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On the power of linear programming for K-means clustering ∗

Antonio De Rosa † Aida Khajavirad ‡

Abstract

In [5], the authors introduced a new linear programming (LP) relaxation for K-means cluster-
ing. In this paper, we further investigate the theoretical properties of this relaxation. We focus on
K-means clustering with two clusters, which is an NP-hard problem. As evident from our numerical
experiments with both synthetic and real-world data sets, the proposed LP relaxation is almost
always tight; i.e., its optimal solution is feasible for the original nonconvex problem. To better
understand this unexpected behaviour, we obtain sufficient conditions under which the LP relax-
ation is tight. We further analyze the sufficient conditions when the input is generated according
to a popular stochastic model and obtain recovery guarantees for the LP relaxation. Finally, we
construct a family of inputs for which the LP relaxation is never tight.

Key words. K-means clustering; Linear programming relaxation; Ratio-cut polytope; Tightness;
Recovery guarantee.

1 Introduction

Clustering data points into a small number of groups according to some similarity measure is a common
task in unsupervised machine learning, and is ubiquitous across operations research and engineering.
K-means clustering, one of the oldest and the most popular clustering techniques, partitions the
data points into clusters by minimizing the total squared distance between each data point and the
corresponding cluster center. Let {xi}ni=1 denote a set of n data points in Rm, and denote by K the
number of desired clusters. Define a partition of [n] := {1, . . . , n} as a family {Γk}Kk=1 of non-empty
subsets of [n] such that Γa ∩ Γb = ∅ for all a ̸= b ∈ [K] and ∪k∈[K]Γk = [n]. Then K-means clustering
can be formulated as a combinatorial optimization problem:

min

K∑

k=1

∑

i∈Γk

∥∥∥xi − 1

|Γk|
∑

j∈Γk

xj
∥∥∥
2

2
(1)

s.t. {Γk}k∈[K] is a partition of [n].

It is well-known that Problem (1) is NP-hard even when there are only two clusters [2] or when the
data points are in R2 [13]. The most popular techniques for solving Problem (1) are heuristics such as
Lloyd’s algorithm [12], approximation algorithms [10, 7], and convex relaxations [17, 16, 3, 15, 9, 11, 5].
The two prominent types of convex relaxations for K-means clustering are semi-definite programming
(SDP) relaxations [16] and linear programming (LP) relaxations [5]. The theoretical properties of SDP
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relaxations for K-means clustering have been thoroughly studied in the literature [3, 15, 9, 19, 11].
In this paper we investigate the power of LP relaxations for K-means clustering. To this end, in
the following, we present an alternative formulation for Problem (1), which we use to construct our
relaxations.

Consider a partition {Γk}Kk=1 of [n]; let 1Γk
, k ∈ [K] be the indicator vector of the kth cluster;

i.e., the ith component of 1Γk
is defined as: (1Γk

)i = 1 if i ∈ Γk and (1Γk
)i = 0 otherwise. Define the

associated partition matrix as:

X =

K∑

k=1

1

|Γk|
1Γk

1TΓk
. (2)

Define dij := ||xi − xj ||22 for all i, j ∈ [n]. Then Problem (1) can be equivalently written as (see [11]
for detailed derivation):

min
∑

i,j∈[n]
dijXij (3)

s.t. X is a partition matrix defined by (2).

It can be checked that any partition matrix X is positive semidefinite. Using this observation, one
can obtain the following SDP relaxation of Problem (3):

min
∑

i,j∈[n]
dijXij (PW)

s.t. Tr(X) = K,
n∑

j=1

Xij = 1, ∀i ∈ [n],

X ⪰ 0,

Xij ≥ 0, Xij = Xji, ∀1 ≤ i < j ≤ n,

where Tr(X) is the trace of the matrix X, and X ⪰ 0 means that X is positive semidefinite. The
above relaxation was first proposed in [16] and is often referred to as the “Peng-Wei SDP relaxation”.
Both theoretical and numerical properties of this relaxation have been thoroughly investigated in the
literature [3, 15, 9, 11, 18].

1.1 LP relaxations for K-means clustering

In [5], the authors introduced the ratio-cut polytope, defined as the convex hull of ratio-cut vectors
corresponding to all partitions of n points in Rm into at most K clusters. They showed this polytope
is closely related to the convex hull of the feasible region of Problem (3). The authors then studied
the facial structure of the ratio-cut polytope, which in turn enabled them to obtain a new family of
LP relaxations for K-means clustering. Fix a parameter t ∈ {2, . . . ,K}; then an LP relaxation for
K-means clustering is given by:

min
∑

i,j∈[n]
dijXij (LPKt)

s.t. Tr(X) = K,
n∑

j=1

Xij = 1, ∀i ∈ [n],
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∑

j∈S
Xij ≤ Xii +

∑

j,k∈S:j<k

Xjk, ∀i ∈ [n], ∀S ⊆ [n] \ {i} : 2 ≤ |S| ≤ t, (4)

Xij ≥ 0, Xij = Xji, ∀1 ≤ i < j ≤ n.

We should remark that by Proposition 3 of [5], inequalities (4) define facets of the convex hull of the
feasible region of Problem (3). It then follows that for any t < t′, the feasible region of Problem (LPKt′)
is strictly contained in the feasible region of Problem (LPKt). In [3], the authors propose and study a
different LP relaxation for K-means clustering. As it is detailed in [5], for any t ≥ 2, the feasible region
of Problem (LPKt) is strictly contained in that of the LP relaxation considered in [3] (see Remark 1
in [5]). In fact, the numerical experiments on synthetic data in [5] indicate that Problem (LPKt) with
t = 2 is almost always tight ; i.e., the optimal solution of the LP is a partition matrix. To better
understand this unexpected behaviour, in this paper, we perform a theoretical study of the tightness
of the (LPKt) relaxation. As a first step, we consider the case of two clusters. Performing a similar
type of analysis for K > 2 is a topic of future research.

Our main contributions are summarized as follows:

(i) Consider any partition of [n] and the associated partition matrix X defined by (2). By constructing
a dual certificate, we obtain a sufficient condition, often referred to as a “proximity condition”, under
which X is the unique optimal solution of Problem (LPKt) (see Proposition 1 and Proposition 3).
This result can be considered as a generalization of Theorem 1 in [5] where the optimality of
equal-size clusters is studied. Our proximity condition is overly conservative since, to obtain an
explicit condition, we fix a subset of the dual variables to zero. To address this, we propose a simple
algorithm to carefully assign values to dual variables previously set to zero, leading to a significantly
better dual certificate for X (see Proposition 5).

(ii) Consider a generative model, referred to as the stochastic sphere model (SSM), in which there are
two clusters of possibly different size in Rm, and the data points in each cluster are sampled from
a uniform distribution on a sphere of unit radius. Using the result of part (i) we obtain a sufficient
condition in terms of the distance between sphere centers under which the (LPKt) relaxation recovers
the planted clusters with high probability. By high probability we mean the probability tending to
one as the number of data points tends to infinity (see Proposition 4).

(iii) Since in almost all our experiments with synthetic and real-world data sets Problem (LPKt) is tight,
it is natural to ask whether the (LPKt) relaxation is tight with high probability under reasonable
generative models. We present a family of inputs for which the (LPKt) relaxation is never tight (see
Proposition 6 and Corollary 1).

1.2 Organization

The rest of the paper is structured as follows. In Section 2, we motivate our study by demonstrating
that for both synthetic and real-world data sets, the LP relaxation defined by Problem (LPKt) is
almost always tight. In Section 3, we present a sufficient condition under which a given partition
matrix is the unique optimal solution of the (LPKt) relaxation for two clusters. Using this sufficient
condition, in Section 4 we obtain a recovery guarantee for the (LPKt) relaxation under the SSM.
In Section 5, we present a simple algorithm to construct a stronger dual certificate for an optimal
partition matrix. Finally, in Section 6 we present a family of inputs for which the optimal value of the
(LPKt) relaxation is strictly smaller than the optimal value of the K-means clustering problem.
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2 The LP relaxation for two clusters

In this paper, we study the case with two clusters and examine the strength of the LP relaxation
theoretically. Recall that for K = 2, Problem (LPKt) requires t = 2 and it simplifies to:

min
∑

i,j∈[n]
dijXij (LP2)

s.t. Tr(X) = 2, (5)
n∑

j=1

Xij = 1, ∀1 ≤ i ≤ n, (6)

Xij +Xik ≤ Xii +Xjk, ∀i ̸= j ̸= k ∈ [n], j < k, (7)

Xij ≥ 0, ∀1 ≤ i < j ≤ n, (8)

where as before we set Xji = Xij for all 1 ≤ i < j ≤ n. Henceforth, whenever we say “the LP
relaxation,” we mean the LP defined by Problem (LP2) and whenever we say “the SDP relaxation,”
we mean the SDP defined by Problem (PW). To motivate our theoretical study, in the following we
conduct some numerical experiments to convey the power of the LP relaxation for clustering both
synthetic and real-world data sets.

