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Abstract

With the goal of obtaining strong relaxations for binary polynomial optimization problems, we
introduce the pseudo-Boolean polytope defined as the set of binary points z ∈ {0, 1}V ∪S satisfying
a collection of equations of the form zs =

∏
v∈s σs(zv), for all s ∈ S, where σs(zv) ∈ {zv, 1 − zv},

and where S is a multiset of subsets of V . By representing the pseudo-Boolean polytope via a
signed hypergraph, we obtain sufficient conditions under which this polytope has a polynomial-size
extended formulation. Our new framework unifies and extends all prior results on the existence of
polynomial-size extended formulations for the convex hull of the feasible region of binary polynomial
optimization problems of degree at least three.

Key words: Binary polynomial optimization; Pseudo-Boolean optimization; Pseudo-Boolean poly-
tope; Signed hypergraph; Polynomial-size extended formulation

1 Introduction

We consider the problem of maximizing a multivariate polynomial function over the set of binary
points, henceforth referred to as binary polynomial optimization. This problem class has numerous
applications across science and engineering [7], and is NP-hard in general. Based on the encoding
of the polynomial objective function, we obtain two popular optimization problems, which we refer
to as “binary multilinear optimization” and “pseudo-Boolean optimization.” As binary quadratic
optimization has been extensively studied in the literature (see for example [2, 5, 32]), in this paper,
we focus on binary polynomial optimization problems of degree at least three.

1.1 Binary multilinear optimization

A hypergraph G is a pair (V,E), where V is a finite set of nodes and E is a set of edges, which
are subsets of V of cardinality at least two. Following the approach introduced in [15], with any
hypergraph G = (V,E), and cost vector c ∈ RV ∪E , we associate the following binary multilinear
optimization problem:

max
∑

v∈V
cvzv +

∑

e∈E
ce

∏

v∈e
zv

s.t. zv ∈ {0, 1} ∀v ∈ V.

(BMO)

∗Department of Industrial and Systems Engineering & Wisconsin Institute for Discovery, University of Wisconsin-
Madison. E-mail: delpia@wisc.edu.

†Department of Industrial and Systems Engineering, Lehigh University. E-mail: aida@lehigh.edu.

1



It can be checked that any binary polynomial optimization problem has a unique representation of
the form Problem BMO. Next, we linearize the objective function of Problem BMO by introducing a
new variable ze for each product term

∏
v∈e zv to obtain an equivalent reformulation of this problem

in a lifted space:

max
∑

v∈V
cvzv +

∑

e∈E
ceze

s.t. ze =
∏

v∈e
zv ∀e ∈ E

zv ∈ {0, 1} ∀v ∈ V.

(L-BMO)

With the objective of understanding the facial structure of the convex hull of the feasible region
of Problem L-BMO, Del Pia and Khajavirad [15] introduced the multilinear set, defined as

S(G) :=
{
z ∈ {0, 1}V+E : ze =

∏

v∈e
zv, ∀e ∈ E

}
,

and its convex hull, which is called the multilinear polytope and is denoted by MP(G).
In [16,19], the authors show that the complexity of the facial structure of MP(G) is closely related

to the “acyclicity degree” of G. The most well-known types of acyclic hypergraphs, in increasing
order of generality, are Berge-acyclic, γ-acyclic, β-acyclic, and α-acyclic hypergraphs [3,8,23,24]. We
next briefly review the existing results on the facial structure of the multilinear polytope of acyclic
hypergraphs. Recall that the rank of a hypergraph G, denoted by r, is the maximum cardinality of
any edge in E. In [9, 16], the authors prove that MP(G) coincides with its standard linearization if
and only if G is Berge-acyclic. This in turn implies that if G is Berge-acyclic, then MP(G) is defined
by |V |+ (r+ 2)|E| inequalities in the original space. In [16], the authors prove that MP(G) coincides
with its flower relaxation if and only if G is γ-acyclic. This result implies that if G is γ-acyclic, then
MP(G) has a polynomial-size extended formulation with at most |V | + 2|E| variables and at most
|V | + (r + 2)|E| inequalities. Subsequently, in [19], the authors present a polynomial-size extended
formulation for the multilinear polytope of β-acyclic hypergraphs with at most (r−1)|V |+|E| variables
and at most (3r − 4)|V |+ 4|E| inequalities.

On the contrary, in [14], the authors prove that Problem BMO is strongly NP-hard over α-acyclic
hypergraphs. This result implies that, unless P = NP, one cannot construct, in polynomial time, a
polynomial-size extended formulation for the multilinear polytope of α-acyclic hypergraphs. However,
as we detail next, by making further assumptions on the rank of α-acyclic hypergraphs, one can
construct a polynomial-size extended formulation for the multilinear polytope. In [4, 31, 33], the
authors give extended formulations for the convex hull of the feasible set of (possibly constrained)
binary multilinear optimization problems. The size of these extended formulations is parameterized
in terms of the “tree-width” of their so-called intersection graphs. For the unconstrained case, as
detailed in [18], their result can be equivalently stated as follows: If G is an α-acylic hypergraph of
rank r, with r = O(log poly(|V |, |E|)), then MP(G) has a polynomial-size extended formulation, where
by poly(|V |, |E|), we imply a polynomial function in |V |, |E|. Henceforth, for brevity, whenever for a
hypergraph G = (V,E) we have r = O(log poly(|V |, |E|)), we say that G has log-poly rank.

For further results regarding polyhedral relaxations of multilinear sets, see [12,13,18,20–22,28,30].

1.2 Pseudo-Boolean optimization

We define a signed hypergraph H as a pair (V, S), where V is a finite set of nodes and S is a set of
signed edges. A signed edge s ∈ S is a pair (e, ηs), where e is a subset of V of cardinality at least two,
and ηs is a map that assigns to each v ∈ e a sign ηs(v) ∈ {−1,+1}. The underlying edge of a signed
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edge s = (e, ηs) is e. Two signed edges s = (e, ηs), s
′ = (e′, ηs′) ∈ S are said to be parallel if e = e′,

and they are said to be identical if e = e′ and ηs = ηs′ . Throughout this paper, we consider signed
hypergraphs with no identical signed edges. However, our signed hypergraphs often contain parallel
signed edges.

With any signed hypergraph H = (V, S), and cost vector c ∈ RV ∪S , we associate the following
pseudo-Boolean optimization problem:

max
∑

s∈S
cs

∏

v∈s
σs(zv)

s.t. z ∈ {0, 1}V ,
(PBO)

where

σs(zv) :=

{
zv if ηs(v) = +1

1− zv if ηs(v) = −1.

A variety of important applications such as maximum satisfiability problems [25], and graphical mod-
els [27] can naturally be formulated as pseudo-Boolean optimization problems. Problem PBO has
been extensively studied in the literature; see [7] for a detailed survey of main results. Some of the
main topics considered in these works are quadratic pseudo-Boolean optimization problems [5, 26],
quadratization of general pseudo-Boolean optimization problems [6], and special problem classes such
as super-modular pseudo-Boolean optimization problems [11].

As before, we linearize the objective function of Problem PBO by introducing one new variable zs,
for each signed edge s ∈ S, to obtain an equivalent reformulation of Problem PBO in a lifted space:

max
∑

s∈S
cszs

s.t. zs =
∏

v∈s
σs(zv) ∀s ∈ S

z ∈ {0, 1}V ∪S .

(L-PBO)

In this paper, we introduce the pseudo-Boolean set of the signed hypergraph H = (V, S), as the feasible
region of Problem L-PBO:

PBS(H) :=
{
z ∈ {0, 1}V ∪S : zs =

∏

v∈s
σs(zv), ∀s ∈ S

}
,

and we refer to its convex hull as the pseudo-Boolean polytope and denote it by PBP(H). With the
objective of constructing strong linear programming (LP) relaxations for Pseudo-Boolean optimization
problems, in this paper, we study the facial structure of the pseudo-Boolean polytope.

1.3 Binary multilinear optimization versus Pseudo-Boolean optimization

Problem BMO and the multilinear polytope MP(G) are special cases of Problem PBO and the pseudo-
Boolean polytope PBP(H), obtained by letting ηs(v) = +1 for every s ∈ S and v ∈ s. Vice versa,
by expanding the objective function, Problem PBO over a signed hypergraph H = (V, S) can be
formulated as a binary multilinear optimization problem over the multilinear hypergraph mh(H),
which we define next. Formally, the multilinear hypergraph of H is the hypergraph mh(H) = (V,E),
where E is constructed as follows: For each s ∈ S, and every t ⊆ s with ηs(v) = −1 for all v ∈ t,
the set E contains {v ∈ s : ηs(v) = +1} ∪ t, if it has cardinality at least two. However, reformulating
Problem PBO as a binary multilinear optimization problem may lead to an exponential increase in the
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number of monomials obtained, and hence in the number of edges in the multilinear hypergraph. To
see this, consider for example the signed hypergraph H = (V, S), where S contains two signed edges
s = (V, ηs) and t = (V, ηt) such that ηs(v) = −ηt(v) for every v ∈ V . It is then simple to check that
the number of edges in mh(H) is at least

∑m
i=2

(
m
i

)
= 2m −m− 1, where m := ⌈|V |/2⌉.

It is important to note that unlike the multilinear polytope, the pseudo-Boolean polytope may not
be full-dimensional. For example, if H = (V, S) contains three signed edges s1 = (e, ηs1), s2 = (e, ηs2),
s3 = (e′, ηs3), where e′ = e \ {v̄} for some v̄ ∈ V , ηs1(v) = ηs2(v) = ηs3(v) for all v ∈ e \ {v̄}, and
ηs1(v̄) = −ηs2(v̄), then PBP(H) is not full-dimensional as we have zs1 + zs2 = zs3 .

While the pseudo-Boolean polytope is significantly more complex than the multilinear polytope, as
we demonstrate in this paper, by studying the facial structure of PBP(H), one can obtain polynomial-
size extended formulations for many instances for which such a formulation is not known for the
corresponding multilinear polytope; i.e., MP(G) with G = mh(H).

1.4 Our contributions

In this paper, we demonstrate how the hypergraph framework pioneered in [15] for binary multilinear
optimization is relevant and applicable to pseudo-Boolean optimization as well. Namely, using signed
hypergraphs to represent pseudo-Boolean sets, we present sufficient conditions under which the pseudo-
Boolean polytope admits a polynomial-size extended formulation. Our results unify and extend all
prior results on polynomial-size representability of the multilinear polytope [4, 16,18,19,31,33].

We introduce a new technique, which we refer to as the “recursive inflate-and-decompose” frame-
work to construct polynomial-size extended formulations for the pseudo-Boolean polytope. Our pro-
posed framework relies on a recursive application of three key ingredients, each of which is of inde-
pendent interest:

1. A sufficient condition for decomposability of pseudo-Boolean polytopes (see Theorem 1). This
is the first result on decomposability of pseudo-Boolean polytopes and serves as a significant
generalization of Theorem 4 in [19] (Section 2).

2. A polynomial-size extended formulation for the pseudo-Boolean polytope of pointed signed hy-
pergraphs (see Theorem 2). The pseudo-Boolean polytope of pointed signed hypergraphs is the
building block of our extended formulations, which appears as a result of applying our decom-
position technique of Part 1 (Section 3).

3. An operation, which we refer to as “inflation of signed edges” (see Theorem 3) that we use to
transform a large family of signed hypergraphs to those for which our results of Parts 1 and 2
are applicable (Section 4).

As we detailed in Section 1.1, at the time of this writing, the most general sufficient conditions under
which one can obtain a polynomial-size extended formulation for the multilinear polytope MP(G) are:

(i) G is a β-acyclic hypergraph [19],

(ii) G is an α-acyclic hypergraph with log-poly rank [31].

It is important to remark that neither of the above sufficient conditions implies the other one. Further-
more, the two results in [19] and [31] have been proven using entirely different techniques. In Section 5,
we show that our recursive inflate-and-decompose framework implies as special cases both sufficient
conditions (i) and (ii) above and extends to many more cases of interest. Below, we summarize these
results.

