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Abstract

Deep Nonnegative Matrix Factorization (deep NMF) has recently emerged as a valuable tech-
nique for extracting multiple layers of features across different scales. However, all existing deep
NMF models and algorithms have primarily centered their evaluation on the least squares error,
which may not be the most appropriate metric for assessing the quality of approximations on di-
verse datasets. For instance, when dealing with data types such as audio signals and documents,
it is widely acknowledged that β-divergences offer a more suitable alternative. In this paper, we
develop new models and algorithms for deep NMF using β-divergences. Subsequently, we apply
these techniques to the extraction of facial features, the identification of topics within document
collections, and the identification of materials within hyperspectral images.

Keywords. deep nonnegative matrix factorization, β-divergences, minimum-volume regulariza-
tion, identifiability, multi-block nonconvex optimization, facial feature extraction, topic modeling,
hyperspectral unmixing

1 Introduction

Deep NMF seeks to approximate an input data matrix X ∈ Rm×n
+ , as follows:

X ≈W1H1, W1 ≈W2H2, . . . WL−1 ≈WLHL, (1)

where Wℓ ∈ Rm×rℓ
+ and Hℓ ∈ Rrℓ×rℓ−1

+ for ℓ = 1, 2, . . . , L, and with r0 = n. This approach yields a
total of L layers of decompositions for X:

X ≈W1H1, X ≈W2H2H1, . . . , X ≈WLHLHL−1 . . . H1. (2)

For example, let X ∈ Rm×n
+ represent a hyperspectral image, with m spectral bands and n pixels,

where X(:, j) is the spectral signature of the jth pixel and X(i, :) is the vectorized image corresponding
to the ith wavelength. Then the first layer of the factorization, X ≈W1H1, is such that W1 ∈ Rm×r1

+

contains the spectral signatures of r1 materials, while H1 ∈ Rr1×n
+ contains the so-called abundance
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maps that indicate which material is present in which pixel and in which proportion. Figure 1 (a)
provides an example where the extracted materials include grass, trees, roof tops, and roads. This
is the same interpretation as for NMF [29]. At the second layer, W1 ≈ W2H2 so that W2 ∈ Rm×r2

+

contains the spectral signatures of higher-level materials; for example vegetation vs. non-vegetation
in Figure 1 (b). In other words, W2 will merge similar materials in a single material (e.g., grass and
trees in the vegetation). The factor H2 ∈ Rr2×r1 indicates how the low-level materials are combined
into high-level materials.

(a) (b)

Figure 1: Deep NMF applied on the Urban hyperspectral image, which is an aerial image of a Walmart
in Copperas Cove, Texas. We can for example easily identify the roof top and the parking lot of the
store; see the fourth and fifth image in (a), respectively. Using Deep NMF with two layers, we obtain
the following: (a) Layer 1 with r1 = 6 contains the abundance maps H1 corresponding to the spectral
signatures in W1, and (b) Layer 2 with r2 = 2 contains the abundance maps H2H1 corresponding to
the spectral signatures in W2. As the factorization unfolds, deep NMF generates denser abundance
maps which are combinations of abundance maps from previous layers. Here, the first level extracts 6
materials (including grass, roof tops and dirt, trees, other roof tops, road and dirt), which are merged
into vegetation vs. non-vegetation at the second layer.

We will make the assumption that the ranks decrease as the factorization proceeds, specifically,
that rℓ+1 < rℓ for all ℓ. This rank reduction is the most natural and common scenario. It is important
to note that employing rℓ+1 > rℓ leads to overparametrization, which can have its merits in certain
contexts, such as cases involving implicit regularization, as discussed in [2]. However, our primary
objective in this paper is not to pursue overparametrization.

There has been a recent surge of research on deep NMF. It began with the pioneering work of
Cichocki and Zdunek [7, 8], which focused on multilayer NMF techniques that sequentially decompose
the input matrix X. Subsequently, Trigeorgis et al. [36, 37] introduced deep NMF, presenting a model
closely related to the formulation in (2). Deep NMF has found applications across a diverse range of
fields, including recommender systems [31], community detection [40], and topic modeling [39]. For
more comprehensive insights and surveys on deep matrix factorizations, readers can refer to [10] and [5].
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These surveys offer up-to-date overviews of the field and its recent advancements. To the best of our
knowledge, it is noteworthy that all existing deep NMF models employ the Frobenius norm, which
corresponds to the least squares error, as the standard metric to assess the reconstruction error at each
layer. Furthermore, a significant portion of the literature has tended to overlook the modeling aspects
inherent to deep NMF. Consequently, many studies have adopted inconsistent models throughout the
different layers of the factorization process, as highlighted in [9].

Contribution and outline of the paper In this paper, we first focus on the modeling aspect in
Section 2. We explain how to use meaningful regularizations and why a layer-centric loss function
is more appropriate than a data-centric one when it comes to identifiability. This was observed
experimentally in [9] but not justified from a theoretical viewpoint. Then, in Section 3, we propose
new regularized models for deep NMF based on β-divergences, consistent across the layers, and design
algorithms for solving the proposed deep NMF models, with a focus on the Kullback-Leibler divergence
(β = 1). As a by-product, for the first time, we will provide Multiplicative Update (MU) for a problem
of the type

min
W≥0

Dβ(X,WH) + λDβ(W, W̄ ),

where X, H and W̃ are fixed, λ is a positive penalty parameter, and Dβ is a β-divergence (see Section 3
for its definition). For the KL divergence, this will require the use of the Lambert W-function within
the MU. Finally, in Section 4, we use the newly proposed models and algorithms for facial feature
extraction, topic modeling, and the identification of materials within hyperspectral images.

2 What Deep NMF model to use?

De Hanschutter et al. [9] introduced two distinct loss functions specifically designed for deep NMF:

1. A data-centric loss function (DCLF) defined as

L(H1, H2, . . . ,HL;W1,W2, . . . ,WL) =

L∑

ℓ=1

λℓD
(
X,Wℓ

ℓ−1∏

i=0

Hℓ−i

)
, (3)

where D(A,B) is a measure of distance between A and B, and the λℓ’s are positive penalty
parameters. This loss function minimizes a weighted sum of the errors in the decompositions of
X at each of the L levels, as given in (2).

2. A layer-centric loss function (LCLF) defined as

L(H1, H2, . . . ,HL;W1,W2, . . . ,WL) =

L∑

ℓ=1

λℓD(Wℓ−1,WℓHℓ), (4)

where W0 = X. This loss function minimizes a weighted sum of the errors at each layer, as given
in (1).

In the majority of previous works, the loss function minimized at each layer was not consistent across
layers. As a result, their algorithms generally did not converge effectively and often exhibited poorer
performance compared to the loss functions introduced in [9].
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Layer centric vs. data centric It was empirically observed in [9] that LCLF (as defined in (4))
outperformed DCLF (as defined in (3)) and the state of the art. This superior performance was
observed across various synthetic and real datasets, and it extended to the recovery of ground truth
factors. Interestingly, the reason behind this performance is not a matter of chance but rather has a
theoretical explanation, as indicated in the subsequent sections. This theoretical insight helps provide
a deeper understanding of the observed empirical results and offers a rationale for the preference of
LCLF in the context of deep NMF.

2.1 Identifiability of NMF

One of the primary reasons why LCLF is found to be more efficient than DCLF lies in the fact
that LCLF possesses better identifiability properties compared to DCLF (see Section 2.2). To better
understand this distinction, it is beneficial to revisit some of the key NMF identifiability results.

The sufficiently scattered condition A nonnegative matrix H ∈ Rr×n
+ satisfies the sufficiently

scattered condition (SSC)1 if

C = {x ∈ Rr
+ | ∥x∥1 ≥ q∥x∥2} ⊆ cone(H) = {x | x = Hy, y ≥ 0},

for some q <
√
r − 1. The set C is the intersection of the nonnegative orthant with a second-order

cone. The SSC implies that H is sufficiently sparse, in particular it requires H to have at least r − 1
zeros per row; see the discussions in [14] and [16, Chap. 4], and the references therein. Based on the
SSC, we have the following identifiability result for NMF.

Theorem 1 ([20]). Let X = W †H† be a rank-r NMF of X, where W †⊤ and H† satisfy the SSC. Then
any other rank-r NMF of X, X = WH, corresponds to (W †, H†), up to permutation and scaling of
the columns of W † and rows of H†.