2.1 Numerical experiments

In the following, we compare the strength of the LP relaxation defined by Problem (LP2) with the
SDP relaxation defined by Problem (PW). It is important to note that solving both LP and SDP
become computationally expensive as we increase the number of points n. That is, to solve an instance
with n ≳ 200 efficiently, one needs to design a specialized algorithm for both LP (such as cutting plane
algorithms) and SDP (such as first-order methods). Indeed, in [18] the authors design a specialized
algorithm for the SDP relaxation and solve problems with n ≤ 4000. Designing a customized algorithm
to solve the LP relaxation is a topic of our future research. In this paper, however, we are interested in
performing a theoretical analysis of the tightness of the LP and we are using our numerical experiments
to motivate this study. Hence, in this paper, we limit ourselves to solving problem instances with
n ≤ 200 variables.

In the following, we consider both synthetic and real-world data sets. We say that a convex
relaxation is tight if its optimal solution is a partition matrix. In [17] the authors prove that a
symmetric matrix X with unit row-sums and trace K is a partition matrix if and only if it is a
projection matrix; i.e., XTX = X. Hence to check whether the solution of the LP relaxation or the
SDP relaxation is tight, we check whether it is a projection matrix. All experiments are performed on
the NEOS server [4]; LPs are solved with GAMS/Gurobi [8] and SDPs are solved with GAMS/MOSEK [1].
We deactivated the crossover operation in all Gurobi runs. All other options are set to their default
values for both solvers.

2.1.1 Synthetic data

One of the most popular generative models for K-means clustering is the stochastic ball model (SBM).
In this model, we assume that the data in each cluster is sampled from a uniform distribution within
a ball of unit radius and the difficulty of the problem is measured by the distance ∆ between the balls’
centers. In our experiments, we set the number of clusters K = 2, the number of points n = 100, and
the input dimensionm = 10. We denote the number of points sampled from the first (resp. the second)
ball by n1 (resp. by n2). We consider two configurations: (i) n1 = n2 and (ii) n1 = 0.3n2. For each
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fixed configuration (n1, n2), we consider various values for ∆; namely, we set ∆ ∈ [0 : 0.01 : 2]. For
each fixed ∆, we conduct 20 random trials. We count the number of times the optimization algorithm
returns a partition matrix as the optimal solution; dividing this number by the total number of trials,
we obtain the empirical tightness rate.

Our results are shown in Figure 1: the LP relaxation significantly outperforms the SDP relaxation.
That is, out of a total of 4000 runs, the LP relaxation is not tight only in 9 cases; i.e., an overall tightness
rate of 0.9975. In contrast, the SDP is tight only when the data in the two clusters are sufficiently
separated, with an overall tightness rate of 0.4755. Moreover, in all cases for which the SDP is not
tight, its optimal objective value is strictly smaller than that of the LP. To further illustrate this point,
we have also plotted the average percentage of the relative gap between the SDP optimal value fSDP

and the LP optimal value fLP, defined as grel =
fLP−fSDP

fLP
× 100.
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(b) n1 = 0.3n2

Figure 1: Comparing the strength of the LP relaxation versus the SDP relaxation for K-means clus-
tering when the input is generated according to the SBM in R10 with n = n1+n2 = 100 points, where
n1 is the number of points sampled from the first ball and n2 is the number of points sampled from
the second ball.

2.1.2 Real-world data

We collected a set of 15 data sets from the UCI machine learning repository [6]. These problems come
from diverse applications and have been extensively used as benchmarks to compare the performance
of different clustering algorithms in the literature. The data sets and their characteristics, i.e., the
number of points n and the input dimension m are listed in columns 1-3 of Table 1. For data sets with
n ≤ 200 (i.e., Voice, Iris, and Wine), we solve the clustering problem over the entire data set. For
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Table 1: Comparing the strength of the LP relaxation versus the SDP relaxation for clustering real-
world data sets: tLP denotes the tightness rate of the LP, tSDP denotes the tightness rate of the SDP,
grel denotes the (average) percentage of relative gap between the optimal values of SDP and LP.

Data set n m tLP tSDP grel (%)

Voice 126 310 1.0 0.0 5.40
Iris 150 4 1.0 0.0 1.09
Wine 178 13 1.0 0.0 3.44
Seeds 210 7 1.0 0.0 3.80
Accent 329 12 1.0 0.3 0.02
ECG5000 500 140 1.0 0.1 0.07
Hungarian 522 20 1.0 0.0 1.01
Wdbc 569 30 1.0 0.0 5.51
Strawberry 613 235 1.0 0.0 5.40
Energy 768 16 1.0 1.0 0.0
SalesWeekly 810 106 1.0 0.0 1.74
Vehicle 846 18 1.0 0.0 1.11
Wafer 1000 152 1.0 0.3 0.06
Ethanol 2000 27 1.0 1.0 0.0
Rice 3810 7 1.0 0.0 1.70

each of the remaining data sets, to control the computational cost of both LP and SDP, we sample
ten times n′ = 200 data points and solve LP and SDP using the ten random instances. The tightness
rate of the LP (tLP), the tightness rate of the SDP (tSDP), and the (average) relative gap between the
optimal values of SDP and LP are listed in columns 4-6 of Table 1. In all instances, the LP relaxation
is tight, while the SDP is only tight in a few instances.

The remarkable performance of the LP relaxation is indeed unexpected and hence in this paper,
it is our goal to better understand this behaviour through a theoretical study.

3 A sufficient condition for tightness of the LP relaxation

We first obtain a sufficient “proximity” condition under which Problem (LP2) is tight; i.e., the optimal
solution of the LP relaxation is a partition matrix. A proximity condition for the SDP relaxation
defined by Problem (PW) is presented in [11]. As our proximity condition is overly conservative, we
then present a simple algorithm that certifies the optimality of a given partition matrix.

To establish our proximity condition, in Proposition 1, we first obtain a sufficient condition under
which a given partition matrix is an optimal solution of Problem (LP2). Subsequently in Proposition 3,
we address the question of uniqueness of the optimal solution. The next proposition can be considered
as a generalization of Theorem 1 in [5] where the authors study the optimality of equal-size clusters.

In the following, for every A ⊆ [n] and f : A→ R, we define

−
∑

i∈A
f(i) :=

1

|A|
∑

i∈A
f(i).

Moreover, given a partition {Γ1,Γ2} of [n], for each i ∈ Γl, l ∈ {1, 2}, we define

dini := −
∑

j∈Γl

dij ,
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and
douti := −

∑

j∈[n]\Γl

dij .

We are now ready to state our sufficient condition.

Proposition 1. Let {Γ1,Γ2} denote a partition of [n] and assume without loss of generality that
|Γ1| ≤ |Γ2|. Define

r1 :=
2|Γ1|

|Γ1|+ |Γ2|
, r2 :=

2|Γ2|
|Γ1|+ |Γ2|

, (9)

and

η :=
r2
2

((
1− r1

r2

)
max
k∈Γ1

dink +
(
1− r2

r1

)
min
k∈Γ2

dink +
r1
r2
−
∑

k∈Γ1

dink +
r2
r1
−
∑

k∈Γ2

dink

)
. (10)

Suppose that

−
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini } − dij ≥ η, ∀i < j ∈ Γ1, (11)

and
−
∑

k∈Γ1

min{r1dik + dinj , r1djk + dini } − dij ≥
r1
r2
η, ∀i < j ∈ Γ2. (12)

Then, an optimal solution of Problem (LP2) is given by the partition matrix

X̄ =
1

|Γ1|
1Γ11

T
Γ1

+
1

|Γ2|
1Γ21

T
Γ2
. (13)

Proof. We start by constructing the dual of Problem (LP2). Define dual variables ω associated
with (5), µi for all i ∈ [n] associated with (6), λijk for all (i, j, k) ∈ Ω := {(i, j, k) : i ̸= j ̸= k ∈
[n], j < k} associated with (7), and σij for all 1 ≤ i < j ≤ n associated with (8). The dual of
Problem (LP2) is then given by:

max − (2ω +
∑

i∈[n]
µi)

s.t. µi + µj +
∑

k∈[n]\{i,j}
(λijk + λjik − λkij) + 2dij − σij = 0, ∀1 ≤ i < j ≤ n, (14)

ω + µi −
∑

j,k∈[n]\{i}:j<k

λijk = 0, ∀i ∈ [n], (15)

λijk ≥ 0, ∀(i, j, k) ∈ Ω, σij ≥ 0, ∀1 ≤ i < j ≤ n,

where we let λikj = λijk for all (i, j, k) ∈ Ω. To establish the optimality of X̄ defined by (13), it
suffices to construct a dual feasible point (λ̄, µ̄, ω̄, σ̄) that together with X̄ satisfies the complementary
slackness. Without loss of generality, assume that i < j for all i ∈ Γ1 and j ∈ Γ2. Then X̄ and
(λ̄, µ̄, ω̄, σ̄) satisfy the complementary slackness if and only if:

(i) λ̄ijk = 0 if i ∈ Γ1 and j, k ∈ Γ2 or if i ∈ Γ2 and j, k ∈ Γ1,

(ii) σ̄ij = 0 if i, j ∈ Γ1 or i, j ∈ Γ2.