Consider a signed hypergraph H = (V, S). We define the underlying hypergraph of H as the
hypergraph obtained from H by ignoring the signs and dropping parallel edges. In Section 5.1 we prove
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that, if the underlying hypergraph of H is β-acyclic, then PBP(H) has a polynomial-size extended
formulation (see Theorem 5). This is a significant generalization of case (i) above, as the multilinear
hypergraph of a signed hypergraph H whose underlying hypergraph is β-acyclic may contain many
β-cycles, in general. In Section 5.2 we prove that if the underlying hypergraph of H is α-acyclic and
has log-poly rank, then PBP(H) has a polynomial-size extended formulation (see Theorem 6). This
result essentially coincides with case (ii) above. In Section 5.3, we introduce the notion of “gap” for
hypergraphs, which roughly speaking, indicates if it is possible to inflate signed edges in an efficient
manner. We then show that for certain signed hypergraphs, if the gap is not too large, by combining
results of Theorems 3 and 5, one can obtain polynomial-size extended formulations for the pseudo-
Boolean polytope (see Propositions 3 and 4). Finally, in Section 5.4 we outline some generalizations
and directions of future research.

It is important to remark that the proofs of all our results regarding the existence of polynomial-size
extended formulations are constructive and the proposed extended formulations can be constructed in
polynomially many operations in |V |, |S|.

We would like to conclude this section by further emphasizing on the power of these extended for-
mulations: Not only they serve as polynomial-size LP formulations for special classes of Problem BMO
and Problem PBO, they can also be used to construct strong LP relaxations for general mixed-integer
nonlinear optimization problems whose factorable reformulations contain pseudo-Boolean sets (see for
example [20] and [29]).

1.5 Hypergraph notation and preliminaries

In the following, we present all hypergraph terminology and notation that we will use throughout this
paper.

Hypergraphs. Let G = (V,E) be a hypergraph. We define the hypergraph obtained from G
by removing a node v ∈ V as the hypergraph G − v with set of nodes V \ {v} and set of edges
{e− v : e ∈ E, |e− v| ≥ 1}.

A node v ∈ V is a β-leaf of G if the set of the edges of G containing v is totally ordered with
respect to inclusion. A sequence of β-leaves of length t for some 1 ≤ t ≤ |V | of G is an ordering
v1, . . . , vt of t distinct nodes of G, such that v1 is a β-leaf of G, v2 is a β-leaf of G − v1, and so on,
until vt is a β-leaf of G− v1− · · ·− vt−1. The hypergraph G is said to be β-acyclic if it has a sequence
of β-leaves of length |V |. An equivalent definition of β-acyclic hypergraphs can be obtained using the
concept β-cycle. A β-cycle of length q for some q ≥ 3 in G is a sequence v1, e1, v2, e2, . . . , vq, eq, v1
such that v1, v2, . . . , vq are distinct nodes, e1, e2, . . . , eq are distinct edges, and vi belongs to ei−1, ei
and no other ej for all i = 1, . . . , q, where e0 = eq. A hypergraph is β-acyclic if and only if its does
not contain any β-cycles [23].

A node v ∈ V is an α-leaf of G if the set of edges of G containing v has a maximal element for
inclusion. A sequence of α-leaves of length t for some 1 ≤ t ≤ |V | of G is an ordering v1, . . . , vt of t
distinct nodes of G, such that v1 is an α-leaf of G, v2 is an α-leaf of G− v1, and so on, until vt is an
α-leaf of G− v1 − · · · − vt−1. The hypergraph G is said to be α-acyclic if it has a sequence of α-leaves
of length |V |.

We say that G is connected if for every u,w ∈ V , there exists a sequence u, e1, v2, e2, · · · , vq, eq, w
such that v2, v3, · · · , vq ∈ V , e1, e2, · · · , eq ∈ E, and vi belongs to ei−1, ei, for all i = 2, . . . , q. The
connected components of G are its maximal connected partial hypergraphs. A hypergraph G′ =
(V ′, E′) is a partial hypergraph of G = (V,E), if V ′ ⊆ V and E′ ⊆ E.

Signed hypergraphs. Let H = (V, S) be a signed hypergraph. We start by defining some useful
operations on signed edges. Let s = (e, ηs) ∈ S. With a slight abuse of notation, we use set theoretical
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notation on s, with the understanding that s should be replaced with e. For example, we denote by
|s| the number |e|, we say that s is nonempty if e is nonempty, we write v ∈ s meaning v ∈ e, and for
U ⊆ V , we write s ⊆ U (resp., s ⊇ U , s = U) meaning e ⊆ U (resp., e ⊇ U , e = U). Similarly, we
might write s ⊆ s′, for s = (e, ηs), s

′ = (e′, ηs′) ∈ S, instead of e ⊆ e′. If v ∈ s, we denote by s− v the
signed edge s′ = (e′, ηs′), where e′ := e \ {v}, and ηs′ is the restriction of ηs that assigns to each v ∈ e′

the sign ηs′(v) = ηs(v). If v /∈ s, we denote by s+ v+ the signed edge s′ = (e′, ηs′), where e′ := e∪{v},
and ηs′ is the extension of ηs that assigns to each u ∈ e′ the sign ηs′(u) = ηs(u) and assigns to v the
sign ηs′(v) = +1. Similarly, s+ v− is defined as s+ v+ but with ηs′(v) = −1.

We define the signed hypergraph obtained from H by removing a node v ∈ V as the signed
hypergraph H − v with set of nodes V \ {v} and set of signed edges {s− v : s ∈ S, |s− v| ≥ 1}.

2 Decomposability of pseudo-Boolean sets

In this section, we present a sufficient condition for decomposability of the pseudo-Boolean polytope
that we will use to obtain our extended formulations. Our decomposition result is the first known
sufficient condition for decomposability of the pseudo-Boolean polytope.

Existing decomposability results for the multilinear polytope are Theorem 1 in [17], Theorem 5
in [16], Theorem 1 in [18], Theorem 4 in [13], and Theorem 4 in [19]. Our decomposition result serves
as a significant generalization of Theorem 4 in [19].

Consider a signed hypergraph H = (V, S), let V1, V2 ⊆ V such that V = V1 ∪ V2, let S1 ⊆ {s ∈
S : s ⊆ V1}, S2 ⊆ {s ∈ S : s ⊆ V2} such that S = S1 ∪ S2. Let H1 := (V1, S1) and H2 := (V2, S2).
We say that the pseudo-Boolean polytope PBP(H) is decomposable into the pseudo-Boolean polytopes
PBP(H1) and PBP(H2), if the system comprised of a description of PBP(H1) and a description of
PBP(H2), is a description of PBP(H).

Throughout this paper, for an integer k, we define [k] := {1, · · · , k}. We are now ready present
our decomposition result.

Theorem 1. Let H = (V, S) be a signed hypergraph, let v be a β-leaf of the underlying hypergraph of
H, let s1 ⊆ s2 ⊆ · · · ⊆ sk be the signed edges of H containing v, and let Sv := {s1, . . . , sk}. For each
i = 1, . . . , k, let pi := si − v. Define Pv := {p ∈ {p1, . . . , pk} : |p| ≥ 2}. Assume that S contains the
signed edges in Pv. Let H1 := (V1, Sv∪Pv), where V1 is the underlying edge of sk, and let H2 := H−v.
Then PBP(H) is decomposable into PBP(H1) and PBP(H2).

Proof. We assume k ≥ 1, as otherwise the result is obvious. We now explain how we write, in the
rest of the proof, a vector z ∈ RV ∪S by partitioning its components in a number of subvectors. The
vector z∩ contains the components of z corresponding to nodes and signed edges that are both in H1

and in H2, i.e., nodes in V1 \ {v} and signed edges in Pv. The vector z1 contains the components of
z corresponding to nodes and signed edges in H1 but not in H2, i.e., node v and signed edges in Sv.
Finally, the vector z2 contains the components of z corresponding to nodes and signed edges in H2

but not in H1. Using these definitions, we can now write, up to reordering variables, z = (z1, z∩, z2).
Similarly, we can write a vector z in the space defined by H1 as (z1, z∩), and a vector z in the space
defined by H2 as z = (z∩, z2).

We now proceed with the proof of the theorem. We need to show that the system comprised of a
description of PBP(H1) and a description of PBP(H2) results in a description of PBP(H). It is simple
to check that all inequalities valid for PBP(H1) and for PBP(H2) are also valid for PBP(H), since all
signed edges of H1 and of H2 are also signed edges of H. Thus, it suffices to show that a vector that
satisfies all inequalities in PBP(H1) and PBP(H2) is in PBP(H). Let z̃ such that (z̃1, z̃∩) ∈ PBP(H1)
and (z̃∩, z̃2) ∈ PBP(H2). We show z̃ ∈ PBP(H). To do so, we will write z̃ explicitly as a convex
combinations of vectors in PBS(H). In the next claim, we show how a vector in PBS(H1) and a vector
in PBS(H2) can be combined to obtain a vector in PBS(H).
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Note that, for some i = 1, . . . , k, we might have |pi| = 1, and so pi /∈ Pv, meaning that it is not a
signed edge of H. In these cases, we have that pi contains a single node, say u, and we call pi a signed
loop. Consistently with our notation for signed edges, we will write zpi and σpi(zu) to denote zu, if
ηpi(u) = +1, or to denote 1− zu, if ηpi(u) = −1.

Claim 1. Let (z1, z∩) ∈ PBS(H1) and (z′∩, z
′
2) ∈ PBS(H2) such that zpi = z′pi for every i ∈ [k]. Then,

(z1, z
′
∩, z

′
2) ∈ PBS(H).

Proof of claim. It suffices to show that (z1, z
′
∩) ∈ PBS(H1). The signed edges of H1 are Sv ∪ Pv.

Consider first a signed edge pi ∈ Pv. In (z1, z
′
∩), the component of the signed edge pi is in z′∩, and

all nodes in pi have components in z′∩, thus we need to show the equality z′pi =
∏

u∈pi σpi(z
′
u), which

follows directly from (z′∩, z
′
2) ∈ PBS(H2). Consider now a signed edge si ∈ Sv. In (z1, z

′
∩), the

component of the signed edge si is in z1, and all the nodes in si have components in z′∩, except for
node v that has component in z1. Thus, we need to show the equality

zsi = σsi(zv)
∏

u∈si\{v}
σsi(z

′
u).

Since si is a signed edge of H1 and (z1, z∩) ∈ PBS(H1), we know

zsi = σsi(zv)
∏

u∈si\{v}
σsi(zu).

We then obtain

∏

u∈si\{v}
σsi(zu) =

∏

u∈pi
σpi(zu) = zpi = z′pi =

∏

u∈pi
σpi(z

′
u) =

∏

u∈si\{v}
σsi(z

′
u).

Here, the first equality holds by definition of pi for i ∈ [k]; the second equality holds since pi is
a signed edge of H1 or a signed loop containing a node of H1; in the third equality we use the
assumption zpi = z′pi ; the fourth equality holds because pi is a signed edge of H2 or a signed loop
containing a node of H2, and (z′∩, z

′
2) ∈ PBS(H2); the last equality holds by definition of pi for i ∈ [k].

⋄

In the remainder of the proof, we show how to write explicitly z̃ as a convex combination of the
vectors in PBS(H) obtained in Claim 1. By assumption, the vector (z̃1, z̃∩) is in convPBS(H1). Thus,
it can be written as a convex combination of points in PBS(H1); i.e., there exists µ ≥ 0 such that

∑

(z1,z∩)∈PBS(H1)

µ(z1,z∩) = 1

∑

(z1,z∩)∈PBS(H1)

µ(z1,z∩)(z1, z∩) = (z̃1, z̃∩). (1)

Similarly, the vector (z̃∩, z̃2) is in convPBS(H2) and it can be written as a convex combination of
points in PBS(H2); i.e., there exists ν ≥ 0 such that

∑

(z∩,z2)∈PBS(H2)

ν(z∩,z2) = 1

∑

(z∩,z2)∈PBS(H2)

ν(z∩,z2)(z∩, z2) = (z̃∩, z̃2). (2)
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In the remainder of the proof, given zp1 , . . . , zpk ∈ {0, 1}, we will consider the number max{j ∈ [k] :
zpj = 1} ∈ {0, . . . , k}, with the understanding that this number equals 0 when zp1 = · · · = zpk = 0. In
the next technical claim, we study the sums of the multipliers µ and ν corresponding to binary vectors
with a fixed max{j ∈ [k] : zpj = 1}. To do so, we define Next(0) as the set of indices t ∈ {1, . . . , k}
such that there is no r ∈ {1, . . . , t − 1} with π(pr) = π(pt) ∩ pr. For i = 1, . . . , k, we denote by
Next(i) the set of indices t ∈ {i + 1, . . . , k} such that π(pi) = π(pt) ∩ pi and such that there is no
s ∈ {i + 1, . . . , t − 1} with π(ps) = π(pt) ∩ ps. Note that Next(k) = ∅. We are now ready to present
our technical claim.

