mk(uk)−mk(uk + sk)) <
L

2
∥sk∥2

⇐ (1− η)(1− θ2)

2

∥GT
kRk∥2

MH + γk
<

L(1 + θ)2

2

∥GT
kRk∥2

(MH + γk)2

⇔MH + γk <
L(1 + θ)2

(1− η)(1− θ2)

⇔ γk <
L(1 + θ)2

(1− η)(1− θ2)
−MH <

L(1 + θ)2

(1− η)(1− θ2)
.

Overall, we have shown that if the kth iteration is unsuccessful, then necessarily γk < L(1+θ)2

(1−η)(1−θ2)
.

Because of the updating rules on γk and accounting for γ0 we obtain that

γk ≤ max

{
γ0,

L(1 + θ)2

(1− η)(1− θ2)

}
≤ γinmax

for all k, proving the desired result. □
We can now state an iteration complexity result for the inexact variant.

Lemma 3.7 Let Assumptions 3.1, 3.2, 3.3 and 3.4 hold. Let ϵg ∈ (0, 1), and let Sinϵg ,ϵR denote
the set of successful iterations for which uk does not satisfy (6). Then,

∣∣∣Sinϵg ,ϵR
∣∣∣ ≤

⌈
CinS log(2Ĵ(u0) ϵ

−2
R )ϵ−2

g

⌉
+ 1, (24)

where CinS = 2(MH+γin
max)

η(1−θ2)
.

Proof. Let k ∈ Sϵg ,ϵR . By definition, the kth iteration is successful, and we have per
Lemma 3.6

Ĵ(uk)− Ĵ(uk + sk) ≥ η (mk(uk)−mk(uk + sk)) ≥
η(1− θ2)

2

∥GT
kRk∥2

MH + γk
≥ η(1− θ2)

2

∥GT
kRk∥2

MH + γinmax

,
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where the last inequality is a consequence of Lemma 3.6. In addition, the corresponding iterate
uk satisfies (12), leading to

Ĵ(uk)− Ĵ(uk + sk) ≥
η(1− θ2)

2

∥GT
kRk∥2

MH + γinmax

=
η(1− θ2)

2(MH + γinmax)

∥GT
kRk∥2
∥Rk∥2

∥Rk∥2

=
η(1− θ2)

MH + γinmax

∥GT
kRk∥2
∥Rk∥2

J(uk)

≥ η(1− θ2)

MH + γinmax

ϵ2gĴ(uk).

Using that η(1−θ2)
MH+γin

max
< 1 then leads to

(
1− η(1− θ2)

MH + γmax
ϵ2g

)
Ĵ(uk) ≥ Ĵ(uk+1). (25)

By proceeding as in the proof of Lemma 3.3 and using (25) in lieu of (25), one establishes that
∣∣∣Sinϵg ,ϵR

∣∣∣ ≤ 1 + 2 ln
(
2Ĵ(u0)ϵ

−2
R

) MH + γmax

η(1− θ2)
ϵ−2
g ,

proving the desired result. □
To connect the number of unsuccessful iterations with that of successful iterations, we use

the same argument as in the exact case by replacing the bound (9) with (22).

Lemma 3.8 Under the assumptions of Lemma 3.7, let U in
ϵg ,ϵR

be the set of unsuccessful iterations
for which (6) does not hold. Then,

∣∣∣U in
ϵg ,ϵR

∣∣∣ ≤
⌈
1 + log2

(
γinmax

)⌉ ∣∣∣Sinϵg ,ϵR
∣∣∣ . (26)

Our next theorem gives the total iteration complexity result by combining Lemmas 3.7
and 3.8.

