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Abstract

Iterative Refinement (IR) is a classical computing technique for obtaining highly
precise solutions to linear systems of equations, as well as linear optimization
problems. In this paper, motivated by the limited precision of quantum solvers,
we develop the first IR scheme for solving semidefinite optimization (SDO) prob-
lems and explore two major impacts of the proposed IR scheme. First, we prove
that the proposed IR scheme exhibits quadratic convergence toward an optimal
solution without any assumption on problem characteristics. We also show that
using IR with Quantum Interior Point Methods (QIPMs) leads to exponential
improvements in the worst-case overall running time of QIPMs, compared to pre-
vious best-performing QIPMs. We also discuss how the proposed IR scheme can
be used with classical inexact SDO solvers, such as classical inexact IPMs with
conjugate gradient methods.

Keywords: Iterative Refinement, Semidefinite Optimization, Quantum Interior Point
Methods, Quadratic Convergence
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1 Introduction

Semidefinite optimization (SDO) constitutes a class of convex optimization problems
that has a wide range of applications, however, its solution is computationally chal-
lenging. Letting b ∈ Rm and consider matrices A1, . . . , Am, C ∈ Sn, where Sn is the
subspace of n × n symmetric matrices. The primal SDO problem can be written in
standard form as follows:

zP = inf
X
{C •X : Ai •X = bi for all i ∈ [m], X ⪰ 0} , (P)

where [m] denotes the set {1, . . . ,m}, U • V denotes the trace inner product of sym-
metric matrices U and V , i.e., Tr(UV ). The notation U ⪰ V (U ≻ V ) indicates
the Löwner order, i.e., U − V is a symmetric positive semidefinite (positive definite)
matrix. Without loss of generality, we assume the matrices A1, . . . , Am are linearly
independent. The dual problem associated with (P) is

zD = sup
y,S



b⊤y :

∑

i∈[m]

yiAi + S = C, S ⪰ 0, y ∈ Rm



 , (D)

where S ∈ Sn denotes the slack matrix of the dual problem, i.e.,

S = C −
∑

i∈[m]

yiAi ⪰ 0.

Linear optimization problems (LOPs) are a special case of semidefinite optimization
problems (SDOPs) in which the input matrices are diagonal. Duality results for LO
are stronger than those for SDO, except when there exist a primal feasible X and dual
feasible (y, S) with X,S ≻ 0, i.e., when the so-called Interior Point Condition (IPC)
holds. When the IPC is satisfied, optimal solutions exist for both the primal and dual
SDO problems, and there is no duality gap, i.e., zP = zD.

Semidefinite optimization is routinely used to model problems in statistics, infor-
mation theory [53], control [8], machine learning [34, 63], as well as finance [12, 65],
and quantum information science [1, 16, 62]. SDO has also been successfully applied
to approximate the solution to combinatorial optimization problems, the most notable
being the Goemans and Williamson SDO approximation of MaxCut [19] and the
Lovász ϑ-number [36]. In addition to LO, SDO generalizes other notable classes of con-
vex optimization problems, such as Second-order Cone Optimization (SOCO) [56], and
Quadratically Constrained Quadratic Optimization (QCQO) [65]. Further, SDOPs are
known to exhibit tractability [2, 47], and can be used to study the properties of convex
optimization problems [8].

Interior Point Methods (IPMs) are the prevailing approach for solving SDOPs due
to their polynomial complexity and rapid convergence [47, 48]. However, IPMs for
SDO pay a significant cost per iteration for large-scale problems; when m = O

(
n2

)

each iteration necessitates solving a Newton system of size n2×n2. Historically, IPMs
relied on the use of direct methods solving linear systems of equations (e.g., Cholesky
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decomposition) to solve the Newton linear system. Consequently, the per-iteration
cost scales as O

(
n6

)
, rendering the solution of large-scale SDO problems impractical.

These challenges, even before the birth of quantum computing, motivated the pro-
posal of inexact IPMs, in which the Newton linear systems are approximately solved
using iterative linear systems algorithms, such as the conjugate gradient method
(CGM) [7, 68]. Another type of Inexact IPM is ABIP method [15] in which an
ADMM method is used to solve the subproblems. Despite enjoying lower cost per iter-
ation compared to exact IPMs, inexact IPMs are compromised by their inefficiency
in achieving high precision solutions, particularly in their application to solving ill-
conditioned or degenerate problems. More recent developments for IPMs for SDO
[25, 27] seek to reduce the per-iteration cost by making use of fast matrix multipli-
cation and data structures to efficiently maintain an approximation of the Hessian
inverse. This approach allows one to amortize the cost of exactly solving the Newton
system over the run of the algorithm. Although, by making some additional assump-
tions, these algorithms achieve state-of-the-art theoretical running times, to the best
of our knowledge, they have not led to a successful practical implementation.

We also remark that IPMs are not the only approach for solving SDOPs. Indeed,
some researchers reformulated SDOPs as nonlinear optimization problems [9] and
employed first-order methods for their solution [46, 54]. Another first-order method
used for solving SDP is the Matrix-Multiplicative Weights Update method [5].

Since quantum computing emerged as a new paradigm for computing to speed up
solutions to some mathematical problems, several efforts have been made to quantize
optimization methods. Quantum linear systems algorithms (QLSAs) [21] are a class
of algorithms that use Hamiltonian simulation to prepare a quantum state that is
proportional to the solution of a linear system. These developments sparked the devel-
opment of Quantum IPMs (QIPMs) [6, 29], in which quantum subroutines are used
to reduce cost per iteration in IPMs.

1.1 Related work

Quantum interior point methods. The first work on quantum IPMs (QIPMs) is
attributed to Kerenidis and Prakash [29], who presented QIPMs for LO and SDO.
Their work sought to leverage QLSAs to accelerate the solution of the Newton linear
system. The QLSA with block encodings can solve the Newton system in time poly-
logarithmic in n, albeit at a cost of linear dependence on the condition number. To
proceed to the next iteration, a tomography subroutine is used to obtain a classical
estimate of the solution obtained from applying a QLSA, which introduces additional
overhead in the dimension and the error to which the estimation is performed. Though
their work provided a foundation for realizing QIPMs, critical challenges inherent to
quantizing IPMs, and the subsequent consequences, were overlooked. In their QIPM,
the Newton systems solved at each iteration are not correct, since there are no steps
to guarantee symmetry. In addition, the complexity analysis of their QIPM did not
properly account for the errors resulting from inexact tomography.

The first provably convergent QIPMs for SDO were developed by Augustino et
al. [6], who both quantized an Infeasible-Inexact IPM and presented a novel Inexact-
Feasible QIPM. In the first approach, they solved a Newton linear system where the
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right hand has residuals to capture the infeasibility and inexactness of the search
direction. In the second approach, they recover a feasible IPM framework by using a
nullspace representation of the search directions in the Newton linear system to ensure
that the feasibility of the iterates is always guaranteed. The IF-QIPM can be shown
to solve SDO problems involving n× n matrices and m = O(n2) constraints using at
most1

Õn,κ, 1ϵ

(
n3.5κ

2

ϵ

)

accesses to a QRAM and Õn,κ, 1ϵ

(
n4.5

)
arithmetic operations, where κ is an upper

bound for the condition number of Newton systems, and ϵ is the target optimality gap.
The techniques introduced in [6] have subsequently been specialized to Linear Opti-

mization [38, 39, 43] and Linearly Constrained Quadratic Optimization [66]. Huang
et al. [24] gave a QIPM for SDO by quantizing a robust dual-IPM framework. Their
algoritm has analogous polynomial dependence of κ and 1

ϵ . Observe, that the iterative
refinement scheme we propose in this paper relies on both primal and dual informa-
tion for progression between iterates, and it is unclear whether our framework can
be adapted to a dual-only setting. Summarizing, without empirical evidence to sug-
gest otherwise, the dependence on κ and 1

ϵ suggests that the speedups in n obtained
by QIPMs for SDO are insufficient to obtain an overall speedup over the classical
algorithm. Rather, it would appear that QIPMs are exponentially slower than their
classical counterpart, whose complexity does not depend on κ, and only logarithmically
depend on 1

ϵ .
Very recently, Apers and Gribling [4] proposed a QIPM for LO that avoids depen-

dence on a condition number. Under some mild assumptions and access to QRAM,
their framework achieves a quantum speedup for “tall” LOPs, in which the number
of constraints is much larger than the number of variables (i.e., m≫ n). Rather than
using QLSAs to solve the Newton system, the Newton steps are computed via spec-
tral approximations of the Hessian. While it is an interesting open question whether
the techniques from [4] can be generalized to SDO, it has been posited in the classi-
cal literature that sampling is unlikely to speed up Hessian computation as it does in
IPMs for LO [27]. Therefore, we seek another avenue for alleviating the condition of
number dependence.

In the papers [39, 43], the authors used an iterative refinement (IR) method to avoid
an exponential time of finding an exact optimal solution. The basic idea in the context
of QIPMs can be understood as follows: rather than solve the optimization problem
at hand using a QIPM run to high precision, the IR algorithm treats the QIPM as a
low-precision oracle to solve a sequence of optimization problems to constant accuracy
and use these intermediate solutions to construct a high-precision solution.

