
Quantum DeepONet: Neural Operators
Accelerated by Quantum Computing

PENGPENG XIAO1,2, MUQING ZHENG3, ANRAN JIAO1, XIU YANG3, AND LU
LU1,4

1Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA

2Department of Physics, Fudan University, Shanghai 200437, China

3Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 18015
USA

4Wu Tsai Institute, Yale University, New Haven, CT 06510, USA

ISE Technical Report 24T-011

Quantum DeepONet: Neural operators accelerated by quantum

computing

Pengpeng Xiao1,2, Muqing Zheng3, Anran Jiao1, Xiu Yang3,*, and Lu Lu1,4,*

1Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
2Department of Physics, Fudan University, Shanghai 200437, China

3Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA
18015, USA

4Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
*Corresponding author. Email: xiy518@lehigh.edu, lu.lu@yale.edu

Abstract

In the realm of mathematics, engineering, and science, constructing models that reflect real-
world phenomena requires solving partial differential equations (PDEs) with different param-
eters. Recent advancements in DeepONet, which learn mappings between infinite-dimensional
function spaces, promise efficient evaluations of PDE solutions for new parameter sets in a sin-
gle forward pass. However, classical DeepONet entails quadratic time complexity concerning
input dimensions during evaluation. Given the progress in quantum algorithms and hardware,
we propose utilizing quantum computing to accelerate DeepONet evaluations, resulting in time
complexity that is linear in input dimensions. Our approach integrates unary encoding and
orthogonal quantum layers to facilitate this process. We benchmark our Quantum DeepONet
using a variety of equations, including the first-order linear ordinary differential equation, ad-
vection equation, and Burgers’ equation, demonstrating the method’s efficacy in both ideal and
noisy conditions. Furthermore, we show that our quantum DeepONet can also be informed by
physics, minimizing its reliance on extensive data collection. We expect Quantum DeepONet
to be particularly advantageous in applications in outer loop problems which require to explore
parameter space and solving the corresponding PDEs, such as forward uncertainty propagation
and optimal experimental design.

1 Introduction

Partial differential equations (PDEs) play a crucial role in modeling complex phenomena that are
fundamental to both natural and engineered systems. Traditional numerical methods, such as finite
difference, finite element, and finite volume methods, typically involve discretizing the solution space
and solving finite-dimensional problems. These approaches, however, are computationally intensive
and require a complete re-solving of equations with even minor adjustments to the system. Recently,
neural networks have been employed to learn the solutions of PDEs [1, 2, 3, 4, 5, 6]. In particular,
physics-informed neural networks (PINNs) embed the PDE residual into the loss term [7, 8, 1],
demonstrating potential in solving both forward and inverse problems [9, 10, 11, 12]. Despite their
promise, many of these methods remain mesh-dependent or require re-training when new functional
parameters are introduced.

To address these limitations, deep neural operators have gained popularity for learning the
mapping between infinite-dimensional spaces of functions through data [13, 14, 15, 16, 17, 18]. Once

1

trained, neural operators are able to efficiently evaluate the PDE solutions for a new PDE instance
in a single forward pass. Additionally, the output of neural operators can be discretized at different
levels of resolutions or evaluated at any points. The training of neural operators can also incorporate
physics priors [19, 20], aligning the concept of PINNs, which has been shown to enhance accuracy
significantly. The main categories of neural operators include integral kernel operators [15, 14, 21],
transformer-based neural operators [17, 16], and DeepONet [13]. Integral kernel operators, such as
Fourier neural operator (FNO) [14], leverage iterative learnable kernel integration, but are usually
restricted to grids. Transformer-based neural operator has larger model capacity, but relies on
sufficient data to achieve optimal performance. DeepONet, grounded in universal approximation
theorem [22], on the other hand, can evaluate the solution of PDEs at any points in a mesh-
free manner. There have been a wide range of developments of DeepONet [23, 24, 25, 26, 27],
highlighting its adaptability in various complex systems.

While classical developments greatly expand the potential of neural networks, quantum neu-
ral networks (QNNs) have also drawn much attention due to the potential of better complexity
and higher capacities compared to their classical counterparts [28, 29, 30]. Such advantages of-
ten directly come from the ability to efficiently encode and explore the exponentially large space
on quantum computers [31]. Specifically, there are quantum algorithms that demonstrate the
quadratic speedup in online perceptron [32] and reinforcement learning [33], as well as the expo-
nential speedup in linear-system solving [34, 35], least-square fitting [36], Boltzmann machine [37],
principal component analysis [38], and support vector machine [39].

Neural operators present an ideal application scenario for quantum neural networks designed for
accelerating the evaluation process, especially in situations where they are evaluated repeatedly in
“outer-loop problems”, such as forward uncertainty propagation and optimal experimental design.
There is a recent development of quantum Fourier neural operator (QFNO) [40]. Utilizing a new
form of the quantum Fourier transform, QFNO is expected to be substantially faster than classical
FNO in evaluation: requiring a logarithmic number of evaluations of the initial condition function,
an improvement from the linear dependency in the classical FNO. The success of QFNO motivates
us to explore the possibility of accelerating other neural operators, such as DeepONet.

However, as suggested by Refs. [41, 42, 43, 44, 45], the data embedding of classical datasets on
quantum computers and hardware noise can induce barren plateaus and local minima that damage
the trainability of quantum neural networks. It is even more problematic for the optimizers relying
on the Fisher information matrix because they require exponentially many measurement shots to
achieve accurate computation in barren plateaus [43].

In this study, we design an architecture for quantum DeepONet and quantum physics-informed
DeepONet (QPI-DeepONet). To circumvent the trainability issue in QNN, we incorporate classical
training and quantum evaluation by employing the orthogonal neural network structure outlined
in Ref. [46]. Our work preserves the quadratic speed-up with respect to the input dimension
in the feed-forward pass from the quantum orthogonal neural network, with a minimal cost for
classical data preprocessing before training. The results of our numerical experiments suggest the
effectiveness of neural networks in solving different PDEs in both ideal and noisy environments.
We also analyze the impact of quantum noise on our quantum DeepONet.

The paper is organized as follows. We first present the algorithm and architecture of quantum
DeepONet in Section 2. In Section 3, we illustrate the ideal quantum simulation results of dif-
ferent applications of our quantum DeepONet. Then we investigate quantum noise and show the
performance of the quantum DeepONet under two different noise models in Section 4. Finally, we
conclude our work and discuss the limitations in Section 5. The background concepts related to
quantum computing is provided in Appendices A and B.

2

2 Methods

In this section, we first introduce a specific quantum circuit for network layers in Section 2.1,
referred to as “quantum layers”, which are designed for constructing quantum orthogonal neural
networks in Section 2.2. Building on these foundations, we propose a novel quantum DeepONet
structure by synthesizing multiple quantum layers in Section 2.3. The training method and loss
function are detailed in Section 2.4. Furthermore, in addition to data driven training, we also
propose to use physics-informed loss function, developing quantum physics-informed DeepONet
(QPI-DeepONet) in Section 2.5.

2.1 Quantum methods for network layers

A classical neural network layer, with the input x ∈ Rn and output x′ ∈ Rm, takes the form
x′ = σ(Wx+ b). Here, W ∈ Rm×n represents the weight matrix, b ∈ Rm is the bias, and σ is the
activation function. As demonstrated by Ref. [46], the matrix multiplicationWx can be accelerated
by substituting the classical matrix multiplication with quantum matrix multiplication. The neural
network layer accelerated by this quantum algorithm is referred as a quantum layer. We provide
a detailed explanation of each step of a quantum layer, beginning with an introduction to the
basic gate, the reconfigurable beam splitter (RBS) gate, used in our method (Section 2.1.1). The
whole process involves three key steps to handle classical data on a quantum computer: (1) loading
the classical data onto the quantum circuit (Section 2.1.2), (2) performing matrix multiplication on
quantum computer (Section 2.1.3), and (3) converting the resulting quantum data back into classical
data (Section 2.1.4). We summarize and provide the complexity of each step in Section 2.1.5.