Claim 2. For i ∈ {0, . . . , k}, we have

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

µ(z1,z∩) =
∑

(z∩,z2)∈PBS(H2)
max{j∈[k]:zpj=1}=i

ν(z∩,z2) =

{
1−∑

t∈Next(0) z̃pt if i = 0

z̃pi −
∑

t∈Next(i) z̃pt if i ∈ {1, . . . , k}.

Proof of claim. By considering the component of (1) corresponding to pi, for i ∈ [k], we obtain

∑

(z1,z∩)∈PBS(H1)
zpi=1

µ(z1,z∩) = z̃pi .

We first consider the case i = k. We have

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=k

µ(z1,z∩) =
∑

(z1,z∩)∈PBS(H1)
zpk=1

µ(z1,z∩) = z̃pk = z̃pk −
∑

t∈Next(k)

z̃pt .

Next, we consider the case i ∈ {1, . . . , k − 1}. We have

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

µ(z1,z∩) =
∑

(z1,z∩)∈PBS(H1)
zpi=1

zpt=0 ∀t∈{i+1,...,k}

µ(z1,z∩)

=
∑

(z1,z∩)∈PBS(H1)
zpi=1

zpt=0 ∀t∈Next(i)

µ(z1,z∩)

=
∑

(z1,z∩)∈PBS(H1)
zpi=1

µ(z1,z∩) −
∑

t∈Next(i)

∑

(z1,z∩)∈PBS(H1)
zpt=1

µ(z1,z∩)

= z̃pi −
∑

t∈Next(i)

z̃pt .

Lastly, we consider the case i = 0. We have

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=0

µ(z1,z∩) =
∑

(z1,z∩)∈PBS(H1)
zpt=0 ∀t∈{1,...,k}

µ(z1,z∩)

=
∑

(z1,z∩)∈PBS(H1)
zpt=0 ∀t∈Next(0)

µ(z1,z∩)
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=
∑

(z1,z∩)∈PBS(H1)

µ(z1,z∩) −
∑

t∈Next(0)

∑

(z1,z∩)∈PBS(H1)
zpt=1

µ(z1,z∩)

= 1−
∑

t∈Next(0)

z̃pt .

The statement for ν follows symmetrically, starting with (2) rather than (1). ⋄

For ease of notation, we define, for i ∈ {0, . . . , k}, the quantity m(i) to be the sum obtained in
Claim 2, i.e.,

m(i) :=

{
1−∑

t∈Next(0) z̃pt if i = 0

z̃pi −
∑

t∈Next(i) z̃pt if i ∈ {1, . . . , k}.

We are now ready to define the multipliers λ that we will use to write explicitly z̃ as a convex
combination of the vectors in PBS(H) obtained in Claim 1. For every (z1, z∩) ∈ PBS(H1) and
(z′∩, z

′
2) ∈ PBS(H2) such that zpi = z′pi for every i ∈ [k], we define

λ(z1,z′∩,z
′
2)

:=
µ(z1,z∩)ν(z′∩,z′2)

m(i)
,

where i := max{j ∈ [k] : zpj = 1} = max{j ∈ [k] : z′pj = 1}. In the next claim, we show that the
multipliers λ are nonnegative and sum to one.

Claim 3. We have λ ≥ 0 and
∑

(z1,z∩)∈PBS(H1)
(z′∩,z

′
2)∈PBS(H2)

zpi=z′pi ∀i∈[k]

λ(z1,z′∩,z
′
2)

= 1

Proof of claim. It follows from Claim 2 that m(i) ≥ 0 for all i ∈ {0, . . . , k}. Thus, using the definition
of λ, we obtain λ ≥ 0. Using Claim 2, we obtain

∑

(z1,z∩)∈PBS(H1)
(z′∩,z

′
2)∈PBS(H2)

zpi=z′pi ∀i∈[k]

λ(z1,z′∩,z
′
2)

=
k∑

i=0

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

λ(z1,z′∩,z
′
2)

=

k∑

i=0

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

µ(z1,z∩)ν(z′∩,z′2)

m(i)

=
k∑

i=0

1

m(i)




∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

µ(z1,z∩)







∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

ν(z′∩,z′2)




=

k∑

i=0

(m(i))2

m(i)
=

k∑

i=0

m(i) = 1.

The last equality
∑k

i=0m(i) = 1 can be seen using the definition of m(i), because each index in
{1, . . . , k} is exactly in one set among Next(0), . . . ,Next(k). ⋄
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Our last claim, which concludes the proof of the theorem, shows that the multipliers λ yield z̃ as
a convex combination of the vectors in PBS(H) obtained in Claim 1.

Claim 4. We have

(z̃1, z̃∩, z̃2) =
∑

(z1,z∩)∈PBS(H1)
(z′∩,z

′
2)∈PBS(H2)

zpi=z′pi ∀i∈[k]

λ(z1,z′∩,z
′
2)
(z1, z

′
∩, z

′
2), (3)

Proof of claim. Using the definition of λ, we rewrite (3) in the form

(z̃1, z̃∩, z̃2) =
∑

(z1,z∩)∈PBS(H1)
(z′∩,z

′
2)∈PBS(H2)

zpi=z′pi ∀i∈[k]

λ(z1,z′∩,z
′
2)
(z1, z

′
∩, z

′
2)

=

k∑

i=0

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

λ(z1,z′∩,z
′
2)
(z1, z

′
∩, z

′
2)

=

k∑

i=0

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

µ(z1,z∩)ν(z′∩,z′2)

m(i)
(z1, z

′
∩, z

′
2).

We now verify the obtained equality, first for components z̃1, and then for components z̃∩, z̃2. We
start with components z̃1. Using Claim 2, we obtain

z̃1 =
k∑

i=0

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

µ(z1,z∩)ν(z′∩,z′2)

m(i)
z1

=

k∑

i=0

1

m(i)




∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

µ(z1,z∩)z1







∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

ν(z′∩,z′2)




=
k∑

i=0

m(i)

m(i)

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

µ(z1,z∩)z1

=
∑

(z1,z∩)∈PBS(H1)

µ(z1,z∩)z1,

and the resulting equation is implied by (1).
Next, we consider components z̃∩, z̃2. Using Claim 2, we obtain

(z̃∩, z̃2) =
k∑

i=0

∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

µ(z1,z∩)ν(z′∩,z′2)

m(i)
(z′∩, z

′
2)
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=
k∑

i=0

1

m(i)




∑

(z1,z∩)∈PBS(H1)
max{j∈[k]:zpj=1}=i

µ(z1,z∩)







∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

ν(z′∩,z′2)(z
′
∩, z

′
2)




=

k∑

i=0

m(i)

m(i)

∑

(z′∩,z
′
2)∈PBS(H2)

max{j∈[k]:z′pj=1}=i

ν(z′∩,z′2)(z
′
∩, z

′
2)

=
∑

(z′∩,z
′
2)∈PBS(H2)

ν(z′∩,z′2)(z
′
∩, z

′
2),

and the resulting equation is (2). ⋄

The overall structure of the proof of Theorem 1 is similar to that of Theorem 4 in [19]. The
difference lies in the key construction of the proof, that is, the multipliers introduced to construct the
convex combination. Due to the presence of the signed edges, these new multipliers are significantly
more involved than the ones presented in [19]. In the special case where all signs are positive, the new
multipliers simplify to the ones in the proof of Theorem 4 in [19].

3 Pointed signed hypergraphs

The signed hypergraph H1 defined in the statement of Theorem 1 plays a key role in our convex
hull characterizations. In this section, we prove that the pseudo-Boolean polytope PBP(H1) has a
polynomial-size extended formulation. Together with the decomposition technique of Theorem 1, this
result enables us to obtain polynomial-size extended formulations for the pseudo-Boolean polytope of
a large family of signed hypergraphs.

Consider a signed hypergraph H = (V, S) and let v ∈ V be a β-leaf of the underlying hypergraph
of H. Denote by Sv the set of all signed edges in S containing v. Define Pv := {s−v : s ∈ Sv, |s| ≥ 3}.
We say that H is pointed at v (or is a pointed signed hypergraph), if V coincides with the underlying
edge of the signed edge of maximum cardinality in Sv and S = Sv ∪Pv. From this definition it follows
that the signed hypergraph H1 in the statement of Theorem 1 is pointed at v.

In order to characterize the pseudo-Boolean polytope of a signed hypergraph H pointed at v, we
first characterize the pseudo-Boolean polytope of a simpler class of signed hypergraphs corresponding
to faces of PBP(H) defined by zv = 0 or zv = 1. An extended formulation for PBP(H) can then be
obtained using disjunctive programming.

3.1 The pseudo-Boolean polytope of nested signed hypergraphs

In this section, we characterize the pseudo-Boolean polytope of nested signed hypergraphs in the
original space. This result will then enable us to obtain a polynomial-size extended formulation for
the pseudo-Boolean polytope of pointed signed hypergraphs.

Let H = (V, S) be a signed hypergraph with V = {v1, · · · , vn}. Denote by E the set of underlying
edges of S (note that several signed edges may collapse to the same edge). Define ek := {v1, · · · vk+1}
for all k ∈ [n− 1] and Ē := {e1, · · · , en−1}. We say that H is a nested signed hypergraph, if it satisfies
the following conditions:

(N1) E = Ē,
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(N2) for any signed edge s ∈ S with underlying edge ek for some k ∈ [n− 1], the following two signed
edges are also present in S: ℓ(s), obtained from s by flipping the sign of v, and p(s) := s− vk+1.

Remark 1. Nested signed hypergraphs have two important properties that we will use to obtain our
extended formulations:

1. As we prove in Proposition 1, the pseudo-Boolean polytope of a nested signed hypergraph H =
(V, S) in the original space is defined by |S|

2 equalities, and |S| + 2|V | − 1 inequalities; i.e.,
2(|S|+ |V | − 1) inequalities.

2. Let H = (V, S) be a signed hypergraph such that for any s, s′ ∈ S we either have s ⊆ s′ or s′ ⊆ s.
It then follows that by adding at most 2|S|(|V | − 2) + |S| signed edges to H we obtain a nested
signed hypergraph. To see this, note that to satisfy property (N2) of nested signed hypergraphs,
for each edge s ∈ S we need to add at most 2(|s| − 2) + 1 signed edges to H. Together with
case 1 above, this in turn implies that PBP(H) has a polynomial-size extended formulation with
at most 2|S|(|V | − 1) + |V | variables and at most 4|S|(|V | − 1) + 2|V | inequalities.

We now proceed with characterizing the pseudo-Boolean of nested signed hypergraphs. To this
end, we first introduce some notation. We denote by Ek, k ∈ [n− 1] the set consisting of signed edges
in S whose underlying edges are ek. For each k ∈ [n− 1] \ {1}, we define

E+
k :=

{
s ∈ Ek : ηs(vk+1) = +1

}
, and E−

k :=
{
s ∈ Ek : ηs(vk+1) = −1

}
.

For any s ∈ S, we define
N(s) := {s′ ∈ S : s = p(s′)},

where as before for any s′ ∈ S with underlying edge ek, we define p(s′) = s′ − vk+1. Notice that by
property (N2) of nested signed hypergraphs, |N(s)| equals zero or two.

The following proposition characterizes the pseudo-Boolean polytope of nested signed hypergraphs
in the original space. While our proof relies on a standard disjunctive programming technique [1]
followed by a projection step using Fourier-Motzkin elimination, the novelty of the proof lies in the
manner Fourier-Motzkin elimination is implemented. Namely, it is well-understood that a generic
application of Fourier-Motzkin elimination leads to a rapid increase in the number of inequalities
defining the polyhedron. In our proof, the auxiliary variables are projected out in a specific order so
that the projection does not contain redundant inequalities.