After projecting out σ̄ij for i ∈ Γ1 and j ∈ Γ2, we deduce that it suffices to find (λ̄, µ̄, ω̄) satisfying:

µ̄i + µ̄j +
∑

k/∈Γl

(λ̄ijk + λ̄jik) +
∑

k∈Γl\{i,j}
(λ̄ijk + λ̄jik − λ̄kij) + 2dij = 0, ∀i < j ∈ Γl, l ∈ {1, 2} (16)
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µ̄i + µ̄j +
∑

k∈Γ1\{i}
(λ̄ijk − λ̄kij) +

∑

k∈Γ2\{j}
(λ̄jik − λ̄kij) + 2dij ≥ 0, ∀i ∈ Γ1, j ∈ Γ2 (17)

ω̄ + µ̄i −
∑

j∈Γl\{i},
k /∈Γl

λ̄ijk −
∑

j<k∈Γl\{i}
λ̄ijk = 0, ∀i ∈ Γl, l ∈ {1, 2}. (18)

To this end, let

λ̄ijk − λ̄jik =
djk − dik

n/2
+

dini − dinj
|Γ2|

, ∀i, j ∈ Γ1, k ∈ Γ2 (19)

λ̄ijk − λ̄jik =
djk − dik

n/2
+

dini − dinj
|Γ1|

, ∀i, j ∈ Γ2, k ∈ Γ1 (20)

µ̄i = −dini − r2d
out
i + η, ∀i ∈ Γ1 (21)

µ̄i = −dini − r1d
out
i +

r1
r2
η, ∀i ∈ Γ2 (22)

ω̄ = −1

2

∑

i∈[n]
(dini + µ̄i), (23)

where r1, r2 and η are as defined by (9) and (10), respectively.
First let us examine the validity of inequalities (17). Substituting (19)-(22) in (17) yields:

− dini − r2d
out
i + η − dinj − r1d

out
j +

r1
r2
η +

∑

k∈Γ1\{i}

(djk − dij
n/2

+
dini − dink
|Γ2|

)

+
∑

k∈Γ2\{j}

(dik − dij
n/2

+
dinj − dink
|Γ1|

)
+ 2dij =

− dini − r2d
out
i + η − dinj − r1d

out
j +

r1
r2
η + r1d

out
j − r1dij +

r1
r2
dini −

r1
r2
−
∑

k∈Γ1

dink + r2d
out
i − r2dij+

r2
r1
dinj −

r2
r1
−
∑

k∈Γ2

dink + 2dij =

(
1 +

r1
r2

)
η −

(
1− r1

r2

)
dini −

(
1− r2

r1

)
dinj −

r1
r2
−
∑

k∈Γ1

dink −
r2
r1
−
∑

k∈Γ2

dink ≥ 0,

where the last inequality follows from the definition of η given by (10) and the identity r1 + r2 = 2.
We now show that equalities (18) are implied by equalities (16). In the following we prove that

all equalities of the form (18) with l = 1 are implied by equalities of the form (16) with l = 1; the
proof of the case with l = 2 follows from a similar line of arguments. Using (19) to eliminate λ̄jik for
i, j ∈ Γ1 and k ∈ Γ2, and using (21) to eliminate µ̄i, i ∈ Γ1, it follows that equalities (16) with l = 1
can be equivalently written as:

∑

k∈Γ2

λ̄ijk +
1

2

∑

k∈Γ1\{i,j}
(λ̄ijk + λ̄jik − λ̄kij) = dini + r2d

out
j − dij − η, ∀i < j ∈ Γ1. (24)

Using (21)-(23), inequalities (18) can be written as:

∑

j∈Γ1\{i},
k∈Γ2

λ̄ijk +
∑

j<k∈Γ1\{i}
λ̄ijk = r2

∑

j∈Γ1

doutj − dini − r2d
out
i − (|Γ1| − 1)η, ∀i ∈ Γ1, (25)
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where we used the identity r2
∑

j∈Γ1
douti = r1

∑
j∈Γ2

douti . Moreover, it can be checked that

∑

j ̸=k∈Γ1\{i}
(λ̄ijk + λ̄jik − λ̄kij) = 2

∑

j<k∈Γ1\{i}
λ̄ijk.

Therefore, to show that equalities (25) are implied by equalities (24), it suffices to have:

∑

j∈Γ1\{i}
(dini + r2d

out
j − dij − η) = r2

∑

j∈Γ1

doutj − dini − r2d
out
i − (|Γ1| − 1)η,

whose validity follows since
∑

j∈Γ1\{i} (d
in
i − dij) = (|Γ1| − 1)dini − |Γ1|dini = dini .

Therefore, it remains to prove the validity of equalities (16). First consider the case with l = 1.
By (19) and nonnegativity of λ̄ijk for all (i, j, k) ∈ Ω, we deduce that

λ̄ijk+ λ̄jik ≥ abs

(
djk − dik

n/2
+

dini − dinj
|Γ2|

)
=

1

|Γ2|
abs
(
(dini +r2djk)−(dinj +r2dik)

)
, ∀i, j ∈ Γ1, k ∈ Γ2,

where abs(·) denote the absolute value function. Hence, using (21) to eliminate µ̄i, we conclude that
equalities (16) with l = 1 can be satisfied if

1

2

∑

k∈Γ1\{i,j}
(λ̄ijk + λ̄jik − λ̄kij) ≤ −

∑

k∈Γ2

min{r2dik + dinj , r2djk + dini } − dij − η, ∀i < j ∈ Γ1, (26)

where we used the identity abs(a − b) = a + b − 2min{a, b}. Letting λ̄ijk = 0 for all (i, j, k) ∈
Γ1 and using (11), we conclude that inequalities (26) are valid. Similarly, it can be checked that
inequalities (17) with l = 2 can be satisfied if

1

2

∑

k∈Γ2\{i,j}
(λ̄ijk + λ̄jik − λ̄kij) ≤ −

∑

k∈Γ1

min{r1dik + dinj , r1djk + dini } − dij −
r1
r2
η, ∀i < j ∈ Γ2. (27)

Letting λ̄ijk = 0 for all (i, j, k) ∈ Γ2 and using (12), we conclude that inequalities (27) are valid and
this completes the proof.

We now consider the question of uniqueness of the optimal solution. To this end, we make use of
the following result:

Proposition 2 (Part (iv) of Theorem 2 in [14]). Consider an LP whose feasible region is defined by
Ax = b and Cx ≤ d, where x ∈ Rn denotes the vector of optimization variables, and b, d,A,C are
vectors and matrices of appropriate dimensions. Let x̄ be an optimal solution of this LP and denote
by ū the dual optimal solution corresponding to the inequality constraints. Let Ci denote the i-th row
of C. Define Q = {i : Cix̄ = di, ūi > 0}, L = {i : Cix̄ = di, ūi = 0}. Let CQ and CL be the matrices
whose rows are Ci, i ∈ Q and Ci, i ∈ L, respectively. Then x̄ is the unique optimal solution of the
LP, if there exists no x different from the zero vector satisfying

Ax = 0, CQx = 0, CLx ≤ 0. (28)

We are now ready to establish our uniqueness result:

Proposition 3. Suppose that inequalities (11) and (12) are strictly satisfied. Then X̄ defined by (13)
is the unique optimal solution of Problem (LP2).
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Proof. Consider the dual certificate (λ̄, µ̄, ω̄, σ̄) constructed in the proof of Proposition 1. We consider
a slightly modified version of this certificate by redefining η defined in (10) as follows:

η =
r2
2

((
1− r1

r2

)
max
k∈Γ1

dink +
(
1− r2

r1

)
min
k∈Γ2

dink +
r1
r2
−
∑

k∈Γ1

dink +
r2
r1
−
∑

k∈Γ2

dink

)
+ ϵ,

for some ϵ > 0. This in turn will imply that σ̄ij > 0 for all i ∈ Γ1, j ∈ Γ2. Notice that this is an
admissible modification as we are assuming that inequalities (11) and (12) are strictly satisfied. In
addition, we can choose

λ̄ijk > max
{
0,

djk − dik
n/2

+
dini − dinj
|Γ2|

}
, λ̄jik > max

{
0,

dik − djk
n/2

+
dinj − dini
|Γ2|

}
, ∀i, j ∈ Γ1, k ∈ Γ2

λ̄ijk > max
{
0,

djk − dik
n/2

+
dini − dinj
|Γ1|

}
, λ̄jik > max

{
0,

dik − djk
n/2

+
dinj − dini
|Γ1|

}
, ∀i, j ∈ Γ2, k ∈ Γ1.

Therefore, by Proposition 2, the matrix X̄ defined by (13) is the unique optimal solution of Prob-
lem (LP2), if there exists no X ̸= 0 satisfying:

n∑

j=1

Xij = 0, ∀1 ≤ i ≤ n (29)

Xij = 0, ∀i ∈ Γ1, j ∈ Γ2 (30)

Xij +Xik = Xii +Xjk, ∀i, j ∈ Γ1, k ∈ Γ2, or i, j ∈ Γ2, k ∈ Γ1. (31)

From (29) and (30) it follows that

Xii +
∑

j∈Γ1

Xij = 0, ∀i ∈ Γ1, Xii +
∑

j∈Γ2

Xij = 0, ∀i ∈ Γ2. (32)

Moreover, from equations (31) we deduce that

Xij =
Xii +Xjj

2
, ∀i, j ∈ Γ1 or i, j ∈ Γ2. (33)

Substituting (33) in (32) we obtain:

Xii = Xij = 0, ∀i, j ∈ Γ1, or i, j ∈ Γ2,

which together with (30) completes the proof.