Iterative refinement. Iterative refinement stands as a widely adopted technique
for enhancing numerical accuracy in the resolution of linear systems of equations
[20, 64]. Pioneering this approach for LO problems, Gleixner et al. [18] introduced
the first iterative refinement methodology for constrained optimization problems.
They applied this technique to solve LO problems precisely, while leveraging limited-
precision oracles [17]. Additionally, Mohammadisiahroudi et al. [39] utilized IR

1The Õα,β (g(x)) notation indicates that quantities polylogarithmic in α, β and g(x) are suppressed.
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methods to obtain exact solutions for LO problems in the context of limited-precision
QIPMs. Their work demonstrated that IR can partially alleviate the impact of ill-
conditioned Newton systems on the computational complexity of QIPMs. Building
upon these foundations, our paper introduces a novel extension of this concept. We
propose the first IR method tailored specifically for SDOPs. Notably, SDO presents a
computationally more demanding scenario compared to LO and linear system prob-
lems. Through this extension, we aim to explore the potential of IR in mitigating
challenges in the SDO domain.

Convergence rates. Analysis of convergence of IPMs for SDO is more compli-
cated than those of LO [26]. It is a challenge to show the superlinear convergence
of an IPM with polynomial iteration complexity for SDO [58]. The first papers that
demonstrated superlinear convergence of an IPM for SDO were by Kojima et al. [31]
and Potra and Sheng [52]. However, the former had to make certain key assumptions
including nondegeneracy, strict complementarity, and tangential convergence to the
central path for their proofs, and the latter proposed a sufficient condition to establish
the result, both for an infeasible IPM. Later, Luo et al. [37] proved superlinear conver-
gence without nondegeneracy assumption. Potra and Sheng [52] showed that quadratic
convergence can be achieved under further assumptions. Later, Kojima et al. [32]
proved the quadratic convergence for an infeasible IPM using Alizadeh-Haeberly-
Overton (AHO) direction. However, showing the same result for other directions, such
as the Nesterov-Todd (NT) direction, is not easy. To show the superlinear convergence
for these search directions, in addition to the assumptions mentioned earlier, modifica-
tions to the algorithm, such as solving the corrector-step linear system in an iteration
repeatedly instead of only once, are required [58]. We show that the proposed IR
method has quadratic convergence toward the optimal solution set, even degenerate
problems, and/or for problems that do not have strictly complementary solutions.

1.2 Contributions of this paper

The contributions of this paper are outlined as follows:

• Introduction of Iterative Refinement Methods for SDO: We present the first
Iterative Refinement methods designed for finding precise solutions of SDO problems
utilizing limited-precision oracles. This method holds the potential to bridge the gap
between exact IPMs with computationally expensive iterations and inexact SDO
solvers characterized by slow convergence.

• Quadratic Convergence of the Proposed IR Method: We demonstrate that
the proposed IR method exhibits quadratic convergence towards the optimal solu-
tion set of the SDO problem. This noteworthy result holds even in cases where strict
complementarity fails, yielding the first quadratically convergent IPM and QIPM
for SDO.

• Development of IR-IF-QIPM for SDO: We introduce an Iteratively Refined
Inexact Feasible Quantum Interior Point Method (IR-IF-QIPM) for SDO. This novel
approach demonstrates improved computational complexity concerning dimension
compared to classical IPMs and significantly improved precision dependence com-
pared to previous QIPMs. To obtain inexact but feasible Newton directions in the
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proposed IR-IF-QIPM, we used the recently proposed Orthogonal Subspaces Sys-
tem [6, 43]. Furthermore, we illustrate how IR can effectively mitigate the impact
of ill-conditioned Newton systems on the complexity of QIPMs.

• Variants of the Proposed IR Method: Different versions of the proposed IR
method are tailored for scenarios where the limited-precision oracle produces solu-
tions with limited infeasibility errors. Additionally, the classical counterpart of the
proposed IR-IF-QIPM is presented in Appendix B, utilizing CGMs to inexactly
determine the Newton direction.

The rest of this paper is structured as follows. In Section 2, we review some essen-
tial preliminary concepts pertinent to IPMs for SDO. We present our IR method for
SDO in Section 3. Section 4 is dedicated to the convergence analysis of the proposed
IR method. Section 5 presents the proposed IR-IF-QIPM designed for solving SDO
problems. Section 6 concludes the paper. In addition, infeasible variants of the pro-
posed IR are presented in Appendix A, and the classical version, an IR-IF-IPM using
CGM is developed in Appendix B.

2 Preliminaries

We denote the quantity a to the k-th power by a(k), and the notation a(k), indicates
the value of a at iteration k of an algorithm.

In what follows, we make extensive use of the matrix functions svec and smat,
which are formally defined as follows.
Definition 1. For U ∈ Rn×n, svec(U) ∈ R 1

2n(n+1) is given by

svec(U) =
(
u11,
√
2u21, . . . ,

√
2un1, u22,

√
2u32 . . . ,

√
2un2, . . . , unn

)⊤
.

Further, the operator smat is the inverse operator of svec. That is,

smat [svec(U)] = U.

The definition of the svec operator gives rise to the definition of the symmetric
Kronecker product, which we define using the usual Kronecker product.

Definition 2. Consider an n(n+1)
2 × n2 matrix U , with

U(i,j),(k,l) =





1 if i = j = k = l,

1/
√
2 if i = j ̸= k = l, or i = l ̸= j = k,

0 otherwise.

Then, the symmetric Kronecker product G⊗sK of G and K can be expressed in terms
of the standard Kronecker products of G and K as:

G⊗s K =
1

2
U (G⊗K +K ⊗G)U⊤.
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Computational cost

When we refer to complexity, we mean the number of queries to the controlled version
of the input oracles and their inverses. We define O(·) as

f(x) = O(g(x)) ⇐⇒ there exist γ ∈ R, c ∈ R+ such that f(x) ≤ cg(x) ∀x > γ.

We write f(x) = Ω(g(x)) ⇐⇒ g(x) = O(f(x)), and we also define Õ(f(x)) = O(f(x)·
polylog(f(x))). When the function depends polylogarithmically on other variables, we

write Õa,b(f(x)) = O(f(x) · polylog(a, b, f(x))).

2.1 Primal and Dual SDOs and the Central Path

Recall that we assume the matrices A1, . . . , Am are linearly independent. We define
the feasible sets of (P) and (D) to be

P = {X ∈ Sn : Ai •X = bi for i ∈ [m], X ⪰ 0} ,

D =



(y, S) ∈ Rm × Sn :

∑

i∈[m]

yiAi + S = C, S ⪰ 0



 ,

and the sets of interior feasible solutions are given by

P◦ = {X ∈ Sn : Ai •X = bi for i ∈ [m], X ≻ 0} ,

D◦ =



(y, S) ∈ Rm × Sn :

∑

i∈[m]

yiAi + S = C, S ≻ 0



 .

Feasible IPMs are predicated on the existence of a strictly feasible primal-dual pair
X ∈ P◦ and (y, S) ∈ D◦. The existence of a strictly feasible initial solution ensures
that the IPC is satisfied [14], guaranteeing that the primal and dual optimal sets

P∗ = {X ∈ P : C •X = zP∗} ,
D∗ =

{
(y, S) ∈ D : b⊤y = zD∗

}
,

are nonempty and bounded. More importantly, there exists an optimal primal-dual
solution pair with zero duality gap. That is, for optimal solutions X∗ and (y∗, S∗), we
have

C •X∗ − b⊤y∗ = X∗ • S∗ = 0, (1)

which implies X∗S∗ = S∗X∗ = 0 as X∗ and S∗ are symmetric positive semidefinite
matrices. In primal-dual IPMs, the complementarity condition XS = 0 that arises
from the KKT optimality conditions is perturbed to

XS = µI, (2)
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where I is the n × n identity matrix, and µ > 0 is the central path parameter, which
is (monotonically) reduced to zero over the course of the algorithm.

Under the IPC and linear independence of the matrices A1, . . . , Am, the central
path equation system

Ai •X = bi for i ∈ [m], X ≻ 0,
∑

i∈[m]

yiAi + S = C, S ≻ 0,

XS = µI,

(3)

has a unique solution for all µ > 0 [47]. Accordingly, the central path of (P)-(D)
is the set of solutions to (3) for all µ > 0. IPMs approximately follow the central
path as µ → 0 by iteratively applying Newton’s method to system (3) in a certain
neighborhood of the central path. The best iteration complexity results are obtained
using the Frobenius, or narrow neighborhood of the central path:

NF (γ) =
{
(X, y, S) ∈ P◦ ×D◦ :

∥∥∥X1/2SX1/2 − µI
∥∥∥
F
≤ γµ

}
,

where µ = X•S
n .

A classical Feasible IPM, as outlined in Algorithm 1 must be initialized to a primal-
dual strictly feasible pair (X, y, S) ∈ P◦ ×D◦ for the SDO primal and dual problems
(P) and (D). In each iteration, we systematically reduce µ → σµ by a factor σ < 1,
and solve the Newton linear system in order to update the solutions for the following
iterate:

X ← X +∆X, S ← S +∆S.

In order to apply Newton’s method to (3), one needs to linearize the complementarity
condition. This yields the following Newton linear system:

∆XS +X∆S = µI −XS

∆X ∈ null(A1, . . . , Am)

∆S ∈ (null(A1, . . . , Am))
⊥
.