Proposition 1. Let H = (V, S) with n := |V | be a nested signed hypergraph. Suppose that E1 =
{q1, q2, q3, q4} with ηq1(v1) = ηq1(v2) = ηq2(v1) = ηq3(v2) = +1 and ηq2(v2) = ηq3(v1) = ηq4(v1) =
ηq4(v2) = −1. Then the pseudo-Boolean polytope PBP(H) is given by:

zs + zℓ(s) = zp(s), ∀s ∈ E+
k , k ∈ [n− 1] \ {1} (4)

zs ≥ 0, ∀s ∈ S (5)
∑

s∈E+
k

zs ≤ zvk+1
, ∀k ∈ [n− 1] \ {1} (6)

∑

s∈E−
k

zs ≤ 1− zvk+1
, ∀k ∈ [n− 1] \ {1} (7)

zq1 + zq2 = zv1 , zq1 + zq3 = zv2 , zq3 + zq4 = 1− zv1 . (8)

Proof. The proof is by induction on the number of nodes n of H. The base case is n = 2; in this case
we have S = E1 = {q1, q2, q3, q4}. It is simple to check that PBP(H) is given by:

zq1 + zq2 = zv1 , zq1 + zq3 = zv2 , zq3 + zq4 = 1− zv1
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zq1 , zq2 , zq3 , zq4 ≥ 0.

Henceforth, let n ≥ 3. Denote by H0 (resp. H1) the signed hypergraph corresponding to the face of
PBP(H) with zvn = 0 (resp. zvn = 1). We then have:

PBP(H) = conv(PBP(H0) ∪ PBP(H1)).

Denote by z̄ the vector consisting of zv for all v ∈ V \ {vn} and zs for all s ∈ S \ En−1. Since both H0

and H1 have one fewer node than H and are nested signed hypergraphs, a description of PBP(H0)
and PBP(H1) follows from the induction hypothesis:

PBP(H0) =
{
z ∈ RV ∪S : zvn = 0, zs = 0, ∀s ∈ E+

n−1, zs = zp(s), ∀e ∈ E−
n−1, z̄ ∈ Q

}

PBP(H1) =
{
z ∈ RV ∪S : zvn = 1, zs = zp(s), ∀e ∈ E+

n−1, zs = 0, ∀s ∈ E−
n−1, z̄ ∈ Q

}
,

where the polytope Q is defined by the following linear constraints:

zs + zℓ(s) = zp(s), ∀s ∈ E+
k , k ∈ [n− 2] \ {1}

zs ≥ 0, ∀s ∈ S \ En−1∑

s∈E+
k

zs ≤ zvk+1
, ∀k ∈ [n− 2] \ {1}

∑

s∈E−
k

zs ≤ 1− zvk+1
, ∀k ∈ [n− 2] \ {1}

zq1 + zq2 = zv1 , zq1 + zq3 = zv2 , zq3 + zq4 = 1− zv1 .

Using Balas’ formulation for the union of polytopes [1], it follows that PBP(H) is the projection onto
the space of the z variables of the polyhedron defined by the following system (9)–(11):

λ0 + λ1 = 1, λ0 ≥ 0 , λ1 ≥ 0

zv = z0v + z1v , ∀v ∈ V

zs = z0s + z1s , ∀s ∈ S

(9)

z0vn = 0

z0s = 0, ∀s ∈ E+
n−1

z0s = z0p(s), ∀s ∈ E−
n−1

z0s + z0ℓ(s) = z0p(s), ∀s ∈ E+
k , k ∈ [n− 2] \ {1}

z0s ≥ 0, ∀s ∈ S \ En−1∑

s∈E+
k

z0s ≤ z0vk+1
, ∀k ∈ [n− 2] \ {1}

∑

s∈E−
k

z0s ≤ λ0 − z0vk+1
, ∀k ∈ [n− 2] \ {1}

z0q1 + z0q2 = z0v1 , z
0
q1 + z0q3 = z0v2 , z

0
q3 + z0q4 = λ0 − z0v1

(10)
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z1vn = λ1

z1s = z1p(s), ∀s ∈ E+
n−1

z1s = 0, ∀s ∈ E−
n−1

z1s + z1ℓ(s) = z1p(s), ∀s ∈ E+
k , k ∈ [n− 2] \ {1}

z1s ≥ 0, ∀s ∈ S \ En−1∑

s∈E+
k

z1s ≤ z1vk+1
, ∀k ∈ [n− 2] \ {1}

∑

s∈E−
k

z1s ≤ λ1 − z1vk+1
, ∀k ∈ [n− 2] \ {1}

z1q1 + z1q2 = z1v1 , z
1
q1 + z1q3 = z1v2 , z

1
q3 + z1q4 = λ1 − z1v1 .

(11)

In the remainder of this proof, we project out z0, z1, λ0, λ1 from system (9)–(11) and obtain a descrip-
tion of PBP(H) in the original space. From zvn = z0vn + z1vn , z

0
vn = 0, z1vn = λ1, and λ0 + λ1 = 1, it

follows that
λ0 = 1− zvn , λ1 = zvn . (12)

By zs = z0s + z1s for all s ∈ S, z0s = 0, and z1s = z1p(s) for all s ∈ E+
n−1, we get

z1s = z1p(s) = zs, z0p(s) = zp(s) − zs, ∀s ∈ E+
n−1. (13)

Similarly, by z1ℓ(s) = 0 and z0ℓ(s) = z0p(s) for all s ∈ E+
n−1, we get

z0ℓ(s) = z0p(s) = zℓ(s), z1p(s) = zp(s) − zℓ(s), ∀s ∈ E+
n−1. (14)

Using (9) to project out z0v , v ∈ V , z0s , s ∈ S, using (12) to project out λ0, λ1, and using (13) and (14)
to project out z0s , z

1
s , s ∈ En−1 with N(s) ̸= ∅, we deduce that system (9)-(11) simplifies to:

zs+v−n
+ zℓ(s)+v−n

= zp(s) − z1p(s), ∀s ∈ E+
n−2 : s+ v−n , ℓ(s) + v−n ∈ E−

n−1 (15)

zs+v−n
+ zℓ(s) − z1ℓ(s) = zp(s) − z1p(s), ∀s ∈ En−2 : s+ v−n ∈ E−

n−1, N(ℓ(s)) = ∅ (16)

zs − z1s + zℓ(s) − z1ℓ(s) = zp(s) − z1p(s), ∀s ∈ E+
k : k ∈ [n− 3] \ {1}, or

k = n− 2, N(s) = N(ℓ(s)) = ∅ (17)

zs − z1s ≥ 0, ∀s ∈ Ek : k ∈ [n− 3] or k = n− 2, N(s) = ∅ (18)
∑

s∈E+
n−2:

s+v−n ∈E−
n−1

zs+v−n
+

∑

s∈E+
n−2:

N(s)=∅

(zs − z1s ) ≤ zvn−1 − z1vn−1
, (19)

∑

s∈E−
n−2:

s+v−n ∈E−
n−1

zs+v−n
+

∑

s∈E−
n−2:

N(s)=∅

(zs − z1s ) ≤ 1− zvn − zvn−1 + z1vn−1
, (20)

∑

s∈E+
k

(zs − z1s ) ≤ zvk+1
− z1vk+1

, ∀k ∈ [n− 3] \ {1} (21)

∑

s∈E−
k

(zs − z1s ) ≤ 1− zvn − zvk+1
+ z1vk+1

, ∀k ∈ [n− 3] \ {1} (22)
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zq1 − z1q1 + zq2 − z1q2 = zv1 − z1v1 , zq1 − z1q1 + zq3 − z1q3 = zv2 − z1v2 ,

zq3 − z1q3 + zq4 − z1q4 = 1− zvn − zv1 + z1v1 ,
(23)

and

zs+v+n
+ zℓ(s)+v+n

= z1p(s), ∀s ∈ E+
n−2 : s+ v+n , ℓ(s) + v+n ∈ E+

n−1 (24)

zs+v+n
+ z1ℓ(s) = z1p(s), ∀s ∈ En−2 : s+ v+n ∈ E+

n−1, N(ℓ(s)) = ∅ (25)

z1s + z1ℓ(s) = z1p(s), ∀s ∈ E+
k : k ∈ [n− 3] \ {1}, or k = 2, N(s) = N(ℓ(s)) = ∅ (26)

z1s ≥ 0, ∀s ∈ Ek : k ∈ [n− 3], or k = n− 2, N(s) = ∅ (27)
∑

s∈E+
n−2:

s+v+n ∈E+
n−1

zs+v+n
+

∑

s∈E+
n−2:

N(s)=∅

z1s ≤ z1vn−1
(28)

∑

s∈E−
n−2:

s+v+n ∈E+
n−1

zs+v+n
+

∑

s∈E−
n−2:

N(s)=∅

z1s ≤ zvn − z1vn−1
(29)

∑

s∈E+
k

z1s ≤ z1vk+1
, ∀k ∈ [n− 3] \ {1} (30)

∑

s∈E−
k

z1s ≤ zvn − z1vk+1
, ∀k ∈ [n− 3] \ {1} (31)

z1q1 + z1q2 = z1v1 , z
1
q1 + z1q3 = z1v2 , z

1
q3 + z1q4 = zvn − z1v1 , (32)

together with

zs + zℓ(s) = zp(s), ∀s ∈ E+
n−1 (33)

zs ≥ 0, ∀s ∈ En−1. (34)

Note that equalities (33) are present among equalities (4) and inequalities (34) are present among
inequalities (5).

In the remainder of the proof, we project out variables z1v , v ∈ V \ {vn}, z1s , s ∈ S \ {s ∈ En−1 :
N(s) ̸= ∅} in a specific order:

Projecting out z1vk , k ∈ {1, . . . , n− 1}:

• The variable z1v1 appears only in equalities (23) and (32); i.e., the following equations:

z1q1 + z1q2 = z1v1

zq1 − z1q1 + zq2 − z1q2 = zv1 − z1v1

z1q3 + z1q4 = zvn − z1v1

zq3 − z1q3 + zq4 − z1q4 = 1− zvn − zv1 + z1v1

Hence projecting out z1v1 we obtain:

zq1 + zq2 = zv1 (35)

zq3 + zq4 = 1− zv1 (36)

z1q1 + z1q2 + z1q3 + z1q4 = zvn . (37)
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Equalities (35) and (36) are present among equalities (8). Moreover, the above equations imply:

zq1 − z1q1 + zq2 − z1q2 + zq3 − z1q3 + zq4 − z1q4 = 1− zvn (38)

We will use equality (38) to simplify our derivations.

• The variable z1v2 appears only in equalities (23) and (32); i.e., the following equations:

z1q1 + z1q3 = z1v2 ,

zq1 − z1q1 + zq3 − z1q3 = zv2 − z1v2

Hence projecting out this variable we obtain:

zq1 + zq3 = zv2 , (39)

which is present among equalities (8).

• The variable z1vn−1
appears only in inequalities (19), (20), (28) and (29). Projecting out z1vn−1

from (19) and (20) gives:

∑

s∈E−
n−1

zs +
∑

s∈En−2:N(s)=∅
(zs − z1s ) ≤ 1− zvn , (40)

while projecting out z1vn−1
from (28) and (29) gives:

∑

s∈E+
n−1

zs +
∑

s∈En−2:N(s)=∅
z1s ≤ zvn . (41)

As we argue shortly, inequality (40) (resp. (41)) is implied by equaly (38) (resp. (37)) and
inequality (18) (resp. (27)). Projecting out z1vn−1

from (19) and (28) gives:

∑

s∈E+
n−2

zs ≤ zvn−1 , (42)

which coincides with inequalities (6) for k = n−2. Lastly, projecting out z1vn−1
from (20) and (29)

we obtain:

∑

s∈E−
n−2

zs ≤ 1− zvn−1 , (43)

which coincides with inequalities (7) for k = n− 2.

• Variables z1vk+1
, k ∈ {2, · · · , n − 3} are only present in inequalities (21), (22), (30), and (31).