Using our proximity condition given by inequalities (11) and (12), we next obtain a recovery
guarantee for the LP relaxation under a popular stochastic model for the input data.

4 Recovery guarantee for the stochastic sphere model

It is widely understood that worst-case guarantees for optimization algorithms are often too pes-
simistic. A recent line of research in data clustering is concerned with obtaining sufficient conditions
under which a planted clustering corresponds to the unique optimal solution of a convex relaxation
under suitable stochastic models [3, 15, 9, 11, 5]. Such conditions are often referred to as (exact)
recovery conditions and are used to compare the strength of various convex relaxations for NP-hard
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problems. Henceforth, we say that an optimization problem recovers the planted clusters if its unique
optimal solution corresponds to the planted clusters.

Perhaps the most popular generative model for K-means clustering is the stochastic ball model,
where the points are sampled from uniform distributions on K unit balls in Rm. As before, we let
K = 2 and we denote by ∆ the distance between the ball centers. Notice that the question of recovery
only makes sense when ∆ > 2, whereas the question of tightness is well-defined for any ∆ ≥ 0. We
denote by Γ1 and Γ2 the set of points sampled from the first and second balls, respectively and without
loss of generality we assume |Γ1| ≤ |Γ2|. In the following, whenever we say with high probability, we
mean the probability tending to one as n → ∞. In [11], the authors prove that the Peng-Wei SDP
relaxation defined by Problem (PW) recovers the planted clusters with high probability if

∆ > 2
(
1 +

√
1

r1(m+ 2)

)
, (34)

where r1 is defined by (9). In the special case of equal-size clusters, i.e., |Γ1| = |Γ2|, the authors
of [3] show that the Peng-Wei SDP relaxation recovers the planted clusters with high probability, if
∆ > 2

√
2(1 + 1√

m
), while the authors of [9] show that the same SDP recovers the planted clusters

with high probability if ∆ > 2(1 + 2
m). Again, for equal-size clusters, in [5], the authors show that

Problem (LP2) recovers the planted clusters with high probability, if ∆ > 1 +
√
3.

In this section, we obtain a recovery guarantee for the LP relaxation for two clusters of arbi-
trary size. For simplicity, we consider a slightly different stochastic model, which we refer to as the
stochastic sphere model (SSM), where instead of a ball, the points in each clusters are sampled from
a sphere (i.e., the boundary of a ball). We prove that our deterministic optimality condition given by
inequalities (11)-(12) implies that Problem (LP2) recovers the planted clusters with high probability,
if

∆ > 1 +

√
1 +

2

r1
. (35)

We should mention that, at the expense of a significantly longer proof, one can obtain the same
recovery guarantee (35) for the LP relaxation under the SBM. We do not include the latter result in
this paper because, while the proof is more technical and longer, it does not contain any new ideas
and closely follows the path of our proof for the SSM. Indeed, in the case of equal-size clusters; i.e.,
r1 = 1, inequality (35) simplifies to the recovery guarantee of [5] for SBM: ∆ > 1 +

√
3. Also note

that while the recovery guarantee for the LP (35) is better than the the recovery guarantee for the
SDP (34) for 1 ≤ m ≤ 5, it becomes weaker for larger dimensions. As we detail in the next section,
condition (35) can be significantly improved via a more careful selection of the dual certificate.

Throughout this section, for an event A, we denote by P(A) the probability of A. For a random
variable Y , we denote by E[Y ] its expected value. In case of a multivariate random variable Xij , the
conditional expected value in j, with i fixed, will be denoted either with Ei[X] or with Ej [X]. We
denote by ∂B1 and ∂B2 the spheres corresponding to the first and second clusters, respectively. Up to
a rotation we can assume that the centers of ∂B1 and ∂B2 are 0 and ∆e1, respectively, where e1 is the
first vector of the standard basis of Rm. For a continuous function f : ∂B1 → R (and analogously for
∂B2), we define

−
∫

∂B1

f(x)dHm−1(x) :=
1

Hm−1(∂B1)

∫

∂B1

f(x)dHm−1(x),

where Hm−1(x) denotes the (m− 1)-dimensional Hausdorff measure.

We are now ready to state our recovery result.

Proposition 4. Suppose that the points are generated according to the SSM. Then Problem (LP2)

recovers the planted clusters with high probability if ∆ > ∆0 := 1+
√

1 + 2
r1
, where r1 is defined by (9).
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Proof. By Proposition 3, it suffices to show that for ∆ > ∆0, inequalities (11)-(12) are strictly satisfied
with high probability. Namely, we show that there exists a universal constant C > 0 such that, for
∆ > ∆0 we have

P
( ⋂

i,j∈Γ1

{
dij + η − −

∑

k∈Γ2

min{r2dik + dinj , r2djk + dini } < 0
})
≥ 1− Cn2e−

nϵ22
C (36)

and

P
( ⋂

i,j∈Γ2

{
dij +

r1
r2
η − −

∑

k∈Γ1

min{r1dik + dinj , r1djk + dini } < 0
})
≥ 1− Cn2e−

nϵ21
C ,

where ϵ1, ϵ2 > 0 are as defined in the statement of Lemma 1. Since the two inequalities are symmetric,
their proof is similar and we will only prove inequality (36).

To this aim, for notational simplicity, define

tij := Ek
[
−
∑

k∈Γ2

min{r2dik + Ej [d
in
j ], r2djk + Ei[d

in
i ]}
]
.

Then we can compute

P
( ⋂

i,j∈Γ1

{
dij + η − −

∑

k∈Γ2

min{r2dik + dinj , r2djk + dini } < 0
})

≥ P
( ⋂

i,j∈Γ1

{
dij + η − dij − 2r2 + tij − −

∑

k∈Γ2

min{r2dik + dinj , r2djk + dini } < 4ϵ2

})

≥ P
({∣∣∣η − 2r2

∣∣∣ < 2ϵ2

}
∩
⋂

i,j∈Γ1

{∣∣∣tij − Ek
[
−
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini }
]∣∣∣ < ϵ2

}

∩
⋂

i,j∈Γ1

{∣∣∣Ek
[
−
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini }
]
− −
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini }
∣∣∣ < ϵ2

})

≥ 1− P({|η − 2r2| ≥ 2ϵ2})− P
( ⋃

i,j∈Γ1

{∣∣∣tij − Ek
[
−
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini }
]∣∣∣ ≥ ϵ2

})

− P
( ⋃

i,j∈Γ1

{∣∣∣Ek
[
−
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini }
]
− −
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini }
∣∣∣ ≥ ϵ2

})

(37)

The first inequality follows from (47) in Lemma 1, since ∆ > ∆0; the second inequality holds by set
inclusion, and the third inequality is obtained by taking the union bound. To complete the proof, we
next estimate each of the terms in the last two lines of (37). In the following, C will always denote a
universal positive constant, which may increase from one line to the next line and we will not relabel
it for the sake of exposition.

First, to estimate P({|η − 2r2| ≥ 2ϵ2}), we define

η1 :=
r2
2

((
1− r1

r2

)
max
k∈Γ1

dink +
(
1− r2

r1

)
min
k∈Γ2

dink

)
, η2 :=

r2
2

(
r1
r2
−
∑

k∈Γ1

dink +
r2
r1
−
∑

k∈Γ2

dink

)
, (38)

so that η = η1 + η2. Recall that |Γ1| = r1
n
2 , |Γ2| = r2

n
2 , r1 ∈ (0, 1] and r2 ∈ [1, 2). Since for ∆ > 4,

the recovery follows from a simple thresholding argument, we can restrict our attention to ∆ ≤ 4, i.e.,
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we assume that r1 ≥ 1
4 . It then follows that

P({|η2 − E[η2]| ≥ ϵ2})

= P
(∣∣∣r1

(
−
∑

i,j∈Γ1

dij − E
[
−
∑

i,j∈Γ1

dij

])
+

r22
r1

(
E
[
−
∑

i,j∈Γ2

dij

]
− −
∑

i,j∈Γ2

dij

)∣∣∣ ≥ 2ϵ2

)

≤ P
({∣∣∣ −

∑

i,j∈Γ1

dij − E
[
−
∑

i,j∈Γ1

dij

]∣∣∣ ≥ ϵ2
C

}
∪
{∣∣∣E

[
−
∑

i,j∈Γ2

dij

]
− −
∑

i,j∈Γ2

dij

∣∣∣ ≥ ϵ2
C

})

≤ P
(∣∣∣ −
∑

i,j∈Γ1

dij − E
[
−
∑

i,j∈Γ1

dij

]∣∣∣ ≥ ϵ2
C

)
+ P

(∣∣∣E
[
−
∑

i,j∈Γ2

dij

]
− −
∑

i,j∈Γ2

dij

∣∣∣ ≥ ϵ2
C

)
≤ Ce−

n2ϵ22
C .