Imposing the SSC on both factors, W and H, can sometimes be overly restrictive. For instance, in
hyperspectral imaging, it makes sense for H to have this constraint because its rows often represent
sparse abundance maps. However, assuming the SSC to W is typically not appropriate since it is
expected to be dense in many cases. To address this limitation and provide more flexibility, researchers
have introduced regularized NMF models. Among these, the minimum-volume NMF is one of the most
effective approaches, both from a theoretical perspective and in practical applications.

Minimum-volume NMF Minimizing the volume of the columns of W is a popular and powerful
NMF regularization technique. The most prevalent form of this regularization is achieved by utilizing
logdet(W⊤W ) under normalization constraints on either W or H, see e.g., [14] and [16, Chap. 4]. This
leads to identifiability/uniqueness of NMF, as stated in Theorem 2. In practice, we use logdet(W⊤W+
δI) (with the addition of a small parameter δ) for numerical stability; see the discussion in [23].

Theorem 2 ([15, 13, 24]). Let X = W †H† be a rank-r NMF of X, where rank(W †) = r and H†

satisfies the SSC. Then any optimal solution of the following problem

min
W

det(W⊤W ) such that X = WH and

H⊤e = e [15] or He = e [13] or W⊤e = e [24],

corresponds to (W †, H†), up to permutation and scaling of the columns of W † and rows of H†.
1There are several definitions of the SSC, see the discussion in [16, Chap. 4], and we choose here the simplest from [28].
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Furthermore, minimizing the volume of the columns of W also has several important implications:

• By encouraging the columns of W to be closer to the data points, this regularization enhances
the interpretability of the features represented by these columns.

• The regularization leads to sparser factors H. When the columns of W are close to the data
points, it implies that more data points are located near the faces of the cone generated by
these columns. Consequently, this results in a sparser representation of the data in the factor
H, where many elements are driven towards zero.

• In scenarios where the factorization rank has been overestimated, min-vol NMF can perform
automatic rank detection by effectively setting some of the rank-one factors to zero [23].

2.2 Discussion on identifiability of regularized deep NMF

Regularization plays a crucial role in enhancing the interpretability and identifiability of deep NMF,
similar to its importance in standard NMF, as illustrated by Theorem 2. When designing a deep NMF
model, careful consideration should be given to which factor should be regularized and how it should
be done. In the context of LCLF, where Wℓ is factorized at each layer, it is important to note that
overly sparse Wℓ matrices can be challenging to approximate with NMF. For instance, the identity
matrix, which is very sparse, has a unique NMF representation of maximum size (I = I ·I). Therefore,
it makes sense to focus on minimizing the volume of Wℓ matrices and/or maximizing the sparsity of
Hℓ matrices since this will generate denser Wℓ matrices.

By the aforementioned reasons, adopting the min-vol NMF approach is a reasonable choice to
establish a baseline regularization for deep NMF. In the context of LCLF, at each layer, min-vol LCLF
aims to find the solution with the minimum volume for the corresponding Wℓ. However, applying
Theorem 2 to each layer individually is not possible because it would require the Wℓ matrices to have
full rank, which is precluded by construction due to the hierarchical structure where Wℓ−1 = WℓHℓ

and the assumption rℓ < rℓ−1. Fortunately, empirical observations suggest that min-vol NMF can
recover W even when it is rank-deficient, provided that H is sufficiently sparse, as demonstrated
in [23]. Additionally, the literature includes sparse NMF models, such as those discussed in [1], which
offer identifiability even in the rank-deficient case. These observations underscore the adaptability and
effectiveness of min-vol regularization in various settings within deep NMF, despite rank-deficiency
challenges. We therefore have the following intuition: when the sparsity of Hℓ is sufficient, min-vol
deep NMF employing the LCLF should exhibit identifiability, provided that each layer, Wℓ−1 = WℓHℓ,
is identifiable.

In the context of DCLF, achieving identifiability necessitates that the products
∏p

ℓ=1Hℓ are suffi-
ciently sparse for each layer, where p ranges from 1 to L. However, it is crucial to recognize that the
product of sparse nonnegative matrices tends to be denser than the individual factors. Consequently,
it becomes significantly less likely for the product of these matrices to exhibit sparsity, which is essen-
tial for DCLF to be identifiable. On the other hand, a necessary condition for the product H = H1H2

with H1 ≥ 0 and H2 ≥ 0 to satisfy the SSC is that H2 satisfies the SSC, because cone(H) ⊆ cone(H2).
Remarkably, even when both H1 and H2 individually satisfy the SSC, it remains rather unlikely for
their product H2H1 to satisfy the SSC. In fact, for H2H1 to satisfy the SSC, H1 and H2 need to
be extremely sparse, since H2H1 is typically much denser than any of the two. Let us illustrate this
observation on a simple example.
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Example 1 (The product of matrices satisfying the SSC typically does not satisfy the SSC). Let
r2 = 3, r1 = 6, and

H2 =




ω 1 1 ω 0 0
1 ω 0 0 ω 1
0 0 ω 1 1 ω


 .

It can be shown that H2 satisfies the SSC if and only if ω < 0.5 [20]. The matrix H2 is the sparsest
non-trivial case for a rank-three matrix that satisfies the SSC, since having columns with two zero
entries correspond a stronger condition, referred to as separability, which makes NMF much easier
to handle, because columns of W are present in the data set, up to scaling [3]. Now, for any matrix
H1 ∈ R6×n having 3 nonzeros entries per column, H2H1 will be dense, for any ω > 0 (since the sum of
any 3 columns of H2 is dense). Hence H2H1 cannot satisfy the SSC for any matrix H2 with 3-sparse
columns, and hence the factorization X = W2(H2H1) will not be unique. In fact, a necessary condition
for the uniqueness of the NMF X = WH is that the supports of the rows of H are not contained in
one another [20].

On the other hand, matrices H1 with three non-zeros per column, and sufficiently many columns,
are likely to satisfy the SSC. For example, we have generated randomly 1000 matrices with 100 columns
and with 3 non-zeros entries per column, where the position of the non-zero entries are selected at
random, and the non-zero entries are generated with the uniform distribution in the interval [0,1].
Among these 1000 sparse matrices, all of them satisfied the SSC2.

In summary, the consideration of the product of the Hℓ matrices within the factorizations in DCLF
renders it less likely to achieve identifiability compared to LCLF. This is primarily due to the inherent
tendency of these products to become increasingly denser as the factorization unfolds.

3 Deep β-NMF: models and algorithms

In this section, we propose two new deep β-NMF models, describe the algorithms for solving them,
and consider the convergence guarantee for the algorithms. The β-divergence between two matrices
A and B is defined as follows

Dβ(A,B) =
∑

i,j

dβ(Aij , Bij),

where, for scalars x and y,

dβ(x, y) =





x
y − log x

y − 1 for β = 0,

x log x
y − x+ y for β = 1,

1
β(β−1)

(
xβ + (β − 1)yβ − βxyβ−1

)
for β ̸= 0, 1.

(5)

When β = 2, this corresponds to the least-squares measurement, whereas for β = 1, it corresponds to
the Kullback-Leibler (KL) divergence. With convention that a×log 0 = −∞ for a > 0 and 0×log 0 = 0,
the KL-divergence is well-defined.

2Although it is NP-hard to check the SSC [20], it is possible to do it for medium-scale matrices by solving a non-convex
quadratic optimization problem with Gurobi. We thank Robert Luce, from Gurobi, to help us write down and solve this
optimization problem.
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3.1 The two proposed deep NMF models

As elucidated in Section 2.2, it is more liekly for LCLF to be identifiable comapred to DCLF. Hence
we employ LCLF as the basis, and introduce the following two novel deep β-NMF model:

1. Deep β-NMF without regularization:

min
{Wℓ≥0,Hℓ≥0}Lℓ=1

L∑

ℓ=1

λℓD(Wℓ−1,WℓHℓ) subject to Hℓ e = e for ℓ = 1, 2, . . . , L, (6)

where W0 = X, Wℓ has rℓ columns with r0 = n, and the λℓ’s are positive penalty parameters.