Projecting out z1vk+1
, k ∈ {2, · · · , n− 3} from (21) and (22) gives:

∑

s∈Ek
(zs − z1s ) ≤ 1− zvn , ∀k ∈ [n− 3] \ {1},

which by equalities (17) can be equivalently written as:

∑

s∈E+
k

(zp(s) − z1p(s)) ≤ 1− zvn . ∀k ∈ [n− 3] \ {1}. (44)
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By (15)–(17), for each k ∈ [n− 1] \ {1}, we have
∑

s∈Ek+1
(zs − z1s ) ≤

∑
s∈Ek (zs − z1s ), implying

that inequalities (40) and (44) are implied by the following inequality:

∑

s∈E+
2

(zp(s) − z1p(s)) ≤ 1− zvn ,

which in turn is implied by inequalities (18) and equality (38). Similarly, projecting out z1vk+1
,

k ∈ {2, · · · , n− 3} from (30) and (31) gives:

∑

s∈Ek
z1s ≤ zvn , ∀k ∈ [n− 3] \ {1},

which by equalities (26) can be equivalently written as:

∑

s∈E+
k

z1p(s) ≤ zvn , ∀k ∈ [n− 3] \ {1}. (45)

Since for each k ∈ [n− 1] \ {1}, by (24)–(26), we have
∑

s∈Ek+1
z1s ≤ ∑

s∈Ek z
1
s , inequalities (41)

and (45) are implied by: ∑

s∈E+
2

z1p(s) ≤ zvn ,

which in turn is implied by inequalities (27) and equality (37). Projecting out z1vk+1
, k ∈

{2, · · · , n− 3} from (21) and (30) we obtain:

∑

s∈E+
k

zs ≤ zvk+1
, ∀k ∈ [n− 3] \ {1}, (46)

which are present among inequalities (6). Similarly, projecting out z1vk+1
, k ∈ {2, · · · , n − 3}

from (22) and (31), we obtain

∑

s∈E−
k

zs ≤ 1− zvk+1
, ∀k ∈ [n− 3] \ {1}, (47)

which are present among inequalities (7).

Hence, we have shown that projecting out variables z1vk , k ∈ {1, . . . , n−1} from (19)-(23) and (28)–
(32), we obtain inequalities (6)–(7) when k ̸= n− 1, equalities (8), and equalities (37) (38).

Projecting out z1s , s ∈ En−2 with N(e) = ∅: Consider z1s̄ for some s̄ ∈ E+
n−2 with N(s̄) = ∅. This

variable is only present in (16)–(18) and (25)–(27). Two cases arise:

• If N(ℓ(s̄)) ̸= ∅, then z1s̄ is only present in (16), (18), (25), (27); i.e., the following system:

zs̄ − z1s̄ + zℓ(s̄)+v−n
= zp(s̄) − z1p(s̄)

zs̄ − z1s̄ ≥ 0

z1s̄ + zℓ(s̄)+v+n
= z1p(s̄)

z1s̄ ≥ 0.

Projecting out z1s̄ from the above system yields:

zs̄ + zℓ(s̄) = zp(s̄)
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zs̄ ≥ 0

zℓ(s̄)+v−n
≤ zp(s̄) − z1p(s̄)

zℓ(s̄)+v+n
≤ z1p(s̄)

where to obtain the first equality we made use of equalities (33).

• If N(ℓ(s̄)) = ∅, then z1s̄ and z1ℓ(s̄) are present only in (17)–(18), and (26)–(27); i.e., the following
system:

zs̄ − z1s̄ + zℓ(s̄) − z1ℓ(s̄) = zp(s̄) − z1p(s̄),

zs̄ − z1s̄ ≥ 0

zℓ(s̄) − z1ℓ(s̄) ≥ 0

z1s̄ + z1ℓ(s̄) = z1p(s̄),

z1s̄ ≥ 0

z1ℓ(s̄) ≥ 0.

Projecting out z1s̄ and z1ℓ(s̄) from the above system yields:

zs̄ + zℓ(s̄) = zp(s̄)

zs̄ ≥ 0

zℓ(s̄) ≥ 0

z1p(s̄) ≥ 0

zp(s̄) − z1p(s̄) ≥ 0.

By a recursive application of the two steps detailed above to project out all z1s , s ∈ En−2 with N(s) = ∅
from (16)–(18) and (25)–(27), we obtain:

zs+v+n
≤ z1p(s), ∀s ∈ En−2 : s+ v+n ∈ E+

n−1, N(ℓ(s)) = ∅,
zs+v−n

≤ zp(s) − z1p(s), ∀s ∈ En−2 : s+ v−n ∈ E−
n−1, N(ℓ(s)) = ∅,

z1p(s) ≥ 0, zp(s) − z1p(s) ≥ 0, ∀s ∈ En−2 : N(s) = N(ℓ(s)) = ∅

together with

zs + zℓ(s) = zp(s), ∀s ∈ E+
n−2

zs ≥ 0, ∀s ∈ En−2.
(48)

Hence, to complete the projection, it suffices to project out variables z1s , e ∈ Ek, k ∈ [n− 3] from the
following system:
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zs+v−n
+ zℓ(s)+v−n

= zp(s) − z1p(s), ∀s ∈ E+
n−2 : s+ v−n , ℓ(s) + v−n ∈ E−

n−1

zs+v+n
+ zℓ(s)+v+n

= z1p(s), ∀s ∈ E+
n−2 : s+ v+n , ℓ(s) + v+n ∈ E+

n−1

zs+v−n
≤ zp(s) − z1p(s), ∀s ∈ En−2 : s+ v−n ∈ E−

n−1, N(ℓ(s)) = ∅
zs+v+n

≤ z1p(s), ∀s ∈ En−2 : s+ v+n ∈ E+
n−1, N(ℓ(s)) = ∅

zs − z1s + zℓ(s) − z1ℓ(s) = zp(s) − z1p(s), ∀s ∈ E+
k , k ∈ [n− 3] \ {1}

z1s + z1ℓ(s) = z1p(s), ∀s ∈ E+
k , k ∈ [n− 3] \ {1}

zs − z1s ≥ 0, ∀s ∈ Ek : k ∈ [n− 3]

z1s ≥ 0, ∀s ∈ Ek : k ∈ [n− 3]

zq1 − z1q1 + zq2 − z1q2 + zq3 − z1q3 + zq4 − z1q4 = 1− zvn

z1q1 + z1q2 + z1q3 + z1q4 = zvn .

(49)

For each s ∈ E+
n−3 define

N+
2 (p(s)) := {s′ ∈ E+

n−1 : p(p(s
′)) = s}

and
N−

2 (p(s)) := {s′ ∈ E−
n−1 : p(p(s

′)) = s}.
Note that 0 ≤ |N+

2 (p(s))| ≤ 4 and 0 ≤ |N−
2 (p(s))| ≤ 4 for all s ∈ E+

n−3. Projecting out z1s , s ∈ En−3

from system (49) yields:

zs ≥ 0, ∀s ∈ En−3

zs + zℓ(s) = zp(s), ∀s ∈ E+
n−3,

together with

∑

s′∈N−
2 (p(s))

zs′ = zp(s) − z1p(s), ∀s ∈ E+
n−3 : |N−

2 (p(s))| = 4

∑

s′∈N+
2 (p(s))

zs′ = z1p(s), ∀s ∈ E+
n−3 : |N+

2 (p(s))| = 4

∑

s′∈N−
2 (p(s))

zs′ ≤ zp(s) − z1p(s), ∀s ∈ E+
n−3 : |N−

2 (s)| < 4

∑

s′∈N+
2 (p(e))

zs′ ≤ z1p(s), ∀s ∈ E+
n−3 : |N+

2 (s)| < 4

zs − z1s + zℓ(s) − z1ℓ(s) = zp(s) − z1p(s), ∀s ∈ E+
k , k ∈ [n− 4] \ {1}

z1s + z1ℓ(s) = z1p(s), ∀s ∈ E+
k , k ∈ [n− 4] \ {1}

zs − z1s ≥ 0, ∀k ∈ [n− 4]

z1s ≥ 0, ∀k ∈ [n− 4]

z1q1 + z1q2 + z1q3 + z1q4 = zvn

zq1 − z1q1 + zq2 − z1q2 + zq3 − z1q3 + zq4 − z1q4 = 1− zvn
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By a recursive application of the above argument n − 5 times to project out variables z1s , s ∈ Ek,
k ∈ [n− 4] \ {1} from the above system we obtain:

∑

s∈E−
n−1:s⊃qi

zs ≤ zqi − z1qi , ∀i ∈ {1, · · · , 4}

∑

s∈E+
n−1:s⊃qi

zs ≤ z1qi , ∀i ∈ {1, · · · , 4}

zqi − z1qi ≥ 0, ∀i ∈ {1, · · · , 4}
z1qi ≥ 0, i ∈ {1, · · · , 4}
z1q1 + z1q2 + z1q3 + z1q4 = zvn

zq1 − z1q1 + zq2 − z1q2 + zq3 − z1q3 + zq4 − z1q4 = 1− zvn ,

(50)

together with

zs ≥ 0, ∀s ∈ Ek, k ∈ [n− 3] \ {1}
zs + zℓ(s) = zp(s), ∀e ∈ E+

k , k ∈ [n− 3] \ {1}. (51)

Hence it remains to project out z1qi , i ∈ {1, · · · , 4} from system (50). Since ∪i∈{1,···4}{s ∈ E−
n−1 : s ⊃ qi} =

E−
n−1 and ∪i∈{1,···4}{s ∈ E+

n−1 : s ⊃ qi} = E+
n−1, it follows that the projection of system (50) onto the

space of z is given by:

∑

s∈E+
n−1

zs ≤ zvn

∑

s∈E−
n−1

zs ≤ 1− zvn

zqi ≥ 0, ∀i ∈ {1, · · · , 4}
zq1 + zq2 + zq3 + zq4 = 1,

(52)

where the last equality is implied by equalities (8). From (33)–(36), (39), (42), (43),(46)-(48), (51),
and (52), it follows that the pseudo-Boolean polytope PBP(H) is defined by system (4)–(8) and this
completes the proof.

Remark 2. In Proposition 1, the assumption on the structure of E1 is not restrictive. Recall that by
property (N2) of a nested signed hypergraph we must either have |E1| = 2 or |E1| = 4. Moreover, if
|E1| = 2, then we must either have E1 = {q1, q3} or E1 = {q2, q4}. Without loss of generality, suppose
that E1 = {q1, q3}. Then to obtain a description of PBP(H) in the original space, it suffices to project
out zq2 , zq4 from system (4)–(8). To do so, notice that zq2 , zq4 appear only in the following constraints
of system (4)–(8):

zq2 ≥ 0, zq4 ≥ 0

zq1 + zq2 = zv1 , zq3 + zq4 = 1− zv1 .

Projecting out zq2 , zq4, we obtain:
zq1 ≤ zv1 , zq3 ≤ 1− zv1 ,

which together with the remaining equalities and inequalities of system (4)–(8) gives a description of
PBP(H) in the original space.
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It is important to note that in spite of its simple structure, the constraint matrix of the pseudo-
Boolean polytope of a nested signed hypergraph is not totally unimodular. The following example
demonstrates this fact. In this example, for ease of notation, we write a signed edge in a compact
form by listing its nodes with their signs as superscripts. For example, the signed edge s = (e, ηs),
where e = {v1, v2, v3} and ηs(v1) = +1, ηs(v2) = −1, ηs(v3) = +1, will be written compactly as
s = {v+1 , v−2 , v+3 }.

Example 1. Consider the nested signed hypergraph H = (V, S), with V = {v1, v2, v3, v4}, E1 =
{s1, s2, s3, s4}, s1 = {v+1 , v+2 }, s2 = {v−1 , v+2 }, s3 = {v+1 , v−2 }, s4 = {v−1 , v−2 }, E2 = {s5, s6, s7, s8},
s5 = {v+1 , v+2 , v+3 }, s6 = {v+1 , v+2 , v−3 } s7 = {v−1 , v+2 , v−3 }, s8 = {v−1 , v+2 , v+3 }, E3 = {s9, s10, s11, s12},
s9 = {v+1 , v+2 , v−3 , v+4 }, s10 = {v+1 , v+2 , v−3 , v−4 }, s11 = {v−1 , v+2 , v+3 , v+4 }, s12 = {v−1 , v+2 , v+3 , v−4 }. Then
by Proposition 1, the following are present in the description of PBP(H):

zs5 + zs6 = zs1

zs9 + zs10 = zs6

zs11 + zs12 = zs8

zs5 + zs8 ≤ zv3

zs9 + zs11 ≤ zv4

Consider the submatrix of the above equalities and inequalities corresponding to zs5 , zs6 , zs8 , zs9 , zs11.
It can be checked that the determinant of this submatrix equals 2, implying the constraint matrix of
PBP(H) is not totally unimodular. In addition, each row and each column of this submatrix has two
non-zero entries, implying it is not a balanced matrix either [10].