(4)

It is well-established in the IPM literature that (4) does not admit a symmetric matrix
solution (more specifically, a symmetric ∆X), see, e.g., [2]. Additional precautions need
therefore to be taken because both the primal and dual solutions must be symmetric.

2.1.1 Symmetrizing the Newton System

Here we review well-studied techniques to guarantee symmetry of ∆S and ∆X [2, 49,
50].

Adopting the presentation of Zhang [67], we define the linear transformation
HP (M) that symmetrizes a matrix M for a given invertible matrix P to be:

HP (M) =
1

2

[
PMP−1 + P−⊤M⊤P⊤] . (5)
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The symmetric form of the central path equations is therefore expressed as HP (XS) =
µI, and from the linearity of HP (·), we have the symmetrized Newton linear system

HP (∆XS +X∆S) = σµI −HP (XS),

∆X ∈ null(A1, . . . , Am),

∆S ∈ (null(A1, . . . , Am))
⊥
.

(6)

Choosing P to induce specific instances of this system, leads to different search direc-
tions that exhibit differing properties. The class of matrices that are valid choices for
P form what is commonly referred to as the Monteiro-Zhang (MZ) family of search
directions [45]. Table 1 from [59] summarizes commonly employed choices for P , and
their associated properties.

Table 1 Properties of Scaling Matrices [59]

Primal-Dual Scale Directions

Direction P symmetry invariance uniquely defined

NT [49, 50] W−1/2 yes yes yes

HKM [23, 33, 44] S1/2 no yes yes

AHO [2] I yes no no

Note that the Nesterov-Todd [50] scaling matrix W is defined as:

W = S−1/2(S1/2XS1/2)1/2S−1/2

= X1/2(X1/2SX1/2)−1/2X1/2.
(7)

It is well established that the Nesterov-Todd direction provides the strongest results.

Algorithm 1 Classical IPM

Input: Choose constants γ and δ in (0, 1) and σ = 1− δ√
n
.

Choose
(
X(0), y(0), S(0)

)
∈ NF (γ).

while nµ(k) > ϵ do
1. Choose a nonsingular matrix P (k) ∈ Rn×n.
2. Compute the solution to the Newton system (6) as (∆X(k),∆y(k),∆S(k)).
3. Choose a proper steplength α(k) ∈ (0, 1).

X(k+1) ← X(k) + α(k)∆X(k),

S(k+1) ← S(k) + α(k)∆S(k), y(k+1) ← y(k) + α(k)∆y(k),

µ(k+1) ← X(k+1) • S(k+1)

n
.

end
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3 Iterative Refinement for SDO

In the classical IPM literature for solving LO problems, several studies address the
numerical analysis of reaching an exact solution, such as the Iterative Refinement
scheme by [18] and the Rational Reconstruction method by [17]. In this section, we
propose an Iterative Refinement method to solve SDOPs with high precision using
limited-precision oracles. Here, we design a variant of IR for limited-precision oracles
that provides interior-feasible solutions with a constant optimality gap ϵ. The proposed
IR method, presented as Algorithm 2, is adaptable to feasible IPMs, and we use this
method in combination with the IF-(Q)IPM outlined in Section 5. The analysis of the
IR scheme using the classical IF-IPM is provided in Appendix B. In Appendix A, we
extend this procedure to oracles producing solutions where both optimality gap and
infeasibility are bounded by ϵ. We point out that this work also serves as the first
effort to develop iterative refinement for general SDO problems.

The algorithm takes as input the data defining the primal-dual pair (P)-(D), and
two error tolerances: ϵ, the fixed precision to which each oracle call is made; and ϵ̃, the
desired duality gap of the final solution. At each iterate, we make a constant-precision
call to the limited-precision oracle with the refining SDO problem data, which in turn
reports the refining solution (X, ȳ, S). From here, the solution to the SDO problem is
updated, and we update the duality gap associated with the current solution X •S. If
X •S has been reduced to, or below ϵ̃, the algorithm terminates and reports (X, y, S)
as an ϵ̃-optimal solution to (P)-(D). Otherwise, we prepare a refining problem for our
current solution and proceed to the next iteration.

Algorithm 2 Iterative Refinement for SDO

Input: Problem data A1, . . . , Am, C ∈ Sn, b ∈ Rm,
Error tolerances 0 < ϵ̃≪ ϵ < 1.
Strictly feasible point for (P)-(D) (X(0), y(0), S(0))

Output: An ϵ̃-optimal solution pair (X, y, S) to the SDO problem (A1, . . . , Am, b, C)
Initialize: k ← 1
(X(1), y(1), S(1))← solve (P)-(D) to precision ϵ

Compute scaling factor η(1) ← 1

X(1) • S(1)
.

while X(k) • S(k) > ϵ̃ do
1. (X, y, S)← solve (P̄ )-(D̄) with input (A1, . . . , Am, 0, X(k), η(k)S(k))

to precision ϵ.
2. Update solution

X(k+1) ← X(k) +
1

η(k)
X,

y(k+1) ← y(k) +
1

η(k)
y, S(k+1) ← C −

∑

i∈[m]

y
(k+1)
i Ai.

3. Update scaling factor η(k+1) ← 1

X(k+1) • S(k+1)
.

4. k ← k + 1

end
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The primal and dual refining problems are presented in Definition 3.
Definition 3. Consider the primal-dual SDO pair (P)-(D) and assume that the IPC
is satisfied. Let (X, y, S) be the current solution to (P)-(D), and let η ≥ 1 be the scaling
factor. The primal refining problem is defined as

min
X∈Sn

{
ηS •X : Ai •X = 0 for i ∈ [m] and X ⪰ −ηX

}
, (P̄ )

and its dual problem

max
(ȳ,S)∈Rm×Sn



−ηX • S :

∑

i∈[m]

ȳiAi + S = ηS and S ⪰ 0



 . (D̄)

The following result establishes that the sequence of iterates generated by
Algorithm 2 are increasingly accurate solutions to the primal-dual pair (P)-(D).
Theorem 1. Let

(
X(k), y(k), S(k)

)
be the current (overall) solution, and let

(
X, ȳ, S̄

)

be an ϵ-optimal solution to the refining problem solved at iteration k+1 of Algorithm 2.
Then,

(
X(k+1), y(k+1), S(k+1)

)
=


X(k) +

1

η(k)
X, y(k) +

1

η(k)
y, C −

∑

i∈[m]

y
(k+1)
i Ai




is a strictly feasible solution for (P)-(D).

Proof. The limited-precision oracle provides a solution
(
X(k), ȳ(k), S(k)

)
to (P̄ )-(D̄)

that satisfies

Ai •X(k) = 0, for i ∈ [m],

X(k) +
1

η(k)
X(k) ⪰ 0,

S(k) = η(k)S(k) −
∑

i∈[m]

ȳ
(k)
i Ai ⪰ 0,

(
η(k)X(k) +X(k)

)
• S(k) ≤ ϵ.

Observe that X(k+1) = X(k) + 1
η(k)X

(k) ⪰ 0.

Next, note that for any k ≥ 1, the updated solution will satisfy primal and dual
feasibility. For all i ∈ [m], we have

Ai •X(k+1) = Ai •
(
X(k) +

1

η(k)
X(k)

)
= Ai •X(k) + 0 = bi.
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Similarly,

S(k+1) = C −
∑

i∈[m]

y
(k+1)
i Ai

= C −
∑

i∈[m]

(
y
(k)
i +

1

η(k)
ȳ
(k)
i

)
Ai

=
1

η(k)


η(k)


C −

∑

i∈[m]

y
(k)
i Ai


−

∑

i∈[m]

ȳ(k)Ai




=
1

η(k)


η(k)S(k) −

∑

i∈[m]

ȳ
(k)
i Ai


 ⪰ 0.

The proof is complete.

In the next section, we show that the IR method has quadratic convergence to the
optimal solution set of the SDO problem.

4 Quadratic Convergence of Iterative Refinement

The IR method of Algorithm 2 reduces the optimality gap quadratically. The next
result formalizes this fact in the setting where one has access to limited-precision
oracles that output a feasible interior solution with ϵ duality gap.
Theorem 2. Let (X(0), y(0), S(0)) be a strictly feasible solution for the primal-dual
SDO pair (P)-(D) and ϵ < 1. At each iteration of Algorithm 2, we have

X(k+1) • S(k+1) ≤ ϵ
(
X(k) • S(k)

)2

.

Proof. As η(k) = 1
X(k)•S(k) , we have

X(k+1) • S(k+1) =

(
X(k) +

1

η(k)
X(k)

)
•


C −

∑

i∈[m]

(
y
(k)
i +

1

η(k)
ȳ(k)

)
Ai




=
1

(η(k))2



(
η(k)X(k) +X(k)

)
•


η(k)S(k) −

∑

i∈[m]

ȳ
(k)
i Ai






=
(
X(k) • S(k)

)2 [(
η(k)X(k) +X(k)

)
• S(k)

]

≤ ϵ
(
X(k) • S(k)

)2

.

The proof is complete.
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Corollary 1. Algorithm 2 obtains an ϵ̃-optimal solution to the primal-dual SDO pair
(P)-(D) in at most

O
(
log log

(
1

ϵ̃

))

iterations.

Proof. The result is a straightforward consequence of Theorem 2. Since X(1)•S(1) ≤ ϵ,
Algorithm 2 stops when

X(k) • S(k) ≤ ϵ2
k−1 ≤ ϵ̃.