Why the normalization Hℓ e = e? Let us explain why we choose the normalization constraints
Hℓ e = e in our deep β-NMF model without regularization. The LCLF (4) is not fully consistent
because of the scaling degree of freedom in NMF, this was not pointed out in [9]. In fact, except
at the first layer, all errors D(Wℓ−1,WℓHℓ) for ℓ = 2, 3, . . . , L can be made arbitrarily small by
using the scaling degree of freedom: multiply W1 by an arbitrarily small positive constant and
divide H1 by the same constant. This does not change D(X,W1H1) while W1 is arbitrarily close
to zero making D(W1,W2H2) arbitrarily small (for any norm which is not scaled invariant, e.g.,
all β-divergences for β > 0). Therefore, for (3) to make sense, it is crucial to add a normalization
constraints on the Wℓ’s or the Hℓ’s. Many options are possible, and depend on the application
at hand. For example, in hyperspectral imaging, we might impose H⊤

ℓ e = e for all ℓ which
is known as the sum-to-one constraint of the abundances, and, in topic modeling, where the
columns of Wℓ correspond to topics, we might impose W⊤

ℓ e = e as the entries in each column of
Wℓ correspond to probabilities of the words to belong to the corresponding topic. In this paper,
we choose Hℓ e = e, that is, the sum of the entries in each row of Hℓ sums to one, as in [13]. The
main reason is that this normalization can be made w.l.o.g. by the scaling degree of freedom.
Moreover, we do not constraint Wℓ because it would make the design of closed-form MU for Wℓ

much more difficult, if possible (see Section 3.2.2 for such a case).

2. Minimum-volume deep β-NMF:

min
Wℓ≥0,Hℓ≥0

L∑

ℓ=1

λℓDβ(Wℓ−1,WℓHℓ) + αℓ log det
(
W⊤

ℓ Wℓ + δI
)

such that W⊤
ℓ e = e, (7)

where W0 = X, Wℓ has rℓ columns with r0 = n, δ is small positive scalar that prevents the
log det to go to −∞, and the αℓ’s are positive penalty parameters. The choice to normalize
the columns of Wℓ, rather than the rows of Hℓ, is from the fact that it significantly improves
the conditioning of the min-vol NMF problem. When rows of Hℓ are normalized, it can lead to
highly ill-conditioned of Wℓ, especially when certain columns of Wℓ exhibit substantially larger
norms compared to others. This issue is further elaborated in discussions and examples provided
in [24] and [16, Chapter 4.3.3.5].

3.2 Algorithms for solving the proposed deep β-NMF models

Obtaining a global solution for deep NMF is a computationally challenging problem, as it generalizes
NMF which is NP-hard [38]. Moreover, the objective functions presented in (6) and (7) are jointly non-
convex for the variable (W1, . . . ,WL, H1, . . . ,HL). Consequently, updating all factors simultaneously
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can be prohibitively expensive. Therefore, most algorithms designed to address (deep) NMF rely on
block coordinate methods. These methods update one factor at a time while keeping the others fixed.
In this paper, we also adopt this strategy to efficiently address the optimization challenges associated
with deep NMF. Specifically, we will employ the block majorization minimization (BMM) framework,
which was designed to solve the following multi-block nonconvex optimization problem:

min
x:=(x1,x2,...,xs)∈X

F (x) := f(x) +
s∑

i=1

gi(xi), (8)

where f is continuous on X , gi’s are proper and lower-semicontinuous functions (possibly with extended
values), and X = X1 ×X2 × · · · × Xs with Xi (i = 1, 2, . . . , s) being closed convex sets. At iteration k,
BMM fixes the latest values of block j ̸= i and updates block xi by

xki ∈ arg min
xi∈Xi

{
ui(xi, x

k
1, . . . , x

k
i−1, x

k−1
i , xk−1

i+1 , . . . , x
k−1
s ) + gi(xi)

}
, (9)

where ui : Xi ×X → R is a block majorizer of f(x), that is, ui satisfies the following conditions

ui(xi, x) = f(x),∀x ∈ X ,
ui(yi, x) ≥ f(x1, . . . , xi−1, yi, xi+1, . . . , xs),∀ yi ∈ Xi, x ∈ X .

(10)

From the definition of ui, we have

F (xk) = u1(x
k
1, x

k
1, . . . , x

k
s) +

∑

i

gi(x
k
i ) ≥ u1(x

k+1
1 , xk1, . . . , x

k
s) + g1(x

k+1
1 ) +

∑

i ̸=1

gi(x
k
i )

≥ f(xk+1
1 , xk2, . . . , x

k
s) + g1(x

k+1
1 ) +

∑

i ̸=1

gi(x
k
i )

= u2(x
k
2, x

k+1
1 , xk2, . . . , x

k
s) + g1(x

k+1
1 ) +

∑

i ̸=1

gi(x
k
i )

≥ u2(x
k+1
2 , xk+1

1 , xk2, . . . , x
k
s) + g1(x

k+1
1 ) + g2(x

k+1
2 ) +

∑

i ̸∈{1,2}
gi(x

k
i )

≥ f(xk+1
1 , xk+1

2 , . . . , xks−1, x
k
s) + g1(x

k+1
1 ) + g2(x

k+1
2 ) +

∑

i ̸∈{1,2}
gi(x

k
i )

≥ . . . ≥ F (xk+1).

In other words, BMM produces a non-increasing sequence {F (xk)}. We refer the readers to [18, 30, 33,
34] for examples of majorizer functions. BMM was introduced in [33] (with the name BSUM - block
successive upper-bound minimization) to solve nonconvex problem (8) with gi = 0 for i = 1, . . . , s. It
is proved in [33, Theorem 2] that if the following conditions are satisfied then we have a convergence
guarantee for BSUM:

• ui(yi, x) is quasi-convex in yi for i = 1, . . . , s,

• the subproblem (9) with gi = 0 has a unique solution,

• u′i(yi, x; di)
∣∣
yi=xi

= f ′(x; d) ∀d = (0, . . . , di, . . . , 0) s.t. xi + di ∈ Xi ∀i,

• ui(yi, x) is continuous in (yi, x), for all i.
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It is worth mentioning that the authors in [18] introduced TITAN, an accelerated version of BMM
for solving Problem (8). TITAN enhances BMM method by including an inertial term in each block
update, which significantly boosts the convergence of BMM. Leveraging the convergence outcomes
established for BSUM and TITAN, numerous algorithms addressing low-rank factorization problems
come with guaranteed convergence. For example, BSUM assures the convergence of a perturbed
Multiplicative Update (MU) method and a block mirror descent method for KL NMF, as described
in [17]; TITAN provides convergence guarantees for accelerated algorithms dealing with minimum-
volume NMF [35], sparse NMF and matrix completion [18].

Although convergence guarantees have been firmly established for BSUM (and TITAN) under
appropriate assumptions, which serve as valuable tools to ensure the convergence of BMM in solving
deep NMF models, it is not a straightforward task to construct suitable majorizers that satisfy the
required assumptions. In the next sections, we propose suitable majorizers and apply BSUM to design
efficient algorithms to solve the two proposed deep β-NMF models. To that end, we need the following
lemma from [12] that provides a majorizer for h 7→ ∑

i dβ(vi, [Wh]i), where vector v and matrix W
are fixed.

Lemma 1 (Majorizer function for β-NMF [12]). Denote Wh̃ by ṽ and the entries [Wh̃]i by ṽi. Let h̃
be such that ṽi > 0 and h̃i > 0. Then the following function

G(h, h̃) =
∑

i

[∑

j

wij h̃j
ṽj

ď
(
vi, ṽj

hj

h̃j

)]
+

[
d̂
′
(vi, ṽi)

∑

j

wij(hj − h̃j) + d̂(vi, ṽi)
]
+ d̄(vi) (11)

is a majorizer of the function h 7→∑
i dβ(vi, [Wh]i), where ď is a convex function of u, d̂ is a concave

function of u and d̄ is a constant of u in the following decomposition of dβ

dβ(v, u) = ď(v, u) + d̂(v, u) + d̄(v), (12)

see Table 1.

Table 1: Differentiable convex-concave-constant decomposition of the β-divergence under the form
(12) [12].

ď(v, u) d̂(v, u) d̄(v)

β = 0 vu−1 log(u) u(log(v)− 1)
β ∈ [1, 2] dβ(v, u) 0 0

Note 1. It is important to note that G(h, h̃) is convex in h. Furthermore, since Dβ(y, wH) =
Dβ(y

⊤, H⊤w⊤), where vector y⊤ and matrix H are fixed, Lemma 1 can be used to derive a similar
majorizer G(w, w̃) for w 7→ Dβ(y, wH). On the other hand, note that Dβ(Y,WH) =

∑
iDβ(yi, wiH),

where yi and wi are the i-th row of Y and W respectively. This means W 7→ Dβ(Y,WH) is separable
with respect to the rows of W . Hence, we can formulate a majorizer for W 7→ Dβ(Y,WH) by summing
up the majorizers of its rows w 7→ Dβ(y, wH). We have similar procedure for H 7→ Dβ(Y,WH). Con-
sidering KL NMF, BSUM using the majorizers in Lemma 1 is the MU algorithm proposed in [21, 22],
see [17].
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3.2.1 Algorithm for solving deep β-NMF without regularization

Problem (6) has the form of (8), where x comprisesWl andHl for l = 1, . . . , L, gi = 0, the closed convex
set Xi that corresponds to Wl is Rm×rl

+ and that corresponds to Hl is {Hl : Hl ∈ Rrl×rl−1
+ , Hle = e}.