2.1.1 Reconfigurable beam splitter gate

We first introduce reconfigurable beam splitter (RBS) gate [46] as a basic tool used in our quantum
layer:

URBS(θ) =

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 ,

where its basis-gate decomposition is illustrated in Appendix A. It is basically performing rotation
operation on state |01⟩ 7→ cos θ |01⟩ − sin θ |10⟩ and |10⟩ 7→ − sin θ |01⟩ + cos θ |10⟩, while leaving
|00⟩ and |11⟩ unchanged. By carefully designing the circuit using RBS gates and setting θ to
required value, we efficiently load data (Section 2.1.2) and perform specialized matrix multiplication
operations (Section 2.1.3).

2.1.2 Loading classical data input

For a classical vector x ∈ Rn, to perform operations on quantum computers, this classical vector
must be converted into a quantum state. It is essential to ensure that the norm ∥x∥2 = 1, as
required by the probabilistic nature of quantum mechanics.

If the condition is not met, normalization should be performed. For the first quantum layer
in the neural network, to avoid losing information of input data during normalization, we append
an additional dimension to x, which keeps the norm of x at 1 and in the meantime store the
information of the original norm of x. In detail, each element of x is first rescaled to the range

[−1, 1]. Then the value
√

1−∑
i x

2
i /d is assigned to the new dimension, where d represent the

3

Figure 1: The circuits of a quantum layer. A quantum layer is composed of data loading, pyra-
midal circuit, and tomography. An ancillary qubit is included for the purpose of tomography. The
vertical lines represent the two-qubit RBS gates, while the θ1 and αi correspond to the parameter
of the gate. We provide the example of data loader for loading the classical vector x ∈ R4 with
∥x∥2 = 1. We demonstrate quantum pyramidal circuit using all of the seven examples. W ∈ R4×4,
W ∈ R4×3, and W ∈ R3×4 share the same pyramidal circuit. The following circuit are other
examples of m ̸= n cases: W ∈ R4×2, W ∈ R4×1, W ∈ R2×4 and W ∈ R1×4.

4

original dimensionality of x. This procedure can be viewed as data preprocessing before training,
transforming the original x into

x1
x2
. . .
xm√

1−∑
i x

2
i /d

,

where xi is the ith element of x. For subsequent quantum layers in the neural network, we simply
dividing x by ∥x∥2 before loading the data.

The circuit for loading data is shown in Fig. 1 bottom. If m = n, the quantum circuit we adopt
will have n qubits, initialized such that the first qubit is at state |1⟩, while remaining qubits are
|0⟩. Then we apply a series of RBS gates parameterized by (α1, α2, . . . , αn−1), where

α1(x) = arccos (x1) ,

α2(x) = arccos
(
x2 sin

−1(α1)
)
,

α3(x) = arccos
(
x3 sin

−1(α2) sin
−1(α1)

)
,

and so on. This sequence of operations converts the initial quantum state to

|x⟩ = cosα1 |10 . . . 0⟩+ sinα1 cosα2 |01 . . . 0⟩+ . . .+ sinα1 sinα2 . . . sinαn−1 |00 . . . 1⟩
= x1 |10 . . . 0⟩︸ ︷︷ ︸

|e1⟩

+x2 |01 . . . 0⟩︸ ︷︷ ︸
|e2⟩

+ . . .+ xn |00 . . . 1⟩︸ ︷︷ ︸
|en⟩

On the other hand, when input and output dimensions are different (n ̸= m), the number of qubits
required in the circuit will be max(m,n). If n > m, the data is loaded onto all of the n qubits.
Conversely, if n < m, the classical vector x is loaded on to the bottom n qubits in the circuit,
leaving upper m− n qubits at |0⟩.

2.1.3 Quantum pyramidal circuit

When classical data x is loaded onto the quantum circuit, matrix multiplication y = Wx can
be performed in quantum space, where y ∈ Rm. Here we adopt the quantum pyramidal circuit
proposed in Ref. [46]. Such pyramidal circuit features orthogonal matrix multiplication, i.e., the
corresponding W is orthogonal.

We first introduce the quantum pyramidal circuit for m = n cases. The basic idea of this
method is to decomposes the orthogonal matrix W into a series of rotation matrices, which can be
represented by RBS gates. These decomposed rotation matrices can be parameterized with angles
θ1, θ2 . . . , θd, where d = n(n− 1)/2. All of the parameterized RBS gates are arranged in a pyramid
configuration. We take the W ∈ R4×4 matrix in Fig. 1 as an example. This circuit conducts the
following operation on the loaded vector x:

y =

Cθ1 Sθ1

−Sθ1 Cθ1

1
1

1
Cθ2 Sθ2

−Sθ2 Cθ2

1

Cθ3 Sθ3

−Sθ3 Cθ3

Cθ4 Sθ4

−Sθ4 Cθ4

1
Cθ5 Sθ5

−Sθ5 Cθ5

1

Cθ6 Sθ6

−Sθ6 Cθ6

1
1

︸ ︷︷ ︸
W

x,

where Cθj and Sθj are cos θj and sin θj for any j, respectively. Therefore, the resulting quantum
state is

|y⟩ = |Wx⟩ =
∑

ij

Wijxi |ej⟩ .

5

If m ̸= n, the construction of pyramidal circuit is the same as Ref. [46]. Examples of this
include W ∈ R4×1, W ∈ R1×4 and so on, as shown in Fig. 1. Note that for |m− n| = 1 cases, the
pyramidal circuit is the same as m = n cases. However, due to the difference in data loading and
tomography process, the quantum layer is actually distinct.

2.1.4 Tomography for extracting classical output

After performing matrix multiplication in quantum space, it is necessary to convert the quantum
information back to classical form for further processing, such as adding bias and applying non-
linear transformation. This process is known as tomography. Tomography could commonly be
expensive when extract complete information from quantum states [47, 48, 49]. However, in our
method, the usage of unary state sparsely encodes information in Hilbert space and provides a
feasible, cheap, and efficient tomography method. This tomography method, proposed by Ref. [46],
is illustrated in Fig. 1 middle.

Here, exactly one qubit is in state |1⟩ and all others are in state |0⟩, where state is referred to as
“unary state”. For simplicity, the jth unary state is denoted as |ej⟩. Therefore, the information of
x is encapsulated in |x⟩ represented as the superposition of these unary states. Once data is loaded
into the superposition of unary states, all of our subsequent operations, which utilize the RBS
gate and only include transformations between |ej⟩ states, are effectively confined to these unary
states. This implies that the unary subspace throughout entire process, allowing us to employ the
tomography.

We introduce an ancillary qubit and implement a Hadamard (H) and a CNOT gate between
the ancillary qubit and the first data loader qubit before loading data (see Appendix A for the
definition of gates). After the pyramid gate, the circuit performs an adjoint operation of the data

loader of a uniform norm-1 vector
(

1√
r
, 1√

r
, . . . , 1√

r

)
, where r = max(m,n) represents the number

of qubits excluding the ancillary qubit. This is followed by an X gate and CNOT gate.

Finally, we load
(

1√
r
, 1√

r
, . . . , 1√

r

)
and a Hadamard gate. In this way, the output can be

represented by

yj =
∑

i

Wijxi =
√
r(Pr[0, ej]− Pr[1, ej]), (1)

where Pr[ξ, ej] means the the ancillary qubit is measured as a classical bit ξ, for ξ ∈ {0, 1}, and
the rest qubits are measured as ej . As a result, the value of

∑
iWijxi can be simply computed

from the probabilities of |0, ej⟩ and |1, ej⟩ for all needed j.
If the input dimension is larger than the output dimension (m > n), the tomography circuit is

still the same, but only the information of bottom m qubits are finally considered. In other words,
the ej in Eq. (1) refers to jth unary state for the bottom m qubits. Consequently, the output∑

iWijxi is restricted to size m.