Theorem 3.2 Under Assumptions 3.1, 3.2, 3.3 and 3.4, the number of successful iterations
(and inexact step calculations) before reaching an iterate satisfying (6) satisfies

|Sinϵg ,ϵR | = O
(

1

(1− θ2)2
log(ϵ−1

R )ϵ−2
g

)
(27)

and the total number of iterations (and residual evaluations) before reaching such an iterate
satisfies

|Sinϵg ,ϵR |+ |U
in
ϵg ,ϵR
| = O

(
1

(1− θ2)2
log(ϵ−1

R )ϵ−2
g

)
. (28)

The results of Theorem 3.2 match that of Theorem 3.1 in terms of dependencies on ϵg and
ϵR. To emphasize the use of inexact steps, we highlighted the dependency with respect to the
inexact tolerance θ. As expected, one notes that this dependency vanishes when θ = 0 (i.e.
when we consider exact steps as in Section 3.1), and that the complexity bounds worsen as
θ gets closer to 1. A similar observation holds for the results in the next corollary, that is a
counterpart to Corollary 3.1.
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Corollary 3.2 Under the assumptions of Theorem 3.2, the number of solves for y is

1 + |Sinϵg ,ϵR |+ |U
in
ϵg ,ϵR
| = O

(
log

(
1

1− θ2

)
1

(1− θ2)2
log(ϵ−1

R )ϵ−2
g

)
, (29)

while the number of adjoint solves (using Algorithm 2) is

1 + |Sinϵg ,ϵR | = O
(

1

(1− θ2)2
log(ϵ−1

R )ϵ−2
g

)
. (30)

In the case of inexact steps, we can however provide more precise guarantees on the number
of operations necessary to compute steps at every iteration. More precisely, suppose that we
apply an iterative solver to the system (Hk + γkI)s = −gk in order to find an approximate
solution satisfying Assumption 3.4. In particular, one can resort to iterative linear algebra
techniques such as Conjugate Gradient (CG), and obtain guarantees on the number of matrix-
vector products necessary to reach the desired accuracy [15]. A result tailored to our setting is
presented below.

Proposition 3.1 Let Assumption 3.3 hold. Suppose that we apply conjugate gradient (CG) to
the linear system (Hk + γkI)s = −gk, where gk, Hk, γk are obtained from the kth iteration of
Algorithm 3. Then, the conjugate gradient method computes an iterate satisfying (19) after at
most

min

{
n,

1

2

√
κk log

(
2κk
θ

)}
(31)

iterations or, equivalently, matrix-vector products, where κk = ∥Hk∥+γk
γk

.

Proof. Let s(q) be the iterate obtained after applying q iterations of conjugate gradient to
(Hk + γkI)s = −gk. If q = n, then necessarily the linear system has been solved exactly and
(19) is trivially satisfied. Thus we assume in what follows that q < n.

Standard CG theory gives [16, Proof of Lemma 11]:

∥(Hk + γkI)s
(q) + gk∥ ≤ 2

√
ck

(√
ck − 1√
ck + 1

)q

∥gk∥, (32)

where ck is the condition number of Hk + γkI. Noticing that ck ≤ κk, we see that (32) implies

∥(Hk + γkI)s
(q) + gk∥ ≤ 2

√
κk

(√
κk − 1√
κk + 1

)q

∥gk∥. (33)

Suppose now that s(q) does not satisfy (19). Then,

∥(Hk + γkI)s
(q) + gk∥ ≥ θ

√
γk

∥Hk∥+ γk
∥gk∥ =

θ√
κk
∥gk∥. (34)

Combining (33) and (34) yields

θ√
κk
∥gk∥ ≤ 2

√
κk

(√
κk − 1√
κk + 1

)q

∥gk∥

θ

2κ
≤

(√
κk − 1√
κk + 1

)q

.
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Taking logarithms and rearranging, we arrive at

q ≤ ln(θ/(2κk))

ln
(√

κk−1√
κk+1

) ≤ ln(2κk/θ)

ln
(
1 + 2√

κk−1

) ≤ 1

2

√
κk ln

(
2κk
θ

)
, (35)

where the last inequality used ln(1+ 1
t ) ≥ 1

t+1/2 . Combining (35) with the fact that q ≤ n yields
our desired bound. □

Using the bounds on γk and ∥Hk∥ from our complexity analysis, we see that the value (31)
can be bounded from above by

min

{
n,

1

2

√
κ log

(
2κ

θ

)}
, (36)

with κ = MH+γin
max

γmin
. Combining this result with the complexity bound of Theorem 3.2, we are

able to bound the number of matrix-vector products as follows.