Update of Hl We observe that Hl only appears in one term of the objective function in (6). While
fixing the other factors, minimizing the objective of Problem (6) with respect to Hl is the same as
in standard β-NMF. We hence employ the majorizers in Lemma 1 (see also Note 1) and the recently
introduced framework in [25] that allows one to derive MU for block of variables satisfying disjoint
equality constraints as well as nonnegativity constraints. See Algorithm 1 for the actual update. Note
that, in the update of Hℓ, the parameter µ appearing in the denominator correspond to the optimal
vector of Lagrange mutlipliers allowing the new updates to satisfy both the nonnegativity and the
sum-to-one constraints, see [25] for more details about the procedure for such updates.

Update of Wl for l = 1, . . . , L− 1. While fixing the other factors, the corresponding subproblems
of (6) with respect to each of the block Wℓ, l = 1, . . . , L− 1, have the same structure. Hence we can
focus on building the majorizer for one representative Wℓ. To simplify the notation, let us denote
Wℓ by W , Wℓ−1 by Y , Hℓ by H, and Wℓ+1Hℓ+1 by W̄ . Then each subproblem is equivalent to the
following problem (after removing the constants in the objective):

find argmin
W≥0

λlDβ(Y,WH) + λl+1Dβ(W, W̄ ), (13)

where Y , H, W̄ are given and kept fixed during the update of W . Let wi, yi, and w̄i, i = 1, . . . ,m, be
the rows of W , Y and W̄ respectively. Note that the objective function of (13) equals to

λl

m∑

i

Dβ(yi, wiH) + λl+1

m∑

i

Dβ(wi, w̄i),

which is separable with respect to the rows of W . Therefore, we can focus on building the majorizer
for each row of W (then sum up these majorizers to formulate the majorizer for W ). Problem (13)
restricted to a particular row i of W is equivalent to the following problem:

find argmin
w≥0

λℓDβ(y, wH) + λℓ+1Dβ(w, w̄), (14)

where the subscript i has been dropped for notation succinctness. For the first term in the objective
of (14), we use the majorizer G(w, w̃) proposed in [12], see Note 1. This implies that λℓG(w, w̃) +
λℓ+1Dβ(w, w̄) is a majorizer of w 7→ λℓDβ(y, wH) + λℓ+1Dβ(w, w̄). Consequently, the update of each
row of W is

w ∈ argmin
w≥0

G(w, w̃) + λDβ(w, w̄), (15)

where λ =
λℓ+1

λℓ
. To compute the positive minimizer of (15), it’s sufficient to look for w ∈ Rrℓ

+ that
cancels the gradient of objective function from (15). Since the objective function is separable w.r.t.
each entry wkℓ , we focus on solving:

find ŵkℓ ≥ 0 such that ∇wkℓ
[G(w|w̃) + λDβ(w|w̄)]w=ŵkℓ

= 0. (16)
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The next steps depend on the value chosen for β. A closed-form of the minimizer ŵ can be
derived for β ∈ {0, 1/2, 1, 3/2, 2}. In the following, we detail the updates for the case β = 1, the
updates obtained for β ∈ {0, 1/2, 3/2} can be found similarly. Note that considering the case β = 2
is excluded since the objective function is L-smooth in this case, hence efficient first-order methods
can be used to tackle the subproblems such as the well-known Nesterov accelerated projected gradient
descent [32]. Furthermore, for β ∈ {0, 1, 3/2}, Dβ(w, w̃) is strictly convex in w, which makes the
majorizer λℓG(w, w̃)+λℓ+1Dβ(w, w̄) strictly convex in w (this convexity is used to verify the conditions
for a convergence guarantee of BSUM).

Considering β = 1, from Lemma 1 and Table 1 for β = 1, one can show that solving (16) boils
down to solve the following scalar equation in wkℓ :

a =
b

wkℓ

− λ log(wkℓ), (17)

where a =
∑rℓ−1

kℓ−1
Hkℓkℓ−1

− λ log(w̄kℓ) and b = w̃kℓ

∑rℓ−1

kℓ−1
Hkℓkℓ−1

xkℓ−1

[w̃H]kℓ−1
. Equation (17) has the

following nonnegative solution:

ŵkℓ =
b

λW
(
be

a
λ

λ

) , (18)

where W(.) denotes the Lambert W-Function. Interestingly, this update is well defined at the bound-
aries of the feasible set, in particular when b and a respectively tend to 0 and +∞, the latter occurs
when the entry w̄kℓ tends to 0. Indeed, we have lim

b→0,b>0
a<+∞

ŵkℓ(b) = e−
a
λ , and lim

a→+∞
b ̸=0

ŵkℓ(a) = 0. Equation

(18) can be expressed in matrix form as follows:

Ŵ =
[B][

λW
(

B⊙e.
A
λ

λ

)] ,
(19)

where A = JH⊤
ℓ − log(W̄ ) with J is a all-one matrix of size m-by-rℓ−1, and log is element wise, and

the notation e.A is the element-wise exponential, and B = W̃ ⊙
(

[X]

[W̃H]
H⊤

)
with C ⊙D (resp. [C]

[D] )

is the Hadamard product (resp. division) between C and D and C(.α) is the element-wise α exponent
of C.

Update of WL We observe that WL only appears in the last term of the objective in (6). Minimizing
the objective of Problem (6) with respect to WL is the same as in standard β-NMF. As noted in Note 1,
BSUM step collapses to the classical MU of β-NMF.

Algorithm 1 summarizes our proposed algorithm for deep β-NMF in the case β = 1, that is, for
deep KL-NMF, recalling that W0 = X and Wℓ has rℓ columns with r0 = n.

Convergence guarantee Although Algorithm 1 produces a non-increasing sequence {fk}, where
fk is the objective of (6) at iteration k (since its update follows BSUM), it is not guaranteed that the
generated sequence of Algorithm 1 converges (the objective in (6) is not directionally differentiable).
To have some convergence for Algorithm 1, we need to impose the constraints Wℓ ≥ ε and Hℓ ≥ ε,
where ε > 0, to (6). In our implementation, we choose the MATLAB machine epsilon for ε. Using
the same majorizers, we obtain a perturbed version of Algorithm 1, in which we take the element-wise
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Algorithm 1 Algorithm for Deep KL-NMF

Input: Input data matrix X, number of layers L, inner ranks rl’s, weight parameters λℓ’s.
Output: An approximate solution to Problem 6

1: for k = 1, ... do
2: for l ∈ {1, ..., L} do
3: % Update of factors Hℓ using [25]

4: Hk
ℓ ← Hk−1

ℓ ⊙

[
WT,k−1

ℓ

(
[Wk

ℓ−1]
[Wk−1

ℓ
Hk−1
ℓ ]

)]

[
WT,k−1

ℓ em×rℓ−1
−µe1×rℓ−1

] , where µ is the root of a univariate polynomial.

5: % Update of factors Wℓ

6: if l < L then
7: λ← λℓ+1

λℓ

8: B ←W k−1
ℓ ⊙

(
[Wk

ℓ−1]
[Wk−1

ℓ Hk
ℓ ]
HT,k

ℓ

)

9: A← JHT,k
ℓ − log(W k−1

ℓ+1 H
k−1
ℓ+1 )

10: W k
ℓ ←

[B][
λW

(
B⊙e

.A
λ

λ

)]

11: else if l = L then

12: W k
ℓ ←W k−1

L ⊙

[(
[Wk

L−1]

[Wk−1
L

Hk
L
]

)
HT,k

L

]

[
em×rL

HT,k
L

] , which are the standard MU for KL-NMF.

13: end if
14: end for
15: end for
16: return {WL, HL, HL−1, ...,H1}

maximum between the updates of factors {Wℓ, Hℓ}Lℓ=1 (corresponding to the closed-form expression
of the minimizer of BMM step built at the current iterate) and ε. With this additional constraints,
the sufficient conditions for convergence of BSUM would be satisfied, leading to the convergence of
the perturbed version of Algorithm 1.

