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Quantum linear system algorithms (QLSA) have the potential to speed up Interior Point Methods (IPM). However, a major challenge
is that QLSAs are inexact and sensitive to the condition number of the coefficient matrices of linear systems. This sensitivity is
exacerbated when the Newton systems arising in IPMs converge to a singular matrix. Recently, an Inexact Feasible Quantum IPM
(IF-QIPM) has been developed that addresses the inexactness of QLSAs and, in part, the influence of the condition number using
iterative refinement. However, this method requires a large number of gates and qubits to be implemented. Here, we propose a new
IF-QIPM using the normal equation system, which is more adaptable to near-term quantum devices. To mitigate the sensitivity to the
condition number, we use preconditioning coupled with iterative refinement to obtain better gate complexity. Finally, we demonstrate
the effectiveness of our approach on IBM Qiskit simulators.

CCS Concepts: • Theory of computation→ Linear programming; Quantum complexity theory; Preconditioning.

Additional Key Words and Phrases: Quantum Linear System Algorithm, Quantum Interior Point Method, Linear Optimization, Iterative
Refinement, Preconditioning

ACM Reference Format:
Mohammadhossein Mohammadisiahroudi, Zeguan Wu, Brandon Augustino, Arielle Carr, and Tamás Terlaky. 2018. Improvements to
Quantum Interior Point Method for Linear Optimization. 1, 1 (October 2018), 20 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Mathematical optimization problems arise in many fields and their solution yields significant computational challenges.
Researchers have attempted to develop quantum optimization algorithms, such as the Quantum Approximation
Optimization Algorithm (QAOA) for unconstrained quadratic binary optimization problems [8], and a quantum
subroutine for simplex algorithm [21]. Another class of quantum algorithms are Quantum Interior Point Methods
(QIPMs) [3, 13, 17], which are hybrid-classical IPMs that use QLSAs to solve the Newton system at each IPM iteration.
Before reviewing prior work on QIPMs for Linear Optimization problems (LOP), we provide the necessary definitions,
fundamental results, and properties.
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2 Mohammadisiahroudi, et al.

Definition 1.1 (LOP: Standard Formulation). For 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 , and matrix 𝐴 ∈ R𝑚×𝑛 with rank(𝐴) =𝑚 ≤ 𝑛, the
LOP is defined as

(P)
min 𝑐𝑇 𝑥,

s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0,

(D)
max 𝑏𝑇𝑦,

s.t. 𝐴𝑇𝑦+𝑠 = 𝑐,

𝑠 ≥ 0,
where 𝑥 ∈ R𝑛 is the vector of primal variables, and 𝑦 ∈ R𝑚 , 𝑠 ∈ R𝑛 are vectors of the dual variables. Problem (P) is
called primal problem and problem (D) is called dual problem.

The set of feasible primal-dual solutions is defined as

PD =
{
(𝑥,𝑦, 𝑠) ∈ R𝑛 × R𝑚 × R𝑛 | 𝐴𝑥 = 𝑏, 𝐴𝑇𝑦 + 𝑠 = 𝑐, (𝑥, 𝑠) ≥ 0

}
.

Then, the set of all feasible interior solutions is defined as

PD0 = {(𝑥,𝑦, 𝑠) ∈ PD | (𝑥, 𝑠) > 0} .

In this work, we assume PD0 is not empty. By the Strong Duality theorem, optimal solutions exist and belong to the
set PD∗ defined as

PD∗ =
{
(𝑥,𝑦, 𝑠) ∈ PD | 𝑥𝑇 𝑠 = 0

}
.

Let 𝜁 ≥ 0, then the set of 𝜁 -optimal solutions is defined as

PD𝜁 =

{
(𝑥,𝑦, 𝑠) ∈ PD

��� 𝑥𝑇 𝑠
𝑛
≤ 𝜁

}
.

In each step of IPMs, a Newton system is solved to determine the Newton step. There are four approaches:

(1) Full Newton System 
0 𝐴 0
𝐴𝑇 0 𝐼

0 𝑆 𝑋



Δ𝑦

Δ𝑥

Δ𝑠


=


0
0

𝛽𝜇𝑒 − 𝑋𝑠


; (FNS)

(2) Augmented System [
0 𝐴

𝐴𝑇 −𝐷−2

] [
Δ𝑦

Δ𝑥

]
=

[
0

𝑠 − 𝛽𝜇𝑋 −1𝑒

]
; (AS)

(3) Normal Equation System
𝐴𝐷2𝐴𝑇Δ𝑦 = 𝐴𝑥 − 𝛽𝜇𝐴𝑆−1𝑒; (NES)

(4) Orthogonal Subspaces System [
−𝑋𝐴𝑇 𝑆𝑉

] [
Δ𝑦

𝜆

]
= 𝛽𝜇𝑒 − 𝑋𝑠, (OSS)

where 𝑋 = diag(𝑥), 𝑆 = diag(𝑠), 𝐷 = 𝑆−1/2𝑋 1/2, 𝜇 = 𝑥𝑇 𝑠
𝑛 , 𝛽 , 0 < 𝛽 < 1, and 𝑒 is an all-one vector. Further, the columns

of 𝑉 form a basis for the null space of 𝐴.
Table 1 shows that NES has a smaller size since in most practical LO problems𝑚 << 𝑛. In addition, its symmetric

positive definite coefficient matrix is favorable since classically it can be solved faster with Cholesky factorization or
conjugate gradient. It is also more adaptable to QLSAs since QLSAs are able to solve linear systems with a Hermitian
matrix. To solve linear systems whose matrix is not Hermitian, like OSS, they must be embedded in a bigger system
with a Hermitian matrix. Thus, NES has a better structure compared to others, however, its condition number grows
Manuscript submitted to ACM



Improvements to Quantum Interior Point Method for Linear Optimization 3

System Size of system Symmetric Positive Definite Rate of Condition Number
FNS 2𝑛 +𝑚 ✗ ✗ O ( 1

𝜇2
)

AS 𝑛 +𝑚 ✓ ✗ O ( 1
𝜇2

)
NES 𝑚 ✓ ✓ O ( 1

𝜇2
)

OSS 𝑛 ✗ ✗ O ( 1
𝜇

)
Table 1. Characteristics of Coefficient Matrix of Different Newton Systems

at a faster rate than the one of the OSS. The key takeaway is that inexact solutions of NES, FNS, and AS may lead to
infeasibility, whereas inexact solutions to OSS remain in the feasible region [18].

The prevailing approach to solve LOPs is IPMs, in which the Newton direction is calculated by solving NES using
Cholesky factorization [23]. Thus, although IPMs enjoy a fast convergence rate, the cost per iteration of IPMs is
considerably high when applied to large-scale LOPs. In an effort to reduce the per-iteration cost of IPMs, inexact
infeasible IPMs (II-IPMs) were proposed, in which the Newton system is solved with an iterative method, e.g., using
conjugate gradient (CG) methods [1, 20]. Inexact linear systems algorithms like CG exhibit favorable dependence on
dimension compared to factorization methods and are able to exploit sparsity patterns present in the Newton system.
The rub is that these inexact approaches depend on a condition number bound, which could pose a challenge. To tackle
the ill-conditioned Newton system, they used the so-called maximum weight basis (MWB) preconditioner [19].

QIPMs were first proposed by Kerenidis and Prakash [13], who sought to decrease the cost per iteration by classically
estimating the Newton step through the use of a QLSA and quantum state tomography. Adopting this approach, Casares
and Martin-Delgado [5] developed a predictor-correcter QIPM for LO. However, these algorithms were proposed
and analyzed using an exact IPM framework, which is invalid because the use of quantum subroutines naturally
introduces noise into the solution and leads to inexactness in the Newton step. Specifically, without further safeguards
this inexactness means that the sequence of iterates generated the algorithms in [5, 13] may leave the feasible set, and
so convergence cannot be guaranteed.