2.1.5 Summary and remarks

In conclusion, the structure of a complete quantum layer is shown in Fig. 1. The number of qubits
needed is n+1 for W ∈ Rn×n, in which bottom n qubits are used to store information and perform
operations, while the top 1 qubit is included for tomography purpose. Sequentially, we implement
data loading, pyramidal circuit and tomography, and thus complete the matrix multiplication in
quantum space.

6

Complexity. Quantum layers can accelerate the feedforward pass, achieving a complexity of
O(n/δ2). Here, δ is the threshold for the tomography error. The complexities of other components
of quantum layers are shown in Table 1.

Table 1: Complexity of each step of a quantum layer. Here, n is the input dimension, and δ
represents the threshold for the tomography error.

Operation Doading input data Quantum pyramidal circuit Extracting output

Complexity O(n) O(n) O(n/δ2)

2.2 Quantum orthogonal neural network

By integrating multiple quantum layers, we can construct a quantum orthogonal neural network
(QOrthoNN). The input vector goes through a linear transformation in quantum space and is then
measured and convert to classical space (Fig. 2). Although not shown in the diagram, we add
bias and apply non-linear transform thereafter. We proceed to the next layer and perform similar
process. The sequence can be repeated several times until we reach the last layer, which consists
solely of a classical linear transform. The dimension and norm of the quantum neural network
output of is determined by the output layer, giving that former quantum layers always constrain
the norm of processed vector to be 1.

The comparison between the classical orthogonal neural network and the standard neural net-
work is presented in Table 2. By “classical orthogonal neural network” (OrthoNN), we refer to
a classical neural network that adopts the same mathematical formulation as QOrthoNN. This
network is designed to facilitate the training of QOrthoNN, which will be further explained in
Section 2.4. OrthoNN benefits from the properties of orthogonality, such as improved accuracy
and better convergence during training [50, 51], while maintaining the same asymptotic running
time as a standard neural network. While OrthoNN and standard neural network both have a
quadratic dependency on the input dimension n for the forward pass, the QOrthoNN only requires
a linear dependency, achieving a quadratic improvement in the input dimension. This reduction in
computational complexity is particularly beneficial in scenarios where the input dimension is large
and frequent evaluations are required.

Table 2: Comparison of complexity for three networks. n and δ represent the input dimension
and threshold for the tomography error, respectively.

Algorithm Feedforward pass Weight matrix update

Quantum orthogonal neural network (QOrthoNN) [46] O(n/δ2) –

Classical orthogonal neural network (OrthoNN) [46] O(n2) O(n2)

Standard neural network O(n2) O(n2)

2.3 Quantum DeepONet

DeepONet is a neural network architecture that aims to learn operators mapping between two
infinite-dimensional function spaces. The most popular application of DeepONet is solving PDEs.
Our goal is often to predict functions satisfying the PDEs under varying conditions, which could

7

Figure 2: Architecture of quantum DeepONet. DeepONet consists of two subnetworks: the
branch net and the trunk net. In quantum DeepONet, we replace these with QOrthoNN, which is
composed of several quantum layers arranged sequentially. The nonlinear operations are performed
on classical computers.

8

be the initial conditions, boundary conditions or coefficient fields of the PDEs. We define the input
function v ∈ V over the domain D ⊂ Rd as

v : D ∋ x 7→ v(x) ∈ R,

and similarly, we define the output function u ∈ U over D′ ⊂ Rd′ , which is described as

u : D′ ∋ ξ 7→ u(ξ) ∈ R.

Suppose V and U are Banach spaces, and consider a parametric PDE taking the form

N (v, u) = 0,

where N is a differential operator. The mapping between the input function space V and output
function space U is defined the operator:

G : V ∋ v 7→ u ∈ U .

DeepONet, therefore, is used to approximate G.
A DeepONet includes a branch net and trunk net, each with an equivalent number of output

neuron, denoted by p. The branch and trunk nets can adopt arbitrary architectures, like fully
connected neural network (FNN), convolutional neural network (CNN), recurrent neural network
(RNN), and residual neural network (ResNet). A diagrammatic representation of DeepONet is
illustrated in the center of Fig. 2. The branch network receives the input function evaluated at a
discrete set of points {z1, z2, . . . , zq}, represented by [v(z1), v(z2), . . . , v(zq)]. The trunk net is fed
with the location ξ at which the output function is evaluated, which can include both time and space
coordinates. The outputs of the branch and trunk networks are denoted by [b1(v), b2(v), . . . , bp(v)]
and [t1(ξ), t2(ξ), . . . , tp(ξ)]. Thus, the final output of DeepONet is the sum of the dot product of
the branch and trunk network outputs and a bias b0 ∈ R, y expressed as

G′
θ(v)(ξ) =

p∑

k=1

bk(v)tk(ξ) + b0,

where G′ denotes the learned approximation of operator G, and θ is the trainable parameter of the
network.

In this work, we propose a modification to the DeepONet framework by replacing the conven-
tional branch and trunk networks with QOrthoNN (Fig. 2). We refer to the resulting model as
quantum DeepONet.

2.4 Training quantum DeepONet

Up to this point, we have introduced QOrthoNN and the quantum DeepONet, but we have not yet
discussed the training process of these quantum networks. Adapting the backpropagation scheme
from Ref. [46] for the pyramidal circuit, we train the network on classical computers, utilizing a
classical orthogonal neural network (OrthoNN) that shares the same mathematical expression as
QOthoNN. After training, we substitute the angular parameters of the RBS gates in the quantum
circuits with trained paramters during the evaluation phase. It is during this evaluation phase on
quantum computers that we anticipate significant acceleration benefits.

For data-driven training of quantum DeepONet, we sample N distinct input functions {v(i)}Ni=1

from V, and Q locations {ξ(i)j }Qj=1 for each input function v(i) as the inputs of training dataset. The

9

corresponding solution G(v(i))(ξ(i)j) is taken as the label of training dataset. The loss of DeepONet
can therefore be expressed as

Loperator(θ) =
1

NQ

N∑

i=1

Q∑

j=1

∣∣∣G′
θ(v

(i))(ξ
(i)
j)− G(v(i))(ξ(i)j)

∣∣∣
2
. (2)

To summarize, the workflow of our quantum method is divided into three distinct phases:

• Training quantum DeepONet on classical computer;

• Transferring of parameters to quantum layer;

• Execution on quantum computer or simulator for evaluation.

2.5 Quantum physics-informed DeepONet

We further introduce physics-informed loss term during training,

Lphysics(θ) =
1

NQ

N∑

i=1

Q∑

j=1

∣∣∣N
(
v(i),G′

θ(v
(i))(ξ

(i)
j)

)∣∣∣
2
.

The total loss function is therefore

L(θ) = Lphysics(θ) + Loperator(θ),

where Loperator has the same definition as Eq. (2). In PI-DeepONet, Loperator only includes the initial
conditions and boundary conditions. We name such architecture as quantum physics-informed
DeepONet (QPI-DeepONet). By introducing the physics information into our network, we can
reduce the demand of data and even train the network in the absence of solution input-output pairs.
In evaluation stage, QPI-DeepONet follows the same procedure as ordinary quantum DeepONet.

In some cases, we can embed boundary conditions into the network architecture, known as hard
constrain [52]. For example, to enforce Dirichlet BCs Gθ(v)(ξ) = g(ξ) for ξ ∈ ΓD, we can construct
the quantum DeepONet output as

G′′
θ(v)(ξ) = g(ξ) + ℓ(ξ)G′

θ(v)(ξ),

where G′
θ(v)(ξ) is the output of vanilla quantum DeepONet, and ℓ(ξ) satisfy

{
ℓ(ξ) = 0, ξ ∈ ΓD,
ℓ(ξ) > 0, otherwise.