It is worth noting that for the case β ∈ {0, 3/2}, we also have closed-form solution for (16) and
strict convexity for the majorizer used in (15). Hence, a similar rationale can be applied to have a
convergence guarantee for a perturbed version of the algorithm solving the proposed deep β-NMF,
with β ∈ {0, 3/2}.

Parallelization The proposed algorithm relies on MU-based approaches, which involve computa-
tionally intensive steps in matrix products. Furthermore, the updates to all factor entries can be
carried out independently. Therefore, the proposed algorithm can be effectively executed on a parallel
and high performance computing platform.

Remark 1 (Usefulness of our MU in other contexts). The MU (19) allows us to update W to min-
imize (13). The regularized NMF problem (13), in which W̄ is a given matrix to which W should be
close to, could be useful in other contexts than deep β-NMF, e.g., if some W̄ is available via prior
some knowledge, by taking W̄ = 0 to regularize W , or for symmetric NMF where W̄ = H⊤ [26].
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3.2.2 Algorithm for solving minimum-volume deep β-NMF

Problem (7) has the form of (8) in which x comprises Wl and Hl for l = 1, . . . , L, gi = 0, the closed
convex set Xi that corresponds to Wℓ is {Wℓ : Wℓ ∈ Rm×rℓ−1

+ ,W⊤
ℓ e = e} and that corresponds to Hℓ

is Rrℓ×rℓ−1
+ . Let us focus on the special case β = 1. Similar rationale can be followed for other values

of the β parameter.

Update of Hℓ Each factor Hℓ with 1 ≤ ℓ ≤ L only appears in a single term within the objective
function of Problem (7). As a result, one can directly apply the classical MU updates for Hℓ, which
is a BSUM step that minimizes the convex majorizers in Lemma 1 (see also Note 1) over Rrℓ×rℓ−1

+ .

Update of Wℓ, ℓ = 1, . . . , L − 1 Since all the subproblems in Wℓ with 1 ≤ ℓ < L have the same
structure, we detail in the following the methodology for deriving the BSUM update for one specific
Wℓ. For notation succinctness, we drop the subscript ℓ and denote Wℓ by W , Wℓ−1 by Y , Hℓ by H,
and Wℓ+1Hℓ+1 by W̄ . The subproblem in W is as follows:

find argmin
W

λℓD(Y,WH) + λℓ+1D(W, W̄ ) + αℓ log det
(
W⊤W + δI

)

such that W⊤e = e,W ≥ 0.

For a given matrix W̃ , denote A = (W̃⊤W̃ + δI)−1, A+ = max(A, 0) ≥ 0, A− = max(−A, 0) ≥ 0, and

Φ(ω̃i) = Diag
(
2 [A+w̃i+A−w̃i]

[w̃]

)
(which is a diogonal matrix), where w̃i is a row of W̃ , and [·]

[·] denotes

the component-wise division. Let l(w) = w⊤Aw and ∆wi = wi − w̃i, where wi is a row of W . From
[24, Lemma 3], we have

log det
(
W⊤W + δI

)
≤ log det

(
W̃⊤W̃ + δI

)
+ ⟨A,W⊤W − W̃⊤W̃ ⟩

≤ g(W, W̃ ) := log det
(
W̃⊤W̃ + δI

)
− ⟨A, W̃⊤W̃ ⟩+

∑

i

l(w̃i) + ⟨∆wi,∇l(w̃i)⟩+
1

2
⟨∆wi,Φ(w̃i)∆wi⟩

(20)
We then use the following majorizer for W :

Ḡ(W, W̃ ) = λℓG(W, W̃ ) + λℓ+1D(W, W̄ ) + αlg(W, W̃ ),

where G(W, W̃ ) is the majorizer of W 7→ D(Y,WH), which is formed by summing the majorizers
proposed in Lemma 1 for each row of W as discussed in Note 1. As G(W, W̃ ) and D(W, W̄ ) are
convex in W and g(W, W̃ ) is strongly convex in W over Rm×rℓ−1

+ , we also have G(W, W̃ ) is strongly
convex in W . Hence, the following subproblem of BSUM for the update of W has the unique solution:

find argmin
W

λℓG(W, W̃ ) + λℓ+1D(W, W̄ ) + αℓg(W, W̃ )

such that W⊤e = e,W ≥ 0,
(21)

where W̃ is the current iterate. Below we will describe an ADMM to solve Problem (21).

Update of WL We observe that WL only appears in the last term of the objective. We use the
following majorizer for WL

ḠL(WL, W̃L) = λLGL(WL, W̃L) + αLg(WL, W̃L),

where GL(WL, W̃L) is the majorizer of WL 7→ D(WL−1,WLHL), which is derived as in Note 1, and g
is defined in (20). Then BSUM step collapses to the MU update proposed in [25].

13



ADMM for solving Problem (21) to update Wℓ We rewrite Problem (21) as follows:

find argmin
W,Z

G(W, W̃ ) + λD(Z, W̄ ) + αg(W, W̃ ) + IXW
(W )

s.t. W − Z = 0,
(22)

where IXW
(W ) denotes the indicator function associated to the convex set XW =: {W ∈ Rm×rl−1 |W⊤e =

e,W ≥ 0}, α = αℓ
λℓ
, and λ =

λℓ+1

λℓ
. The augmented Lagrangian function associated to Problem (22) is

Lρ(W,Z,U) :=G(W, W̃ ) + λD(Z, W̄ ) + αg(W, W̃ ) + IXW
(W ) +

ρ

2
∥W − Z + U∥2F , (23)

where U denotes the scaled dual variables associated to constraints W−Z = 0, written in the so-called
scaled form. Here-under, we detail the iterative procedure to compute the solution (W,Z) for Problem
(22). As for classical ADMM-based methods, each iteration of our procedure performs three steps.
Given the current iterates (W i, Zi, U i), the three steps are:

1. W -minimization:

W i+1 := argmin
W∈XW

{
G(W, W̃ ) + αg(W, W̃ ) +

ρ

2
∥W − Zi + U i∥2F

}
, (24)

where W̃ is the current iterate of the main algorithm.

2. Z-minimization:

Zi+1 := argmin
Z
{λD(Z, W̄ ) +

ρ

2
∥W i+1 + U i − Z∥2F }. (25)

3. Dual Updates:
U i+1 := U i +W i+1 − Zi+1. (26)

It remains to present how we tackle Problems (24) and (25).

W-minimization The update of W is computed based on the methodology recently introduced in
[25]. We obtain the following updates in matrix form:

Ŵ (µ) = W̃ ⊙

[[
[C + eµ⊤].2 + S

]. 1
2 − (C + eµ⊤)

]

[T ]
, (27)

where A = (W̃⊤W̃ + δI)−1, A+ = max(A, 0) ≥ 0, A− = max(−A, 0) ≥ 0, C = em,rℓ−1H
⊤ −

4α(W̃A−)−ρ(Zi−U i), T = 4αW̃ (A++A−)+2ρem,rℓ , S = (8αW̃ (A++A−)+4ρem,rℓ)⊙
(

[Y ]

[W̃H]
H⊤

)
,

and em,rℓ−1 and em,rℓ are respectively m-by-rℓ − 1 and m-by-rℓ matrices of all ones, and µ ∈ Rrℓ

denotes the vector of Lagrange multipliers associated to equality constraints on the columns of W ,
see [25] for further details. One can easily observe that updates defined in Equation (27) satisfy
the nonnegativity constraints, given W̃ ≥ 0. Moreover, as per [25, Proposition 2], the constraints
Ŵ (µ)⊤e = e are satisfied for a unique µ⋆ ∈ Rrℓ . The computation of µ⋆ is achieved by using a
Newton-Raphson procedure for solving Ŵ (µ)⊤e = e. The update W i+1 for Problem (24) is finally
performed using Equation (27) with µ = µ⋆.
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Z-minimization For this step, one can observe that the objective function to minimize is separable
w.r.t. each entry of factor Z, hence each entry can be optimized independently. The updates are
obtained by computing Ẑ which satisfy the first-order optimality conditions, a.k.a the KKT conditions.
For β = 1, and denoting by z the (o, p)-th entry of Z of interest, we are looking for ẑ such that

∇z{λdKL(z, W̄o,p) +
ρ

2
∥z − V i

o,p∥22}z=ẑ = 0.