3.2 The pseudo-Boolean polytope of pointed signed hypergraphs

Thanks to the compact description for the pseudo-Boolean polytope of nested signed hypergraphs
given by Proposition 1, we now provide a polynomial-size extended formulation for the pseudo-Boolean
polytope of pointed signed hypergraphs. Recall that in a signed hypergraph H = (V, S) pointed at v̄
for some v̄ ∈ V , we have S = Sv̄ ∪ Pv̄; the set Sv̄ consists of all signed edges containing v̄, and the set
Pv̄ consists of all signed edges not containing v̄ and has the form Pv̄ = {s− v̄ : s ∈ Sv̄, |s| ≥ 3}.

Remark 3. Consider a pointed signed hypergraph H = (V, S). There are two special cases for which
a polynomial-size description of PBP(H) follows from previously known results:

(i) Suppose that for each v ∈ V we have ηs(v) = ηs′(v) for all signed edges s, s′ in H containing v.
Then (possibly after a one-to-one linear transformation) the explicit description of PBP(H) in
the original space consisting of at most 5|V |+ 2 inequalities is given in Theorem 5 of [19].

(ii) Suppose that all signed edges in Sv̄ are parallel. It then follows that for any s, s′ ∈ S we either have
s ⊆ s′ or s′ ⊆ s. Then by Part 2 of Remark 1 and the definition of Pv̄, Sv̄, the pseudo-Boolean
polytope PBP(H) has a polynomial-size extended formulation with at most |S|(|V | − 1) + |V |
variables and at most 2(|S|(|V | − 1) + |V |) inequalities.

The following theorem gives a polynomial-size extended formulation for the pseudo-Boolean poly-
tope of general pointed signed hypergraphs.

Theorem 2. Let H = (V, S) be a pointed signed hypergraph. Then the pseudo-Boolean polytope
PBP(H) has a polynomial-size extended formulation with at most 2|V |(|S|+ 1) variables and at most
4(|S|(|V |−2)+ |V |) inequalities. Moreover, all coefficients and right-hand side constants in the system
defining PBP(H) are 0,±1.
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Proof. Suppose that H = (V, S) is pointed at v̄ for some v̄ ∈ V , implying that S = Sv̄ ∪Pv̄. Define the
signed hypergraph L = (V \ {v̄}, Pv̄). By definition of Pv̄, for any two edges s, s′ ∈ Pv̄ we either have
s ⊆ s′ or s′ ⊆ s. Hence after the addition of at most 2|Pv̄|(|V | − 3) + |Pv̄| edges to L we can construct
a nested signed hypergraph denoted by L′. Denote by P ′

v̄ the set of signed edges of L′. Note that
|P ′

v̄| = 2|Pv̄|(|V | − 2) ≤ |S|(|V | − 2). Define H ′ := (V, Sv̄ ∪ P ′
v̄). Since a description of PBP(H ′) serves

as an extended formulation for PBP(H), to complete the proof, it suffices to show that PBP(H ′) has a
polynomial-size extended formulation. Denote by H0 (resp. H1) the signed hypergraph corresponding
to the face of PBP(H ′) with zv̄ = 0 (resp. zv̄ = 1). We then have:

PBP(H ′) = conv
(
PBP(H0) ∪ PBP(H1)

)
.

Denote by z̄ the vector consisting of zv, v ∈ V \ {v̄} and zs, s ∈ P ′
v̄. It then follows that:

PBP(H0) =
{
z ∈ RV ∪Sv̄∪P ′

v̄ : zv̄ = 0, zs = 0, ∀s ∈ Sv̄ with ηs(v̄) = +1, zs = zp(s),∀s ∈ Sv̄ with

ηs(v̄) = −1, z̄ ∈ PBP(L′
v̄)
}

PBP(H1) =
{
z ∈ RV ∪Sv̄∪P ′

v̄ : zv̄ = 1, zs = zp(s),∀s ∈ Sv̄ with ηs(v̄) = +1, zs = 0,∀s ∈ Sv̄ with

ηs(v̄) = −1, z̄ ∈ PBP(L′
v̄)
}
.

By Propositon 1, the polytope PBP(L′
v̄) is given by system (4)-(8) and this description has at most

2(|S|(|V | − 2) + |V |) inequalities. For notational simplicity, let us write PBP(L′
v̄) compactly as

PBP(L′
v̄) = {z̄ : Az̄ ≤ b, Cz̄ = d}.

Then, using Balas’ formulation for union of polytopes [1], we obtain a polynomial-size extended for-
mulation for PBP(H ′):

PBP(H ′) =
{
z ∈ RV ∪Sv̄∪P ′

v̄ : ∃(z0, z1, z, λ) s.t. z = z0 + z1, λ0 + λ1 = 1, z0v̄ = 0,

z0s = 0, ∀s ∈ Sv̄ with ηs(v̄) = +1, z0s = z0p(s), ∀s ∈ Sv̄ with ηs(v̄) = −1,

z1v̄ = λ1, z
1
s = z1p(s), ∀s ∈ Sv̄ with ηs(v̄) = +1, z1s = 0, ∀s ∈ Sv̄ with ηs(v̄) = −1,

Az0 ≤ bλ0, Cz0 = dλ0, Az
1 ≤ bλ1, Cz1 = dλ1, λ0, λ1 ≥ 0

}
.

The size of the above extended formulation can further reduced by projecting out variables λ0, λ1, z
0

using the equalities zv̄ = λ1, λ0 + λ1 = 1, and z = z0 + z1. Hence, we obtain an extended formulation
for PBP(H ′) with at most

2(|V |+ |Sv̄|+ |P ′
v̄|) = 2(|V |+ |Sv̄|+ 2|Pv̄|(|V | − 2)) = 2(|V |+ |S|+ |Pv̄|(2|V | − 5))

≤ 2(|V |+ |S|(|V | − 3

2
)) ≤ 2|V |(|S|+ 1), (53)

variables and at most
2(2(|S|(|V | − 2) + |V |)) ≤ 4(|S|(|V | − 2) + |V |), (54)

inequalities. The second equality in (53) follows from |S| = |Sv̄| + |Pv̄| and the inequality in (53)

follows from |Pv̄| ≤ |S|
2 .

By Proposition 1, all coefficients and right-hand side constants in the system defining PBP(L′
v̄) are

0,±1. This together with the fact that λ0 = 1− zv̄ and λ1 = zv̄ implies that the same statement holds
for the extended formulation of PBP(H ′) and as a result for the extended formulation of PBP(H) as
well.
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4 Inflation of signed edges

Our decomposition result stated in Theorem 1 relies on the key assumption that the underlying hy-
pergraph of H has at least one β-leaf. We argue that in many cases of interest, this restrictive
assumption can be removed. To this end, in the following, we introduce an operation on signed hy-
pergraphs, which we refer to as the inflation of signed edges. Starting from a signed hypergraph H
whose underlying hypergraph does not contain any β-leaves, by inflating certain edges, we obtain a
new signed hypergraph H ′ whose underlying hypergraph has a sequence of β-leaves. By relating the
extended formulations of PBP(H) and PBP(H ′), we are able to obtain polynomial-size extended for-
mulations for the pseudo-Boolean polytope of various classes of signed hypergraphs whose underlying
hypergraphs contain β-cycles.

Let H = (V, S) be a signed hypergraph, let s ∈ S, and let e ⊆ V such that s ⊂ e. Denote by
I(s, e) the set of all possible signed edges s′ parallel to e such that ηs(v) = ηs′(v) for every v ∈ s. We
say that H ′ = (V, S′) is obtained from H by inflating s to e, if S′ = S ∪ I(s, e) \ {s}. We also say
that H ′ is obtained from H via an inflation operation. The next theorem indicates that if an extended
formulation for PBP(H ′) is available, one can obtain an extended formulation for PBP(H) as well.

Theorem 3. Let H = (V, S) be a signed hypergraph, let s ∈ S, and let e ⊆ V such that s ⊂ e. Let
H ′ = (V, S′) be obtained from H by inflating s to e. Then an extended formulation of PBP(H) can be
obtained by juxtaposing an extended formulation of PBP(H ′) and the equality constraint

zs =
∑

s′∈I(s,e)
zs′ . (55)

Moreover, if PBP(H ′) has a polynomial-size extended formulation and |e|− |s| = O(log poly(|V |, |S|)),
then PBP(H) has a polynomial-size extended formulation as well.

Proof. Given a signed hypergraph H and a set C, we denote by projH(C) the orthogonal projection of
the set C onto the subspace of variables corresponding to nodes and signed edges of H. Let A(z, y) ≤ b
be an extended formulation of PBP(H ′). Let H ′′ = (V, S′′), where S′′ := S ∪ I(s, e) = S′ ∪ {s}. It
suffices to prove that A(z, y) ≤ b together with (55) is an extended formulation of PBP(H ′′). That is,
we need to show that

Q := projH′′{(z, y) : A(z, y) ≤ b, (55)} = PBP(H ′′).

Since S ⊆ S′′, it follows that an extended formulation of PBP(H ′′) is also an extended formulation of
PBP(H). For every binary z, we have z ∈ PBP(H ′′) if and only if

zs =
∏

v∈s
ηs(zv) =

∏

v∈s
ηs(zv)

∏

v∈e\s
(zv + (1− zv)) =

∑

s′∈I(s,e)
zs′ . (56)

Thus, it suffices to show that the vertices of Q are binary. We have

Q = projH′′{(z, y) : A(z, y) ≤ b} ∩ {z : (55)}
= projH′{(z, y) : A(z, y) ≤ b} ∩ {z : (55)}
= PBP(H ′) ∩ {z : (55)},

(57)

where the first equality holds since all variables that appear with nonzero coefficients in (55) correspond
to signed edges in H ′′, the second equality holds because {s} = S′′ \S′ and so the variable zs does not
appear in the system A(z, y) ≤ b, and the third equality holds since A(z, y) ≤ b is an the extended
formulation of PBP(H ′).
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Let z̄ be a vertex of Q. The variable z̄s is only present in (55), thus we have z̄s =
∑

s′∈I(s,e) z̄s′ .
The other constraints of the system defining Q that are active at z̄ are all from the projection of the
system A(z, y) ≤ b, thus they determine a vertex of PBP(H ′), which is binary. This implies that all
components of z̄, except for z̄s, are binary. It then follows from (56) that z̄s is binary as well.

Finally, since |I(s, e)| ≤ 2|e|−|s|, we conclude that, PBP(H) has a polynomial-size extended formu-
lation, if PBP(H ′) has a polynomial-size extended formulation and |e|−|s| = O(log poly(|V |, |S|)).

The inflation operation is of independent interest as it enables us to obtain polynomial-size extended
formulations for the pseudo-Boolean polytope of certain signed hypergraphs. The following proposition
is an illustration of this fact:

Proposition 2. Consider a signed hypergraph H = (V, S). Suppose that each s ∈ S contains at least
|V |−k nodes. Then PBP(H) has an extended formulation with O(2k|V ||S|) variables and inequalities.
In particular, if k = O(log poly(|V |, |S|)), then PBP(H) has a polynomial-size extended formulation.
Moreover, all coefficients and right-hand side constants in the system defining PBP(H) are 0,±1.

Proof. Consider the signed hypergraph H ′ = (V, S′) obtained from H by inflating every s ∈ S with
|s| < |V | to V . We then have |S′| ≤ 2k|S|. By Part 2 of Remark 1, the polytope PBP(H ′) has
a polynomial-size extended formulation with at most 2k+1|S|(|V | − 1) + |V | variables and at most
2k+2|S|(|V |−1)+2|V | inequalities. Therefore, from Lemma 3 we deduce that an extended formulation
for PBP(H) is obtained by adding at most |S| equality constraints (containing |S| additional variables)
to the extended formulation of PBP(H ′). Since all coefficients and right-hand side constants in the
system defining PBP(H ′) as well as in equalities (55) are 0,±1, the statement holds for the system
defining PBP(H).

5 The recursive inflate-and-decompose framework

In order to construct extended formulations for the pseudo-Boolean polytope, by combining our de-
composition scheme of Theorem 1, our convex hull characterization of Theorem 2, and the inflation
operation of Theorem 3, we introduce a new framework, which we refer to as the recursive inflate-and-
decompose framework. We show that this framework enables us to obtain polynomial-size extended
formulations for the pseudo-Boolean polytope of large families of signed hypergraphs.