For periodic boundary condition, e.g., G(v)(ξ) is periodic with respect to ξ of the period P in 1D,
we can directly substitute trunk input ξ with Fourier basis

{1, cos(ωξ), sin(ωξ), cos(2ωξ), sin(2ωξ), . . .}

with ω = 2π/P .
The branch inputs of DeepONet are often high-dimensional to include the information of input

functions, especially for less smooth v, more sensors are needed [13]. Here we apply principal
component analysis (PCA) to reduce input dimension [53].

10

3 Ideal quantum simulation results

To demonstrate the efficacy of our method, we first use QOrthoNN to approximate certain functions
(Section 3.1). Subsequently, we move to the application of quantum DeepONet on learning ODE
and PDE problems, including the antiderivative operator (Section 3.2), advection equation (Sec-
tion 3.3), and Burgers’ equation (Section 3.4). Finally, we test QPI-DeepONet using antiderivative
operator and Poisson’s equation (Section 3.5).

We implement the classical training by using the library DeepXDE [8]. After classical training
on OrthoNN, we extract the weights and biases and construct a quantum version incorporating
quantum layers, applying Qiskit [54] for quantum simulation. It is important to note that, in
this section, we adopt an idealized scenario during quantum simulation. This approach exclude
any quantum and statistical noise, aiming to assess the theoretical accuracy and performance of
the quantum model. The hyperparameters of neural networks and L2 relative errors of differ-
ent examples are summarized in Table 3. The code of all examples are published in GitHub
(https://github.com/lu-group/quantum-deeponet).

Table 3: The default parameters and test error for different examples of quantum
DeepONet. For quantum DeepONet, the first number in the “Depth” column is the depth of
branch net, and the second number is the depth of trunk net. The same for the “Activation”
column.

Example Depth Width Activation Learning rate Iteration Error

§3.1 Function 1 3 3 Tanh 0.0001 5× 104 0.15%
§3.1 Function 2 4 10 ReLU 0.0005 4× 104 1.49%
§3.2 Antiderivative (l = 1.0) [2,2] 10 ReLU, ReLU 0.001 3× 104 0.49%
§3.2 Antiderivative (l = 0.5) [2,2] 20 ReLU, ReLU 0.001 3× 104 0.84%
§3.3 Advection [7,7] 21 SiLU, SiLU 0.0005 4× 104 2.25%
§3.4 Burgers’ [6,6] 20 SiLU, SiLU 0.0005 3× 104 1.38%

3.1 Function approximation

In this section, we adopt two functions to test the accuracy of QOrthoNN. We first consider a
function

Function 1: f(x) =
1

1 + 25x2
, x ∈ [−1, 1]

and approximate it using OrthoNN and the normalization mentioned in Section 2.1.2. We choose
80 points for training and 100 points for testing, where x is uniformly sampled in [−1, 1]. Specially,
for this example, we use tanh activation function to circumvent the “dying ReLU” problem [55],
which is particularly relevant here given the small width of the network.

For this function 1, we can achieve a small L2 relative error of 0.149% for testing set after training
classically. Following classical training, we construct QOrthoNN using the pyramid quantum circuit
according to the classically training parameter. The ideal quantum simulation yields an error
identical to classical training: 0.149% (Fig. 3A). Essentially, OrthoNN and QOrthoNN are the
same neural network, differing only in their prediction methods—one is executed on a classical
computer, while the other is run on a quantum simulator.

11

Figure 3: Quantum simulation result of function predictions. The black, red and blue lines
represent the reference solution, classical prediction of OrthoNN, and ideal quantum simulation
result of QOrthoNN, respectively. (A) Results for f(x) = 1/(1 + 25x2). (B) Results for f(x) =∑4

k=1 sin(kx).

Then, we consider a more complex case for function approximation:

Function 2: f(x) =
4∑

k=1

sin(kx), x ∈ [−π, π].

We use 200 training points, and 100 testing points. Three quantum layers and an output layer
with a width of 10 are adopted in the training. The testing error reaches a low relative error of
1.49% (Fig. 3B), highlighting the proficiency of classical orthogonal FNN and QOrthoNN. The ideal
quantum simulation result is also 1.49%.

3.2 Antiderivative operator

Next we exam quantum DeepONet. We begin with an antiderivate operator:

du(x)

dx
= v(x), x ∈ [0, 1], (3)

with initial condition u(0) = 0. Here, we aim to learn the operator

G : v → u.

To generate the input function v(x), we use Gaussian Random Field (GRF):

v ∼ G(0, kl(x1, x2)),

where kl(xi, xj) = exp(−d(xi,xj)
2

2l2
) denotes the radial basis function (RBF) kernel. In this context,

d(·, ·) is the Euclidean distance between two points and l represents the length scale of the kernel,
which modulates the smoothness of the generated function. Specifically, an increase of the value
of l leads to a smoother generated function. Therefore, we can adjust l depending on our desired
level of function’s complexity.

In this example, we explore two scenarios with different length scales: l = 1.0 and l = 0.5,
corresponding to different size of the network during training. We achieved small errors of 0.49%
and 0.84% in theses two senarios, respetively (see Table 3).

12

3.3 Advection Equation

Consider the 1D advection equation:

∂u

∂t
+
∂u

∂x
= 0, x ∈ [0, 1], t ∈ [0, 1],

with initial condition u(x, 0) = u0(x) and periodic boundary condition. Our objective is to learn
the operator that maps u0(x) to the solution u(x, t):

G : u0(x) 7→ u(x, t).

The initial condition u0(x) is sampled from GRF with Exp-Sine-Squared kernel, formulated as

k(xi, xj) = exp
(
− 2 sin2 (πd(xi, xj)/p)

l2

)
.

Here, p is the periodicity of the kernel and is set to 1. We choose l = 1.5 and derive the ground
truth using the analytical solution u(x, t) = u0(x − t). For branch input u0(x), 20 sensors are
uniformly placed (see one example in Fig. 4A left). Regarding trunk input, we employ a grid of
50×50 points, covering the range of x and t. We implement the ResNet architecture in both branch
and trunk nets, which has a formulation of x′ = σ(Wx + b) + x for each layer. This approach
effectively mitigate the issue of gradient vanishing during training. The final test error of classical
prediction reaches 2.25%. Ideal simulation of quantum DeepONet yeilds the same error: 2.25%.
Fig. 4A provides an example of illustrating the ground truth, predictions of quantum DeepONet
and the absolute error between them.

Figure 4: Examples of quantum DeepONet prediction for two PDEs. (A) Advection
equation. (B) Burgers’ equation.

3.4 Burgers’ Equation

Based on the linear advection equation example, we further examine the non-linear 1D Burgers’
equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [0, 1], t ∈ [0, 1],

13

with initial condition u0(x) and periodic boundary condition, where ν = 0.05 is the viscosity. We
aim to learn the mapping from u0(x) to the solution u(x, t). Additionally, recognizing the periodic
nature of the output function u(x, t), instead of directly input ξ for trunk net, we expand it to
[ξ, cos(2πξ), sin(2πξ), cos(4πξ), sin(4πξ)]. This modification ensures that the output G(u0)(ξ) also
exhibits periodicity. Other neural network settings are the same as Section 3.3, except for the depth
and width. The relative error is 1.38%. The ideal quantum simulation result is the same: 1.38%.
An example of the ground truth and prediction of quantum DeepONet is shown in Fig. 4B.