Thus, we have k ≥ log log(ϵ̃)
log log(ϵ) . As the oracle has fixed-precision ϵ, the iteration complexity

of Algorithm 2 is O
(
log log

(
1
ϵ̃

))
.

The result in Theorem 2 only relies on the assumption that the IPC is satisfied. We
emphasize that this assumption can be made without loss of generality: one always
can embed the original SDO problem in a self-dual model that admits a trivial interior
solution by construction [13]. Accordingly, the proposed IR method achieves quadratic
convergence even in cases where strict complementarity fails, or the problem is degen-
erate. Another important point is the cost per iteration of the proposed IR as the
refining SDO problem needs to be solved inexactly with fixed low precision. In addi-
tion, in Step 2, the matrix summations require O(mn2) arithmetic operations, which
are dominated by the cost of solving the SDO refining problem.

The IR method of Algorithm 2 requires an SDO solver that delivers an interior
feasible solution (X, y, S) with optimality gap not exceeding a specified constant, and
so an appropriate choice for our SDO oracle is a feasible IPM. To analyze the per-
iteration cost of Algorithm 2, here we consider the setting in which each of the refining
problems is solved using a short-step feasible IPM. Note that this introduces both
practical and theoretical challenges to designing and analyzing our IR framework.

The use of a feasible IPM subroutine requires us to have access to an (easy to
prepare) initial feasible interior solution (X̊(k), ẙ(k), S̊(k)) for each the refining problems
encountered during the run of the IR method. At iteration k of the IR method, our

SDO subroutine, a feasible IPM, exhibits an iteration complexity of O(√n log(nµ̊
(k)

ϵ )),

where µ̊(k) = X̊(k)•S̊(k)

n . The dimension n is given, and ϵ < 1 is a given constant, but

we still need to determine µ̊(k). Thus, we need to find an appropriate initial interior
solution for the refining problem. One may think of embedding the refining problem
in the self-dual embedding formulation in each step of IR and update the solution for
the original problem accordingly. In this case, the IR method may have undetermined
complexity, because the embedding problem does not provide a direct bound on the
optimality gap for a solution that is retrieved from an ϵ-optimal low precision solution
of the embedding formulation. In Section 5.3, we discuss that the original SDO problem
should be embedded once initially and the whole IR approach should be used to get
a precise solution for the embedding formulation. Thus, we need to find an initial
interior solution for the refining problem at each iteration of IR, even if the embedding
formulation is used for the original problem.

Here, we present two appropriate choices for the initial interior solution of the
refining problem. It is worth mentioning that the refining SDO pair (P̄ )-(D̄) are not
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in standard form. By changing variable (X̂, ŷ, Ŝ) = (X + ηX, ȳ, S), we reformulate
them as

min
{
ηS • X̂ − η2S •X : Ai • X̂ = ηb for i ∈ [m] and X̂ ⪰ 0

}
, (P̂ )

max



ηb⊤ŷ − η2S •X :

∑

i∈[m]

ŷiAi + Ŝ = ηS and Ŝ ⪰ 0



 . (D̂)

As we can see, the complementarity gap for this standard formulation is the same as
the complementarity gap of the refining problem as

X̂ • Ŝ = (X + ηX) • S.

Let (X̊, ẙ, S̊) be an interior solution for the original SDO problem and (X(k), y(k), S(k))
be the solution at iteration k of the IR method. Then, one can choose the following
two interior solutions for refining SDO pairs (P̂ )-(D̂):

1. (η(k)X̊, η(k)(y(k) − ẙ), η(k)S̊),
2. (η(k)X(k), 0, η(k)S(k)).

By generalizing the result of [43, Theorem 6.4] from LO to SDO, one can easily show
that these solutions are in the interior of the feasible region of the refining problem.
We have µ̊(k) = (η(k))2µ̊, and µ̊(k) = (η(k))2µ(k) for the first and the second choices,
respectively. In both choices, the µ̊(k) is growing by the IR iterations, since η(k) is
growing. Thus, although the IR method has quadratic convergence toward an optimal
solution, the cost per iteration may grow. In the worst case, we have nµ̊(k) = O( 1ϵ̃ )
but it is not endangering polynomial complexity of the whole approach as the total
complexity has a logarithmic dependence on µ̊(k). In appendix A, we propose two other
variants of IR that are adaptable to infeasible oracles. Those IR methods converge
to an optimal solution linearly. Although the optimality gap decreases quadratically,
infeasibility decreases linearly.

To sum up, the iteration complexity of IR method is O(log log( 1ϵ̃ )). However, if
we use an exact feasible IPM with the proposed initial interior solution, the cost
per iteration is O(n6.5 log(nϵ̃ )) due to initial solution with large complementarity gap.
Although using exact feasible IPM in the proposed IR scheme is not a smart choice,
it is a good example to show that the total complexity still may depend on target
precision logarithmically. The question for future research is if we can achieve total
complexity with double logarithmic dependence on target precision. There are many
unexplored directions to answer this question, such as finding the better initial interior
solution for the refining problems, or a procedure to find such a solution. In another
direction, one may choose or develop another inexact SDO solver with a fixed number
of iterations. In the next section, we investigate how IR can be useful for inexact IPMs
by combining the IR methodology with an IF-QIPM.
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5 Application to Quantum Interior Point Methods

In this section, we give an overview of QIPMs for semidefinite optimization. We
begin by reviewing existing algorithms from the QIPM literature and then present a
new algorithm that closely quantizes an IPM based on the Homogeneous Self Dual
Embedding model.

5.1 Inexact-Feasible QIPM

Let A⊤ = [vec(A1),vec(A2), · · · ,vec(Am)]. At each iteration of an IPM (classical or
quantum) [6], we seek to solve a system of the form




0 A⊤ I
A 0 0
E 0 F






vec(∆X)

∆y
vec(∆S)


 =




0
0
Rc


 , (8)

where Rc = σµI−HP (XS), E = P⊗SP−1+P−1S⊗P and F = PX⊗P−1+P−1⊗XP .
Solving the above system directly on a quantum computer, we obtain the quantum
state proportional to the Newton step |∆X ◦∆y ◦∆S⟩. Yet, any estimate of the cor-
responding classical estimate (∆X,∆y,∆S) of the quantum state |∆X ◦∆y ◦∆S⟩
obtained via quantum state tomography will only satisfy




0 A⊤ I
A 0 0
E 0 F






vec(∆X)

∆y
vec(∆S)


 =




ξd
ξp

Rc + ξc


 ,

where (ξd, ξp, ξc) are the errors to which the estimated solution satisfies primal feasi-
bility, dual feasibility, and the complementarity condition, respectively. Consequently,
it is not guaranteed that the primal and dual search directions ∆X and ∆S are mem-
bers of orthogonal subspaces, which is required by the KKT optimality conditions.
This in particular is one of the reasons the early works on QIPMs [10, 29, 30] are not
valid: their analysis relies on the assumption that ∆X •∆S = 0, which does not hold
in this case.

As we discussed earlier, the running time of II-QIPM does not indicate any speedup
over classical (feasible) short-step IPMs for any parameter. As a result, the authors
in [6] also devised an algorithm that would allow them to recover a feasible IPM
framework. Indeed, the KKT optimality conditions stipulate that the primal and dual
search directions are members of orthogonal subspaces. In particular, ∆X is an element
of the null space of A, denoted N (A), whereas ∆S is an element of the row space of
A, which we denote by R(A) in the sequel.

Letting A⊤
s = [svec(A(1)), svec(A(2)), · · · , svec(A(m))], it follows svec(∆X) ∈

N (As) and svec(∆S) ∈ R(As). Following [6], one can define a basis for R(As) simply
by choosing a basis for the null space via Gauss elimination or a QR-factorization of A:

A⊤
s =

[
Q1 Q2

] [R
0

]
,
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where Q1 ∈ R
n(n+1)

2 ×m, Q2 ∈ R
n(n+1)

2 ×(n(n+1)
2 −m), and R ∈ Rm×m. Moreover, the

columns of Q2 form a basis for the null space of As. Introducing a new variable

λ ∈ R(
n(n+1)

2 −m), the Newton directions svec(∆X) and svec(∆S) can be written as

svec(∆X) = Q2λ, svec(∆S) = −A⊤
s ∆y.

Let P be an appropriate scaling matrix from the Monteiro-Zhang family that
guarantees primal-dual symmetry, and define

Es = (P ⊗s P
−⊤S),

Fs = (PX ⊗s P
−⊤),

Rc = σµI −HP (XS),

where ⊗s denotes the symmetric Kronecker product. The Newton linear system for
the IF-QIPM is given by

[
EsQ2 Fs(−A⊤

s )
] [ λ

∆y

]
= svec(Rc). (OSS)

Let us denote the error introduced by QLSA by rc ∈ Sn×n. We require that the error
is proportional to the central path parameter, that is:

∥rc∥F ≤ βµ, (AR1)

for some β ∈ (0, 1).
Theorem 3 (Propositions 10-12 in [6]). Given (X, y, S) ∈ P◦ ×D◦, we have

1. System (OSS) is equivalent to System (4).
2. System (OSS) has a unique solution (λ,∆y).
3. For the solution (∆X,∆y,∆S), where ∆X = smat(Q2λ) and ∆S =
−∑

i∈[m] ∆yiAi, one has ∆X •∆S = 0.