It boils to solve the following scalar equation in z:

log(z) + b+ νz = 0, (28)

where b = − log(W̄o,p)− νV i
o,p and ν = ρ

λ . Equation (28) can be solved in closed form as follows:

ẑ =
W(e−bν)

ν
, (29)

where W(.) denotes the Lambert W-function. Equation (29) can be easily expressed in matrix form;
the update Zi+1 for Problem (25) finally writes:

Zi+1 =
[W(e.−Bν)]

ν
(30)

where B = − log(W̄ )− νV i; the log(.) being applied element-wise to the matrix W̄ .
Finally, the three steps of the ADMM-like procedure detailed above for solving Problem (21) are

repeated either for a maximum number iteration imax or until the stopping criterion ∥W i −Zi∥F ≤ ϵ
is reached, with ϵ a threshold defined a priori.

Algorithm 2 summarizes our proposed algorithm for minimum-volume deep β-NMF in the case
β = 1, that is, for minimum-volume deep KL-NMF (recall that W0 = X and Wℓ has rℓ columns with
r0 = n).

Convergence guarantees In fact, similar to the deep β-NMF without regularization, if we enforce
the constraints Wℓ ≥ ε and Hℓ ≥ ε onto (7), given that each block update (9) of BSUM admits a
closed-form solution, BSUM would indeed possess a convergence guarantee for the cases β = 0 or
β ≥ 1 (as the majorizer used in (21) would be strongly convex for these cases). However, it is essential
to emphasize that we employ ADMM to address (21) during the update of Wℓ. Since the update of
Wℓ is inexact, Algorithm 2 can be viewed as an inexact version of BSUM.

4 Numerical Experiments

In this section, we report the use of deep KL-NMF for three applications: facial feature extraction,
topic modeling, and hyperspectral unmixing. The codes are written in MATLAB R2021a and avail-
able from https://github.com/vleplat/deep-KL-NMF-public, and can be used to reproduce all
experiments described below.

It is important to acknowledge the challenge of quantitatively assessing the performance of our
novel deep KL-NMF models. First, we are the first to introduce deep NMF models based on the
KL divergence. Second, the absence of ground-truth real-world data for deep NMF models further
complicates performance evaluation, as pointed out in the survey paper [10]. A promising avenue for
future research lies in the development of datasets specifically designed for deep NMF models. These
datasets would facilitate more robust and empirical evaluations, addressing this critical need in the
field.
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Algorithm 2 Algorithm for Minimum-Volume Deep KL-NMF

Input: Input data matrix X, number of layers L, inner ranks rl’s, weight parameters λℓ’s and αℓ’s,
a scalar δ > 0, a maximum of iteration imax, and a threshold ϵ, and parameter ρ > 0 for ADMM
procedure.

Output: An approximate solution to Problem 7

1: for k = 1, ... do
2: for l ∈ {1, ..., L} do
3: % Update of factors Hℓ

4: Hk
ℓ ← Hk−1

ℓ ⊙

[
WT,k−1

ℓ

(
[Wk

ℓ−1]

[Wk−1
ℓ

Hk−1
ℓ

]

)]

[WT,k−1
ℓ em×rℓ−1

]

5: % Update of factors Wℓ

6: if l < L then
7: % ADMM-procedure
8: W̃ ←W k−1

ℓ , A← (W̃⊤W̃ + δI)−1, A+ ← max(A, 0), A− ← max(−A, 0),
9: T ← 4αℓ

λℓ
W̃ (A++A−)+2ρem,rℓ , S ← (8αℓ

λℓ
W̃ (A++A−)+4ρem,rℓ)⊙

(
[Wk

ℓ−1]

[W̃Hk
ℓ ]
(Hk

ℓ )
⊤
)

10: i← 1
11: W 0 ←W k−1

ℓ , Z0 ←W 0, U0 ← 0
12: ν ← ρ

λℓ+1

13: while i ≤ imax & ∥W i − Zi∥F ≤ ϵ do
14: % W-minimization
15: V i ← Zi − U i

16: C ← em,rℓ−1(H
k
ℓ )

⊤ − 4αℓ
λℓ
(W̃A−)− ρV i

17: µ ∈ root(Ŵ (µ)⊤e = e) over Rrℓ

18: W i ← W̃ ⊙

[[
[C+eµ⊤].2+S

]. 12−(C+eµ⊤)

]

[T ]

19: % Z-minimization
20: V i ←W i+1 + U i, B ← − log(W k−1

ℓ+1 H
k−1
ℓ+1 )− νV i

21: Zi+1 ← [W(e.−Bν)]
ν

22: % Dual Updates
23: U i ← U i−1 +W i − Zi

24: i← i+ 1
25: end while
26: W k

ℓ ←W i

27: else if l = L then
28: % Update from [25]
29: end if
30: end for
31: end for
32: return {WL, HL, HL−1, ...,H1}

4.1 Facial feature extraction

Let us apply deep KL-NMF on the CBCL face data set, used in the seminal paper of Lee and Seung
who introduced NMF to the machine learning community [21]. It contains 2429 faces, each with 19×19
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pixels. We chose the penalty parameters λℓ as in [9], that is, the λℓ are chosen such that each term in

the objective is equal to one another at initialization, that is, all values λℓD(W
(0)
ℓ−1,W

(0)
ℓ H

(0)
ℓ ) are equal

to one, where
(
W

(0)
1 ,W

(0)
2 , . . . ,H

(0)
ℓ

)
is the initialization. This is the default in our implementation,

with λℓ =
1

D(W
(0)
ℓ−1,W

(0)
ℓ H

(0)
ℓ )

.

The data matrix, X ∈ R2429×361, contains vectorized images on its rows. As it is now well
established, NMF, with X ≈ WH, is able to extract facial features as the rows of H, such as eyes,
noses and lips; see Figure 3.

Let us now apply multilayer and deep KL-NMF on this data set with three layers, and r =
[80, 40, 20]. For each layer of multilayer KL-NMF, we run 1000 iterations of the standard MU. We
initialize deep KL-NMF with 500 iterations of multilayer KL-NMF, and then run it for 500 iterations
using our proposed Algorithm 1. This means that deep KL-NMF is initialized with the solution of
multilayer KL-NMF obtained after only 500 iterations. We repeat this experiment 35 times, and
Figure 2 reports the median of the evolution of the error of deep KL-NMF divided by the final error
obtained by multilayer KL-NMF after 1000 iterations. As expected, these ratios are initially larger
than 1, since deep KL-NMF is initialized with multilayer KL-NMF after only 500 iterations.

Figure 2: Evolution of the median errors at the different levels of deep KL-NMF (initialized with mul-
tilayer KL-NMF after 500 iterations) divided by the error of multilayer KL-NMF after 1000 iterations.

The main observation from Figure 2 is the following: Because deep KL-NMF needs to balance the
error between each layer, the error at the first layer remains larger than that of multilayer KL-NMF,
which is expected. However, the errors at the next two layers becomes quickly significantly smaller;
see also the second column of Table 2. At convergence, the error at the second (resp. third) layer is
on average about 4 (resp. 20) times smaller than that of the multilayer KL-NMF.

Table 2 also reports the average sparsity of the facial features at each layer, using the widely used
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error deep/multilayer (in %) sparsity multilayer (in %) sparsity deep (in %)

Layer 1 108.3 ± 1.1 58.5 ± 0.6 70.1 ± 1.2
Layer 2 26.8 ± 3.2 37.3 ± 1.0 50.6 ± 2.6
Layer 3 4.4 ± 0.3 22.1 ± 1.0 27.1 ± 2.9

Table 2: Deep vs. Multilayer KL-NMF: average and standard deviation for the error of deep KL-
NMF divided by that of multilayer KL-NMF (second column), and average and standard deviation
for the sparsity of the facial features of multilayer KL-NMF (second column) and deep KL-NMF (third
column).

Hoyer sparsity [19] given by

sparsity(x) =

√
n− ||x||1

||x||2√
n− 1

∈ [0, 1],

for an n-dimensional vector x. This measure is equal to one is x has a single non-zero entry, and is
equal to zero if all entries of x are equal to one another.

First, observe that for both deep and multilayer KL-NMF, the sparsity decreases as the fac-
torization unfolds: this is unavoidable since facial features at deeper levels are nonnegative linear
combinations of facial features at shallower levels. For example, the facial features at the second layer
are given by H2H1, that is, nonnegative linear combinations of the facial features at the first level, H1;
see also the discussion in Section 2.2. Second, we observe that deep KL-NMF produces significantly
sparser facial features (namely +11.6% at layer 1, +13.2% at layer 2, +5.1% at layer 3). This makes
sense because deep KL-NMF balances the error at the three layers, and sparser features at the first
layer gives more degree of freedom to generate features at the next layers. In fact, a dense feature at
the first layer can only generate denser ones at the next layers. This is an interesting side result of
deep KL-NMF: it can be used to solve sparse NMF, without parameter tuning.