To address these issues, Augustino et al. [3] proposed an inexact-infeasible QIPM (which closely quantized the
II-IPM of [30]) and a novel inexact-feasible QIPM using OSS. The latter algorithm was shown to solve LOPs to precision
𝜖 ∈ (0, 1) using at most

Õ𝑛,𝜅, 1
𝜖

(
𝑛2𝜅

2

𝜖

)

QRAM queries and Õ𝑛,𝜅, 1
𝜖

(
𝑛2.5) arithmetic operations, where 𝜅 is an upper bound on the Newton system coefficient

matrices that arise over the run of the algorithm.
Mohammadisiahroudi et al. [17, 18] specialized the algorithms in [3] to LO and used iterative refinement techniques

to exponentially improve the dependence of the algorithms in [3] on precision and the condition number bound. In
particular, [17] developed an inexact-infeasible QIPM (II-QIPM), which addresses the inexactness of QLSA, with

Õ𝑛,𝜅𝐴,𝜔 (𝑛4𝐿∥𝐴∥4𝜔4𝜅2
𝐴)

complexity, where 𝜔 is an upper bound for norm of optimal solution. [18] improved this complexity by developing a
short-step IF-QIPM for LOPs with complexity

Õ𝑛,𝜅𝐴,𝜔 (𝑛2.5𝐿∥𝐴∥2𝜔2𝜅𝐴) .
Manuscript submitted to ACM



4 Mohammadisiahroudi, et al.

Note that the use of iterative refinement techniques indirectly led to another improvement in the complexity, reducing
the dependence on a condition number bound 𝜅 for the intermediate Newton systems with the condition number 𝜅𝐴 of
the input matrix 𝐴. IF-QIPMs built on similar techniques have also been developed for linearly constrained quadratic
optimization problems in [28] and second-order cone optimization problems in [4].

In this paper, we propose an IF-QIPM using a modified normal equation system that has a better structure, with a
smaller symmetric positive definite coefficient matrix, and enables us to use classical preconditioning techniques to
mitigate the effect of the condition number. In addition, we explore how the preconditioning technique augmented
with iterative refinement can help with condition number issues.

The rest of this paper is structured as follows. In Section 2, a modified NES is utilized to produce an inexact but
feasible Newton step, and a short-step Inexact Feasible IPM is developed. Section 3 explores how we use QLSA to solve
the modified NES system in order to develop an IF-QIPM. In Section 4, an iterative refinement method coupled with
preconditioning is developed to address the impacts of the condition number on the complexity. Finally, numerical
experiments using the IBM Qiskit simulator are carried out in Section 5, and Section 6 concludes the paper.

2 INEXACT-FEASIBLE NEWTON STEP USING NES

To compute the Newton step, we need to determine (Δ𝑥,Δ𝑦,Δ𝑠) such that

𝐴Δ𝑥 = 0,

𝐴𝑇Δ𝑦 + Δ𝑠 = 0,

𝑋Δ𝑠 + 𝑆Δ𝑥 = 𝛽𝜇𝑒 − 𝑋𝑠.
(1)

As discussed in the introduction, we are interested in using NES as it has a smaller symmetric positive definite matrix,
favorable for both quantum and classical linear system solvers. First note that an exact solution Δ𝑦 to NES satisfies

𝐴𝐷2𝐴𝑇Δ𝑦 = 𝐴𝑥 − 𝛽𝜇𝐴𝑆−1𝑒. (2)

Having obtained Δ𝑦, we then compute Δ𝑠 and Δ𝑥 using as follows:

Δ𝑠 = −𝐴𝑇Δ𝑦, (3a)

Δ𝑥 = 𝛽𝜇𝑆−1𝑒 − 𝑥 − 𝐷2Δ𝑠 . (3b)

Now, when system (2) is solved inexactly, the resulting solution Δ𝑦 satisfies

𝐴𝐷2𝐴𝑇Δ𝑦 = 𝐴𝑥 − 𝛽𝜇𝐴𝑆−1𝑒 + 𝑟,

where 𝑟 is the residual as ∥𝐴𝑥 − 𝛽𝜇𝐴𝑆−1𝑒 −𝐴𝐷2𝐴𝑇Δ𝑦∥. In place of (3a) and (3b), we now have

𝐴Δ𝑥 = 𝑟,

𝐴𝑇Δ𝑦 + Δ𝑠 = 0,

𝑋Δ𝑠 + 𝑆Δ𝑥 = 𝛽𝜇𝑒 − 𝑋𝑠.

Manuscript submitted to ACM



Improvements to Quantum Interior Point Method for Linear Optimization 5

While dual feasibility is preserved, the same cannot be said for the primal. In order to preserve primal feasibility using
inexact solutions to (2), one can alternatively solve

Δ𝑠 = −𝐴𝑇Δ𝑦,
Δ𝑥 = 𝛽𝜇𝑆−1𝑒 − 𝑥 − 𝐷2Δ𝑠 − 𝑣,

where 𝐴𝑣 = 𝑟 . Updating Δ𝑥 in this way, we correct primal infeasibility, and one can verify that

𝐴Δ𝑥 = 0,

𝐴𝑇Δ𝑦 + Δ𝑠 = 0,

𝑋Δ𝑠 + 𝑆Δ𝑥 = 𝛽𝜇𝑒 − 𝑋𝑠 + 𝑟 ′,
where 𝑟 ′ = −𝑆𝑣 . Next, we describe two procedures to calculate 𝑣 efficiently.

Procedure A. Since 𝐴 has full row rank, we can calculate

𝐴 = 𝐴𝑇 (𝐴𝐴𝑇 )−1,

as a pre-processing step before the IPM starts. Then, in each iteration, we calculate 𝑣 = 𝐴𝑟 using classical matrix-vector
products. To recover the convergence analysis of [18], the residual must satisfy ∥𝑟 ′∥ ≤ 𝜂𝜇 for 𝜂 ∈ [0, 1). One can show
that this requirement amounts to

∥𝑟 ∥ ≤ 𝜂
𝜇

∥𝑠 ∥∞𝜎max
,

where 𝜎𝑚𝑎𝑥 is the maximum singular value of 𝐴. Since ∥𝑠 ∥∞ and 𝜎max can be exponentially large, this residual bound
can be unacceptably small.

Procedure B. Letting �̂� be an arbitrary basis for matrix 𝐴, we can calculate

𝑣 = (𝑣�̂�, 𝑣𝑁 ) = (𝐴−1
�̂�
𝑟, 0).

It is straightforward to verify that 𝐴𝑣 = 𝑟 . Now, we show that this procedure coupled with an appropriate modification
of the NES leads to a favorable residual bound.

Since 𝐴 has full row rank, one can choose an arbitrary basis �̂�, and subsequently calculate 𝐴−1
�̂�

, 𝐴 = 𝐴−1
�̂�
𝐴, and

𝑏 = 𝐴−1
�̂�
𝑏. These steps require O(𝑚2𝑛) arithmetic operations and take place only once prior to the first iteration of IPM.

The cost of this pre-processing can be reduced by leveraging the structure of 𝐴. For example, if the problem is in the
canonical form, there is no need for this pre-processing. In this paper, we neglect the pre-processing cost, since it can
be avoided by using the following reformulation.

min 𝑐𝑇 𝑥,

s.t. 𝐴𝑥 + 𝑢 = 𝑏,

−𝐴𝑥 + 𝑢′ = −𝑏,
𝑥,𝑢,𝑢′ ≥ 0.

This is a standard LOP, but its interior is empty. This issue is remedied upon using the self-dual embedding model [29]
and we refer the readers to [18] for details. While this formulation does not require calculation, the price one pays
for this case is using a larger system. In the rest of this paper, we assume that we are working with the preprocessed
problem with input data (𝐴,𝑏, 𝑐).