(39)

The first inequality holds by set inclusion and the third inequality follows from Hoeffding’s inequality
(see for example Theorem 2.2.6 in [20]), since dij , i, j ∈ Γl are i.i.d. random variables for every
l ∈ {1, 2} and dij ∈ [0, 4]. Next we show that

P
({∣∣∣η1 −

(
2r2 − r1 −

r22
r1

)∣∣∣ ≥ ϵ2

})
≤ Cne−

nϵ22
C . (40)

For notational simplicity, we denote the ith point in Γ1 by x. We notice that for any i ∈ Γ1 we have

Ei[d
in
i ] = −

∫

∂B1

∥x− z∥2dHm−1(z) = ∥x∥2 +−
∫

∂B1

∥z∥2dHm−1(z)− 2xT−
∫

∂B1

zdHm−1(z) = 2. (41)

By symmetry, the same calculation holds for Ei[d
in
i ] with i ∈ Γ2. By (41), we have

E
[
−
∑

k∈Γ1

dink
]
= E

[
−
∑

k∈Γ2

dink
]
= 2. (42)

Using Hoeffding’s inequality together with (41), we get

P({dink > 2 + ϵ2}) ≤ Ce−
nϵ22
C , P({dink < 2− ϵ2}) ≤ Ce−

nϵ22
C , ∀k ∈ Γ1 ∪ Γ2.

Hence, by the union bound, we obtain

P({|max
k∈Γ1

dink − 2| ≥ ϵ2}) ≤ Cne−
nϵ22
C , P({|min

k∈Γ2

dink − 2| ≥ ϵ2}) ≤ Cne−
nϵ22
C ,

from which we conclude the validity of (40). Since by (38) and (42) we have

E
[
η2
]
= r2

(r1
r2

+
r2
r1

)
=
(
r1 +

r22
r1

)
,

we can combine (39) with (40) to conclude that

P({|η − 2r2| ≥ 2ϵ2}) ≤ Cne−
nϵ22
C . (43)

We now observe that

P
( ⋃

i,j∈Γ1

{∣∣∣tij − Ek
[
−
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini }
]∣∣∣ ≥ ϵ2

})

≤ P
( ⋃

i∈Γ1

{∣∣∣dini − Ei[d
in
i ]
∣∣∣ ≥ ϵ2/2

})
≤ Cne−

nϵ22
C ,

(44)
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where the first inequality follows from the linearity of expectation and the second inequality follows
from the application of Hoeffding’s inequality and taking the union bound.

Finally, by Hoeffding’s inequality we have

P
( ⋃

i,j∈Γ1

{∣∣∣Ek
[
−
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini }
]
− −
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini }
∣∣∣ ≥ ϵ2

})

≤ Cn2e−
nϵ22
C .

(45)

Plugging inequalities (43)-(44)-(45) in (37), we conclude the claimed inequality (36).

In order to prove our recovery result in Proposition 4, we made use of the following lemma.

Lemma 1. Suppose that the random points are generated according to the SSM. Then the following
inequalities hold provided that ∆ > ∆0:

4ϵ1 := inf
i,j∈Γ2

Ek
[
−
∑

k∈Γ1

min{r1dik + Ej [d
in
j ], r1djk + Ei[d

in
i ]}
]
− dij − 2r1 > 0, (46)

4ϵ2 := inf
i,j∈Γ1

Ek
[
−
∑

k∈Γ2

min{r2dik + Ej [d
in
j ], r2djk + Ei[d

in
i ]}
]
− dij − 2r2 > 0. (47)

Proof. We first prove the following:

Claim 1 Inequalities (46)-(47) can be equivalently written as:

max
x,y∈∂B1

r−
∫

∂B2

max{xT z, yT z}dHm−1(z)− xT y <
r

2
∆2, for r = r1, r2. (48)

Proof of claim As before, for notational simplicity, we denote the ith (resp. jth, kth) point by x
(resp. y, z). By (41) and (42), inequalities (46)-(47) read respectively

min
x,y∈∂B2

r1−
∫

∂B1

min{∥x− z∥2, ∥y − z∥2}dHm−1(z)− ∥x− y∥2 > 2(r1 − 1),

min
x,y∈∂B1

r2−
∫

∂B2

min{∥x− z∥2, ∥y − z∥2}dHm−1(z)− ∥x− y∥2 > 2(r2 − 1).

The first inequality, up to a change of variable, reads:

min
x,y∈∂B1

r1−
∫

∂B2

min{∥x− z∥2, ∥y − z∥2}dHm−1(z)− ∥x− y∥2 > 2(r1 − 1),

hence inequalities (46)-(47) read

min
x,y∈∂B1

r−
∫

∂B2

min{∥x− z∥2, ∥y − z∥2}dHm−1(z)− ∥x− y∥2 > 2(r − 1), for r = r1, r2

which, expanding the squares, gives

min
x,y∈∂B1

r−
∫

∂B2

∥z∥2 + 1 +min{−2xT z,−2yT z}dHm−1(z) + 2xT y − 2 > 2(r − 1), for r = r1, r2. (49)

Via a change of variables, we have

−
∫

∂B2

∥z∥2dHm−1(z) = −
∫

∂B1

∥∆e1 + z∥2dHm−1(z)

= −
∫

∂B1

∥∆e1∥2 + ∥z∥2 + 2∆eT1 zdHm−1(z) = ∆2 + 1.
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Hence (49) reads

min
x,y∈∂B1

r−
∫

∂B2

min{−2xT z,−2yT z}dHm−1(z) + 2xT y > −r∆2, for r = r1, r2,

which is equivalent to (48). ⋄

Thanks to Claim 1, to conclude the proof of the lemma it suffices to show the following:

Claim 2 Inequalities (48) hold if and only if ∆ > ∆0.

Proof of claim We will prove that the maximum of the left-hand side of inequalities (48) over all
x, y ∈ ∂B1 is attained at (e1,−e1), for all r ∈ (0, 2). Since r1 ∈ (0, 1] and r2 ∈ [1, 2), this in turn
implies that inequalities (48) are satisfied if and only if

r∆+ 1 = r−
∫

∂B2

zT e1dHm−1(z) + 1 <
r

2
∆2, for r = r1, r2,

which, by r1 ≤ r2, is true if and only if ∆ > ∆0; i.e., the desired condition.
Define

Fr(x, y) := r−
∫

∂B2

max{xT z, yT z}dHm−1(z)− xT y. (50)

Our goal is to show that for every r ∈ (0, 2)

max
x,y∈∂B1

Fr(x, y) = Fr(e1,−e1) = r∆+ 1. (51)

In Lemma 2, we prove that

max
x,y∈∂B1

F2(x, y) = F2(e1,−e1) = 2∆ + 1. (52)

Hence, recalling that r ∈ (0, 2) and that 1− r
2 ≥ −(1− r

2)x
T y for every x, y ∈ ∂B1, we conclude with

the following chain of inequalities:

r∆+ 1 =
r

2
(2∆ + 1) + (1− r

2
) =

r

2
max

x,y∈∂B1

F2(x, y) + (1− r

2
)

= max
x,y∈∂B1

r

2
F2(x, y) + (1− r

2
) ≥ max

x,y∈∂B1

Fr(x, y).
(53)

⋄

In order to prove Lemma 1, we made use of the next lemma, for which we provide a proof that is
closely related to the proof of Lemma 1 in [5], in which the authors prove

max
x,y∈B1

F1(x, y) = F1(e1,−e1) = ∆ + 1,

where Fr is defined by (50) and B1 denotes a ball of radius one as defined in the SBM. For brevity, in
the following, we only include the parts of the proof that are different, and when possible, we refer to
the relevant parts of the proof of Lemma 1 in [5].

Lemma 2. (52) holds.
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Proof. For any x ∈ Rm, we denote by xi the ith component of x. We divide the proof in several steps:

Step 1. Slicing:
Let z, w be any pair of points in ∂B2 satisfying z1 = w1, z2 = −w2 ≥ 0, zj = wj = 0 for all

j ∈ {3, . . . ,m}. In the special case m = 1, we consider z = w ∈ ∂B2. Define

H(x, y) := max{xT z, yT z}+max{xTw, yTw} − xT y.

Then (52) holds if the following holds

max
x,y∈∂B1

H(x, y) = H(e1,−e1) (54)

for any pair of points z, w ∈ ∂B2 satisfying z1 = w1, z2 = −w2 ≥ 0, zj = wj = 0 for all j ∈ {3, . . . ,m}
in case m ≥ 2, or, in case m = 1, for any point z = w ∈ ∂B2 .

Proof of Step 1. Since

F2(x, y) =
1

Hm−1(∂B2)

∫ ∆+1

∆−1

∫

{z1=s}∩∂B2

2max{xT z, yT z} − xT ydHm−2(z)ds,

to show (52) it is enough to show that the function

G(x, y) :=

∫

{z1=s}∩∂B2

2max{xT z, yT z} − xT ydHm−2(z)

is maximized in x = e1, y = −e1, for every s ∈ [∆− 1,∆+ 1]. Denoting A := {z1 = s, z2 ≥ 0} ∩ ∂B2,
then

1

2
G(x, y) =

∫

A
max{xT z, yT z}+max{xT (2se1 − z), yT (2se1 − z)} − xT ydHm−1(z).