Figure 3 displays the facial features of multilayer and deep NMF at the different layers (for the
last run of our experiment, since it does not make sense to average facial features). We observe that
most of the facial features of the first two layers of deep and multilayer KL-NMF are similar, the main
difference is that those of deep KL-NMF are sparser. However, at the third layer, where the error of
deep KL-NMF is significantly smaller, most facial features are completely different (e.g., the first one),
showing that deep KL-NMF produces significantly different outcomes than multilayer KL-NMF.

4.2 Topic modeling

Topic modeling aims to discover the underlying topics or themes in a collection of documents. It
is a form of unsupervised learning that can help organize, summarize, and understand large textual
datasets. In topic models, one typically assumes that a document is generated by a mixture of topics,
each of which is a distribution over words in the vocabulary; see, e.g., [6] and the references therein.
Topic modeling models aim to represent each document through the learned topics and understand
the topics in the corpus through the most probable words of each topic.

NMF has been successfully used in this context, initiated by the paper of Lee and Seung [21]. If
X is a word-by-document matrix, its NMF, X ≈ WH, extract topics in W which is a word-by-topic
matrix, while H allows one to classify the documents across the topics. In this context, deep NMF
allows one to extract layers of topics: from lower level topics to higher level ones (e.g., tennis and
football belong to sports). We will see an example below; see also [39] for a different but similar deep
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Multilayer - layer 1 Deep - layer 1

Multilayer - layer 2 Deep - layer 2

Multilayer - layer 3 Deep - layer 3

Figure 3: Example of facial features extracted by multilayer KL-NMF vs. deep KL-NMF.

NMF model used for topic modeling. It has been well established that the KL divergence is more
appropriate for the analysis of document data set. The reason is that such data sets are sparse (most
documents only use a few words in the dictionary). In fact, the KL divergence amounts for a Poisson
counting process; see, e.g., [16, Chapter 5] and the references therein.

In this section, we apply deep KL-NMF to the TDT2-top30 dataset and compare its performance
with multilayer NMF. The TDT2 corpus (Nist Topic Detection and Tracking corpus) consists of data
collected during the first half of 1998 and taken from 6 sources, including 2 newswires (APW, NYT),
2 radio programs (VOA, PRI) and 2 television programs (CNN, ABC). Only the largest 30 categories
are kept, thus leaving us with 9394 documents in total [4].

We ran the experiment with three layers with r = [20, 10, 5]. Moreover, since deep NMF is
computationally more intensive, we prepossess the data set to keep only the most important words.
To do that, we perform a rank-20 NMF of X, and keep the 30 most important words in each topic
(that is, each column of W ); we used the code from https://gitlab.com/ngillis/nmfbook/.
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We use a similar setting as for the CBCL data set, except that we only run the algorithms once
(we will focus on the analysis of the topics obtained), and we use λ = [4, 2, 1], that is, we give more
importance to the first layers. Otherwise, we observe the first layer topics were getting too similar:
for example, giving too much importance to the term ∥W1 −W2H2∥2 will make W1 to become rank
deficient (since r2 < r1), and hence its columns will become more colinear.

Figure 4 reports the evolution of the error of deep KL-NMF divided by the final error obtained
by multilayer KL-NMF, exactly as for the CBCL data set. As for CBCL, the errors of deep KL-NMF

Figure 4: Evolution of the error at the different levels of deep KL-NMF divided by the error of
multilayer KL-NMF.

at the first level is slightly larger (namely 107.5%), while the error at the second and third levels are
significantly smaller (namely 30% and 22%, respectively) than that of multilayer NMF.

Let us try to analyse the topics extracted by deep KL-NMF, and the relationships between them.
For each column of Wℓ, which contain the topics, we sort the words in order of importance, and report
them in that order. Table 3 provides the 10 most important words for the second layer, and Table 4
provides the 5 most important words for the third layer. For simplicity, we do not report the topics
at layer 1 (there are 20), but a similar analysis can be made, and they are available from our code
online.

What is interesting with deep NMF models, is that we can link the topics together, as in a
hierarchical decomposition. For example, the topics of layers 2 and 3, within the columns of W2 and
W3 respectively, are linked via the relation

W2(:, j) ≈
r3∑

k=1

W3(:, k)H3(k, j) for j = 1, 2, . . . , r2,

where H3(k, j) tells us the importance of the kth topic at level 3 to reconstruct the jth topic at level 2.
The last line of Table 4 provides this information. Because most topics extracted at the second layer
are rather different and use different words, H3 is rather sparse (this in turn is because X is sparse,
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
Politics Military conflicts Economy Clinton-Lewinsky Mixed topics

president iraq percent spkr tobacco
clinton united economic lewinsky olympic

government states crisis president team
nuclear weapons economy clinton city
india iraqi asian white games
house military financial house going

political saddam billion starr olympics
china security market lawyers won

pakistan inspectors bank news nagano
party president asia case gold

Merged topics Merged topics Merged topics Merged topics Merged topics
3 & 4 1, 6, & 10 5 & 7 6 & 9 2, 6 & 8

from layer 2 from layer 2 from layer 2 from layer 2 from layer 2

Table 4: Most important words in each topic of third layer of deep KL-NMF.

and hence the Wℓ and Hℓ’s are as well). For example, the topic 1 of the third layer (about politics)
merges the topics 3 and 4 from the second layer (about American politics and nuclear conflicts), and
the the topic 3 of the third layer (about economics) merges the topics 5 and 7 from the second layer
(about the stock market and the Asian economic crisis). Except for the fifth topic of the third layer,
which is a mixture of heterogeneous ones (mostly Olympic games, but mixed with the tobacco bills
and the media topics), the other ones are rather meaningful. Interestingly, the topic at level 2 about
the media (with words such as reporter, correspondent, headline, etc.) is merged into three topics
where the media is present (military conflicts, political scandals, Olympic games).

4.3 Hyperspectral imaging

In this section, we consider hyperspectral images to evaluate the effectiveness of the proposed minimum-
volume deep KL-NMF model solved via Algorithms 2, in comparison to the multilayer KL-NMF [7, 8],
and the Frobenius-norm based deep MF framework with minimum-volume penalty and data-centric
loss function recently proposed in [9]. To ease the notation, the latter will be dubbed as “LC-
DMF”. All the algorithms are implemented and tested on a laptop computer with Intel Core i7-
11800H@2.30GHz CPU, and 16GB memory.

4.3.1 Data sets

A hyperspectral image (HSI) is an image that contains information over a wide spectrum of light
instead of just assigning primary colors (red, green, and blue) to each pixel as in RGB images. The
spectral range of typical airborne sensors is 380-12700 nm and 400-1400 nm for satellite sensors. For
instance, the AVIRIS airborne hyperspectral imaging sensor records spectral data over 224 continuous
channels. The advantage of HSI is that they provide more information on what is imaged, some of it
blind to the human eye as many wavelengths belong to the invisible light spectrum. This additional
information allows one to identify and characterize the constitutive materials present in a scenery. We
consider the following real HSI:
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(a) Samson data cube (b) Moffett in synthetic colors

Figure 5: HSI data sets: Samson image (left) - Moffett Field image acquired by AVIRIS in 1997 and
the region of interest (right) represented in synthetic colors, figure reproduced from [11].

• AVIRIS Moffett Field: this data set has been acquired with over Moffett Field (CA, USA)
in 1997 by the JPL spectro-imager AVIRIS 3 and consists of 512×614 pixels and 224 spectral
reflectance bands in the wavelength range 400nm to 2500nm. Due to the water vapor and
atmospheric effects, we remove the noisy spectral bands. After this process, there remains 159
bands. As in [11], we extract a 50×50 sub-image from this data set, see Figure 5b. It is widely
acknowledged within the hyperspectral remote sensing community that this subimage consists
of three distinct materials: vegetation, soil, and water. It is worth noting that the norm of the
spectral signature for water is significantly smaller compared to the other two materials. For
more detailed information on this dataset, please refer to [11].

• Tumor: 519 spectral bands with 13×11 pixels, corresponding to a simulated Magnetic resonance
spectroscopic imaging (MRSI) of a glioma patient’s brain [27]. This MRSI grid contains spectra
from normal tissue, as well as tumor tissue and necrosis, see [27] for more details about this data
set.

• Samson: The Samson dataset4 comprises 156 spectral bands and has a resolution of 95 × 95
pixels. It primarily contains three to four materials, namely ”Soil,” ”Tree,” and ”Water.” In
Figure 5a, the hyperspectral cube is depicted, and upon closer examination, it becomes apparent
that the ”Soil” material actually consists of at least two sub-components, specifically sand and
rocks.