Corollary 3.3 Under the assumptions of Theorem 3.2, suppose that we apply conjugate gradient
to compute inexact steps in Algorithm 3. Then, the algorithm reaches a point satisfying (6) in
at most

min
{
n, 12
√
κ log

(
2κ
θ

)}
×
(
1 + |Sinϵg ,ϵR |

)

= O
(
min

{
n,
√
κ log

(
κ
θ

)}
log

(
1

1−θ2

)
1

(1−θ2)2
log(ϵ−1

R )ϵ−2
g

) (37)

matrix-vector products.

As a final note, we point out that there exist variants of the conjugate gradient method that
take advantage of a Gauss-Newton approximation Hk = GT

kGk. For such variants, each iteration
would require two Jacobian-vector products, resulting in an additional factor of 2 in the above
complexity bound.

4 Numerical illustration

In this section, we illustrate the performance of several instances of our framework on classical
PDE-constrained optimization problems. Our goal is primarily to investigate the significant
effect of using condition (6) as a stopping criterion. In addition, we wish to study the performance
of the Gauss-Newton and inexact Gauss-Newton formulas. For this reason, we are primarily
interested in the evaluation and iteration cost of our method, and therefore we report these
statistics in the rest of the section.

All algorithms were implemented in MATLAB R2023a. We run three variants of the methods
corresponding to using gradient steps, Gauss-Newton steps and inexact Gauss Newton based
on conjugate gradient (thereafter denoted by Gauss-Newton+CG). All variants used η = 0.1,
γmin = 10−10 and γ0 = max{1, ∥g0∥, ∥u0∥∞ + 1}. The inexact condition (31) was replaced by
∥tk∥ ≤ θ∥gk∥ with θ = 0.1. Runs were completed on HP EliteBook x360 1040 G8 Notebook PC
with 32Go RAM and 8 cores 11th Gen Intel Core i7-1165G7 @ 2.80GHz.
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4.1 Elliptic PDE-constrained problem

We first consider a standard elliptic optimal control problem, where the control is chosen so that
the temperature distribution (the state) matches a desired distribution as closely as possible [9,
18]. The resulting problem can be written as

min
y,u

J(y, u) :=
1

2

∫

D

[
(y(u(x))− z(x))2 + λu(x)2

]
dx, (38)

subject to −∇ · (a(x)∇y(x)) = u(x), in D, (39)

y(x) = 0, on ∂D,

where z is the desired state and λ > 0 is a regularization parameter. We set D := [0, 1]2 and
a(x) ≡ 1, ∀x ∈ D. We discretize (38) and (39) using piecewise linear finite elements on a
triangular grid yields

1

2
(y − z)TM(y − z) +

λ

2
uTMu,

and
Ky = Mu,

or, equivalently,
y = K−1Mu,

where the vectors y, z,u denote the discrete forms of the state, the desired state, respectively,
and the control variables. Moreover, K and M represent the stiffness and mass matrices, re-
spectively [9]. Note that the boundary constraints are incorporated into the stiffness matrix.

Note that the cost function (4.1) can be written as 1
2∥R(y,u)∥2 with

R(y,u) =

[
M1/2(y − z)√

βM1/2u

]
, (40)

fitting our formulation of interest (1).
Tables 1 and 2 represent our results with control dimension n = 1829, λ = 0.001, and using

the vector of all ones as a starting control value u0, (that is, u0 = 1). We consider two different
examples of the desired state in our experiments, namely z = 0 and z = 1.

Table 1 corresponds to a zero desired state. Note that in this case, case u = 0 gives a zero
residual and the problem has a zero residual solution. Using ϵg = 10−5 and ϵR = 10−9, we
observe that the residual criterion of (6) is triggered before the scaled gradient condition, and
that only Gauss-Newton reaches the desired accuracy (note however that all final residual values
correspond to an objective function value smaller than 10−11). The Gauss-Newton+CG variant
reverted to a gradient step after 30 iterations due to small curvature encountered while applying
conjugate gradient (such behavior only occurred on this specific example). Still, it produced an
iterate with smaller residual than gradient descent at a lower cost than exact Gauss-Newton in
terms of Jacobian-vector products. Indeed, considering that one Jacobian evaluation requires n
Jacobian-vector products, one obtains that 888 < 32n = 58528.