Manuscript submitted to ACM



6 Mohammadisiahroudi, et al.

Now, we can modify system (NES) with coefficient matrix 𝑀𝑘 = 𝐴(𝐷𝑘 )2𝐴𝑇 and right-hand side vector 𝜎𝑘 =

𝑏 − 𝛽𝜇𝑘𝐴(𝑆𝑘 )−1𝑒 to
�̂�𝑘𝑧𝑘 = �̂�𝑘 (MNES)

where

�̂�𝑘 = (𝐷𝑘
�̂�
)−1𝐴−1

�̂�
𝑀𝑘 ((𝐷𝑘

�̂�
)−1𝐴−1

�̂�
)𝑇 = (𝐷𝑘

�̂�
)−1𝐴(𝐷𝑘 )2𝐴𝑇 (𝐷𝑘

�̂�
)−1,

�̂�𝑘 = (𝐷𝑘
�̂�
)−1𝐴−1

�̂�
𝜎𝑘 = (𝐷𝑘

�̂�
)−1𝑏 − 𝛽1𝜇

𝑘 (𝐷𝑘
�̂�
)−1𝐴(𝑆𝑘 )−1𝑒.

We use the following procedure to find the Newton direction by solving (MNES) inexactly with QLSA+QTA.

Step 1. Find 𝑧𝑘 such that �̂�𝑘𝑧𝑘 = �̂�𝑘 + 𝑟𝑘 and ∥𝑟𝑘 ∥ ≤ 𝜂√
1+𝜃

√︃
𝜇𝑘 .

Step 2. Calculate Δ̃𝑦𝑘 = ((𝐷𝑘
�̂�
)−1𝐴−1

�̂�
)𝑇 𝑧𝑘 .

Step 3. Calculate 𝑣𝑘 = (𝑣𝑘
�̂�
, 𝑣𝑘

�̂�
) = (𝐷𝑘

�̂�
𝑟𝑘 , 0).

Step 4. Calculate Δ̃𝑠𝑘 = 𝑐 −𝐴𝑇𝑦𝑘 − 𝑠𝑘 −𝐴𝑇 Δ̃𝑦𝑘 .
Step 5. Calculate Δ̃𝑥𝑘 = 𝛽1𝜇𝑘 (𝑆𝑘 )−1𝑒 − 𝑥𝑘 − (𝐷𝑘 )2Δ̃𝑠𝑘 − 𝑣𝑘 .

It is noteworthy that, this modification technique is similar to MWB preconditioning techniques of [1, 20]. One major
difference is that we modify the NES for a feasible IPM setting, although others apply it for infeasible IPMs. In addition,
we preprocess the data initially, before starting IPM although in preconditioning, one needs to do the modification,
calculating the precondition with O(𝑛3)𝑐𝑜𝑠𝑡 , in each iteration. Thus, we show that the complexity of our approach has
better dimension dependence O(𝑛2.5) although the complexity of other infeasible approaches with preconditioning has
O(𝑛5) dimension dependence. In Section 4, we explore how quantum computing can speed up the preconditioning part.

Lemma 2.1. For the Newton direction (Δ̃𝑥𝑘 , Δ̃𝑦𝑘 , Δ̃𝑠𝑘 ), we have
𝐴Δ̃𝑥𝑘 = 0,

𝐴𝑇 Δ̃𝑦𝑘 + Δ̃𝑠𝑘 = 0,

𝑋𝑘 Δ̃𝑠𝑘 + 𝑆𝑘 Δ̃𝑥𝑘 = 𝛽1𝜇
𝑘𝑒 − 𝑋𝑘𝑠𝑘 + 𝑟 ′𝑘 .

(4)

where 𝑟 ′𝑘 = −𝑆𝑘𝑣𝑘 .

Proof. For the Newton direction (Δ̃𝑥𝑘 , Δ̃𝑦𝑘 , Δ̃𝑠𝑘 ), one can verify that �̂�𝑘𝑧𝑘 = �̂�𝑘 + 𝑟𝑘 implies

𝑀𝑘 Δ̃𝑦𝑘 = 𝜎𝑘 +𝐴�̂�𝐷
𝑘
�̂�
𝑟𝑘 .

For the first equation of (4), we can write

𝐴Δ̃𝑥𝑘 =𝐴(𝛽1𝜇
𝑘 (𝑆𝑘 )−1𝑒 − 𝑥𝑘 − (𝑆𝑘 )−1𝑋𝑘 Δ̃𝑠𝑘 − 𝑣𝑘 )

=𝐴(𝛽1𝜇
𝑘 (𝑆𝑘 )−1𝑒 − 𝑥𝑘 − (𝑆𝑘 )−1𝑋𝑘 (−𝐴𝑇 Δ̃𝑦𝑘 ) − 𝑣𝑘 )

=𝛽1𝜇
𝑘𝐴(𝑆𝑘 )−1𝑒 −𝐴𝑥𝑘 +𝐴(𝑆𝑘 )−1𝑋𝑘𝐴𝑇 Δ̃𝑦𝑘 −𝐴𝑣𝑘

=𝛽1𝜇
𝑘𝐴(𝑆𝑘 )−1𝑒 −𝐴𝑥𝑘 + 𝜎𝑘 +𝐴�̂�𝐷

𝑘
�̂�
𝑟𝑘 −𝐴𝑣𝑘

=0.

The second and third equations of (4) are obtained from Steps 4 and 5. □
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Improvements to Quantum Interior Point Method for Linear Optimization 7

To have a convergent IPM, we need ∥𝑟 ′𝑘 ∥∞ ≤ 𝜂𝜇𝑘 , where 0 ≤ 𝜂 < 1 is an enforcing parameter. The next lemma
gives an analogous residual bound for the modified NES.

Lemma 2.2. For the Newton direction (Δ̃𝑥𝑘 , Δ̃𝑦𝑘 , Δ̃𝑠𝑘 ), if the residual ∥𝑟𝑘 ∥∞ ≤ 𝜂√
1+𝜃

√︃
𝜇𝑘 , then ∥𝑟 ′𝑘 ∥∞ ≤ 𝜂𝜇𝑘 .

Proof. As (𝑥𝑘 , 𝑦𝑘 , 𝑠𝑘 ) ∈ N (𝜃 ), we have

(1 − 𝜃 )𝜇𝑘 ≤ 𝑥𝑖𝑠𝑖 ≤ (1 + 𝜃 )𝜇𝑘 .

Thus,
∥(𝑆𝑘

�̂�
)1/2 (𝑋𝑘

�̂�
)1/2∥∞ = max

𝑖∈�̂�
√
𝑥𝑖𝑠𝑖 ≤ 𝑛max

𝑖=1
√
𝑥𝑖𝑠𝑖 ≤

√︃
(1 + 𝜃 )𝜇𝑘 .

Now we can conclude that

∥𝑟 ′𝑘 ∥∞ = ∥𝑆𝑘𝑣𝑘 ∥∞ = ∥𝑆𝑘
�̂�
𝑣𝑘
�̂�
∥∞ = ∥𝑆𝑘

�̂�
𝐷𝑘
�̂�
𝑟𝑘 ∥∞ ≤ ∥(𝑆𝑘�̂�)

1/2 (𝑋𝑘
�̂�
)1/2∥∞∥𝑟𝑘 ∥∞ ≤

√︃
(1 + 𝜃 )𝜇𝑘 ∥𝑟𝑘 ∥∞ ≤ 𝜂𝜇𝑘 .

□

In the next subsection, we analyze the complexity of QLSA+QTA to solve the (MNES).

2.1 Solving MNES by QLSA+QTA

The first QSLA was proposed by Harrow, Hassidim and Loyd [12] and known as HHL algorithm. It takes as input a
sparse, Hermitian matrix𝑀 , and prepares a state |𝑧⟩ = |𝑀−1𝜎⟩ that is proportional to the solution of the linear system
𝑀𝑧 = 𝜎 . Let 𝜅𝑀 denote the condition number of𝑀 . The complexity of the HHL algorithm is Õ𝑑 (𝜏2𝜅2

𝑀/𝜖), where 𝑑 is
the dimension of the problem, 𝜏 is the maximum number of non-zeros found in any row of𝑀 , 𝜖 is the target bound on
the error, and the Õ notation suppresses the polylogarithmic factors in the "Big-O" notation in terms of the subscripts.
This complexity bound shows a speed-up w.r.t. dimension, although it depends on an upper bound for the condition
number 𝜅𝑀 of the coefficient matrix. Following a number of improvements to HHL algorithm [2, 7, 25, 26], the current
state-of-the-art QLSA is attributed to Charkraborty et al. [6], who use variable-time amplitude estimation and so-called
block-encoded matrices, while HHL algorithm uses the sparse-encoding model [12]. The block-encoding model was
formalized in [14], and it assumes that one has access to unitaries that store the coefficient matrix in their top-left block:

𝑈 =

(
𝑀/𝜓 ·
· ·

)
,

where𝜓 ≥ ∥𝑀 ∥ is a normalization factor chosen to ensure that 𝑈 has operator norm at most 1. Assuming access to
QRAM, the QLSA of [6] has Õ𝑑,𝜅𝑀 , 1

𝜖
(𝜅𝑀𝜓 ) complexity.