4. For an inexact solution (∆X,∆y,∆S) with residual rc, feasibility holds:

Ai • (X + α∆X) = bi, and
∑

(yi + α∆yi)Ai + (S + α∆S) = C.

Though we treat the IF-(Q)IPMs as a black-box SDO solver in order to generalize
our results to any appropriate primal-dual algorithm, we briefly summarize how the
quantum algorithm is implemented using a QLSA. Aside from how the Newton system
is solved, the steps of a QIPM are exactly the same as the ones in a classic IPM. Thus,
suppose we are at iterate k, with the current solution

(
X(k), y(k), S(k)

)
. In order to pre-

pare and solve the Newton linear system for the Newton step (∆X,∆y,∆S) at iterate
k+ 1, we classically compute the scaling matrix P , and store P and

(
X(k), y(k), S(k)

)

in quantum random access memory (QRAM). QRAM is a quantum analogue to the
standard RAM, and a description can be found in [11, Section 2.2]. From here, the
data we have stored in QRAM is used to prepare a unitary block-encoding [11] of the
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coefficient matrix of the Newton system, which is a technique for preparing quantum
gates involving non-unitary matrices. Using our block-encoding of the Newton system
coefficient matrix, and a quantum state encoding the right-hand side vector, we solve
the quantum linear system to prepare a quantum state encoding the Newton step. A
classical estimate of this step is produced up to precision ϵ through the use of quan-
tum state tomography [60]. From here, we use our classical estimate of the Newton
step to update the solution, and we proceed to the next iterate. For a more detailed
discussion, see [6, Section 2].

Algorithm 3 IF-QIPM

Input: Problem data A1, . . . , Am, C ∈ Sn, b ∈ Rm,
Strictly feasible point for (P)-(D) (X(0), y(0), S(0))
Choose constants β, γ and δ in (0, 1) and σ = 1− δ√

n
.

Output: An ϵ-optimal solution pair (X, y, S) to the SDO problem (A1, . . . , Am, b, C)
Initialize: k ← 0
Calculate Q2 by QR factorization of A
µ0 ← X0•S0

n

while nµ(k) > ϵ do
1. (λ(k),∆y(k))← solve system (OSS) using QLSA with error bound ϵ(k)

2. ∆X(k) ← smat(Q2λ
(k)) and ∆S(k) = −∑

i∈[m] ∆y
(k)
i Ai

3. (X(k+1), y(k+1), S(k+1))← (X(k), y(k), S(k)) + (∆X(k),∆y(k),∆S(k))

4. µ(k+1) ← (X(k))⊤S(k)

n
5. k ← k + 1

end

The following two results from [6] bound the iteration complexity and overall
running time of the IF-QIPM for SDO, respectively.
Theorem 4 (Theorem 4 in [6]). Let γ, β ∈ (0, 1) and δ ∈ (0, 1) be constants satisfying

2
√
2γ

1− γ
≤ 1, βσ ≤

√
γ2 + (1− σ)2n

1− γ
, β ≤ 1− γ√

n
− 21.7(γ2 + δ2)

(2 +
√
2)

(
1− δ√

n

)
γ(1− γ)

.

Suppose that (X, y, S) ∈ NF (γ) and let (∆X,∆y,∆S) denote the solution that we
obtain from solving system (OSS), where σ = 1− δ/

√
n, and µ = (X • S)/n. Then,

(a) (X̂, ŷ, Ŝ) = (X +∆X, y +∆y, S +∆S) ∈ NF (γ);

(b) X̂ • Ŝ =
(
1− δ√

n

)
(X • S).

Corollary 2 (Corollary 2 in [6]). A quantum implementation of the IF-QIPM with
access to QRAM outputs an ϵ-optimal solution (X∗, y∗, S∗) to the primal-dual SDO
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pair (P)-(D) using at most

O
(
n3.5κ

2

ϵ
· polylog

(
n, κ,

1

ϵ

))

QRAM accesses and O
(
n4.5 · polylog

(
κ, 1

ϵ

))
arithmetic operations.

5.2 Analyzing the Orthogonal Subspaces System

In this section, we investigate the condition number of system (OSS) because quantum
solvers are sensitive to the condition number of the linear systems. Here, we extend
the condition number analysis of OSS, done in [43] for LO, to SDO. To compute the
condition number of M (k) =

[
−FsA⊤

s EsQ2

]
, we compute the condition number of

(M (k))⊤M (k) which can be written as follows

(
M (k)

)⊤
M (k) =

[
As 0
0 Q⊤

2

] [
(Fs)

2 −(Fs)
⊤Es

−(Es)⊤Fs (Es)2
] [
A⊤ 0
0 Q2

]
.

Let emin(X) and emax(X) be the smallest and largest eigenvalues of X, respectively.
To analyze the OSS system, it is a prevailing assumption that

max{emax(X), emax(S)} ≤ ω.

In some SDOPs, ω can be exponentially large [51]. The Following Lemma provides a
lower bound for the smallest eigenvalues of X and S.
Lemma 1. For (X, y, S) ∈ NF (γ), we have

(1− γ)
µ

ω
≤ emin(X), emax(X) ≤ ω, (9)

(1− γ)
µ

ω
≤ emin(S), emax(S) ≤ ω. (10)

We recall the following results from [43].
Lemma 2. For any full row-rank matrix T ∈ Rm×n and any symmetric positive
definite matrix D ∈ Rn×n, their condition number satisfies

κ
(
TDT⊤) ≤ κ(D)κ

(
TT⊤) .

Let

D(k) =




(
F (k)

s

)2

−
(
F (k)

s

)⊤
E(k)s

−
(
E(k)s

)⊤
F (k)

s

(
E(k)s

)2


 , T =

[
A⊤ 0
0 Q2

]
.

Then an upper bound for the condition number of the (OSS) system can be derived as

κ(M (k)) =
√

κ (TDT⊤) ≤
√

κ(D(k))κT ,
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where κT is the condition number of the matrix T defined above. Based on Lemma 1,
it is easy to verify that

√
κ(D(k)) is dependent on ω and 1

µ . For the case of LO,

authors of [43] showed
√

κ(D(k)) = O(ω2

µ ). For general SDO, for different choices of

symmetrization matrix P the powers of ω and 1
µ may have different exponents.

Claim 1. There exist positive integers p > 0 and q > 0 such that the condition number
of system (OSS) is O(ωp

µq κT ).
Although it is not easy to prove that Claim 1 holds for any symmetrization matrix

P , it is straightforward to check that it is true for matrices presented in Table 1. The

reason is that F (k)
s and E(k)s can be decomposed to following elements

κ(X) = O
(
ω2

µ

)
, κ

(
X−1

)
= O

(
ω2

µ

)
, κ

(
X

1
2

)
= O

(
ω√
µ

)
, κ

(
X− 1

2

)
= O

(
ω√
µ

)
,

κ(S) = O
(
ω2

µ

)
, κ

(
S−1

)
= O

(
ω2

µ

)
, κ

(
S

1
2

)
= O

(
ω√
µ

)
, κ

(
S− 1

2

)
= O

(
ω√
µ

)
.

The following Theorem provides an upper bound for the condition number of system
(OSS) for the AHO direction.

Theorem 5. Let P = I. We have κ(M (k)) = O
(

ω2

µ κT

)
.

Proof. Based on Section 4 of [2], we have

κ(E(k)) = O
(
ω2

µ

)

where E(k) =
[
F (k)

s E(k)s

]
. Since D(k) = (E(k))⊤E(k), we have

κ(D(k)) = O
(
ω4

µ2

)
, κ(M (k)) = O

(
ω2

µ
κT

)
.

The proof is complete.

As we can see, the condition number of the OSS system may grow to infinity as
µ→ 0. We show that in our IR method, we solve SDO problems with limited precision,
and the general upper bound for the condition number is bounded by O(ω2κT ), which
is constant and depends only on input data.

5.3 An Inexact-Feasible QIPM for the Homogeneous Self-dual
Embedding Model

In this section, we use the canonical formulation for SDOPs as

zP = inf
X
{C •X : Ai •X + ui = bi, ∀i ∈ [m], X ⪰ 0, u ≥ 0} , (11)
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zD = sup
y,S



b⊤y :

∑

i∈[m]

yiAi + S = C, S ⪰ 0, y ≥ 0



 . (12)

One can easily change the standard formulation to canonical formulation and vice
versa. In line with our discussion on the central path, recall that for a feasible IPM, we
must assume the IPC, e.g., that a strictly feasible pair X and (y, S) with X ≻ 0 and
S ≻ 0 exists [14]. It is known that with the self-dual embedding model this condition
may be assumed without loss of generality [14]. To see this, note that any primal-dual
SDO pair of the form (11) has a self-dual embedding formulation given by

min (n+m+ 2)θ

Ai •X −biτ +b̄iθ −ui = 0,
−∑

j∈[m] yjAj +Cτ −Cθ −S = 0,

b⊤y −C •X +ōθ −ϕ = 0,
−b̄⊤y +C •X −ōτ −ρ = −(n+m+ 2),

X ⪰ 0, S ⪰ 0, τ ≥ 0, θ ≥ 0, ϕ ≥ 0, ρ ≥ 0, u ≥ 0, y ≥ 0,

where

b̄i = bi + 1−Ai • I,
C = C − I −

∑

i∈[m]

Aj ,

ō = 1 + C • I − b⊤e.