3.5 Quantum physics-informed DeepONet

In this section, we further show that our quantum DeepONet can also be trained without labeled
data. We choose antiderivative euqation in Eq. (3) for comparison with data driven case in Sec-
tion 3.2. Additionally, 1D Poisson’s equation

∂2u

∂x2
= v(x),

with zero Dirichlet boundary condition is also considered for demonstration. The branch inputs in
both cases are the v(x) in equations, which is generated by GRF with RBF kernel. To facilitate
training and keep PDE residual within reasonable range, in Poisson’s equation, we multiply gen-
erated GRF with a factor of 10 and take the enlarged function as input sample. The boundary
condition is hard constrained using corresponding neural network architecture as mentioned in Sec-
tion 2.5. Zero coordinate shift algorithm [56] is utilized to reduce GPU memory consumption and
training time. During the training, the number of input samples is 10000 with batch size = 2000.
Adam optimizing is used with 2 × 105 iteration. The PDE residual is evaluated at 100 uniformly
distributed points in [0, 1]. During the training, we employed PCA with original dimension 100.
The training result is shown in Table. 4. And ideal quantum simulation results also agree well with
classical training results for all of these examples, shown ”L2 relative error” column.

We also conducted experiments without any dimension reduction techniques. For antiderivative
with initial condition l = 1, using branch and trunk net with depth of 3 and width of 10, the test L2

relative error is 4.05%. For comparison, using the same hyperparameters with PCA, which projects
original 100 dimensions down to 10, resulted in an error of 0.76%. We believe this difference is due
to the critical dependency of QPI-DeepONet on the sampling of input sensors. PCA enables us to
incoporate more information within limited input dimension. The limitations of current quantum
devices compel us to use narrower neural networks, leading to sparse sampling of the branch input.
As derivatives are taken with respect to the inputs, QPI-DeepONet is more sensitive to the input
data.

Table 4: Hyperparameters and training results of QPI-DeepONet for two PDEs with
various input function complexity.

Example Number of PCs Depth Width L2 relative error

Antiderivative (l = 1) 10 [3,3] 20 0.76%
Antiderivative (l = 0.5) 10 [4,4] 20 1.21%
Antiderivative (l = 0.2) 19 [5,5] 20 1.91%
Poisson’s (l = 1) 10 [3,3] 20 0.95%
Poisson’s (l = 0.5) 10 [5,5] 20 1.55%
Poisson’s (l = 0.2) 19 [7,7] 20 2.31%

14

4 Effects of noise

Quantum noise is a major obstacle for the practicality of a quantum algorithm in the noisy
intermediate-scale quantum (NISQ) era. It emerges from various sources, including the imper-
fect implementation of quantum operators, undesired environmental or qubit interactions, and
erroneous state preparation or measurement. During the execution of a quantum circuit, the accu-
mulated errors produced by the noise can destroy any information we intend to obtain. Meanwhile,
the inaccuracy resulting from the finite number of measurements can affect the error level and
complexity of the neural network, making it unavoidable in the discussion of the feasibility of our
work on near-term quantum computers. Thus, in Sections 4.1 and 4.2, we first provide a theoretical
analysis of the effects of a well-known noise channel, depolarizing noise, and finite-sampling noise
on the single RBS gate and tomography outputs, respectively. Then, we demonstrate our noisy
simulation results of quantum DeepONet under both types of noise, as well as a more comprehensive
noise model emulating a real IBM quantum computer in Section 4.3.

4.1 Depolarizing noise on a RBS gate

The depolarizing noise is a widely adapted noise channel in analyzing the effects of quantum noise
on variational quantum circuits [41, 57, 42, 58]. We provide a closer look at how depolarizing noise
affects a QOrthoNN consisting of a single RBS gate and the influence of the parameter value of the
gate on the level of error induced by the noise. Note that the statevector representation becomes
insufficient to depict the quantum system under the influence of quantum noise. Hence, we utilize
a density matrix to describe a quantum state and present a brief introduction to its definition and
computation in Appendix B. The specific type of noise in our interest is depolarizing noise. The
n-qubit depolarizing channel has the expression [59]

E(ρ) = (1− λ)ρ+ λ
I(2

r)

2r
, (4)

where ρ is an arbitrary r-qubit density matrix and I(2
r) is a 2r-by-2r identity matrix. Specifically,

in a 2-qubit case, Eq. (4) is equivalent to

E(ρ) = (1− λ)ρ+ λ
I(4)

4

= (1− λ)ρ+
λ

16

∑

i,j∈[4]
(Li ⊗ Lj)ρ(Li ⊗ Lj), (5)

where L = {X,Y, Z, I} is the set of Pauli matrices and the 2-by-2 identity matrix I. In other words,
the effect of 2-qubit depolarizing noise means there is 1− 15λ/16 chance that the state ρ remains
unaffected and an equal chance to have each of 15 different kinds of 2-qubit Pauli noise happens on
the state ρ. To further show the influence of a noisy RBS gate, we consider the noise model where
a noiseless RBS gate is first applied on the state ρ, then a depolarizing channel follows, and the
resultant state is ρ′. In particular, we have

ρ′ = E
(
URBSρU

†
RBS

)

= (1− λ)
(
URBSρU

†
RBS

)
+

λ

16

∑

i,j∈[4]
(Li ⊗ Lj)

(
URBSρU

†
RBS

)
(Li ⊗ Lj). (6)

15

However, the difference between ρ and ρ′ is not in our interest since only the 2nd, and the 3rd

elements of the diagonals of ρ and ρ′ contain the information we need. So, we put the further
discussion into a QOrthoNN scenario.

Define normalized input vector is x = (x1 x2)
T ∈ R2, x21 + x22 = 1, and the vector after the

linear transformation is y =Wx. Let y′ denote the noisy version of y due to the depolarizing noise
in a RBS gate and ·◦2 represent the Hadamard (element-wise) square. Because we only encode the
entry values of x and y on the coefficients of |01⟩ and |10⟩, the vector y◦2 is the vector consists

of the 2nd and 3rd elements of the diagonal of URBSρU
†
RBS and

(
y◦2)′ is the vector of 2nd and 3rd

elements of the diagonal of ρ′.
Define function diag : Rr×r → Rr extract the diagonal of a matrix into a vector. In this case,

the density matrix ρ is

ρ =

0
x1
x2
0

 (0 x1 x2 0) =

0 0 0 0
0 x21 x1x2 0
0 x1x2 x22 0
0 0 0 0

 , (7)

and

y◦2 =
(
y21
y22

)
=

diag

(
URBSρU

†
RBS

)
2

diag
(
URBSρU

†
RBS

)
3

 =

(
(x1 cos θ + x2 sin θ)

2

(−x1 sin θ + x2 cos θ)
2

)
.

Combining Eqs. (6) and (7), the noisy output is

(
y◦2)′ =

(
(y′1)

2

(y′2)
2

)
=

(
diag (ρ′)2
diag (ρ′)3

)

=
1

4

(
λ (−x1 sin θ + x2 cos θ)

2 − 3λ (x1 cos θ + x2 sin θ)
2 + 4 (x1 cos θ + x2 sin θ)

2

4 (−x1 sin θ + x2 cos θ)
2 − 3λ (−x1 sin θ + x2 cos θ)

2 + λ (x1 cos θ + x2 sin θ)
2

)
.