While QLSAs provide a quantum state proportional to the solution, it is not possible to extract the classical solution
by a single measurement. Quantum Tomography Algorithms (QTAs) are needed to extract the classical solution.
There are several papers improving QTAs, and the best QTA [24] has O( 𝑑𝜚𝜖 ) complexity, where 𝜚 is a bound for
the norm of the solution. The direct use of the QLSA from [6] and the QTA by [24] costs Õ𝑑,𝜅𝑀 , 1

𝜖

(
𝑑𝜅2

𝑀 ∥𝑀 ∥𝐹
∥𝜎 ∥
𝜖

)
.

Mohammadisiahroudi et al. [15] used an iterative refinement approach employing limited precision QLSA+QTA with
Õ
𝑑,𝜅𝑀 , ∥𝜎 ∥𝜖

(𝑑𝜅𝑀 ∥𝑀 ∥𝐹 ) complexity with Õ ∥𝜎 ∥
𝜖

(
𝑑2) classical arithmetic operations.
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Theorem 2.3. Using the linear solver of [15], the (MNES) system can be built and solved to obtain a solution �̃�𝑘 satisfying

∥𝑟𝑘 ∥ ≤ 𝜂√
1+𝜃

√︃
𝜇𝑘 with with Õ

𝑚,𝜅𝑘𝐸 ,
∥�̂�𝑘 ∥
𝜇𝑘

(
𝑚𝜅𝑘𝐸 ∥𝐸𝑘 ∥𝐹

)
complexity and Õ ∥�̂�𝑘 ∥

𝜇𝑘

(𝑚𝑛) classical arithmetic operations, where

𝐸𝑘 = (𝐷𝑘
�̂�
)−1𝐴𝐷𝑘 , and 𝜅𝑘𝐸 is the condition number of 𝐸𝑘 .

Proof. Building the (MNES) system in a classical computer requires matrix multiplications, which cost O(𝑚2𝑛)
arithmetic operations. We can write (MNES) as 𝐸𝑘 (𝐸𝑘 )𝑇 𝑧𝑘 = �̂�𝑘 , where 𝐸𝑘 = (𝐷𝑘

�̂�
)−1𝐴𝐷𝑘 . Calculating 𝐸𝑘 and �̂�𝑘

requires just O(𝑚𝑛) arithmetic operations. The authors in [6] proposed an efficient procedure to build and solve a linear
system of the form 𝐸𝑘 (𝐸𝑘 )𝑇 𝑧𝑘 = �̂�𝑘 , with Õ(polylog( 𝑛𝜖 )𝜅𝑘𝐸 ∥𝐸𝑘 ∥𝐹 ) complexity. Then, we can use the quantum linear
system solver of [15] with Õ

𝑚,𝜅𝑘𝐸 ,
∥�̂�𝑘 ∥
𝜇𝑘

(
𝑚𝜅𝑘𝐸 ∥𝐸𝑘 ∥𝐹

)
complexity and Õ ∥�̂�𝑘 ∥

𝜇𝑘

(𝑚𝑛) classical arithmetic operations. □

In the next section, we apply the proposed modification of NES to develop an IF-QIPM.

3 INEXACT-FEASIBLE QUANTUM INTERIOR POINT METHOD

Before developing the algorithm, first we define the central path as

CP =
{
(𝑥,𝑦, 𝑠) ∈ PD

�� 𝑥𝑖𝑠𝑖 = 𝜇 for 𝑖 ∈ {1, . . . , 𝑛}
}
,

where 𝜇 = 𝑥𝑇 𝑠
𝑛 . For any 𝜃 ∈ [0, 1), a small neighborhood of the central path is defined as

N(𝜃 ) =
{
(𝑥,𝑦, 𝑠) ∈ PD0 ��∥𝑋𝑆𝑒 − 𝜇𝑒 ∥2 ≤ 𝜃𝜇

}
.

Now, we develop the IF-QIPM using the modified NES with the short-step version of IPMs. In the next section, we

Algorithm 1 Short-step IF-QIPM using QLSA

1: Choose 𝜁 > 0, 𝜂 = 0.1, 𝜃 = 0.7and 𝛽 = (1 − 0.2√
𝑛
).

2: 𝑘 ← 0
3: Choose initial feasible interior solution (𝑥0, 𝑦0, 𝑠0) ∈ N (𝜃 )
4: while (𝑥𝑘 , 𝑦𝑘 , 𝑠𝑘 ) ∉ PD𝜁 do

5: 𝜇𝑘 ← (𝑥𝑘 )𝑇 𝑠𝑘
𝑛

6: 𝑧𝑘 ← Solve �̂�𝑘𝑧𝑘 = �̂�𝑘 using IR+QLSA+QTA of [15] with ∥𝑟𝑘 ∥ ≤ 𝜂√
1+𝜃

√︃
𝜇𝑘 .

7: Δ𝑦𝑘 ← ((𝐷𝑘
�̂�
)−1𝐴−1

�̂�
)𝑇 𝑧𝑘

8: 𝑣𝑘 ← (𝑣𝑘
�̂�
, 𝑣𝑘

�̂�
) = (𝐷𝑘

�̂�
𝑟𝑘 , 0)

9: Δ𝑠𝑘 ← 𝑐 −𝐴𝑇𝑦𝑘 − 𝑠𝑘 −𝐴𝑇Δ𝑦𝑘 .
10: Δ𝑥𝑘 ← 𝛽1𝜇𝑘 (𝑆𝑘 )−1𝑒 − 𝑥𝑘 − (𝐷𝑘 )2Δ𝑠𝑘 − 𝑣𝑘 .
11: (𝑥𝑘+1, 𝑦𝑘+1, 𝑠𝑘+1) ← (𝑥𝑘 , 𝑦𝑘 , 𝑠𝑘 ) + (Δ𝑥𝑘 ,Δ𝑦𝑘 ,Δ𝑠𝑘 )
12: 𝑘 ← 𝑘 + 1
13: end while
14: Return (𝑥𝑘 , 𝑦𝑘 , 𝑠𝑘 )

prove the convergence of the IF-QIPM and analyze its complexity.

3.1 Convergence Analysis

To prove the convergence of IF-QIPM, we use the analysis of IF-QIPM in [18]. The only difference is the choice of the
Newton system: In [18], the authors use OSS and in the current work we propose the use of MNES, however both
Manuscript submitted to ACM
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compute (Δ𝑥,Δ𝑦,Δ𝑠) such that

𝐴Δ𝑥 = 0,

𝐴𝑇Δ𝑦 + Δ𝑠 = 0,

𝑋Δ𝑠 + 𝑆Δ𝑥 = 𝛽1𝜇𝑒 − 𝑋𝑘𝑠𝑘 + 𝑟 ′,

where ∥𝑟 ′∥ ≤ 𝜂√
1+𝜃
√
𝜇.

Next we provide relevant theory for our IF-QIPM in lemmas 3.1 and 3.2 and theorem 3.3. For the relevant proofs, we
refer to lemmas 3.1 and 3.2 and theorem 2.6, respectively, in [18].