Then, it can be easily verified that y0 = u0 = e, X0 = S0 = I and θ0 = τ0 = ϕ0 =
ρ0 = 1 is a feasible interior starting solution.

Let (y∗, X∗, τ∗, θ∗, u∗, S∗, ϕ∗, ρ∗) denote a maximally complementary optimal
solution of the self-dual embedding problem, then:

(a) if τ∗ > 0, then a primal-dual complementary pair ( 1
τ∗X

∗, 1
τ∗S

∗) is obtained for the
original primal and dual problems,

(b) if τ∗ = 0 and ϕ∗ > 0, then a primal and/or dual improving ray is detected,
(c) if τ∗ = ϕ∗ = 0, then no complementary pair exists and neither primal nor dual

improving ray exists.
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The feasible Newton system for this formulation using the svec and As notation is as
follows:

Assvec(∆X(k)) −b∆τ (k) +b̄∆θ(k) −∆u(k) = 0,

−A⊤
s ∆y(k) +svec(C)∆τ (k) +svec(C)∆θ(k) −svec(∆S(k)) = 0,

b⊤∆y(k) −svec(C)⊤svec(∆X(k)) +ō∆θ(k) −∆ϕ(k) = 0,

−b̄⊤∆y(k) −svec(C)⊤svec(∆X(k)) −ō∆τ (k) −∆ρ(k) = 0,

HP (X(k)∆S(k) +∆X(k)S) = σµ(k)I −HP (X(k)S(k)),

Y (k)∆u(k) + U (k)∆y(k) = σµ(k)e− Y (k)u(k),

τ (k)∆ϕ+ ϕ(k)∆τ (k) = σµ(k) − τ (k)ϕ(k),

θ(k)∆ρ(k) + ρ(k)∆θ(k) = σµ(k) − θ(k)ρ(k),
(13)

where Y (k) = diag(y(k)) and U (k) = diag(u(k)).
To derive the OSS system for Newton system (13), we define

P =




I 0 0 0 0 −As b −b̄
0 I 0 0 A⊤

s 0 −svec(C) −svec(C)
0 0 1 0 −b⊤ svec(C)⊤ 0 −ō
0 0 0 1 b̄⊤ svec(C)⊤ ō⊤ 0


 ,

D =




Y (k) 0 0 0 U (k) 0 0 0
0 Fs 0 0 0 Es 0 0
0 0 τ (k) 0 0 0 ϕ(k) 0
0 0 0 θ(k) 0 0 0 ρ(k)


 ,

R =




σµ(k)e− Y (k)u(k)

σµ(k)e−HP (X
(k)S(k))

σµ(k) − τ (k)ϕ(k)

σµ(k) − θ(k)ρ(k)


 ,

∆X = (∆u(k), svec(∆S(k)),∆ϕ(k),∆ρ(k),∆y(k), svec(∆X(k)),∆τ (k),∆θ(k))⊤,

(14)

where 0 is the all-zero matrix. Then, the Newton system can be simplified as

∆X ∈ Null(P),
D∆X = R. (15)

A basis for the null space of P is given by the column vectors of

V =




0 −A b −b̄
A⊤ 0 −svec(C) −svec(C)
−b⊤ svec(C)⊤ 0 −ō
b̄⊤ svec(C)⊤ ō⊤ 0
−I 0 0 0
0 −I 0 0
0 0 −1 0
0 0 0 −1




.
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This demonstrated that if we have an SDOP in canonical form, then a basis for the
null space of P can be constructed without any factorization or elimination proce-
dure. Thus, the cost of preprocessing is negligible in this setting. The OSS for this
formulation at the kth iteration is

D(k)Vλ(k) = R(k), (16)

where λ(k) ∈ R
n(n+1)

2 +m+2 and the size of the system will be n(n+1)
2 +m+ 2. We can

calculate the Newton direction by ∆X = Vλ(k). Even if λ̃(k) is an inexact solution

of system (16), then the inexact direction ∆̃X (k)
= Vλ̃(k) is still always a feasible

direction, since ∆̃X (k) ∈ Null(A).
To have a convergent IF-IPM, we need that for the error ∥r(k)∥ ≤ βµ(k) holds,

where r(k) = DVλ̃−R = DV(λ̃(k) − λ(k)). So, the error bound ϵ(k) = βµ(k)

∥DV∥ is needed.

Lemma 3. Let (u(k), S(k), ϕ(k), ρ(k), y(k), X(k), τ (k), θ(k)) ∈ PD0 then the following
statements hold.

1. Systems (16) and (13) are equivalent.
2. System (16) has a unique solution.
3. For the solution of system (16) orthogonality holds, i.e.,

(∆X(k) •∆S(k)) + (∆y(k))⊤∆u(k) +∆τ (k)∆ϕ(k) +∆θ∆ρ = 0.

Now, we can develop our IF-QIPM for the self-dual embedding model as Algo-
rithm 4.

Algorithm 4 IF-QIPM for the Self-dual Embedding Formulation

Input: Choose constants β, γ and δ in (0, 1) and σ = 1− δ√
n
.

(y0, X0, τ0, θ0, u0, S0, ϕ0, ρ0)← (e, I, 1, 1, e, I, 1, 1)
µ0 ← 1

while (n+m+ 2)µ(k) > ϵ do

1. ϵ(k) ← β µ(k)

∥D(k)V∥
2. λ(k) ← solve system (16) with error bound ϵ(k)

3. ∆X (k) = Vλ(k)

4. X (k+1) ← X (k) +∆X (k)

5. µ(k) ← (y(k))⊤u(k)+X(k)•S(k))+τ(k)ϕ(k)+ρ(k)θ(k)

n+m+2

end

In a QIPM we solve system (16) using a QLSA. The convergence analysis of the
IF-QIPM of Algorithm 4 applied to the self-dual embedding formulation is analogous
to the analysis of the IF-QIPM of [6].
Theorem 6. For the IF-QIPM of Algorithm 4 applied to the self-dual embedding
formulation, the following statements hold.

1. The sequence {µk}k∈N converges linearly to zero.
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2. For any k ∈ N, X (k) ∈ NF (γ).
3. After at most O(√n log(nϵ )) iterations, the IF-QIPM delivers an ϵ-optimal solution.
4. The IF-QIPM finds an ϵ-optimal solution using at most

O
(
n3.5ω

4κ2
T

ϵ3
· polylog

(
n, κ,

1

ϵ

))

QRAM accesses and O
(
n4.5 · polylog

(
κ, 1

ϵ

))
arithmetic operations.

Proof. The proof is straightforward by combining the results of Theorems 4, 5, and
Corollary 2 for the self-dual embedding formulation.

As we can see, the IF-QIPM has polynomial dependence on 1
ϵ which means that

it can be used for finding an inexact solution for an SDOP. To find a precise solution
and improve the complexity with respect to inverse precision, we use the IR method
of Algorithm 2 calling IF-QIPM as a subroutine. We first embed the original problem
in the self-dual formulation and then apply the proposed IR-IF-QIPM, IR method of
Algorithm 2, where the refining problem is solved by the IF-QIPM of Algorithm 4.
In this framework, one can set the target precision of the IF-QIPM to ϵ = 10−2, and
the final precision of IR method as needed. The following theorem presents the total
complexity of the proposed IR-IF-QIPM for solving an SDO problem
Theorem 7. The proposed IR-IF-QIPM, the IR method of Algorithm 2 augmented
with the IF-QIPM of Algorithm 4, finds an ϵ-optimal solution using at most

O
(
n3.5ω4κ2

T · polylog
(
n, κ,

1

ϵ

))

QRAM accesses and O
(
n4.5 · polylog

(
κ, 1

ϵ

))
arithmetic operations.

The proof of Theorem 7 follows from Theorem 10 and Theorem 6. As we can see,
the proposed IR-IF-QIPM shows exponential speed-up with respect to precision. In
the next section, we compare our results with other types of SDO solvers. In addition,
Appendix B shows that the proposed IR can speed up the classical IF-IPM, that use
classical iterative methods to solve the OSS system.

5.4 Comparison to existing SDO solvers

Given the advantageous running times we obtain for our IR-IF-QIPMs, we should
determine how our classical and quantum algorithms compare to the best-performing
methods in both the classical and quantum literature.

In Table 2 we present the running times of these algorithms when applied to
problems with m = O

(
n2

)
. Again, we can observe that our classical and quantum

algorithms, w.r.t. dimension are the fastest in their respective models of computation
and in particular the quantum implementation provided in Algorithm 4 remains the
fastest overall. Moreover, the gap in performance between our classical and quantum
implementations is linear in n.
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References Method Runtime

[45, 49, 50] IPM Õn, 1
ϵ

(
n6.5

)

[27] IPM Õn, 1
ϵ

(
n5.246

)

[28, 35] CPM Õn,R, 1
ϵ

(
n6

)

[5] MMWU Õn

(
n5

(
Rr
ϵ

)4
+ n2

(
Rr
ϵ

)7
)

[3] QMMWU Õn, 1
ϵ

((
n2 + n1.5 Rr

ϵ

)(
Rr
ϵ

)4
)

[6] IF-QIPM Õn,κ, 1
ϵ

(√
n
(
n3κ2ϵ−1 + n4

))

[6] IF-IPM Õn,κ, 1
ϵ

(
n4.5κ

)

This work IR-IF-QIPM Õn,κ, 1
ϵ

(√
n
(
n3ω4κ2

T + n4
))

This work IR-IF-IPM Õn,κ, 1
ϵ

(
n4.5ω2κT

)

Table 2 Total running times for classical and quantum algorithms

to solve (P) with m = O(n2) and row-sparsity s = n. Further, R
is an upper bound on the trace of primal optimal solutions and r
is an upper bound on the ℓ1-norm of dual optimal solutions.