4.3.2 Results

In this section, we present the results obtained from the benchmarked methods for each hyperspectral
imaging (HSI) dataset, as described in Section 4.3.1. Specifically, we showcase the abundance maps
obtained for each layer of the deep models, aiming to provide a qualitative assessment of the unmixing

3https://aviris.jpl.nasa.gov/data/image_cube.html
4http://lesun.weebly.com/hyperspectral-data-set.html
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and clustering outcomes. For all the models under consideration, we enforce a two-layer decomposition.
Our objective is to achieve an accurate estimation and localization of the constitutive materials, also
known as endmembers, in the first layer. The subsequent layer is expected to provide a clustering
effect by merging the endmembers into more general clusters, such as vegetation vs. non-vegetation
as illustrated in Figure 1, or mineral vs. organic or healthy vs non-healthy human tissues.

To ensure completeness and reproducibility of the results, we will now provide additional details
regarding the parameters that were considered for each analysis.

• AVIRIS Moffett Field: For the AVIRIS Moffett Field dataset, we consider factorization
ranks of r1 = 4 and r2 = 2, with a maximum number of iterations set to 300. In the deep
MF framework with a minimum-volume penalty [9], we impose a sum-to-one constraint on the
columns of factors Wl. The values for penalty weights of minimum-volume regularizations have
been tuned and set to [2; 1] to obtain the best results. For our proposed Algorithms 2, we set the
parameter ρ to 100, the threshold ϵ to 10−6 for the ADMM procedure and the penalty weights
of minimum-volume regularizations to [4; 1].

• Tumor: For this data set, we consider factorization ranks of r1 = 3 and r2 = 2, with a maximum
number of iterations set to 200. As done for previous data set, we impose a sum-to-one constraint
on the columns of factors Wl for LC-DMF [9] with default values for min-vol penalty weights.
In the case of Algorithms 2, the parameters for the ADMM procedure are the same as the ones
considered above, whereas the penalty weights of minimum-volume regularizations are set to
[1410

−4; 10−2] .

• Samson: we consider factorization ranks of r1 = 4 and r2 = 2, with a maximum number of
iterations set to 800. Again, we impose a sum-to-one constraint on the columns of factors Wl

for LC-DMF [9] with values for penalty weights of minimum-volume regularizations tuned and
set to [0.15; 0.15] to obtain the best results. In the case of Algorithms 2, the parameters for the
ADMM procedure are the same as the ones for previous data sets, whereas the penalty weights
of minimum-volume regularizations are set to [0.45; 0.45].

Discussion for AVIRIS Moffett Field: Figure 6 presents the abundance maps obtained for each
layer of the three models. Impressively, both min-vol deep NMF models accurately detect the presence
of water in the first layer, as well as a discernible ”material” observed at the interface between the
water and the soil. This interface showcases non-linear effects that arise from the phenomenon of
double scattering of light. Both min-vol deep models effectively highlight these effects, with our
proposed method demonstrating slightly superior accuracy in capturing such intricate features. It is
worth noting that the estimation of water in this dataset is highly challenging, and the most successful
results have been achieved by imposing sum-to-one constraints on the H factor of NMF models, as
discussed in detail in [16]. Notably, the deep KL-NMF model provides the most accurate estimation of
water. Moving on to Figures 7, we observe the abundance maps obtained for the final layer of the three
models. Once again, both min-vol deep KL-NMF models yield more meaningful outcomes. While LC-
DMF [9] distinguishes between vegetation and soil through clustering, min-vol deep KL-NMF (Alg. 2)
gathers soil and vegetation, contrasting them with water.

Discussion for Tumor data set: Figure 8 illustrates the abundance maps obtained for each layer
of the three models. As reported in [27], the data set comprises three endmembers: the ”necrosis”
forming a ball in the lower corner of the MRSI grid, the aureole-shaped tumor surrounding the necrosis,
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(a) min-vol deep KL-NMF (Alg. 2) (b) LC-DMF [9] (c) Multi-layer KL-NMF [7, 8]

Figure 6: AVIRIS Moffett Field data set: From left to right abundance maps extracted from the first
layer of min-vol deep KL-NMF (Alg. 2), LC-DMF [9] and multi-layer KL-NMF [7, 8].

and the healthy tissue. Overall, all three deep models produce satisfactory results. In this analysis,
it is evident that the min-vol deep NMF models more accurately extract this information, with a
slightly cleaner localization achieved by min-vol deep KL-NMF (Alg. 2). Examining the second layers
extracted by the models depicted in Figures 9, we observe that all three models exhibit a similar
clustering of the endmembers extracted in the first layer, distinguishing non-healthy tissue (tumor +
necrosis) from healthy tissue. Once again, min-vol deep KL-NMF (Alg. 2) showcases a slightly better
separation in this regard.

Discussion for Samson data set: Figure 10 illustrates the abundance maps obtained for each
layer of the three models. Interestingly, both min-vol deep NMF models successfully extract four
materials, as explained in Section 4.3.1: water, vegetation, soil, and an additional material that likely
corresponds to a second type of soil, possibly rocks. These models also capture non-linear effects at the
interface between soil and water. It is worth noting that min-vol deep KL-NMF (Alg. 2) demonstrates
better estimation of the localization of water and soil, while LC-DMF [9] provides slightly improved
separation for vegetation, resulting in fewer residuals from the soil. Moving on to Figures 7, we
observe the abundance maps obtained for the final layer of the three models. Remarkably, all three
deep models combine the endmembers extracted in the first layer into clusters: minerals (soil + water)
versus vegetation.

Conclusion: Our proposed approach, min-vol deep KL-NMF (Alg. 2), demonstrates promising re-
sults in hyperspectral imaging compared to two other methods. Despite its unconventional use of
KL divergence instead of the Frobenius norm, deep KL-NMF exhibits superior accuracy in capturing
intricate features, particularly in detecting water and the water-soil interface. It outperforms other
methods in accurately estimating water, a challenging task in the AVIRIS Moffett Field dataset. Ad-
ditionally, deep KL-NMF achieves satisfactory results in the Tumor dataset with improved localization
and separation. In the Samson dataset, deep KL-NMF successfully extracts multiple materials and
offers better localization of water and soil.
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(a) min-vol deep KL-NMF (Alg. 2) (b) LC-DMF [9] (c) Multi-layer KL-NMF [7, 8]

Figure 7: AVIRIS Moffett Field data set: From left to right abundance maps extracted from the
second layer of min-vol deep KL-NMF (Alg. 2), LC-DMF [9] and multi-layer KL-NMF [7, 8].

(a) min-vol deep KL-NMF (Alg. 2) (b) LC-DMF [9] (c) Multi-layer KL-NMF [7, 8]

Figure 8: Tumor data set: From left to right abundance maps extracted from the first layer of min-vol
deep KL-NMF (Alg. 2), LC-DMF [9] and multi-layer KL-NMF [7, 8].

(a) min-vol deep KL-NMF (Alg. 2) (b) LC-DMF [9] (c) Multi-layer KL-NMF [7, 8]

Figure 9: Tumor data set: From left to right abundance maps extracted from the second layer of
min-vol deep KL-NMF (Alg. 2), LC-DMF [9] and multi-layer KL-NMF [7, 8].
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(a) min-vol deep KL-NMF (Alg. 2) (b) LC-DMF [9] (c) Multi-layer KL-NMF [7, 8]

Figure 10: Samson data set: From left to right abundance maps extracted from the first layer of
min-vol deep KL-NMF (Alg. 2), LC-DMF [9] and multi-layer KL-NMF [7, 8].

(a) min-vol deep KL-NMF (Alg. 2) (b) LC-DMF [9] (c) Multi-layer KL-NMF [7, 8]

Figure 11: Samson data set: From left to right abundance maps extracted from the second layer of
min-vol deep KL-NMF (Alg. 2), LC-DMF [9] and multi-layer KL-NMF [7, 8].
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5 Conclusion

We have introduced two new deep NMF models based on β-divergences and the layer-centric loss
function. Leveraging the BSUM method, we devised efficient algorithms to estimate the parameters
of these models. Our experimental results underscored the practical efficacy of these approaches
in diverse applications, including facial feature extraction, topic modeling, and hyperspectral image
unmixing. Our future research direction includes exploring acceleration strategies of TITAN to further
accelerate convergence of the proposed algorithms. Additionally, we aim to extend the applications of
deep NMF in other domains such as source separation and gene expression analysis.
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