Lemma 3.1. Let the step (Δ𝑥,Δ𝑦,Δ𝑠) be calculated from (MNES) in each iteration of the IF-IPM. Then

Δ𝑥𝑇Δ𝑠 = 0,

(𝑥 + Δ𝑥)𝑇 (𝑠 + Δ𝑠) ≤ (𝛽 + 𝜂√
1 + 𝜃

)𝑥𝑇 𝑠,

(𝑥 + Δ𝑥)𝑇 (𝑠 + Δ𝑠) ≥ (𝛽 − 𝜂√
1 + 𝜃

)𝑥𝑇 𝑠 .

Now, we can show that the iterates of IF-QIPM remain in the neighborhood of the central path in Lemma 3.2, by
using results of Lemma 3.1.

Lemma 3.2. Let (𝑥0, 𝑠0, 𝑦0) ∈ N (𝜃 ) for a given 𝜃 ∈ [0, 1), then (𝑥𝑘 , 𝑠𝑘 , 𝑦𝑘 ) ∈ N (𝜃 ) for any 𝑘 ∈ N.

Based on Lemma 3.2, IF-IPM remains in the neighborhood of the central path, and it converges to the optimal solution
if 𝜇𝑘 converges to zero. In Theorem 3.3, we prove that the algorithm reaches 𝜁 -optimal solution after O(√𝑛 log( 𝜇0

𝜁 ))
iteration.

Theorem 3.3. The sequence 𝜇𝑘 converges to zero linearly, and we have 𝜇𝑘 ≤ 𝜁 after O(√𝑛 log( 𝜇0
𝜁 )) iterations.

This demonstrates that the IF-IPM achieves the best-known iteration complexity, and the proof holds for any values
satisfying the following two conditions.

𝛽 ≤ (1 − 𝜂 + 0.01√
𝑛
), (5)

𝜃2 + 𝑛(1 − 𝛽)2 + 𝜂2

23/2 (1 − 𝜃 ) + 𝜂 ≤ 𝜃 (𝛽 − 𝜂√
𝑛
). (6)

It is not hard to check that 𝜃 = 0.7 and 𝜂 = 0.1 satisfy these conditions.

3.2 Complexity

Let 𝐿 be the binary length of input data defined as

𝐿 =𝑚𝑛 +𝑚 + 𝑛 +
∑︁
𝑖, 𝑗

⌈log( |𝑎𝑖 𝑗 | + 1)⌉ +
∑︁
𝑖

⌈log( |𝑐𝑖 | + 1)⌉ +
∑︁
𝑗

⌈log( |𝑏 𝑗 | + 1)⌉ .

An exact solution can be calculated by rounding [27], provided that we terminate with 𝜇𝑘 ≤ 2O(𝐿) . Accordingly, the
IF-IPM may require O(√𝑛𝐿) to determine an exact optimal solution; for more details see [27, Chapter 3]. The next
theorem characterizes the total time complexity of the proposed IF-QIPM.
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10 Mohammadisiahroudi, et al.

Theorem 3.4. The proposed IF-QIPM of Algorithm 1 determines a 𝜁 -optimal solution using at most

Õ
𝑚,𝜅�̂�,∥�̂�∥,∥𝑏 ∥,𝜇0, 1

𝜁

(√
𝑛𝑚1.5𝜅�̂�∥𝐴∥

𝜔2

𝜁 3

)

queries to the QRAM and Õ𝜇0, 1
𝜁

(
𝑛1.5𝑚

)
classical arithmetic operations.

Proof. The complexity analysis of the different parts of IF-QIPM 1 is outlined as follows:

• After O(√𝑛 log( 𝜇0

𝜁 )) the IF-QIPM obtains a 𝜁 -optimal solution.
• In Theorem 4.2 of [17], the norm and condition number bounds of MNES are derived as

∥𝜎𝑘 ∥ = O
(
∥𝐴∥ + ∥𝑏∥

𝜁

)
, ∥𝐸𝑘 ∥𝐹 ≤

√
𝑚∥𝐸𝑘 ∥ = O

(√
𝑚

𝜁
∥𝐴∥

)
, 𝜅𝑘𝐸 = O

(
𝜔2

𝜁 2 𝜅�̂�

)
,

where 𝜔 is a bound on ∥𝑥∗, 𝑠∗∥∞ for all (𝑥∗, 𝑦∗, 𝑠∗) ∈ PD∗.
• Applying Theorem 2.3, the complexity of quantum subroutine to solve the MNES is

Õ
𝑚,𝜅�̂�,∥�̂�∥,∥𝑏 ∥, 1

𝜁

(
𝑚1.5𝜅�̂�∥𝐴∥

𝜔2

𝜁 3

)
.

• In each iteration of IF-QIPM, we need to build 𝐸𝑘 classically and load to QRAM with O(𝑚𝑛) complexity. Also,
some classical matrix products happen with O(𝑚𝑛) cost. Thus, the classical cost per iteration is O(𝑚𝑛).
• Thus, in the worst case the IF-QIPM requires

Õ
𝑚,𝜅�̂�,∥�̂�∥,∥𝑏 ∥,𝜇0, 1

𝜁

(√
𝑛𝑚1.5𝜅�̂�∥𝐴∥

𝜔2

𝜁 3

)

accesses to the QRAM and Õ𝜇0, 1
𝜁

(
𝑛1.5𝑚

)
classical arithmetic operations.

□

3.3 Improving the error dependence of the IF-QIPM

To get an exact optimal solution, the time complexity contains the exponential term 2𝐿 . To address this problem, we
can fix 𝜁 = 10−2 and improve the precision by iterative refinement in O(𝐿) iterations [17]. The first iterative regiment
method for linear optimization is proposed by Gleixner et al. [11]. Here, we use the iterative refinement of [18], which
is designed specifically for IF-QIPM as Algorithm2.

Algorithm 2 IR-IF-QIPM of [18]

Require:
(
𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛, 𝜁 < 𝜁 < 1

)
1: 𝑘 ← 1 and ∇0 ← 1
2: (𝑥1, 𝑦1, 𝑠1) ← solve (𝐴,𝑏, 𝑐) using IF-QIPM of Algorithm 1 with 𝜁 precision
3: while (𝑥𝑘 , 𝑦𝑘 , 𝑠𝑘 ) ∉ PD𝜁 do
4: ∇𝑘 ← 1(

𝑥𝑘
)𝑇

𝑠𝑘

5: (𝑥𝑘 , 𝑦𝑘 , 𝑠𝑘 ) ← solve (𝐴, 0,∇𝑘𝑠𝑘 ) using IF-QIPM of Algorithm 1 with 𝜁 precision
6: 𝑥𝑘+1 ← 𝑥𝑘 + 1

∇𝑘 𝑥
𝑘 and 𝑦𝑘+1 ← 𝑦𝑘 + 1

∇𝑘 𝑦
𝑘

7: end while
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Theorem 3.5. The total time complexity of finding exact optimal solution with IR-IF-QIPM is

Õ
𝑚,𝜅�̂�,∥�̂�∥,∥𝑏 ∥,𝜇0

(√
𝑛𝑚1.5𝜅�̂�∥𝐴∥𝜔2𝐿

)
with Õ𝜇0

(
𝑛1.5𝑚𝐿

)
classical arithmetic operation.

Proof. The proof is similar to the proof of [18, Theorem 6.2]. □

In the next section, we investigate how preconditioning can help to mitigate the effect of the condition number with
respect to 𝜅�̂� and 𝜔 .

4 ITERATIVELY REFINED IF-QIPM USING PRECONDITIONED NES

To mitigate the impact of the condition number, we need to analyze how the matrices𝑀𝑘 and 𝐸𝑘 evolve through the
iterations. As in Theorem 6.8 of [27] or Lemma I.42 of [23], considering the optimal partition 𝐵 and 𝑁 , we have

𝑥𝑘𝑖

𝑠𝑘𝑖
= O

(
𝐶

𝜇𝑘

)
→∞ for 𝑖 ∈ 𝐵 and

𝑥𝑘𝑖

𝑠𝑘𝑖
= O

(
𝜇𝑘

𝐶

)
→ 0 for 𝑖 ∈ 𝑁, (7)

where 𝐶 is a constant dependent on the LO problem’s parameters. For a more detailed analysis, see pages 121-124 of
[27]. To analyze the condition number of NES, we have

𝑀𝑘 = 𝐴(𝐷𝑘 )2𝐴𝑇 = 𝐴𝐵 (𝐷𝑘
𝐵)2𝐴𝑇𝐵 +𝐴𝑁 (𝐷𝑘

𝑁 )2𝐴𝑇𝑁 .