6 Conclusion

This paper introduces an Iterative Refinement (IR) method tailored for semidefinite
optimization, leveraging limited-precision feasible SDO solvers, such as limited-
precision IF-QIPMs, as a subroutine. Demonstrating remarkable convergence prop-
erties, our proposed IR approach showcases quadratic convergence to the optimal
solution set, even if the SDO problem is degenerate and/or fails to have strict comple-
mentary optimal solutions. However, a potential limitation of the IR method surfaces
in its growing cost per iteration. Notably, when employing a feasible Interior Point
Method (IPM) as a subroutine, the number of IPM iterations for the refining prob-
lem tends to inflate as the IR process achieves higher precision. This phenomenon
arises from the growth of the complementarity gap in the initial solutions for the refin-
ing problems as IR iterates converge closer to the optimal solution set. Consequently,
IPMs require more iterations to compute an inexact solution for the refining problem
during the final stages of IR.

Further, we introduce two alternate variants of infeasible IR methods adaptable
to infeasible oracles. Although these methods exhibit a quadratic reduction of the
optimality gap, they concurrently reduce infeasibility at a linear rate. An intriguing
avenue for future research is to find the initialization of IPMs in the refining problem so
that the number of IPM iterations remains uniformly bounded during the IR iterations.

Expanding on our contributions, the application of IR in conjunction with
an Inexact-Feasible Quantum Interior Point Method (IR-IF-QIPM) proves to be
instrumental in solving SDO problems to high-precision without incurring excessive
computational time as seen in previous QIPMs. Compared to previous QIPMs, we
achieved exponential speed-up w.r.t. precision by our IR-IF-QIPM. Additionally, w.r.t.
dimension, our IR-IF-QIPM is superior compared to classical IPMs.

One notable benefit of IR lies in its mitigation of the impact of the Newton sys-
tem’s condition number, where an upper bound for the condition number depends on
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parameters such as ω, µ, and κT . As the optimal solution is approached (µ→ 0), the
condition number might tend toward infinity. However, IR tackles this issue by imple-
menting early termination of the IF-QIPM steps, when µ reaches a predetermined
constant, e.g., 10−2. Observe, that while parameters like ω and κT remain constant and
depend only on input data, they can be exponentially large for certain SDO problems,
see e.g., the challenging SDOPs of [51].

To further enhance the complexity of QIPMs, techniques such as preconditioning
[42] and regularization [40, 57] can be deployed, addressing constants like ω and κT .
Nevertheless, additional empirical and theoretical analyses are essential to explore
and realize the full potential of employing IR with other inexact algorithms, such as
ADMM-based IPMs [15], Spectral Bundle Methods [22], and various others.

This paper has primarily delved into the theoretical analysis of the IR method and
its integration with QIPMs. Implementations and validations have been conducted
for all IR methods alongside QIPMs, and these are readily accessible through https:
//github.com/QCOL-LU. Furthermore, numerical findings showcased in [39, 42, 43]
have highlighted the efficiency of IR methods in solving challenging linear optimization
problem instances, including challenging degenerate problems generated by methods
outlined in [41].

A notable avenue for further research involves benchmarking various inexact SDO
solvers within the IR framework, particularly for challenging SDO problems generated
by methodologies in [41]. It is crucial to note that current quantum computers lack
the ability to solve linear systems. Consequently, the use of classical simulators for
executing QLSAs on small linear systems is feasible. However, empirical analysis of
the IR-IF-QIPM encounters limitations due to the size of the OSS system, which even
for small-scale problems surpasses the capabilities of available simulators. At the time
of writing this paper, empirical analysis of IR-IF-QIPMs remain unfeasible.

In conclusion, the proposed IR method serves as a bridge between exact and inexact
SDO solvers, accelerating the convergence of inexact solvers while exhibiting loga-
rithmic precision dependence akin to exact IPMs. This pioneering paper highlights
the novel application of IR to expedite the attainment of high-precision solutions for
SDOPs, emphasizing the need for further empirical and theoretical investigations to
unlock the full potential of IR alongside diverse variants of inexact algorithms.
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A Other SDO oracles

In this section, we develop two variants of IR method for SDO which uses an infeasible
limited-precision SDO solver as a subroutine.

A.1 Using an Infeasible Non-Interior Oracle

In what follows, we assume access to an oracle OIN which produces an approximate
infeasible non-interior solution. Let emin(A) denote the smallest eigenvalue of matrix
A. The set of ϵ-precise solutions is defined as

PDϵ =

{
(X, y, S) ∈ Sn × Rm × Sn : emin(X) ≥ −ϵ, emin (S) ≥ −ϵ,

S = C −
∑

i∈[m]

yiAi,

max
i∈[m]
{|bi −Ai •X|} ≤ ϵ, X • S ≤ ϵ

}
.

Hence, our oracle OIN returns solutions from the set PDϵ.
Definition 4. Let the SDO primal problem be given as (P) and (D). Assume strong
duality (zero-duality gap) holds for this problem. For any X ∈ Sn, y ∈ Rm, and scaling
factor, η > 1, the refining problem (P̄ ) is defined as

min
X∈Sn

{
ηS •X : Ai •X = ηb̄i for i ∈ [m], and X ⪰ −ηX

}
,

and its dual problem (D̄) is as

max
(ȳ,S)∈Rm×Sn



ηb̄⊤ȳ − ηX • S :

∑

i∈[m]

ȳiAi + S = ηS, and S ⪰ 0



 ,

where S = C −∑
i∈[m] yiAi and b̄i = bi −Ai •X for i ∈ [m].

Theorem 8 is the foundation of the Iterative Refinement method.
Theorem 8. Let X ∈ Sn, y ∈ Rm, and scaling factor, η > 1 and the primal-dual
refining problems (P̄ ) and (D̄) are defined as in Definition 4. If (X, ȳ, S̄) is an ϵ-
precise solutions for the refining problem (P̄ ) and (D̄), then X + 1

ηX and y + 1
ηy are

ϵ
η -precise solutions for the original SDO problem.
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Proof. Since (X, y, S) is an ϵ-precise solution for the refining problems, we have

emin(X + ηX) ≥ −ϵ,

emin(ηS −
∑

i∈[m]

ȳiAi) = emin(ηC − η
∑

i∈[m]

yiAi −
∑

i∈[m]

ȳiAi) ≥ −ϵ,

|ηb̄i −Ai •X| = |ηbi − ηAi •X −Ai •X| ≤ ϵ, ∀i ∈ [m],

(X + ηX) • S ≤ ϵ.

For solution X + 1
ηX and y + 1

η ȳ, we have

emin(X +
1

η
X) =

1

η
emin(X + ηX) ≥ − ϵ

η
,

emin(C −
∑

i∈[m]

(yi +
1

η
ȳ)Ai) =

1

η
emin(ηC − η

∑

i∈[m]

yiAi −
∑

i∈[m]

ȳiAi) ≥ − ϵ

η
,

|bi −Ai • (X +
1

η
X)| = 1

η
|ηbi − η(Ai •X)−Ai •X| ≤ ϵ

η
, ∀i ∈ [m],

(X +
1

η
X) • (C −

∑

i∈[m]

(yi +
1

η
ȳ)Ai) =

1

η2
(X + ηX) • (ηS −

∑

i∈[m]

ȳiAi) ≤
ϵ

η2
≤ ϵ

η
.

Thus, X + 1
ηX and y+ 1

η ȳ are ϵ
η -precise solutions for the original SDO problem.

Based on Theorem 8, we can develop an Iterative Refinement algorithm using
oracle OIN to improve the precision of solution for an SDO problem as follows.

A.2 Using an Infeasible Interior Oracle

In this section, we assume that we have access to an oracle OII which gives a solution
from the interior of the positive semidefinite cone, i.e., X ≻ 0, S ≻ 0, but does
not satisfy the dual and primal constraints exactly. Infeasible IPMs can be used to
construct such an oracle. Letting C = C −∑

i∈[m] yiAi − S and b̄i = bi − Ai •X for

i ∈ [m], the set of ϵ-precise solutions is defined as

PDϵ =
{
(X, y, S) ∈ Sn × Rm × Sn : X ⪰ 0, S ⪰ 0, ∥C∥ ≤ ϵ, ∥b̄∥ ≤ ϵ, X • S ≤ ϵ

}
.