As we detail in this section, our new framework unifies and extends all existing results on polynomial-
size extended formulations for the convex hull of the feasible region of Problem (L-BMO) [4,16,18,19,
31,33]. In the following, we present our recursive inflate-and-decompose framework.

The Recursive inflate-and-decompose (RID) framework

Input. A signed hypergraph H = (V, S).
Output. An extended formulation for PBP(H).
Step 0. Set H(0) := H, i := 0.
Step 1. If we can obtain H̄(i) from H(i) via a number of inflation operations, such that a suitable
extended formulation for PBP(H̄(i)) is available, then by Theorem 3 we are done. Otherwise, proceed
to Step 2.
Step 2. Choose a node v̄ of H(i). If v̄ is a β-leaf of the underlying hypergraph of H(i), then set
H̄(i) := H(i) and proceed to Step 3. Otherwise, construct H̄(i) from H(i) via inflation operations, such
that v is a β-leaf of the underlying hypergraph of H̄(i). By Theorem 3, it suffices to find an extended
formulation for PBP(H̄(i)).

Step 3. Using Theorem 1, decompose PBP(H̄(i)) into PBP(H̄
(i)
1 ) and PBP(H̄

(i)
2 ), where H̄

(i)
1 denotes

the signed hypergraph containing node v̄. Since an extended formulation for PBP(H̄
(i)
1 ) is given by
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Theorem 2, it suffices to find an extended formulation for PBP(H̄
(i)
2 ). Set H(i+1) := H̄

(i)
2 , increment

i by one, and go to Step 1.

Clearly, Steps 1 and 2 of the RID framework can be performed in many different ways. That is, we
have not specified how node v̄ in Step 2 should be selected or how the inflation operations of Step 1
and Step 2 should be performed. A simple way to obtain a β-leaf in Step 2 is to inflate each signed
edge containing v̄ to the union of all signed edges containing v̄. While the RID framework is fairly
general, we are naturally interested in specifying conditions under which this framework results in a
polynomial-size extended formulation for the pseudo-Boolean polytope. To this end, first note that at
each iteration, one node of the signed hypergraph H(i) is removed. Hence, the number of iterations of
the RID framework is upper bounded by the number of nodes of H. It then follows that RID provides
a polynomial-size extended formulation for PBP(H), if following conditions are satisfied:

(I) In Step 1, the algorithm should terminate, only if a polynomial-size extended formulation for
PBP(H̄(i)) is available.

(II) The total number of new edges introduced as a result of inflation operations in Steps 1 and 2
should be upper bounded by a polynomial in |V |, |S|.

In the remainder of this section, we consider various types of signed hypergraphs for which one can
customize the RID framework so that conditions (I)–(II) above are satisfied and hence polynomial-size
extended formulations for the corresponding pseudo-Boolean polytope can be constructed.

Our results are stated in terms of easily verifiable conditions on the structure of the underlying
hypergraphs, namely, β-acyclic hypergraphs, α-acyclic hypergraphs with log-poly rank, and certain
classes of hypergraphs with log-poly “gaps.”

5.1 β-acyclic hypergraphs

Consider a signed hypergraph H = (V, S). In this section, we show that if the underlying hypergraph
of H has a sequence of β-leaves, then PBP(H) can be described in terms of pseudo-Boolean polytopes
of simpler signed hypergraphs. In particular, if the underlying hypergraph of H is β-acyclic, then
PBP(H) has an extended formulation of size polynomial in |V |, |S|. These theorems serve as significant
generalizations of the main results in [19].

Theorem 4. Let H = (V, S) be a signed hypergraph of rank r, and let v1, · · · , vt for some t ≥ 1 be a
sequence of β-leaves of the underlying hypergraph of H. Then an extended formulation for PBP(H)
is given by a description of PBP(H − v1 − · · · − vt) together with a system of at most 4rt(2|S| + 1)
inequalities consisting of at most 2rt(2|S|+1) variables. Moreover, all coefficients and right-hand side
constants in the latter are 0,±1.

Proof. Denote by Sv1 the set of all signed edges ofH containing v1. Since v1 is a β-leaf of the underlying
hypergraph of H, the set Sv1 is totally ordered. Define the signed hypergraph H ′

1 := (V, S′
1) with

S′
1 = S ∪ Pv1 , where Pv1 := {s− v1 : s ∈ Sv1 , |s| ≥ 3}. Clearly, an extended formulation for PBP(H ′

1)
serves as an extended formulation for PBP(H ′

1) as well. Now define the pointed signed hypergraph
Hv1 := (V1, Sv1 ∪Pv1), where V1 denotes the underlying edge of a signed edge of maximum cardinality
in Sv1 . We then have H ′

1 = Hv1 ∪ (H − v1), where we used the fact that H ′
1 − v1 = H − v1. Hence by

Theorem 1, the pseudo-Boolean polytope PBP(H ′
1) is decomposable into pseudo-Boolean polytopes

PBP(Hv1) and PBP(H − v1).
Next consider the signed hypergraph H − v1. By definition v2 is a β-leaf of the underlying hyper-

graph ofH−v1. Denote by Sv2 the set of signed edgesH−v1 containing v2. Define S′
2 := (S\Sv1)∪Pv2 ,

where Pv2 := {s− v2 : s ∈ Sv2 , |s| ≥ 3}, and define the signed hypergraph H ′
2 := (V \ {v1}, S′

2). Again,
an extended formulation for PBP(H ′

2) serves as an extended formulation for PBP(H − v1) as well.
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Define the pointed signed hypergraph Hv2 := (V2, Sv2 ∪ Pv2), where V2 denotes the underlying edge
of a signed edge of maximum cardinality in Sv2 . Then by Theorem 1, PBP(H ′

2) is decomposable into
PBP(Hv2) and PBP(H − v1 − v2).

By a recursive application of the above argument after t times, we conclude that an extended
formulation for PBP(H) is given by a description of PBP(H − v1 − · · · − vt) together with a system
of inequalities defining PBP(Hvi) for all i ∈ {1, · · · , t}, where Hvi is a signed hypergraph pointed at
vi defined as Hvi := (Vi, Svi ∪Pvi), where Svi denotes the set of signed edge of H − v1 − · · · − vi−1 (we
define H − v1 − v0 = H) containing vi, Pvi := {s− vi : s ∈ Svi , |s| ≥ 3}, and Vi denotes the underlying
edge of a signed edge of maximal cardinality in Svi .

By Theorem 2 the polytopes PBP(Hvi), i ∈ {1, · · · , t} have polynomial-size extended formulations
each of which consists of at most 2|Vi|(|Svi |+ |Pvi |+ 1) ≤ 2r(2|S|+ 1) variables and at most 4(|Svi |+
|Pvi |)(|Vi| − 2)+ 4|Vi| ≤ 8(r− 2)|S|+4r ≤ 4r(2|S|+1) inequalities, where the inequalities follow from
|Vi| ≤ r and |Pvi | ≤ |Svi | ≤ |S|.

The proof of Theorem 4 follows from the RID framework. To see this, first note that the node v̄
chosen in Step 2 of the ith iteration of the RID framework is the β-leaf vi for all i ∈ [t]. Moreover, at
iteration t + 1, the algorithm terminates at Step 1 with a description of PBP(H − v1 − · · · − vt). In
this case, no inflation operation at any step of RID is needed.

Theorem 5. Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph is β-
acyclic. Then the pseudo-Boolean polytope PBP(H) has a polynomial-size extended formulation with
at most 2r(2|S|+ 1)|V | variables, and at most 4r(2|S|+ 1)|V | inequalities. Moreover, all coefficients
and right-hand side constants in the system defining PBP(H) are 0,±1.

Proof. Since the underlying hypergraph of H is β-acyclic, it has a sequence of β-leaves of length |V |.
The proof then follows directly from Theorem 4.

Remark 4. Let G = (V,E) be a β-acyclic hypergraph of rank r. Theorem 1 in [19] gives an extended
formulation for the multilinear polytope of G with at most (r − 1)|V | variables and at most (3r −
4)|V |+4|E| inequalities. Theorem 5 is a significant generalization of this result as it only requires the
β-acyclicity of the underlying hypergraph of H. Indeed the multilinear hypergraph mh(H) may contain
many β-cycles. Nonetheless, this generalization has a cost: while the size of the extended formulation
for MP(G) is quadratic in |V |, |E|, the size of the extended formulation for PBP(H) is cubic in |V |, |S|.

5.2 α-acyclic hypergraphs with log-poly ranks

As we mentioned before, α-acyclic hypergraphs are the most general type of acyclic hypergraphs.
In [14], the authors prove that Problem BMO is strongly NP-hard over α-acyclic hypergraphs. This
result implies that, unless P = NP, one cannot construct, in polynomial time, a polynomial-size
extended formulation for the multilinear polytope of α-acyclic hypergraphs. In [4,31,33], the authors
give extended formulations for the convex hull of the feasible set of (possibly constrained) binary
multilinear optimization problems. For the unconstrained case, their result can be equivalently stated
as follows (see Theorem 5 in [18]): If G = (V,E) is an α-acylic hypergraph of rank r such that
r = O(log poly(|V |, |E|)), then MP(G) has a polynomial-size extended formulation. In the following
we show that this result follows from Theorems 1–3; that is, it is a special case of the RID framework.

Theorem 6. Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph is α-acyclic.
Then PBP(H) has an extended formulation with at most (233

r + 2(r − 1)(2r + 1))|V | variables and
inequalities. In particular, if k = O(log poly(|V |, |S|)), then PBP(H) has a polynomial-size extended
formulation. Moreover, all coefficients and right-hand side constants in the system defining PBP(H)
are 0,±1.
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Proof. By definition of α-acyclic, the underlying hypergraph of H has a sequence of α-leaves of length
n := |V |. Let us denote this sequence by v1, v2, . . . , vn. Since v1 is an α-leaf of the underlying
hypergraph of H, there exists a maximal (for inclusion) signed edge s̄ of H containing v1. Let H

′ be
obtained from H by first inflating each signed edge s′ containing v1 such that s′ ⊂ s̄ to s̄, and then
by adding all signed edges s − v1 for all signed edges containing v1. Denote by Nv1 the number of
signed edges s ∈ S \ {s̄} containing v1 such that s ⊂ s̄. By Theorem 3, it suffices to find an extended
formulation of PBP(H ′). An extended formulation for PBP(H) is then obtained by juxtaposing the
extended formulation for PBP(H ′) and Nv1 equalities containing at most Nv1 additional variables.
Since H is a rank-r signed hypergraph we have:

Nv1 ≤ Nmax = 2
( r−2∑

k=1

(
r − 1

k

)
2r−1−k

)
= 2(3r−1 − 2r−1 − 1).

Moreover, by construction, v1 is a β-leaf of of the underlying hypergraph of H ′, implying we can apply
the decomposition result of Theorem 1. Namely, let V1 be the underlying edge of s̄, let Sv1 be the
set of signed edges of H ′ parallel to s̄, and let Pv1 := {s − v1 : |s − v1| ≥ 2}. Define the signed
hypergraphs Hv1 := (V1, Sv1 ∪Pv1) and H ′

1 = H ′−v1. Then, by Theorem 1, PBP(H ′) is decomposable
into PBP(Hv1) and PBP(H ′

1). An extended formulation for the pseudo-Boolean polytope of Hv1 can
then be obtained from Part 2 of Remark 1.

Next, we show that we can apply the above construction recursively to H ′ − v1 with sequence of
α-leaves v2, . . . , vn. Note that the underlying hypergraph of H ′ − v1 is obtained from the underlying
hypergraph of H−v1 by possibly removing some edges contained in s̄−v1. First, note that the rank of
H ′ − v1 is at most r, as removing nodes and edges from a hypergraph cannot increase its rank. Next,
we show that v2, . . . , vn is a sequence of α-leaves of the underlying hypergraph of H ′ − v1. For k ∈
{1, . . . , n}, we show that vk is an α-leaf of the underlying hypergraph of H ′

k := H ′−v1−v2−· · ·−vk−1.
Since vk is an α-leaf of the underlying hypergraph of Hk := H − v1 − v2 − · · · − vk−1, let ŝ be a signed
edge of Hk containing vk that is maximal for inclusion. Let s̃ be a signed edge of H such that
ŝ = s̃− v1 − v2 − · · · − vk−1. If s̃ is also a signed edge of H ′ we are done. Otherwise, by definition of
H ′, we have s̃ ⊆ s̄. But then s̄′ := s̄− v1 − v2 − · · · − vk−1 is a signed edge of H ′

k and we have ŝ ⊆ s̄′.
Therefore, s̄′ is a signed edge of H ′

k containing vk that is maximal for inclusion. Hence, we can apply
the above construction recursively. The proof follows by induction on n.