Determining the sign of each entry of y and y′ requires an additional tomography step, as shown
in Fig. 1, which could have noise on itself. For simplicity, we only compute L2 relative error of |y|,
∥|y| − |y′|∥2

∥|y|∥2
= ∥|y| − |y′|∥2 =

√
(|y1| − |y′1|)2 + (|y2| − |y′2|)2

=
1

2

√√√√√√√√

(√
−3λ (x1 sin θ − x2 cos θ)

2 + λ (x1 cos θ + x2 sin θ)2 + 4 (x1 sin θ − x2 cos θ)
2 − 2 |x1 sin θ − x2 cos θ|

)2

+

(√
λ (x1 sin θ − x2 cos θ)

2 − 3λ (x1 cos θ + x2 sin θ)2 + 4 (x1 cos θ + x2 sin θ)2 − 2 |x1 cos θ + x2 sin θ|
)2

,

(8)

as |y| is a normalized vector. The reverse triangle inequality guarantees the L2 relative error of y
is always lower-bounded by that of |y|

∥|y| − |y′|∥2
∥|y|∥2

=
√
(|y1| − |y′1|)2 + (|y2| − |y′2|)2 ≤

√
(y1 − y′1)

2 + (y2 − y′2)
2 = ∥y − y′∥2 =

∥y − y′∥2
∥y∥2

.

Also, Eq. (8) is a periodic function with respect to θ in a period of π/2. The value of λ
controls the amplitude of the function. We numerically illustrate this expression in Fig. 5 with
x1 = x2 = 1/

√
2 for λ = 0.1 and λ = 0.05. To show that our computation is consistent with

the noise model in Qiskit Aer, we also provide the estimations from the samples in the Qiskit Aer
simulator with simulated depolarizing noise models. Each data point in the simulated case in Fig. 5
is the average of 100,000 samples from the simulator. Note that y and y′ are non-negative for all
λ and θ in Fig. 5, so the plot is for the L2 relative error of y instead of just |y|.

16

0 π/2 π 3π/2 2π

θ

0.00

0.05

0.10

0.15

0.20

L
2
 re

la
tiv

e
er

ro
r

Theortical, λ= 0.1

Simulated, λ= 0.1

Theortical, λ= 0.05

Simulated, λ= 0.05

Figure 5: Errors of the output vector, y, due to the 2-qubit depolarizing noise on a
single RBS gate as a function of the angle of the RBS gate, θ. The initial state in the

circuit is
[
0, 1/

√
2, 1/

√
2, 0

]T
. Each simulated data point is averaged from 100,000 samples in the

Qiskit Aer simulator with a simulated depolarizing noise model.

4.2 Finite-sampling noise in tomography

In the tomography step, the probabilities Pr[0, ej] and Pr[1, ej], for j ∈ {1, ..., r}, are estimated
from the frequencies of measurement outcomes, where n is the input vector dimension, m is the
output vector dimension, and r = max(m,n). This results in an additional error on the estimation
of output vector y caused by the finite number of measurements (shots). Let q(0,j) be the probability
of measuring |0, ej⟩ in tomography layer and q̂(0,j) is the estimated value from Nshot shots. We want
to estimate the size of finite-sampling error by first calculating the standard deviation of q̂(0,j).

Let Z
(0,j)
k be a Bernoulli random variable

Z
(0,j)
k =

{
1 , if measures |0, ej⟩ in kth shot with probability q(0,j)

0 , otherwise

and S(0,j) =
∑Nshot

k=1 Z
(0,j)
k is a Binomial random variable. Thus, we have

q̂(0,j) =
S(0,j)

Nshot
.

Since the variance of S(0,j) is Var
[
S(0,j)

]
= Nshotq

(0,j)
(
1− q(0,j)

)
, we have

Var
[
q̂(0,j)

]
= Var

[
S(0,j)

Nshot

]
=
q(0,j)

(
1− q(0,j)

)

Nshot
. (9)

Similarly, define q̂(1,j) be the probability of measuring |1, ej⟩ in tomography layer and q̂(1,j) is its

17

estimation from Nshot shots. We can obtain the variance of q̂(1,j) similar to Eq. (9). It is clear that

Cov
[
q̂(0,j), q̂(1,j)

]
=

1

N2
shot

Nshot∑

k=1

Nshot∑

l=1

E
[
Z

(0,j)
k Z

(1,j)
l

]
− E

[
S(0,j)

Nshot

]
E

[
S(1,j)

Nshot

]

=
1

N2
shot

N2
shotq

(0,j)q(1,j) − q(0,j)q(1,j)

= 0.

With Eq. (1), the standard deviation of the estimated yj is

Std [yi] = Std
[√
r(Pr[0, ei]− Pr[1, ej])

]

=
√
r
√

Var
[
q̂(0,j)

]
+Var

[
q̂(1,j)

]
− 2Cov

[
q̂(0,j), q̂(1,j)

]

=

√
r√

Nshot

√
q(0,j)

(
1− q(0,j)

)
+ q(1,j)

(
1− q(1,j)

)

∝
√
r√

Nshot
, (10)

where q(0,j), q(1,j) ∈ [0, 1]. In conclusion, the finite-sampling error on the estimation of output
vector y ∈ Rr is proportional to N−0.5

shot when r is relatively small compare to Nshot.

4.3 Noisy simulation results

In our subsequent research, we adapt two types of noise models to assess the accuracy of quantum
layers under noisy conditions. The first approach, named as simplified noise model, incorporate only
1-qubit and 2-qubit depolarizing noise channels on all basis gates. The goal of using this model is to
examine the noise resilience of QOrthoNN circuits and the effects of our error mitigation technique
on this extensively researched noise channel. In the experiments, we select several different values
for 1-qubit noise parameter λ, as in Eq. (4), and set the 2-qubit noise parameter λ′ := 0.8λ. This
is to guarantee both noise channels have the same error rate. Recall Eq. (4), 1-qubit depolarizing
noise channel has the expression

Edep(ρ) = (1− λ)ρ+ λ
I

2
=

(
1− 3

4
λ

)
ρ+

λ

4
(XρX + Y ρY + ZρZ) .

So the error-free probability is 1 − 3
4λ. We can also see the error-free probability for a 2-qubit

depolarizing noise channel is 1 − 15
16λ

′ in Eq. (5). Thus, setting λ′ = 0.8λ makes two probabilities
equal. In our experiments, we choose the values of λ from 0 to 2× 10−3 since the gate error rates
on real IBMQ quantum computers are in the similar scale, as shown in Table 5.

Table 5: 1-qubit basis gate error rates among all qubits on selected IBMQ quantum
computers (data collected on May 21, 2024 [60]).

ibm osaka ibm brisbane ibm sherbrooke ibm torino

Average 1.37× 10−3 6.29× 10−4 2.07× 10−4 1.53× 10−3

Median 2.68× 10−4 2.38× 10−4 5.08× 10−4 3.52× 10−4

While the first approach aims to an direct and intuitive evaluation on the accuracy of QOrthoNN
under a noisy environment, depolarizing noise is insufficient to fully reflect the noise in real quantum

18

computers and the 2-qubit gates usually have less fidelity than 1-qubit gates [61, 62, 63]. To fill this
gap, we also carry experiments with the second approach: the backend-noise model from Qiskit
Aer [54, 64]. The backend-noise model is in composite of

• measurement noise: emulated by classical 1-qubit bit-flip error in the measurement;

• gate noise: emulated by the combination of 1-qubit depolarizing error and thermal relaxation
error, while the 2-qubit error operator is the tensor product of 1-qubit error operators.

The parameters of backend-noise model comes from the regular benchmarking tests performed by
the device vendor. By comparing these models, we can identify the feasibility of our quantum
neural network and provide benchmarks for the improvement of near-term quantum computers.

We use the same error mitigation method in [46], where only unary measurement outcomes
are kept and all the other non-unary outcomes are discarded. This technique is a benefit of unary
encoding. The effect of this error mitigation method will be shown in Section 4.3.2.

4.3.1 Function approximation

To demonstrate the impact of quantum noise, we first choose the most simple example of function
approximation f(x) = 1/(1 + 25x2), x ∈ [−1, 1] mentioned in Section 3.1 function 1. All of the
following results are calculated in a Qiskit simulator.