In Table 2, we use the same tolerances but the desired state is now the vector of all ones,
leading to a problem with large residuals. As a result, the scaled gradient condition is a better
stopping criterion, as evidenced by the results. Note that all methods converge, with the Gauss-
Newton variants taking less iterations and producing the lowest residual solution.
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Method Gradient Gauss-Newton Gauss-Newton+CG

Iterations 300 32 300
Jacobian/Jacobian-vector products 162 33 888

Final residual 1.57e-07 8.51e-11 1.16e-09
Final scaled gradient norm 2.25e-04 2.17e-04 5.94e-04

Table 1. Results for three variants of Algorithm 3 on the elliptic PDE problem (4.1) using z = 0 as
desired state.

Method Gradient Gauss-Newton Gauss-Newton+CG

Iterations 37 25 25
Jacobian/Jacobian-vector products 30 26 290

Final residual 7.17e-01 7.17e-01 7.17e-01
Final scaled gradient norm 7.02e-06 5.07e-06 5.07e-06

Table 2. Results for three variants of Algorithm 3 on the elliptic PDE problem (4.1) using z = 1 as
desired state.

4.2 Burgers’ equation

We now describe our second test problem, based on Burgers’ equation, a simplified model for
turbulence [2, 8, 19, 12]. Control problems based on this equation are often considered as the
most fundamental nonlinear problem to handle. In our case, they illustrate the performance of
our algorithms in a nonlinear, implicitly constrained setting.

Our formulation is as follows:




miny,u J(y, u) :=
1
2

∫ T
0

∫ L
0

[
(y(t, x)− z(t, x))2 + ωu(t, x)2

]
dt dx

subject to yt +
1
2

(
y2 + νyx

)
x
= f + u (x, t) ∈ (0, L)× (0, T )

y(t, 0) = y(t, L) = 0 t ∈ (0, T )
y(0, x) = y0(x) x ∈ (0, L).

(41)
Here L and T are space and time horizons, respectively; u : [0, T ]× [0, L]→ R is the control of
our optimization problem; y : [0, T ]× [0, L]→ R is the state; z : [0, T ]× [0, L]→ R is the desired
state; ω > 0 is a regularization parameter; f is a source term, and ν is the viscosity parameter.

Given u, y can be computed by solving the PDE

yt +
1
2

(
y2 + νyx

)
x

= f + u (x, t) ∈ (0, L)× (0, T )

y(t, 0) = y(t, L) = 0 t ∈ (0, T )
y(0, x) = y0(x) x ∈ (0, L).

(42)

We discretize (42) in time by applying the backward Euler scheme to Burgers’ equation
and a rectangle rule for the discretization of the objective function, while the spatial variable is
approximated by piecewise linear finite elements. As a result, we obtain the following discretized
version of problem (41):

{
minimizeu0,...,uNt∈RNx J(y0, . . . , yNt , u0, . . . , uNt)

subject to ci+1(yi, yi+1, ui+1; ν) = 0, i = 0, . . . , Nt − 1,
(43)
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where

J(y0, . . . , yNt , u0, . . . , uNt) := δt

Nt∑

i=0

(
1
2(yi − z)TM(yi − z) + ω

2u
T
i Mui

)
(44)

and

ci+1(yi, yi+1, ui+1; ν) =
1

δt
Myi+1 −

1

δt
Myi +

1

2
Byi+1 ⊙ yi+1 + νCyi+1 − f −Mui+1, (45)

and ⊙ denotes the entrywise product. In those equations, δt =
T
Nt

represents the time step of
the discretization, while M,B,C, {fi} are discretized versions of the operators and the source
term arising from the continuous formulation. More precisely, we have

M =
h

6




4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4



∈ RNx×Nx , B =




0 1/2
−1/2 0 1/2

. . .
. . .