Define the signed hypergraph Hvk = (Vk, Svk ∪ Pvk), k ∈ {1, · · · , n}, where Svk is a set of parallel
signed edges containing vk, and Pvk := {s − vk : |s − vk| ≥ 2}. Moreover, Vk is the underlying edge
of a signed edge in Svk . By the above argument an extended formulation for PBP(H) is obtained by
juxtaposing extended formulations of PBP(Hvk) for all k ∈ {1, · · · , n} and at most Nmax|V | equalities
containing at most Nmax|V | additional variables.

Finally, consider the pointed signed hypergraphHvk for some k ∈ {1, · · · , n}. Since the rank ofH is
r, we have |Svk | ≤ 2r. Moreover, since by construction all signed edges in Svk are parallel, by Part (ii)
of Remark 3 we conclude that PBP(Hvk) has an extended formulation with at most (r − 1)2r + r
variables and at most 2((r − 1)2r + r) inequalities. Therefore, the pseudo-Boolean polytope PBP(H)
has an extended formulation with at most

((r − 1)2r + r)|V |+ 2(3r−1 − 2r−1 − 1)|V | = (
2

3
3r + (r − 2)(2r + 1))|V |,

variables, and at most

(2(r − 1)2r + 2r)|V |+ 2(3r−1 − 2r−1 − 1)|V | ≤ (
2

3
3r + 2(r − 1)(2r + 1))|V |

inequalities.
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The proof of Theorem 6 follows from the RID framework. To see this, first note that the node
v̄ chosen in Step 2 of the ith iteration of the RID framework is the α-leaf vi for all i ∈ [n]. Since
by definition of α-leaves each vi is contained in a maximal edge s̄, the inflation operation of Step 2
is defined as follows: inflate all edges containing vi to s̄. Since H is a rank-r hypergraph, from the
proof Theorem 6 it follows that the total number of edges added due to inflation operations are upper
bounded by 2r|V |, which is a polynomial in |V |, |S|, if we have r = O(log poly(|V |, |S|)).

5.3 Hypergraphs with log-poly gaps

Consider a hypergraph G = (V,E); we define the gap of G as

gap(G) := max
{
| ∪f∈E f | − |e| : e ∈ E

}
.

For a subset F ⊆ E, the gap of F , denoted by gap(F ), is defined as the gap of the hypergraph (V, F ).
For a signed hypergraph H = (V, S), the gap of H, denoted by gap(H), is defined as the gap of the
underlying hypergraph of H. Furthermore, for S′ ⊆ S, the gap of S′, denoted by gap(S′) is defined
as the gap of the signed hypergraph (V, S′). It then follows that the gap of a rank-r hypergraph is
upper bounded by r− 2. However, the gap of a hypergraph can be significantly smaller than its rank,
in general. Consider the signed hypergraph H defined in the statement of Proposition 2. It can be
checked that while the rank of H is at least |V | − k, the gap of H is upper bounded by k.

In this section, we provide polynomial-size extended formulations for the pseudo-Boolean polytope
of certain classes of signed hypergraphs with log-poly gaps, where again by log-poly gap we imply
that the gap is upper bounded by log(poly(|V |, |S|)). These results follow from Step 1 of the RID
framework: given a signed hypergraph H = (V, S), via a number of inflation operations, we obtain
the hypergraph H ′ = (V, S′) such that

(i) the underlying hypergraph of H ′ is β-acyclic, hence, by Theorem 5, the polytope PBP(H ′) has
a polynomial-size extended formulation in |V |, |S′|,

(ii) |S′| ≤ |S|+ poly(|V |, |S|), where this inequality is satisfied because of the log-poly gaps.

Let H = (V, S) be a signed hypergraph. We say that s ∈ S is a maximal signed edge, if there is no
s′ ∈ S with s′ ⊃ s. Denote by S̄ the set of maximal signed edges of H. The next proposition implies
that for a signed hypergraph H with log-poly gaps, if the underlying hypergraph of (V, S̄) is β-acyclic,
then PBP(H) has a polynomial-size extended formulation.

Proposition 3. Consider a signed hypergraph H = (V, S) of rank r. For each s ∈ S, among all
maximal signed edges of H containing s, denote by fs one with minimum cardinality. Let k be such
that

gap({s, fs}) ≤ k, ∀s ∈ S. (58)

Denote by S̄ the set of maximal signed edges of H. If the underlying hypergraph of (V, S̄) is β-acyclic,
then PBP(H) has an extended formulation with O(r2k|V ||S|) variables and inequalities. In particular,
if k = O(log poly(|V |, |S|)), then PBP(H) has a polynomial-size extended formulation. Moreover, all
coefficients and right-hand side constants in the system defining PBP(H) are 0,±1.

Proof. Denote by H ′ = (V, S′) the signed hypergraph obtained from H by inflating every non-
maximal signed edge s ∈ S to fs, where fs is defined in the statement. From (58) it follows that
|S′| ≤ 2k(|S| − |S̄|) + |S̄| ≤ 2k|S|. Notice that the underlying hypergraph of H ′ coincides with the
underlying hypergraph of (V, S̄), which by assumption is β-acyclic. Hence by Theorem 5, PBP(H ′)
has an extended formulation with at most 2r|V |(2k+1|S|+1) variables, and at most 4r|V |(2k+1|S|+1)
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inequalities. Therefore, from Lemma 3 we deduce that an extended formulation for PBP(H) is ob-
tained by adding at most |S| − |S̄| equalities consisting of at most |S| − |S̄| additional variables to
PBP(H ′), and this completes the proof.

Let G = (V,E) be a hypergraph and let C = v1, e1, v2, e2, . . . , vq, eq, v1 for some q ≥ 3 be a β-cycle
of G. Then the support hypergraph of C is the hypergraph G[C] = (V [C], E[C]), where V [C] = ∪q

i=1ei
and E[C] = {e1, . . . , eq}. The next proposition essentially indicates that if edge sets of the support
hypergraphs of β-cycles of the underlying hypergraph of H have log-poly gaps, then one can remove
these β-cycles by inflating the edges of the cycle, and obtain a polynomial-size extended formulation
for PBP(H).

Proposition 4. Consider a signed hypergraph H = (V, S) of rank r, and denote by G = (V,E) its
underlying hypergraph. Let C denote the set of all β-cycles in G, and for each C ∈ C, let G[C] =
(V [C], E[C]) be the support hypergraph of C. Let G̃ be the hypergraph (∪C∈CV [C],∪C∈CE[C]), let
(V1, E1), (V2, E2), . . . , (Vω, Eω) be the connected components of G̃, and let k be such that

gap(Ei) ≤ k, ∀i ∈ [ω]. (59)

Then, PBP(H) has an extended formulation with O(r2k|V ||S|) variables and inequalities. In particu-
lar, if k = O(log poly(|V |, |S|)), then PBP(H) has a polynomial-size extended formulation. Moreover,
all coefficients and right-hand side constants in the system defining PBP(H) are 0,±1.

Proof. Each β-cycle in G is contained in precisely one of the connected components of G̃. Let H ′

be obtained from H by inflating, for each j ∈ {1, 2, . . . , ω}, every signed edge s contained in Vj , to
Vj . Let G′ be the underlying hypergraph of H ′. We show that G′ contains no β-cycle. Assume for a
contradiction that G′ contains a β-cycle C ′. Consider first the case where C ′ does not contain any set
Vj as an edge. Then C ′ is a β-cycle in G not contained in any connected component of G̃, which gives
us a contradiction. Next, consider the case where C ′ contains at least one set Vj as an edge. We now
show how we can modify C ′ to obtain a β-cycle C in G, not contained in any connected component of
G̃, which gives us again a contradiction. Assume that C ′ contains the edge Vj , and let u, v be the nodes
in C ′ before and after Vj . We then define C by replacing, in C ′, the edge Vj with a minimal sequence
f1, w2, . . . , wt, ft, where fj are edges in Ej and wj are nodes in Vj , such that u ∈ f1 and v ∈ ft. Note
that this sequence exists because (Vj , Ej) is connected. Clearly, nodes w2, . . . , wt and edges f1, . . . , ft
did not belong to C ′. It is simple to check that applying recursively the above construction to all sets
among V1, . . . , Vω contained in C ′ yields a β-cycle in C not contained in any connected component of
G̃, which gives us a contradiction. We have therefore shown that G′ is β-acyclic.

By Lemma 3 and assumption (59), an extended formulation for PBP(H) can be obtained by
juxtaposing an extended formulation for PBP(H ′) together with at most ∪C∈C |E[C]| ≤ |S| equalities,
containing at most ∪C∈C |E[C]| ≤ |S| additional variables. Now consider the signed hypergraph H ′ =
(V, S′). We then have |S′| ≤ |S|−∑

i∈[ω] |Ei|+
∑

i∈[ω] 2
k|Ei| ≤ 2k|S|. Since the underlying hypergraph

ofH ′ is β-acyclic, by Corollary 5, PBP(H ′) has an extended formulation with at most 2r|V |(2k+1|S|+1)
variables, and at most 4r|V |(2k+1|S|+ 1) inequalities.

Remark 5. Under more restrictive assumptions, the removal of β-cycles can be performed in a more
efficient manner than the technique in the proof of Proposition 4. Two β-cycles are equivalent if one
can be obtained from the other via a circular permutation and/or reversing the order of the edges. Now
consider the case where all beta-cycles in each (Vi, Ei), i ∈ [ω] are equivalent. Then for each i ∈ [ω],
it suffices to inflate one edge of maximum cardinality in Ei, denoted by fi, to Vi. That is, in this case,
one can replace assumption (59) by the weaker assumption

gap({fi, Vi}) ≤ k, ∀C ∈ C.
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5.4 A more general framework

So far, all inflation operations we employed to obtain polynomial-size extended formulations (i.e.,
Theorem 6, and Propositions 2–4) have a simple form: we inflated a number of signed edges to the
same set. This in turn enabled us to use Theorems 1 and 2 to obtain our extended formulations.
It is important to remark that the inflation of signed edges can be useful in a more general setting.
Consider a signed hypergraph H = (V, S). Assume that S is not totally ordered. Let E denote a set
of subsets of V that is totally ordered. Moreover suppose that for each s ∈ S, there exists some e ∈ E
such that e ⊇ s. Now inflate each s ∈ S to some element in E , which we denote by e(s). Define

I(S, E) :=
⋃

s∈S
I(s, e(s)).

Define the signed hypergraph H ′ = (V, I(S, E)). By Part 2 of Remark 1, the pseudo-Boolean polytope
PBP(H ′) has a polynomial-size extended formulation in |V |, |I(S, E)|. Therefore, from Lemma 3 we
deduce that if |I(S, E)| is a polynomial in |V |, |S|, we can obtain a polynomial-size extended formulation
for PBP(H) as well. The following proposition is an illustration of how this general setting can be
used to obtain a polynomial-size extended formulation for the pseudo-Boolean polytope.

Proposition 5. Consider a signed hypergraph H = (V, S). Let S = S1 ∪ S2, such that each s ∈
S1 contains at least |V | − k1 nodes, whereas each s ∈ S2 is contained in U ⊂ V , where |U | =
k2. Then PBP(H) has an extended formulation with O(2max{k1,k2}|S||V |) variables and inequalities.
In particular, if max{k1, k2} = O(log poly(|V |, |S|)), then PBP(H) has a polynomial-size extended
formulation. Moreover, all coefficients and right-hand side constants in the system defining PBP(H)
are 0,±1.

Proof. Consider the signed hypergraph H ′ = (V, S′) obtained from H by inflating every s ∈ S1 with
|s| < |V | to V , and by inflating every s ∈ S2 with |s| < |U | to U . We then have |S′| ≤ 2k1 |S1|+2k2 |S2| ≤
2max{k1,k2}|S|. The remainder of the proof is identical to the proof of Proposition 2.

We conclude the paper by remarking that while we presented several classes of signed hypergraphs
for which our proposed RID framework provides polynomial-size extended formulations for the corre-
sponding pseudo-Boolean polytopes, a complete characterization of such signed hypergraphs remains
an open question and is a subject of future research.
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