We investigate the impact of finite-sampling error by varying the number of shots, Nshot, i.e.,
how many times we do the measurement to reconstruct the quantum state. The error with respect
to true function value decrease when we increase number of shots (Fig. 6A). In this example, when
number of shots reaches 108, shots-based simulation result is close to ideal simulation result. We
further analysed the error between shots-based and ideal simulation, which is exactly the finite-
sampling error (Fig. 6B). The finite-sampling error is proportional to N−0.5

shot , which fits perfectly
with Eq. (10).

We further included depolarizing error to estimate the affect of quantum gate noise. Recalling
Eq. (4), by adjusting the value of λ, we can determine the necessary capabilities that future quantum
computers must achieve to maintain a reasonable error margin. When λ is within [0, 2 × 10−4],
the error increases almost linearly with λ (Fig. 6C). When we expand the range to [0, 2 × 10−3]
(Fig. 6), the error increases non-linearly and reaches a plateau at approximately λ = 10−3.

In order to simulate the performance of our quantum neural network on real quantum computer,
we adapt the backend noise model in Qiskit. Here, we choose IBM brisbane backend, loading the
corresponding noise parameters for simulation. The error turns out to be 14.4%, suggesting some
more sophisticated error mitigation methods are needed. Since the scale of error is already too
large in the simplest QOrthoNN experiment, the backend-noise model will not be tested in further
experiments.

4.3.2 Antiderivative operator

The impact of quantum noise on quantum DeepONet is also investigated using the antiderivative
operator example (Section. 3.2) when l = 1.0 (Fig. 7). Specifically, the finite-sampling error follows
a zero-mean distribution (Fig. 7A), and the scale of which is proportional to N−0.5

shot , as expected in
Eq. (10). When depolarizing quantum noise is considered, the error mitigation method discussed
at the beginning of Section. 4 can be applied. Although error mitigation helps eliminate undesired
results caused by quantum noise, it also reduces the number of shots that are ultimately usable.
It’s obvious that

useful shots ≈ C × total shots,

19

Figure 6: Effect of quantum noise on function approximation example of f(x) = 1/(1 +
25x2). (A and B) Finite-sampling noise at different number of shots. (A) L2 error between shots-
based results and true function with different shots, compared with ideal simulation. (B) L2 error
between shots-based and ideal simulation. (C) Depolarizing noise model for different depolarizing
parameter. In both cases, number of shots is set to be 107.

20

Figure 7: Effect of noise on quantum DeepONet for the example of antidetivative oper-
ator. (A) L2 relative error between finite shots and infinite shots results for different layers. (B)
Proportion of useful shots in total shots at different depolarizing noise level λ when implementing
error mitigation. (C and D) L2 error between simulation results at different depolarizing level λ
and true solution. (C) Error mitigation is used. (D) Error mitigation is disabled. (E and F) The
error for different neural network size. We set λ = 10−4 for all gates and fixed the number of shots
at 107. For each neural network sizes, we performed classical training 5 times until the test error
is reduced to 3%. Each training run is quantumly simulated 3 times. The average and uncertainty
of these noisy simulation results were then calculated. (E) The network depth of both the branch
and trunk nets is fixed at 5, while the width of both is varied simultaneously. (F) The network
width of both the branch and trunk nets is fixed at 10, while the depths of both networks are varied
simultaneously.

21

with C = 1.0 when λ = 0. The parameter C decreases as λ increases (Fig. 7B) because higher
levels of noise produce more unreasonable results.

Our problem-specific error mitigation scheme significantly reduces the error in noise cases with
both finite-sampling and depolarizing noise, comparing Fig. 7C with D. In Fig. 7C, where we do
not use error mitigation and directly accept all of the unary and non-unary results, the error barely
reduce as number of shots increases. This is due to the fact that, by contracting the scales of
errors in Figs. 7A and 7D, the finite-sampling error is relatively insignificant under the influence
of depolarizing error. Therefore, increasing shots, which only reduce the finite-sampling error,
does not work well. With error mitigation, due to the lowest overall error level, the decreasing of
finite-sampling is more obvious in the plots (Fig. 7D).

We also investigated how the network size can affect the error of noisy model (Fig. 7E and F).
For each neural network size, we performed classical training 5 times. The networks were trained
uniformly until the test error was reduced to 3%. For each training run we quantum simulated 3
times. The parameters of simulations included 107 shots and λ = 10−4 for depolarizing noise. It
is important to note that even though the test error remained the same across classical training
runs, the noisy simulation results varied. We believe this variation arises because the network
converge to different parameter values in each training run, leading to different levels of error
due to depolarizing noise. This observation aligns with our discussion in Section 4.1 about how
the parameters of RBS gates influence the magnitude of errors. By comparing the two plots, we
conclude that the error increases almost exponentially with increasing network depth. In contrast,
when only the width is increased, the error shows minimal growth within our experiment range.
Therefore, quantum DeepONet shows resilience to noise with respect to network width . Therefore,
in practice, to minimize quantum noise, it is advisable to opt for wider rather than deeper neural
networks.

5 Conclusions

We proposed Quantum DeepONet, which can be both data driven and physics-informed. Exper-
imental results was conducted to confirm that Quantum DeepONet perform efficiently in solving
different PDEs. We further considered the impact of quantum and finite-sampling noise in simula-
tion, and benchmarked the noise level and corresponding accuracy.

There are a few limitations in our current implementation. Based on the unary encoding, the
Quantum DeepONet currently could not handle large network width due to the limitation on the
number of qubits and connectivities in the existing quantum devices, and the in-effectiveness of
simulation on classical computers.

However, although such demand on the number of qubits can be greatly reduced by giving
up the unary encoding, the rising cost of data loading and data tomography resulting from this
change will require further analysis. On the other hand, in the noise simulation, both tested noise
models do not include coherent noise and non-local noise such as cross-talk. The effects of a more
complicated and realistic noise model is needed to examine the noise resilience of our design.

Additionally, our future work will explore extending Quantum DeepONet to accommodate more
complex architectures [65, 66], which will allow us to address a broader range of applications and
increase the model’s utility.

22

Acknowledgments

This work was supported by the U.S. Department of Energy Office of Advanced Scientific Com-
puting Research under Grant No. DE-SC0022953 and the U.S. National Science Foundation under
Grant No. DMS-2347833.

A Model of quantum computing

Our work utilizes the quantum circuit model. It is an analogy to the classical circuit where a
series of gates are conducted to perform computation. For a basic quantum circuit, there are
three components: an initial quantum state, a series of quantum gates, and measurements. The
initial state stores the initial information, which is then changed by the sequence of quantum gates.
After the computation, the state is measured to get classical bits as the final outputs. The unit of
quantum information is a qubit, analogizing to a bit in classical information.

In most of our work, we use statevector representation for quantum states. That is, an n-qubit
quantum state is a vector in C2n . Such a quantum state is often written as a linear combination of
basis states. For example, a general 1-qubit state |ψ⟩ is

|ψ⟩ = α |0⟩+ β |1⟩

where the notation |·⟩ represents a statevector, basis state |0⟩ is [1 0]T , basis state |1⟩ is [0 1]T , and
|α|2 + |β|2 = 1 for complex numbers α and β. So, when we measure the state |ψ⟩, there is |α|2
chance to obtain a classical bit 0 and |β|2 chance to obtain a classical bit 1. If neither α nor β is
0, then the quantum state is in the superposition of state |0⟩ and |1⟩. Similarly, a 2-qubit state is
a linear combination of 2-qubit bases and the squared norms of coefficients sum to 1. The 2-qubit
basis states are |00⟩ = |0⟩ ⊗ |0⟩, |01⟩ = |0⟩ ⊗ |1⟩, |10⟩ = |1⟩ ⊗ |0⟩, and |11⟩ = |1⟩ ⊗ |1⟩, where the
operator ⊗ is the Kronecker product. If a 2-qubit state cannot be factored into the tensor product
of two 1-qubit states, then this 2-qubit state is entangled.