. . .

−1/2 0 1/2
−1/2 0



∈ RNx×Nx

and

C =
1

h




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



∈ RNx×Nx , f =



f1
...

fNx


 ∈ RNx ,

with h = L
Nx

being the space discretization step. Following previous work [2, 12], we assume
that the desired state z does not depend on time.

To reduce the effects of boundary layers, we discretize Burgers’ equation using continuous
piecewise linear finite elements built on a piecewise uniform mesh. We then solve the resulting
discretized nonlinear PDE at each time step using Newton’s method [2].

Letting u (resp. y) as the concatenation of u0, . . . , uNt (resp. y0, . . . , yNt), one observes that
the objective function can be written as 1

2∥R(y,u)∥2 with

R(y,u) =




√
δtM

1/2(y0 − z)
...√

δtM
1/2(yNt − z)√

ωδtM
1/2u0

...√
ωδtM

1/2uNt




∈ R2(Nt+1)Nx . (46)

In our experimental setup, we use L = T = 1, Nx = Nt = 50, ω = 0.05, and f = 0. We
set z = y0 with the first Nx/2 coefficients equal to 1 and the others equal to 0, while the initial
control u0 is set to the zero vector.

We ran our three algorithms using ϵg = 10−5 and ϵR = 10−9. Tables 3 and 4 report
results for two values of the viscosity parameter. Both show that the stopping criterion (6) is
satisfied thanks to the scaled gradient condition. As illustrated by Figures 1 and 2, the solutions
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Method Gradient Gauss-Newton Gauss-Newton+CG

Iterations 29 19 19
Jacobian/Jacobian-vector products 23 20 218

Final residual 4.35e-01 4.35e-01 3.43e-01
Final scaled gradient norm 8.82e-06 5.01e-06 5.01e-06

Table 3. Results for the variants of Algorithm 3 for the optimal control problem (41) using ν = 0.1.

Method Gradient Gauss-Newton Gauss-Newton+CG

Iterations 63 23 23
Jacobian/Jacobian-vector products 39 24 406

Final residual 3.43e-01 3.43e-01 3.43e-01
Final scaled gradient norm 6.56e-06 6.77e-06 6.77e-06

Table 4. Results for the variants of Algorithm 3 for the optimal control problem (41) using ν = 0.01.

returned by the method yield similar state functions. However, we point out that using Gauss-
Newton+CG steps results in the lowest number of iterations together with the lowest cost (since
one Jacobian evaluation amounts to n = NtNx Jacobian-vector products).

As illustrated by Table 4, the computation becomes more challenging as ν is smaller, since
the instability grows exponentially with the evolution time [14]. Nevertheless, Figure 2 shows
that all three methods improve significantly over the state corresponding to the initial control
value. Note that plot on the top left hand panel in Figure 1 and Figure 2 represents the state
corresponding to the initial control while the other three plots in each figure represent the final
iterate of the states computed with the respective variants of Algorithm 3.

5 Conclusion

In this paper, we proposed a regularization method for least-squares problems subject to im-
plicit constraints, for which we derived complexity guarantees that improve over recent bounds
derived in the absence of constraints. To this end, we leveraged a recently proposed convergence
criterion that is particularly useful when the optimal solution corresponds to nonzero objective
value. Numerical testing conducted on PDE-constrained optimization problems showed that the
criterion used to derive our complexity bounds bears a practical significance.

Our results can be extended in a number of ways. Deriving complexity results for second-
order methods, that are common in scientific computing, is a natural continuation of our analysis.
Besides, we aim at considering stochastic optimization problems under implicit constraints,
in order to tackle not only machine learning problems, but also optimization problem under
stochastic PDE constraints.
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(a) State from initial control (b) Final iterate of gradient descent

(c) Final iterate of Gauss-Newton (d) Final iterate of Gauss-Newton+CG

Figure 1. State values for the optimal control problem (41) using ν = 0.1. The first plot shows the
state for the initial value of the control, while the others show the state for the control returned by the
corresponding variant of Algorithm 3.
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