As we can see, this setting is different from previous IR methods since the dual con-
straint has an error in this setting. To account for this residual, we need to adjust the
refining problems for any X ∈ Sn, y ∈ Rm, S ∈ Sn, and scaling factor, η > 1.
Definition 5. Let the SDO primal problem be given as (P) and (D). Assume strong
duality (zero-duality gap) holds for this problem. For any X ∈ Sn, y ∈ Rm, S ∈ Sn,
and scaling factor, η > 1 consider the refining problem (P̄ )

min
X∈Sn

{
η(C + S) •X : Ai •X = ηb̄i for i ∈ [m], and X ⪰ −ηX

}
,
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Algorithm 5 Iterative Refinement for SDO Using an Infeasible Non-Interior Oracle

Input: Problem data A1, . . . , Am, C ∈ Sn, b ∈ Rm, error tolerances 0 < ϵ̃ ≪ ϵ < 1.
Strictly feasible point for (P)-(D) (X(0), y(0), S(0))
Choose incremental scaling limit ρ ∈ N such that ρ > 1

Output: An ϵ̃-precise solution pair (X, y, S) to the SDO problem (A1, . . . , Am, b, C).
Initialize: η(1) ← 1, k ← 1
(X(1), y(1), S(1))← solve (P)-(D) to precision ϵ
while X(k) • S(k) > ϵ̃ do

1. Calculate b̄
(k)
i ← bi −Ai •X(k) for i ∈ [m]

2. Calculate residual

r ← max
{
max

i
|b̄(k)i |, X(k) • S(k),max{−emin(X

(k)), 0},max{−emin(S
(k)), 0}

}

3. Update scaling factor η(k+1) = min{ 1r , ρη(k)}
4. (X, y, S)← solve refining problem (A1, . . . , Am, η(k)b̄(k), η(k)S(k)) to precision ϵ
5. Update solution

X(k+1) ← X(k) +
1

η(k)
X, y(k+1) ← y(k) +

1

η(k)
y, S(k+1) = C −

∑

i∈[m]

y
(k+1)
i Ai

6. k ← k + 1

end

where C = C −∑
i∈[m] yiAi − S and b̄i = bi − Ai •X for i ∈ [m]. The dual form of

this refining problem is derived as

max
(ȳ,S′)∈Rm×Sn



ηb̄⊤ȳ − ηX • S′ :

∑

i∈[m]

ȳiAi + S′ = ηC + ηS and S′ ⪰ 0



 .

To simplify the analysis, we can change the variable S = S′ − ηS, and the dual
refining problem is defined as

max
(ȳ,S)∈Rm×Sn



ηb̄⊤ȳ − ηX • (S + ηS) :

∑

i∈[m]

ȳiAi + S = ηC and S ⪰ −ηS



 .

It is easy to verify that the duality gap for these refining problems is

(X + ηX) • S′ = (X + ηX) • (S + ηS).

Theorem 9 is a modified version of Theorem 8.
Theorem 9. Let X ∈ Sn, y ∈ Rm, S ∈ Sn and scaling factor, η > 1 and the
refining problem (P̄ ) and (D̄) are defined as in Definition 5. If (X, ȳ, S̄) is an ϵ-precise
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solutions for the refining problem, then X + 1
ηX, y + 1

ηy, S + 1
ηS and are ϵ

η -precise
solutions for the original SDO problem.

Proof. Since (X, ȳ, S̄) is an ϵ-precise solution of the refining problem, we have

X + ηX ⪰ 0,

S̄ + ηS ⪰ 0,

∥ηC −
∑

i∈[m]

ȳiAi − S̄∥ = ∥ηC − η
∑

i∈[m]

ỹiAi − ηS −
∑

i∈[m]

ȳiAi − S̄∥ ≤ ϵ,

|ηb̄i −Ai •X| = |ηbi − ηAi •X −Ai •X| ≤ ϵ,

(X + ηX) • (S̄ + ηS) ≤ ϵ.

For solution (X + 1
ηX, y + 1

η ȳ, S + 1
η S̄), we have

X +
1

η
X =

1

η
(X + ηX) ⪰ 0,

S +
1

η
S̄ =

1

η
(S̄ + ηS) ⪰ 0,

∥C −
∑

i∈[m]

(yi +
1

η
ȳi)Ai − (S +

1

η
S̄)∥ =

1

η
∥ηC − η

∑

i∈[m]

ỹiAi −
∑

i∈[m]

yiAi)− ηS − S̄∥ ≤ ϵ

η
,

|bi −Ai • (X +
1

η
X)| = 1

η
|ηbi − ηAi •X −Ai •X| ≤ ϵ

η
,

(X +
1

η
X) • (S +

1

η
S) =

1

η2
(X + ηX) • (S + ηS) ≤ ϵ

η2
.

Thus, (X + 1
ηX, y+ 1

η ȳ, S + 1
η S̄) is an

ϵ
η -precise solution for the original problem.

Now, we can present an iterative refinement algorithm using oracle OII.

A.3 Complexity of the Iterative Refinement Method

For both cases, we can prove the iteration complexity of the iterative refinement
methods by using Theorem 10.

Theorem 10. The IR method returns an ϵ̃-optimal solution after at most O
(

log(ϵ̃)
log(ϵ)

)

iterations.

Proof. Based on Theorems 9 and 8 for Iterative Refinement using different oracles,
after iteration k, the precision of the solution is ϵ

η(k) . From the choice of scaling factor,

we have

η(k) = min

{
ρη(k−1),

1

r(k−1)

}
≥ η(k−1) min

{
ρ,

1

ϵ

}
.

Let ϑ = min
{
ρ, 1

ϵ

}
> 1, then we have

η(k) ≥ ϑη(k−1) ≥ ϑk.
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Algorithm 6 Iterative Refinement for SDO Using an Infeasible Interior Oracle

Input: Problem data A1, . . . , Am, C ∈ Sn, b ∈ Rm, error tolerances 0 < ϵ̃ ≪ ϵ < 1.
Strictly feasible point for (P)-(D) (X(0), y(0), S(0))
Choose incremental scaling limit ρ ∈ N such that ρ > 1

Output: An ϵ̃-precise solution pair (X, y, S) to the SDO problem (A1, . . . , Am, b, C).
Initialize: η(1) ← 1, k ← 1
(X(1), y(1), S(1))← solve (P)-(D) to precision ϵ
while X(k) • S(k) > ϵ̃ do

1. Calculate

b̄
(k)
i ← bi −Ai •X(k) for i ∈ [m] C(k) = C −

∑

i∈[m]

y
(k)
i Ai − S(k)

2. Calculate residual

r(k) ← max
{
max

i
|b̄(k)i |, X(k) • S(k), ∥C(k)∥

}

3. Update scaling factor η(k+1) = min{ 1
r(k) , ρη

(k)}
4. (X, y, S)← solve refining problem (A1, . . . , Am, η(k)b̄(k), η(k)C(k)) to precision ϵ
5. Update solution

X(k+1) ← X(k) +
1

η(k)
X, y(k+1) ← y(k) +

1

η(k)
y, S(k+1) = S(k) +

1

η(k)
S

6. k ← k + 1

end

Thus, we have ϵ
η(k) ≤ ϵ

ϑk ≤ ϵ̃ for

k ≥ log(ϵ/ϵ̃)

log(ϑ)
≥ log(ϵ/ϵ̃)

− log(ϵ)
.

We can conclude that after O
(

log(ϵ̃)
log(ϵ)

)
iterations, we have a ϵ̃-optimal solution.

As we can see, infeasible versions of IR converge to the optimal set linearly since
the infeasibility reduces linearly, although the complementarity gap decreases quadrat-
ically. On the other hand, in infeasible IR methods, the user has more freedom to
choose an inexact SDO solver as a subroutine.

B Analyzing the IR-IF-IPM

The IF-QIPM can be “de-quantized” to obtain a classical IF-IPM by replacing the use
of quantum linear system solver subroutines with an inexact classical algorithm. The
resulting scheme exhibits an improved condition number dependence over its quantum
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counterpart. Since the OSS (16) system is not positive definite, this is accomplished
by solving a system of the form M⊤Mu = M⊤v using a polynomial approximation q,
of 1/u on the interval [1/κ(M)2, 1]. Proceeding in this way, the approximate solution
is given by q(M2)Mv, which is approximately M−2Mv = M−1v. The polynomial
q (with degree roughly κM log(1/ξ) exists [55, Section 6.11], and the approximate
solution is close to M−1v whenever the linear system Mu = v has a solution. Note
that q(M2)Mv is obtained using 2 ·deg(q)+1 matrix-vector products, and thus avoids
computing (or even writing down) the matrix M⊤M (and is therefore preferable to
the näıve approach of first symmetrizing the system and subsequently applying the
CGM).2 The next result from [6] summarizes the complexity of the IF-IPM when the
Newton systems are solved using the approach we have just outlined.
Theorem 11. A classical implementation of the IF-IPM obtains an ϵ-optimal solution
(X∗, y∗, S∗) to the primal-dual SDO pair (P)-(D) with overall complexity

O
(
n4.5κ · polylog

(
κ,

1

ϵ

))
,

where κ is an upper bound for the condition number of the condition number of the
coefficient matrices of the OSS (16) systems during the IF-IPM iterations.

We showed in Theorem 5 that κ = ω2κT

ϵ for the OSS system. Thus, the complexity
of IF-IPM using CGM has a linear dependence on inverse precision. Likewise, the
proposed IR method can be used to improve the complexity of classical IF-IPM with
respect to precision.

When the derived IF-IPM is used in our IR methodology, one obtains an IR-IF-IPM
with superior complexity bound.
Theorem 12. A classical implementation of the IR-IF-IPM obtains a feasible ϵ opti-

mal solution for an SDO problem using at most O(n4.5ω2κT log(nµ
0

ϵ )) arithmetic
operations.

2An explicit discussion of this method is provided in Section 16.5 of the monograph [61].

36