As the sequence of iterates converges to the optimal set, it is easy to see that 𝐴𝑁 (𝐷𝑘
𝑁 )2𝐴𝑇𝑁 → 0. Thus, the dominant

component is the 𝐴𝐵 (𝐷𝑘
𝐵)2𝐴𝑇𝐵 term. If 𝐴𝐵 includes a basis of 𝐴, i.e. rank(𝐴𝐵) =𝑚, then the condition number of𝑀𝑘

will converge to a constant depending on max𝑖∈𝐵 𝑥2
𝑖

min𝑖∈𝐵 𝑥2
𝑖
. This implies that when the problem is primal nondegenerate, the

condition number will converge to a constant, though that constant may be as big as O(22𝐿) in the worst case. If 𝐴𝐵

has a rank less than𝑚, then the condition number of𝑀𝑘 goes to infinity with the rate of 1
𝜇2 , which can be addressed by

iterative refinement. In the proposed IF-QIPM, we initially choose basis 𝐵. If in each iteration of IF-QIPM, we choose
basis �̂�𝑘 as indices of𝑚 largest 𝑥𝑘𝑖

𝑠𝑘𝑖
, then by modifying MNES, we can precondition it too. We refer the readers to [19]

for the algorithm for determining basis �̂�𝑘 . Suppose that the LO problem is non-degenerate. As the trajectory generated
by the IF-QIPM converges to the optimal solution, we have

�̂�𝑘 → 𝐵

𝐴𝑁 (𝐷𝑘
𝑁 )2𝐴𝑇𝑁 → 0

𝑀𝑘 → 𝐴𝐵 (𝐷𝑘
𝐵)2𝐴𝑇𝐵

�̂�𝑘 = (𝐷𝑘
�̂�
)−1𝐴−1

�̂�
𝑀𝑘 ((𝐷𝑘

�̂�
)−1𝐴−1

�̂�
)𝑇 → 𝐼 .

Thus, (𝐷𝑘
�̂�
)−1𝐴−1

�̂�
is a precondition for 𝑀𝑘 . When the LO problem is degenerate, which is the more general setting,

Theorem 2.2.3 of [22] asserts that the condition number of �̂�𝑘 is bounded by (𝜒)2 where

𝜒 = max
{∥𝐴−1

𝐵 𝐴∥𝐹 : 𝐴𝐵 is a basis of 𝐴
}
. (8)

Furthermore, based on Lemma 2.2.2 of [22], we have ∥�̂�𝑘 ∥𝐹 = O(𝜒).
To utilize this preconditioning method within our IF-QIPM framework, we adopt the following procedure.
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Step 1. Choose basis �̂�𝑘 as indices of𝑚 largest, 𝑥
𝑘
𝑖

𝑠𝑘𝑖
where 𝐴�̂�𝑘 are linearly independent

Step 2. Build block-encoding of (𝐷𝑘
�̂�
)−1 and 𝐴�̂�

Step 3. Calculate 𝐴−1
�̂�

on the quantum computer
Step 4. Build �̂�𝑘 = (𝐷𝑘

�̂�
)−1𝐴−1

�̂�
𝑀𝑘 ((𝐷𝑘

�̂�
)−1𝐴−1

�̂�
)𝑇 on the quantum computer

Step 5. Find 𝑧𝑘 such that �̂�𝑘𝑧𝑘 = �̂�𝑘 + 𝑟𝑘 and ∥𝑟𝑘 ∥ ≤ 𝜂√
1+𝜃

√︃
𝜇𝑘 on the quantum computer

Step 6. Calculate Δ̃𝑦𝑘 = ((𝐷𝑘
�̂�
)−1𝐴−1

�̂�
)𝑇 𝑧𝑘 .

Step 7. Calculate 𝑣𝑘 = (𝑣𝑘
�̂�
, 𝑣𝑘

�̂�
) = (𝐷𝑘

�̂�
𝑟𝑘 , 0).

Step 8. Calculate Δ̃𝑠𝑘 = 𝑐 −𝐴𝑇𝑦𝑘 − 𝑠𝑘 −𝐴𝑇 Δ̃𝑦𝑘 .
Step 9. Calculate Δ̃𝑥𝑘 = 𝛽1𝜇𝑘 (𝑆𝑘 )−1𝑒 − 𝑥𝑘 − (𝐷𝑘 )2Δ̃𝑠𝑘 − 𝑣𝑘 .

It is straightforward to provide a convergence proof of an IF-QIPM that uses this procedure, since it produces feasible-
inexact iterates satisfying ∥𝑟𝑘 ∥ ≤ 𝜂√

1+𝜃

√︃
𝜇𝑘 . Thus, the iteration complexity of IF-QIPM using preconditioned NES is

O(√𝑛 log( 𝜇0

𝜁 )).
In order to estimate the asymptotic scaling of the overall complexity, we begin by analyzing the cost of block-encoding

the Newton system coefficient matrix in each iteration.

Proposition 4.1. Suppose 𝐴 and 𝐴�̂� are stored in a QRAM data structure. Then, one can prepare a block-encoding of

�̂�𝑘 = (𝐷𝑘
�̂�
)−1𝐴−1

�̂�
𝑀𝑘 ((𝐷𝑘

�̂�
)−1𝐴−1

�̂�
)𝑇

using Õ𝑚,𝑛, 1
𝜖
(1) accesses to the QRAM and Õ (𝑛) arithmetic operations.

Proof. First, observe that we always have classical access to 𝑥𝑘 and 𝑠𝑘 . We can therefore store the nonzero entries
of the matrices

(
𝐷𝑘

)2
and

(
𝐷𝑘
�̂�

)−1
in QRAM using Õ𝑛 (𝑛) classical operations. From here, applying [10, Lemma 50]

asserts that Õ𝑛, 1
𝜉𝐷

(1) accesses to the QRAM suffices to construct an
(
𝛼𝐷2 , log(𝑛) + 2, 𝜉𝐷

)
-block-encoding of (𝐷𝑘

�̂�
)2 and

an
(
𝛼𝐷�̂�

, log(𝑛) + 2, 𝜉𝐷
)
-block-encoding of (𝐷𝑘

�̂�
)−1. Likewise, with 𝐴 and 𝐴�̂� stored in QRAM, invoking [10, Lemma

50] we can construct a (∥𝐴∥𝐹 , log(𝑛) + 2, 𝜉𝐴)-block-encoding of 𝐴 and a
(𝐴�̂�


𝐹
, log(𝑛) + 2, 𝜉𝐴

)
-block-encoding of

𝐴�̂� , using Õ𝑚,𝑛, 1
𝜉𝐴

(1) accesses to the QRAM.
From here, we will analyze the cost of preparing block-encodings of the terms

𝑀𝑘 = 𝐴(𝐷𝑘 )2𝐴𝑇 = 𝐴𝐵 (𝐷𝑘
𝐵)2𝐴𝑇𝐵 +𝐴𝑁 (𝐷𝑘

𝑁 )2𝐴𝑇𝑁
𝑃 =

(
𝐷𝑘
�̂�

)−1
𝐴−1
�̂�

Having prepared block-encodings of 𝐴 and
(
𝐷𝑘

)2
, we can take their product prepare an

(
𝛼𝐷2 ∥𝐴∥2𝐹 ,O (log(𝑛)) , 𝜉𝑀

)
-

block-encoding of𝑀𝑘 as
𝑈𝐴𝑈𝐷2𝑈𝐴⊤ = 𝑈𝑀 .