Hence, it is enough to prove that for every s ∈ [∆− 1,∆+ 1] and for every z ∈ A,

max
x,y∈∂B1

{
max{xT z, yT z}+max{xT (2se1 − z), yT (2se1 − z)} − xT y

}
, (55)

is achieved at (e1,−e1). Since Problem (55) is invariant under a rotation of the space around the axis
generated by e1, we conclude that solving Problem (55) is equivalent to solving Problem (54).
Step 2. Symmetric distribution of the maxima:

Let z, w be any pair of points as defined in Step 1. Define

I(x, y) := xT z + yTw − xT y.

In order to show that (54) holds, it suffices to prove that for m ≥ 2

max
x,y∈∂B1

xT z≥yT z, yTw≥xTw

{I(x, y)} ≤ H(e1,−e1) = 2z1 + 1. (56)

Proof of Step 2. The proof is identical (up to trivial changes) to the proof of Step 2 of Lemma 1 in
[5].
Step 3. Reduction from spheres to circles:

To show the validity of (56), we can restrict to dimension m = 2.
Proof of Step 3. The proof repeats verbatim as in the proof of Step 3 of Lemma 1 in [5].

Step 4. Symmetric local maxima:
For any pair x, y ∈ ∂B1 of the form x1 = y1 and x2 = −y2, we have

I(x, y) ≤ H(e1,−e1).
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Proof of Step 4. Given such symmetric pair (x, y), the objective function evaluates to I(x, y) =
2z1x1 + 2z2x2 − x21 + x22. Using x21 + x22 = 1 and z2

√
1− x21 ≤ z2, it suffices to show that

2z2 ≤ 2x21 − 2z1x1 + 2z1, ∀x1 ∈ [−1, 1]. (57)

Since the function f̂(x1) := 2x21 − 2z1x1 + 2z1 on the right hand side of (57) is a convex parabola in
x1, its minimum is either attained at one of the end points or at x̃1 =

z1
2 , provided that −1 ≤ z1

2 ≤ 1.
Since ∆−1 ≤ z1 ≤ ∆+1, the point x̃1 lies in the domain only if ∆−1 ≤ z1 ≤ min{2,∆+1} = 2. The
value of f̂ at x1 = −1 and x1 = 1 evaluates to 2 + 4z1 and 2, respectively, both of which are bigger
than 2z2. Hence it remains to show that f̂(x̃1) ≥ 2z2 if ∆− 1 ≤ z1 ≤ 2, that is we have to show that

2
√
1− u2 ≤ 2(u+∆)− (u+∆)2

2
, if − 1 ≤ u ≤ 2−∆,

where we set u := z1 −∆ and we use that z2 =
√
1− u2. Since u+∆ ≤ 2, the right hand side of the

above inequality is increasing in ∆; hence it suffices to show its validity at ∆ = 2; i.e.,

2
√

1− u2 ≤ 2(u+ 2)− (u+ 2)2

2
, if − 1 ≤ u ≤ 0,

which can be easily proved.
Step 5. Decomposition of the circle:

To solve Problem (56), it suffices to solve

max
x,y∈∂B1∩{x1≤0, y1≥0}
xT z≥yT z, yTw≥xTw

I(x, y) ≤ H(e1,−e1) = 2z1 + 1, (58)

for every z ∈ ∂B2, z1 = w1, z2 = −w2 ≥ 0.
Proof of Step 5. The proof is identical (up to trivial changes) to the proof of Step 6 of Lemma 1

in [5].
Step 6. We solve Problem (58).

Proof of Step 6. The proof is identical (up to trivial changes) to the proof of Step 7 of Lemma 1
in [5].

While the recovery guarantee of Proposition 4 is the first of its kind for an LP relaxation of K-means
clustering, it is too conservative. We demonstrate this fact via numerical simulations. We let n = 100,
m = 2, r1 ∈ {0.6, 0.8, 1.0}, and ∆ ∈ [2.0 : 0.01 : 3.2]. For each fixed configuration, we generate 20
random trials according to the SSM. We count the number of times the optimization algorithm returns
the planted clusters as the optimal solution; dividing this number by the total number of trials, we
obtain the empirical recovery rate. We use the same set up as before to solve all LPs and SDPs. Our
results are shown in Figure 2, where as before we compare the LP relaxation defined by Problem (LP2)
with the SDP relaxation defined by Problem (PW). Clearly, in all cases the LP outperforms the SDP.
Moreover, our results indicate that the recovery threshold of the LP relaxation for SSM is significantly
better than the one given by Proposition 4. For example, for r1 = 0.6, condition (35) gives the recovery
threshold ∆0 ≈ 3.08, while Figure 2(c) suggests ∆0 ≈ 2.6. We should also remark that in all these
experiments, the LP relaxation is tight; i.e., whenever the LP fails in recovering the planted clusters,
its optimal solution is still a partition matrix. The SDP relaxation however is not tight in almost all
cases for which it does not recover the planted clusters.
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(b) r1 = 0.8
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(c) r1 = 0.6

Figure 2: The recovery rate of the LP relaxation versus the SDP relaxation when the input is generated
according to the SSM with n = 100 and m = 2.
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5 A stronger dual certificate

By Proposition 1, if inequalities (11) and (12) are satisfied then the partition matrix X̄ defined
by (13) is an optimal solution of Problem (LP2) and as a result X̄ is an optimal solution of the
K-means clustering problem. However, as evident from Proposition 4 and Figure 2, our proximity
condition given by inequalities (11) and (12) are overly conservative. In the following we present a
simple algorithm that leads to significantly better recovery guarantees.

Recall that in the last step of the proof of Proposition 1, our task is to identify conditions under
which inequalities (26) and (27) can be satisfied. In the proof we let λ̄ijk = 0 for all (i, j, k) ∈ Γ1

and λ̄ijk = 0 for all (i, j, k) ∈ Γ2, which in turn gives us inequalities (26) and (27). As we show in
the following, a careful selection of these multipliers will lead to significantly better recovery results.
Define

γij := 2 −
∑

k∈Γ2

min{r2dik + dinj , r2djk + dini } − 2dij − 2η, ∀i < j ∈ Γ1,

and
γij := 2 −

∑

k∈Γ1

min{r1dik + dinj , r1djk + dini } − 2dij − 2
r1
r2
η, ∀i < j ∈ Γ2.

We define γji := γij for all i < j. Then, by the proof of Proposition 1, the partition matrix X̄ defined
by (13) is an optimal solution of Problem (LP2) if the following system of inequalities is feasible:

∑

k∈Γl′\{i,j}
(λijk + λjik − λkij) ≤ γij , ∀i < j ∈ Γl, l ̸= l′ ∈ {1, 2}

λijk ≥ 0, ∀(i, j, k) ∈ Γl, l ∈ {1, 2}, (59)

where as before we let λikj = λijk for j < k. We next present a simple algorithm whose successful
termination serves as a sufficient condition for feasibility of system (59):

Certify : The algorithm for constructing a dual certificate

Input: Given γij for all i < j ∈ Γl, l ∈ {1, 2}
Output: A Boolean success

Initialize λ̄ijk = λ̄jik = λ̄kij = 0 for all (i, j, k) ∈ Γl, l ∈ {1, 2}, r̄ij = γij for all (i, j) ∈ Γl,
l ∈ {1, 2} and N = {(i, j) ∈ Γl, l ∈ {1, 2} : i < j, r̄ij < 0}.

while N ̸= ∅, do
set success = .false.

select some (i, j) ∈ N
for each k ∈ Γl \ {i, j}, do

let ω = min{−r̄ij , r̄ik, r̄jk}.
if ω ≤ 0, then cycle
update r̄ik ← r̄ik − ω, r̄jk ← r̄jk − ω, and r̄ij ← r̄ij + ω
update λ̄kij ← λ̄kij + ω, λ̄kji ← λ̄kji + ω
if r̄ij ≥ 0, then

update success =.true.
update N ← N \ {(i, j)}
exit the k-loop

if success = .false., then return
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Proposition 5. If Algorithm Certify terminates with success = .true., then the partition matrix
X̄ defined by (13) is an optimal solution of Problem (LP2). Moreover, Algorithm Certify runs in
Θ(n3) operations.

Proof. We prove that the system defined by all inequalities in system (59) with l = 1 is feasible; the
proof for l = 2 then follows. Define

r̄ij := γij +
∑

k∈Γ2\{i,j}
(λ̄kij − λ̄ijk − λ̄jik), ∀i < j ∈ Γ1. (60)

Then the system defined by all inequalities in system (59) with l = 1 can be equivalently written as:

r̄ij ≥ 0, ∀i < j ∈ Γ1, λ̄ijk ≥ 0, ∀(i, j, k) ∈ Γ1. (61)

If N = ∅, then by letting λ̄ijk = λ̄jik = λ̄kij = 0 for all (i, j, k) ∈ Γ1, we obtain a feasible solution and
the algorithm terminates with success = .true.. Hence, suppose that N ̸= ∅; that is, the initial-
ization step violates inequalities r̄ij ≥ 0 for all (i, j) ∈ N . Consider an iteration of the algorithm for
some (̄i, j̄) ∈ N ; we claim that if this iteration is completed with success = .true., all nonnegative
r̄ij , i < j ∈ Γ1 remain nonnegative (even though their values may decrease), and we will have r̄ij ≥ 0.