Similarly, having prepared a
(𝐴�̂�


𝐹
, log(𝑛) + 2, 𝜉𝐴

)
-block-encoding of𝐴�̂� for𝐴�̂� , applying [9, Corollary 3.4.13], we can

prepare a
(𝐴�̂�


𝐹
𝜅𝐴�̂�

, log(𝑛) + 2, 𝜉𝐴
)
-block-encoding of

(
𝐴�̂�

)−1
. From here, applying [6, Lemma 4], we can take the

product of block-encodings of
(
𝐴�̂�

)−1
and (𝐷𝑘

�̂�
)−1, which yields an

(
𝛼𝐷−1𝜅𝐴�̂�

𝐴�̂�


𝐹
,O (log(𝑛)) , 𝜉𝑃

)
-block-encoding

of 𝑃 .
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Observe that we have prepared block-encodings𝑈𝑀 and𝑈𝑃 for𝑀𝑘 and 𝑃 such that

𝑈𝑃𝑈𝑀𝑈𝑃⊤

corresponds to a
(
𝛼𝐷−1𝛼2

𝐷2𝜅
2
𝐴�̂�
∥𝐴∥2𝐹

𝐴�̂�

2
𝐹
,O (log(𝑛)) , 𝜉𝑃

)
-block-encoding of 𝑃 , since it is defined as the product of

block-encodings [6, Lemma 4]. The complexity result follows from observing that constructing the unitary

𝑈�̂� = 𝑈𝑃𝑈𝑀𝑈𝑃⊤ = 𝑈𝑃𝑈𝐴𝑈𝐷2𝑈𝐴⊤𝑈𝑃⊤

has a gate cost of Õ𝑚,𝑛, 1
𝜖
, where we have properly set the parameters 𝜉𝐴 and 𝜉𝐷 , such that𝑈�̂� implements �̂� up to

error 𝜖 . We also needed Õ𝑛 (𝑛) classical operations to create the QRAM data structures for 𝐷−1 and 𝐷2. The proof is
complete. □

Corollary 4.2. Suppose 𝐴, 𝐴�̂� , 𝑥
𝑘 , 𝑠𝑘 and �̂�𝑘 are stored in a QRAM data structure and define

𝛼 := 𝛼𝐷−1𝛼2
𝐷2 .

Then, one can obtain a 𝜂√
1+𝜃

√︃
𝜇𝑘 -precise solution (in ℓ∞-norm) to the linear system

�̂�𝑘𝑧𝑘 = �̂�𝑘 ,

using at most

Õ𝑚,𝑛, 1
𝜖

(
𝑚𝛼𝜅2

𝐴�̂�
𝜅�̂� ∥𝐴∥2𝐹

𝐴�̂�

2
𝐹

)
QRAM accesses and Õ (𝑚𝑛) arithmetic operations.

Proof. Using the linear systems algorithm from [15] with the subnormalization factor 𝛼𝐷−1𝛼2
𝐷2𝜅

2
𝐴�̂�
∥𝐴∥2𝐹

𝐴�̂�

2
𝐹

and condition number 𝜅�̂� gives the result. □

We are now in a position to state the complexity of the Iteratively Refined IF-QIPM using preconditioned NES.

Theorem 4.3. Suppose that the LO problem data 𝐴,𝑏, 𝑐 is stored in QRAM. Then, the Iteratively Refined IF-QIPM using

preconditioned NES obtains an 𝜖-precise solution to the primal-dual LO pair (𝑃) − (𝐷) using at most

Õ𝑚,𝑛, 1
𝜖

(√
𝑛𝑚𝛼𝜅2

𝐴�̂�
𝜅�̂� ∥𝐴∥2𝐹

𝐴�̂�

2
𝐹

)
QRAM accesses and Õ 1

𝜖

(
𝑚𝑛1.5) arithmetic operations, where 𝛼 ≥ ∥�̂�𝑘 ∥𝐹 for all 𝑘 .

Proof. The result follows upon adjusting the proof of Theorem 3.4 to account for the result in Corollary 4.2. □

Based on analysis of [22], we have 𝛼 = O(∥�̂� ∥) = O(𝜒) and 𝜅�̂� = O(𝜒2). As �̂� always forms a basis for 𝐴. it is
reasonable to assume that ∥𝐴�̂� ∥𝐹 = O(∥𝐴�̂� ∥) and 𝜅𝐴�̂�

= O(𝜅𝐴). Thus, we can simplify the quantum complexity to

Õ𝑚,𝑛, 1
𝜖

(√
𝑛𝑚𝜒3𝜅2

𝐴 ∥𝐴∥4𝐹
)

with Õ 1
𝜖

(
𝑚𝑛1.5) arithmetic operations.

5 NUMERICAL EXPERIMENTS

In this section, we present a series of numerical experiments aimed at elucidating the behavior of various QIPMs.
Additionally, we compare the impact of employing iterative refinement versus preconditioning techniques. It is

Manuscript submitted to ACM



14 Mohammadisiahroudi, et al.

important to note that our analysis presupposes access to QRAM; however, it is essential to highlight that physical
QRAM infrastructure has yet to be realized. Likewise, QLSAs remain beyond the capabilities of existing quantum
hardware.

Consequently, our experiments are conducted using the IBMQiskit HHL simulator, and it is imperative to acknowledge
that our numerical results cannot be extrapolated to gauge the performance of QIPMs and QLSAs on actual quantum
hardware. Simulating quantum computers on classical computers is known to be exponentially time-consuming,
which precludes any empirical time comparison between classical and quantum methodologies at this juncture.
Notwithstanding, we are capable of simulating QLSAs for problems with limited numbers of variables and manageable
condition numbers.

Our primary focus therefore centers on presenting numerical findings pertaining to QIPMs, and we refrain from
presenting QLSA results in this paper. Interested readers are referred to [15] for comprehensive numerical experiments
related to QLSAs. Each of the algorithms discussed in this paper have been implemented in Python and are readily
accessible on our GitHub repository at https://github.com/QCOL-LU. Our Python package encompasses a versatile
array of QIPMs designed to solve linear, semidefinite, and second-order cone optimization problems. To enhancing
their versatility and efficacy, we have also incorporated iterative refinement techniques into both Quantum Linear
System Algorithms (QLSAs) and QIPMs. Users are offered the flexibility to conduct experiments with QIPMs using
either classical or quantum linear solvers, with the option to employ preconditioning.

For our experimental setup, we employ the LOP generators described in [16]. These generators have been demon-
strated to produce randomly generated Linear Optimization Problems (LOPs) with predefined optimal and interior
solutions, thereby facilitating the evaluation of IF-QIPMs. Furthermore, these generators offer users the flexibility to
control various characteristics of the problems, including the condition number of the coefficient matrix—a critical
parameter for assessing QIPMs’ performance. Our numerical experiments were conducted on a workstation equipped
with Dual Intel Xeon® CPU E5-2630 @ 2.20 GHz, featuring 20 cores and 64 GB of RAM.

To illustrate how the condition numbers of different Newton systems evolve in IPMs, Fig. 1 shows the condition
number of different linear systems trend for four problems. As Fig. 1a shows, the condition number of FNS, OSS, and
NES converge to a constant for nondegenerate LOPs with a well-conditioned matrix 𝐴. However, the condition number
of the augmented system may go to infinity, even for nondegenerate well-conditioned problems, as approaching to
the unique optimal solution. For nondegenerate problems with ill-conditioned matrices, Fig. 1b, the condition number
of NES, OSS, and FNS still converge to a constant which can be very large, like 1012. If the LO problem is degenerate,
Fig. 1c, the condition number of all Newton systems goes to infinity as approaching the optimal solution. However,
FNS and OSS have a better rate than NES and AS. The worst case happens when the problem is degenerate and matrix
𝐴 is ill-conditioned, Fig. 1d. In this case, the condition number of NES can be as large as 1020 for 𝜇 = 10−6. As these
figures illustrate, the condition number of the Newton systems is affected by the condition number of matrix 𝐴 and the
degeneracy status of the problem. Generally, OSS has a better condition number than the NES. In the next figures, we
show how iterative refinement and preconditioning can mitigate the condition number of Newton systems, especially
for NES.