Since the value of λ̄ does not decrease over the course of the algorithm, this in turn implies that if the
algorithm terminates with success = .true., (λ̄, r̄) is feasible for system (61). To see this, consider
some k̄ ∈ Γ1 \ {̄i, j̄} for which we have ω = min{−r̄ij , r̄ik, r̄jk} > 0. Notice that variable λ̄kij (which is

equal to λ̄kji) appears only in three equations of (60) defining r̄ij (with positive coefficient), r̄ik (with
negative coefficient), and r̄jk (with negative coefficient). Since r̄īk ≥ ω, r̄j̄k ≥ ω, and ω > 0, we can

increase the value of λ̄kij by ω and keep the system feasible, this in turn implies that the value of r̄ij
will increase by ω, while the values of r̄ik and r̄jk decrease by ω. Therefore, if the algorithm terminates

with success=.true., the assignment (λ̄, r̄) is a feasible solution for system (61). It is simple to verify
that this algorithm runs in Θ(n3) operation.

Let us now comment on the power of Algorithm Certify for recovering the planted clusters under
the stochastic ball model. Since we do not have an explicit proximity condition, we are unable to
perform a rigorous probabilistic analysis similar to that of Section 4. However, in dimension m = 2,
we can perform a high precision simulation as the computational cost of Algorithm Certify is very
low. First, we consider the case of equal-size clusters; i.e., r1 = r2 = 1. We set n = 20000 and
we observe that for ∆ > 2.14, Algorithm Certify terminates with success = .true.. That is, we
conjecture the following:

Conjecture 1. Let m ≥ 2, and suppose that the points are generated according to the SBM with equal-
size clusters. If ∆ > 2.14, then Problem (LP2) recovers the planted clusters with high probability.

If true, the recovery guarantee of Conjecture 1 is better than the recovery guarantee of the SDP
relaxation given by (34) for m ≤ 202. Clearly, any convex relaxation succeeds in recovering the
underlying clusters only if the original problem succeeds in doing so. To this date, the recovery
threshold for K-means clustering under the SBM for m > 1 remains an open question. Let us briefly
discuss special cases m = 1 and m = 2. In [9], the authors prove that a necessary condition for
recovery of K-means clustering in dimension one is ∆ > 1 +

√
3. In the same paper, the recovery

threshold of the SDP relaxation in dimension one is conjectured to be ∆0 = 4 (see Section 2.3 of [9]
for a detailed discussion). In [5], the authors prove that Problem (LP2) recovers the planted clusters
with high probability (for every m ≥ 1), if ∆ > 1 +

√
3. It then follows that for m = 1, the K-means

clustering problem recovers the planted clusters with high probability if and only if ∆ > 1 +
√
3.

For m = 2, in [9], via numerical simulations, the authors show that K-means clustering recovers the
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planted clusters with high probability only if ∆ > 2.08. If true, Conjecture 1 implies that in dimension
two, the recovery thresholds for K-means clustering and the LP relaxation are fairly close. In [11], the
authors prove that, if

∆ < 1 +

√
1 +

2

m+ 2
, (62)

then the SDP relaxation fails in recovering the planted clusters with high probability. They also
state that “it remains unclear whether this necessary condition (i.e., inequality (62)) is only necessary
for the SDP relaxation or is necessary for the K-means itself.” If true, Conjecture 1 implies that
inequality (62) is not a necessary condition for the K-means clustering problem.

We further use Algorithm Certify to estimate the recovery threshold for the case with different
cluster sizes, i.e. r1 ̸= 1, in dimension m = 2. Our results are depicted in Figure 3. As can be
seen from the figure, the recovery guarantee given by Algorithm Certify is significantly better than
that of Proposition 4. For comparison, we have also plotted the recovery threshold for the SDP
relaxation given by condition (34) for different input dimensions m. While Figure 3 suggests that
the recovery threshold of the LP as given by Algorithm Certify quickly degrades as r1 decreases,
our numerical experiments with the LP relaxation, depicted in Figure 2 for 0.6 ≤ r1 ≤ 1.0, indicates
otherwise. Notice that Algorithm Certify provides a sufficient condition for feasibility of system (59).
Obtaining a better sufficient condition or, if possible, a tractable necessary and sufficient condition for
the feasibility of system (59) remains an open question.
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LP, m=2, Alg. certify

Figure 3: Comparing the recovery threshold ∆0 of the LP relaxation versus the SDP relaxation for
K-means clustering when the input is generated according to the SBM.

6 A Counter example for the tightness of the LP relaxation

As we discussed in previous sections, in almost all our experiments with both synthetic and real-world
data sets, Problem (LP2) is tight; i.e., its optimal solution is a partition matrix. In particular, a
large number of our experiments are done under the SBM. Hence, it is natural to ask whether the
LP relaxation is tight with high probability under reasonable generative models. In the following we
present a family of inputs for which the LP relaxation is never tight. This family of inputs subsumes
as a special case the points generated by a variation of the SBM.

To prove our result, we make use of the following lemma, which essentially states that if several
sets of points have identical optimal cluster centers, then those cluster centers are optimal for the
union of all points as well:
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Lemma 3. Let {xi,l : i ∈ [nl], l ∈ [L]} denote a set of N :=
∑

l∈[L] nl points in Rm for some
n1, . . . , nL, L ∈ N, with n1, . . . , nL, L ≥ 1. For each l ∈ [L], consider an optimal solution of Problem (1)
for clustering the nl points {xi,l}nl

i=1 and denote by c̄l ∈ RK the vector with entries equal to the K
centers of the optimal clusters. If c̄l = c̄l

′
for all l, l′ ∈ [L], then there exists an optimal solution of

Problem (1) for clustering the entire set of N points with cluster centers vector c̄ ∈ RK satisfying
c̄l = c̄ for all l ∈ [L].

Proof. Let {yi}ni=1 denote a set of n points in Rm that we would like to put into K clusters and denote
by c ∈ RK the vector of cluster centers. We start by reformulating Problem (1) as follows:

min
c∈RK

n∑

i=1

min
{
∥yi − c1∥22, · · · , ∥yi − cK∥22

}
. (63)

Notice that by solving Problem (63) one directly obtains a vector of optimal cluster centers and

subsequently can assign each point yi to a cluster at which min
{
∥yi−c1∥22, · · · , ∥yi−cK∥22

}
is attained.

Now for each l ∈ [L], define

fl(c) :=

nl∑

i=1

min
{
∥xi,l − c1∥22, · · · , ∥xi,l − cK∥22

}
.

It then follows that the K-means clustering problem for clustering the nl points {xi,l}nl
i=1 for some

l ∈ [L] can be written as:
min
c∈RK

fl(c), (64)

while the K-means clustering problem for the entire set of N points can be written as

min
c∈RK

∑

l∈L
fl(c). (65)

Clearly,
∑

l∈Lminc∈RK fl(c) ≤ minc∈RK

∑
l∈L fl(c). Hence, if for each l ∈ [L], there exists a minimizer

c̄l of Problem (64) such that c̄l = c̄l
′
for all l, l′ ∈ [L], we conclude that c̄l is a minimizer of Problem (65)

as well.

Now let us investigate the tightness of the LP relaxation defined by Problem (LP2). First note that
by Proposition 5 in [5], if n ≤ 4, then the feasible region of Problem (LP2) coincides with the convex
hull of the feasible region of Problem (3). Hence, to find an instance for which the LP relaxation is
not tight we must have n ≥ 5.

Consider the following n = 5 points in dimension m = 3, which we refer to as the five-point input :

x1 =
(
0,

√
3

3
, 0
)
, x2 =

(1
2
,−
√
3

6
, 0
)
, x3 =

(
− 1

2
,−
√
3

6
, 0
)
, x4 =

(
0, 0,

1

2

)
, x5 =

(
0, 0,−1

2

)
. (66)

In this case the vector of squared pair-wise distances d = (dij)1≤i<j≤5 is given by

d =
(
1, 1,

7

12
,
7

12
, 1,

7

12
,
7

12
,
7

12
,
7

12
, 1
)
. (67)

By direct calculation it can be checked that the partition Γ1 = {1, 4} and Γ2 = {2, 3, 5} is a minimizer
of the K-means clustering problem (1) with the optimal objective value given by

f∗
Kmeans =

146

72
> 2.
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Now consider the following matrix

X̃ =
1

14




6 1 1 3 3
1 6 1 3 3
1 1 6 3 3
3 3 3 5 0
3 3 3 0 5



. (68)

Notice that X̃ is not a partition matrix. It is simple to verify the feasibility of X̃ for the LP relaxation.
Moreover, the objective value of Problem (LP2) at X̃ evaluates to f̂LP = 54

28 < 2. Denote by f∗
LP the

optimal value of Problem (LP2). Since f∗
LP ≤ f̂LP < f∗

Kmeans, we conclude that for the five-point input,
the LP relaxation is not tight.