Fig. 2 shows the performance of different IF-QIPMs with respect to condition number to solve a nondegenerate
problem with an ill-conditioned matrix 𝐴. As we can see, Preconditioned NES (PNES) has a significantly smaller
condition number, even better than OSS. However, iterative refinement, Fig. 2b, is not helping with the condition
number since for this type of problem, early stopping the IF-QIPM and restarting it will not change the condition
number as it is almost constant, dependent on the condition number of 𝐴. The performance of IF-QIPMs for solving
Manuscript submitted to ACM
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(a) A nondegenerate LO with 𝜅𝐴 = 10 (b) A nondegenerate LO with 𝜅𝐴 = 106

(c) A degenerate LOP with 𝜅𝐴 = 10 (d) A degenerate LOP with 𝜅𝐴 = 106

Fig. 1. Condition number trend of different Newton systems for different types of LOPs.

a primal degenerate LOP with well-conditioned coefficient matrix 𝐴 is depicted in Fig. 3. Although for PNES, there
is a theoretical condition number bound, however as in this problem, depending on the input data this bound can be
exponentially large. The condition number can grow with a slightly lower rate, but at the same rate as the one for for
MNES. On the other hand, for degenerate problems, iterative refinement can help with condition numbers. As Fig. 3b
shows, in the iterative refinements steps, we stop IF-QIPMs early, when 𝜇 = 10−2 and so the condition number remains
bounded. Then we restart the IF-QIPM for the refining problems, where the condition number is as low as the initial
condition number. By IR, the condition number will not grow above an upper bound.

Fig. 4 shows how iterative refinement coupled with preconditioning can keep the condition number of the NES
bounded during iterations of the QIPM for this challenging degenerate LOP with an ill-conditioned matrix. All in all,
iterative refinement can mitigate the impact of degeneracy on the condition number of Newton systems. On the other
hand, preconditioning is effective for addressing problems with an ill-conditioned matrix 𝐴.
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(a) Without iterative refinement (b) With iterative refinement

Fig. 2. Condition number sequence of linear systems arising in different IF-QIPM to solve a nondegenerate LOP with 𝜅𝐴 = 106

(a) Without iterative refinement (b) With iterative refinement

Fig. 3. Condition number sequence of linear systems arising in different IF-QIPM to solve a degenerate LOP with 𝜅𝐴 = 10

We also solved 100 randomly generated problems with different IF-QIPMs using the IBM QISKIT simulator. Fig. 5
shows some statistics of solved problems. As we can see, with thwe OSS system we could not solve problems with more
than 8 variables as the size of the linear systems that could be solved by the Qiskit simulator is limited to 16. In addition,
the OSS has a nonsymmetric 𝑛-by-𝑛 coefficient matrix. However, with MNES, we could solve an LOP with a million
variables and 16 constraints as the dimension of MNES is dependent on the number of constraints. These results show
that the proposed IF-QIPM is more adaptable to near-term devices. In addition, we can see that the iterative refinement
coupled with preconditioning enables the solution of the problem with a larger condition number. In addition, with
both inner and outer iterative refinement, we could improve the precision from 10−1 to 10−4 on average.
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(a) Without iterative refinement (b) With iterative refinement

Fig. 4. Condition number sequence of linear systems arising in different IF-QIPM to solve a degenerate LOP with 𝜅𝐴 = 106

Fig. 5. Statistics of 100 randomly generated LOPs solved by IF-QIPM using QISKIT Simulator (max time =2 hrs)

6 CONCLUSION

In this paper, we propose an inexact-feasible quantum interior point method in which we solve a modified normal
equation system with QLSA+QTA. In addition, we apply an iterative refinement and preconditioning to mitigate the
effect of condition number on the complexity of QIPMs. These classical ideas lead to some improvements in QIPMs
outlines as follows:
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Algorithm System Linear System Solver Quantum Complexity Classical Complexity Bound for 𝜅
IPM with Partial Updates [23] NES Low rank updates O(𝑛3𝐿)

Feasible IPM [23] NES Cholesky O(𝑛3.5𝐿)
II-IPM [20] PNES PCG O(𝑛5𝐿𝜒2) 𝜒2

II-QIPM [17] NES QLSA+QTA Õ𝑛,𝜅𝐴,𝜔 (𝑛4𝐿𝜅2
𝐴𝜔

4∥𝐴∥4) Õ𝜔 (𝑛4𝐿) O(𝜅2
�̂�
𝜔4)

IF-QIPM [18] OSS QLSA+QTA Õ𝑛,𝜅𝐴,𝜔 (𝑛2𝐿𝜅𝐴𝜔2∥𝐴∥2) Õ𝜇0 (𝑛2.5𝐿) O(𝜅�̂�𝜔2)
The proposed IR-IF-IPM MNES CG Õ𝜇0 (𝑛2.5𝐿𝜅2

𝐴𝜔
4) O(𝜅2

�̂�
𝜔4)

The proposed IR-IF-IPM PNES PCG Õ𝜇0 (𝑛3.5𝐿𝜒2) 𝜒2

The proposed IR-IF-QIPM MNES QLSA+QTA Õ
𝑛,𝜅�̂�,∥�̂�∥,∥𝑏 ∥,𝜇0 (𝑛2𝐿𝜅�̂�𝜔

2∥𝐴∥) Õ𝜇0 (𝑛2.5𝐿) O(𝜅2
�̂�
𝜔4)

The proposed IR-IF-QIPM PNES QLSA+QTA Õ𝑛, 1
𝜖
(𝑛1.5𝐿𝜒3𝜅2

𝐴 ∥𝐴∥4𝐹 ) Õ𝜇0 (𝑛2.5) 𝜒2

Table 2. Complexity of different IPMs for LO

• By modifying NES, in each iteration of the proposed IF-QIPM, we solve a linear system with𝑚-by-𝑚 symmetric
positive definite matrix, which is smaller than OSS with𝑛-by𝑛 nonsymmetric matrix. In other words, the proposed
IF-QIPM needs fewer Qubits and gates.
• We use an iterative refinement scheme coupled with preconditioning the NES that builds a uniform bound on
the condition number and speeds up QIPMs w.r.t. precision, and condition number.
• By preconditioning the NES in the quantum setting, we achieved speed up w.r.t. the dimension compared to
classical inexact approaches.

In Table 2, the complexities of some recent classical and quantum IPMs are provided. As we can see, IR-IF-QIPM
with MNES achieves the best complexity of IR-IF-QIPM using OSS with slightly better dependence on ∥𝐴∥, due to
using quantum solver of [15]. By switching to preconditioned NES, complexity gets better with respect to a dimension
but higher dependence on ∥𝐴∥𝐹 . It is natural that calculating preconditioner on a quantum machine will have better
complexity with respect to dimension but the challenge is addressing normalization factors in block-encoding. Another
difference is dependence on 𝜙 instead of𝜔 which is an upper-bound for norm of optimal solution. It should be mentioned
that both 𝜔 and 𝜙 are constants depending on input data. However, for some problems, they can be extremely large. On
the other hand don’t condition number bound and numerical results, the one advantage of iterative refinement and
preconditioning is mitigating the condition number. Mostly iterative refinement avoids the growing condition number
of the Newton system in degenerate problems, and preconditioning alleviates the impact of the condition number of
matrix 𝐴. All in all, QIPMs have the potential to speed up the solution of LOPs with respect to dimension compared
to classical but they are more dependent on condition number and norm of the coefficient matrix. In this paper, we
explored some classical ideas like using a better formulation of Newton’s system and using iterative refinement coupled
with preconditioning to shorten this gap.

Using MNES also enables regularizing the Newton system. It is worth exploring the regularization in the quantum
setting to address the impact of condition number on QIPMs. In addition, the proposed IR-IF-QIPM with preconditioned
NES can be generalized to other conic problems such as Semi-definite optimization where the size of Newton systems
may grow quadratically for large-scale problems.
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