Now consider the following set of points, which we will refer to as the five-ball input. Instead of
n = 5 points located at each xp, p ∈ {1, · · · , 5} defined by (66), suppose that we have n = 5n′ points
for some n′ ∈ N, n′ ≥ 1, such that for each p ∈ {1, . . . , 5}, we have n′ points located inside a closed
ball of radius r ≥ 0 centered at xp. In the following we show that for r ≤ 3× 10−3, the LP relaxation
always fails in finding the optimal clusters.

Proposition 6. Consider an instance of the five-ball input for some r ≤ 3 × 10−3. Then the LP
relaxation is not tight; i.e., , the optimal value of Problem (LP2) is strictly smaller than that of
Problem (1).

Proof. We denote by Bp the index set of points located in the pth ball; without loss of generality,
let Bp = {(p − 1)n′ + 1, · · · , pn′} for all p ∈ {1, · · · , 5}. Let us denote these points by yj , j ∈ Bp,
p ∈ {1, · · · , 5}.

We start by computing an upper bound on the optimal value of the LP relaxation. Consider the
matrix X̂ defined as follows:

X̂ij =
6

14n′ , ∀i, j ∈ Bp, p ∈ {1, 2, 3}

X̂ij =
5

14n′ , ∀i, j ∈ Bp, p ∈ {4, 5}

X̂ij =
1

14n′ , ∀i ∈ Bp, j ∈ Bp′ , p ̸= p′ ∈ {1, 2, 3}

X̂ij =
3

14n′ , ∀i ∈ Bp, j ∈ Bp′ , p ∈ {1, 2, 3}, p′ ∈ {4, 5}

X̂ij = 0, ∀i ∈ Bp, j ∈ Bp′ , p ̸= p′ ∈ {4, 5}.

Clearly, X̂ is not a partition matrix. First we show that X̂ is feasible for Problem (LP2). The equality
constraint (5) is satisfied as we have Tr(X̂) =

∑
i∈[n] X̂ii = 3n′( 6

14n′ )+2n′( 5
14n′ ) = 2. Equalities (6) are

also satisfied since we have
∑n

j=1 X̂ij = n′( 6
14n′ ) + 2n′( 1

14n′ ) + 2n′( 3
14n′ ) = 1 for all i ∈ Bp, p ∈ {1, 2, 3},

and
∑n

j=1 X̂ij = 3n′( 3
14n′ ) + n′( 5

14n′ ) + n′(0) = 1 for all i ∈ Bp, p ∈ {4, 5}. Hence it remains to check
the validity of inequalities (7): first note that if i ∈ Bp, j ∈ Bp′ , k ∈ Bp′′ for p ̸= p′ ̸= p′′, then the

validity of X̂ij + X̂ik ≤ X̂ii + X̂jk follows from the validity of inequalities (7) at X̃ defined by (68). If

i, j, k ∈ Bp, p ∈ {1, 2, 3}, then X̂ij+X̂ik = 6
14n′ +

6
14n′ ≤ 6

14n′ +
6

14n′ = X̂ii+X̂jk for all i ̸= j ̸= k, j < k.

If i, j, k ∈ Bp, p ∈ {4, 5}, then X̂ij + X̂ik = 5
14n′ +

5
14n′ ≤ 5

14n′ +
5

14n′ = X̂ii + X̂jk for all i ̸= j ̸= k,
j < k. The remaining cases, i.e., when two of the points are in the same ball, while the third point is
in a different ball, can be checked in a similar fashion.

Denote by drij , 1 ≤ i < j ≤ n, the vector of squared pairwise distances. We have:

drij ≤ 4r2, ∀i, j ∈ Bp, p ∈ {1, . . . , 5},
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drij ≤ (1 + 2r)2, ∀i ∈ Bp, j ∈ Bp′ , ∀p ̸= p′ ∈ {1, 2, 3}, or p ̸= p′ ∈ {4, 5},

drij ≤
(√ 7

12
+ 2r

)2
, ∀i ∈ Bp, j ∈ Bp′ , ∀p ∈ {1, 2, 3}, p′ ∈ {4, 5}.

Hence, an upper bound ĝLP(r) on the optimal value of Problem (LP2) is given by

g∗LP(r) ≤ 6

(
n′

2

)
6

14n′ (4r
2) + 4

(
n′

2

)
5

14n′ (4r
2) + 6n′2 1

14n′ (1 + 2r)2 + 12n′2 3

14n′

(√ 7

12
+ 2r

)2

= n′
(54
28

+ 20r2 + 12(

√
21 + 1

7
)r − 8

r2

n′

)
≤
(54
28

+ 10r
)
n′ := ĝLP(r), (69)

where the last inequality follows since by assumption r ≤ 3 × 10−3, and where g∗LP(r) denotes the
optimal value of Problem (LP2) for the five-ball input.

Denote by g∗Kmeans(r) the optimal value of the K-means clustering problem (1) for the five-ball
input. Next, we obtain a lower bound on g∗Kmeans(r), and show that this value is strictly larger than
ĝLP(r) defined by (69) for any 0 ≤ r ≤ 3 × 10−3, implying that Problem (LP2) is not tight. To this
end, first consider the case with r = 0. Define the set of points Y l := {yl, yn′+l, y2n

′+l, y3n
′+l, y4n

′+l}
for all l ∈ [n′]. Notice that since r = 0, we have Y l = Y l′ for all l, l′ ∈ [n′]. For each l ∈ [n′], consider
the K-means clustering problem with K = 2 for five input points Y l, and denote the optimal cluster
centers by (cl1, c

l
2). We then have (cl1, c

l
2) = (c1, c2) for all l ∈ [n′], where (c1, c2) denotes the optimal

cluster centers for the five-point input (66). Therefore, by Lemma 3, we conclude that an optimal
cluster centers for the five-ball input with r = 0, coincides with an optimal cluster centers for the
five-point input. This in turn implies that

g∗Kmeans(0) = n′f∗
Kmeans =

146

72
n′. (70)

Now let us consider the five-ball input for some r > 0. We observe that

√
drij ≥

√
d0ij − 2r, ∀1 ≤ i < j ≤ n.

Since d0ij ≤ 1 for all 1 ≤ i < j ≤ n, we have

drij ≥ d0ij − 4r, ∀1 ≤ i < j ≤ n.

Therefore, for every partition matrix X we compute

∑

i,j∈[n]
drijXij ≥

∑

i,j∈[n]
d0ijXij − 4r

∑

i,j∈[n]
Xij =

∑

i,j∈[n]
d0ijXij − 20rn′,

where the last equality follows from constraints (6). Hence, taking the minimum over all partition
matrices on both sides and using (70), we deduce that

g∗Kmeans(r) ≥ g∗Kmeans(0)− 20rn′ =
(146
72
− 20r

)
n′. (71)

From (69) and (71) it follows that by choosing

r <
146
72 − 54

28

30
,

we get g∗LP(r) < g∗Kmeans(r) and this completes the proof.
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As a consequence of Proposition 6, we find that the LP relaxation is not tight for a variant of the
SBM:

Corollary 1. Let r ≤ 3 × 10−3. Suppose that the points are generated in Rm, for some m ≥ 3
according to any generative model consisting of five measures µp, p = 1, . . . , 5, each supported in the
ball B((xp, 0, . . . , 0), r), where xp is defined by (66). Then Problem (LP2) is not tight.

Recall that in all our previous numerical experiments with synthetic and real-world data sets, the
LP relaxation outperforms the SDP relaxation. That is, the optimal value of the LP is always at
least as large as that of the SDP. Hence, one wonders whether such a property can be proved in a
general setting. Interestingly, the stochastic model defined in Corollary 1 provides the first counter
example, which we illustrate via a numerical experiment. We consider the stochastic model defined
in Corollary 1, where we assume the points supported by each ball are sampled from a uniform
distribution. We set m = 3 and generate n′ = 20 points in each of the five balls to get a total of
n = 100 points. Moreover we set ball radii r ∈ [0.0 : 0.01 : 0.5] and for each fixed r we generate
20 random instances. Our results are depicted in Figure 4, where as before we compare the LP, i.e.,
Problem (LP2), with the SDP, i.e., Problem (PW), with respect to their tightness rate and average
relative gap. Recall that the relative gap is defined as grel =

fLP−fSDP
fLP

× 100, where fLP and fSDP

denote the optimal values of the LP and the SDP, respectively. That is, a negative relative gap means
that the SDP relaxation is stronger than the LP relaxation. As can be seen from the figure, while the
SDP is never tight, for r ≲ 0.15, we often have fSDP > fLP.
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Figure 4: Comparing the strength of the LP relaxation versus the SDP relaxation for K-means clus-
tering when the input is generated according to the stochastic five-ball input with n = 100 and m = 3.

We conclude this paper by remarking that the family of examples we constructed in this section
are very special and our numerical experiments with real-world data sets suggest that such special
configurations do not appear in practice. Hence, it is highly plausible that one can establish the
tightness of the LP relaxation under a fairly general family of inputs. We leave this as an open
question.
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