An n-qubit quantum logic gate is a 2n-by-2n unitary matrix. Several common 1-qubit gates are

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, H =

1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
,

Rx(θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
, Ry(θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, Rz =

[
e−iθ/2 0

0 eiθ/2

]
,

and two widely used 2-qubit controlled gates are

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X and CZ = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ Z,

where I is the 2-by-2 identity matrix.
If an 1-qubit gates U apply on the first qubit of a 2-qubit state |χ⟩ and another 1-qubit gate

V apply on the second qubit simultaneously, the resultant computation is (U ⊗ V) |χ⟩. Based on
the gate definitions introduced above, an implementation of URBS(θ) according to [46] is shown in
Fig. 8. It can be verified that

URBS(θ) = [H ⊗H]CZ[Ry(θ)⊗Ry(−θ)]CZ[H ⊗H].

23

H • Ry(θ) • H

H • Ry(−θ) • H

Figure 8: An implementation of URBS(θ) according to Ref. [46], where the symbol of two connected
dots between H and Ry gates is the CZ gate.

B Quantum states in the density-matrix representation

A density matrix represents a quantum state in quantum information, providing a more general
description than the statevector. In quantum computing, density matrices often come when the
discussion includes quantum noise because quantum noise, such as the depolarizing channel in
Section 4.1, can result in non-unitary evolution. The resultant quantum system may have pk
probability in the state |ψk⟩ for multiple different indices k, making a single statevector insufficient
to depict it. To express this system in a density matrix ρ, we have

ρ =
∑

k

pk |ψk⟩ ⟨ψk| .

where
∑

k pk = 1. Thus, the density matrix ρ is trace-one, Hermitian, and positive semidefinite [59].
The state evolution governed by the unitary operator U is computed by

ρ
U→ UρU †.

The non-unitary evolution can be described similarly to the depolarizing noise channel Section 4.1.

References

[1] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[2] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 481–490, 2016.

[3] Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

[4] Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks
for surrogate modeling and uncertainty quantification. Journal of Computational Physics,
366:415–447, 2018.

[5] Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik.
Prediction of aerodynamic flow fields using convolutional neural networks. Computational
Mechanics, 64:525–545, 2019.

[6] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the Na-
tional Academy of Sciences, 118(21):e2101784118, 2021.

24

[7] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

[8] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning
library for solving differential equations. SIAM review, 63(1):208–228, 2021.

[9] Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. Physics-informed neural
networks for inverse problems in nano-optics and metamaterials. Optics express, 28(8):11618–
11633, 2020.

[10] Mitchell Daneker, Shengze Cai, Ying Qian, Eric Myzelev, Arsh Kumbhat, He Li, and Lu Lu.
Transfer learning on physics-informed neural networks for tracking the hemodynamics in the
evolving false lumen of dissected aorta. Nexus, 1(2), 2024.

[11] Mitchell Daneker, Zhen Zhang, George Em Karniadakis, and Lu Lu. Systems biology: Iden-
tifiability analysis and parameter identification via systems-biology-informed neural networks.
In Computational Modeling of Signaling Networks, pages 87–105. Springer, 2023.

[12] Benjamin Fan, Edward Qiao, Anran Jiao, Zhouzhou Gu, Wenhao Li, and Lu Lu. Deep learning
for solving and estimating dynamic macro-finance models. arXiv preprint arXiv:2305.09783,
2023.

[13] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

[14] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations, 2021.

[15] Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki,
Zongyi Li, Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network for
partial differential equations. In ICLR 2020 Workshop on Integration of Deep Neural Models
and Differential Equations, 2020.

[16] Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential
equations’ operator learning. arXiv preprint arXiv:2205.13671, 2022.

[17] Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pages 12556–12569. PMLR, 2023.

[18] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

[19] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of para-
metric partial differential equations with physics-informed deeponets. Science advances,
7(40):eabi8605, 2021.

25

[20] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kam-
yar Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning
partial differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024.

[21] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural op-
erator with learned deformations for pdes on general geometries. Journal of Machine Learning
Research, 24(388):1–26, 2023.

[22] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems. IEEE
transactions on neural networks, 6(4):911–917, 1995.

[23] Lizuo Liu and Wei Cai. Multiscale deeponet for nonlinear operators in oscillatory function
spaces for building seismic wave responses. arXiv preprint arXiv:2111.04860, 2021.

[24] Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor
product. SIAM Journal on Scientific Computing, 44(6):A3490–A3514, 2022.

[25] Min Zhu, Shihang Feng, Youzuo Lin, and Lu Lu. Fourier-deeponet: Fourier-enhanced deep
operator networks for full waveform inversion with improved accuracy, generalizability, and
robustness. Computer Methods in Applied Mechanics and Engineering, 416:116300, 2023.

[26] Zhongyi Jiang, Min Zhu, Dongzhuo Li, Qiuzi Li, Yanhua O Yuan, and Lu Lu. Fourier-mionet:
Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon
sequestration. arXiv preprint arXiv:2303.04778, 2023.

[27] Shunyuan Mao, Ruobing Dong, Lu Lu, Kwang Moo Yi, Sifan Wang, and Paris Perdikaris.
Ppdonet: Deep operator networks for fast prediction of steady-state solutions in disk–planet
systems. The Astrophysical Journal Letters, 950(2):L12, 2023.

[28] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth
Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017.

[29] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke
Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quan-
tum algorithms. Nature Reviews Physics, 3(9):625–644, 2021.

[30] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, and Stefan Wo-
erner. The power of quantum neural networks. Nature Computational Science, 1(6):403–409,
2021.

[31] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit
learning. Physical Review A, 98(3):032309, 2018.

[32] Ashish Kapoor, Nathan Wiebe, and Krysta Svore. Quantum perceptron models. Advances in
neural information processing systems, 29, 2016.

[33] Vedran Dunjko, Jacob M Taylor, and Hans J Briegel. Quantum-enhanced machine learning.
Physical review letters, 117(13):130501, 2016.

[34] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems
of equations. Phys. Rev. Lett., 103:150502, Oct 2009.

26

[35] Junyu Liu, Minzhao Liu, Jin-Peng Liu, Ziyu Ye, Yunfei Wang, Yuri Alexeev, Jens Eisert, and
Liang Jiang. Towards provably efficient quantum algorithms for large-scale machine-learning
models. Nature Communications, 15(1):434, 2024.

[36] Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data fitting. Physical
review letters, 109(5):050505, 2012.

[37] Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko.
Quantum boltzmann machine. Physical Review X, 8(2):021050, 2018.

[38] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis.
Nature physics, 10(9):631–633, 2014.

[39] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for
big data classification. Physical review letters, 113(13):130503, 2014.

[40] Nishant Jain, Jonas Landman, Natansh Mathur, and Iordanis Kerenidis. Quantum fourier
networks for solving parametric pdes. Quantum Science and Technology, 2023.

[41] Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and
Patrick J Coles. Noise-induced barren plateaus in variational quantum algorithms. Nature
communications, 12(1):6961, 2021.

[42] Enrico Fontana, M Cerezo, Andrew Arrasmith, Ivan Rungger, and Patrick J Coles. Non-trivial
symmetries in quantum landscapes and their resilience to quantum noise. Quantum, 6:804,
2022.

[43] Supanut Thanasilp, Samson Wang, Nhat Anh Nghiem, Patrick Coles, and Marco Cerezo. Sub-
tleties in the trainability of quantum machine learning models. Quantum Machine Intelligence,
5(1):21, 2023.

[44] Marco Schumann, Frank KWilhelm, and Alessandro Ciani. Emergence of noise-induced barren
plateaus in arbitrary layered noise models. arXiv preprint arXiv:2310.08405, 2023.

[45] Martin Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J
Coles, Lukasz Cincio, Jarrod R McClean, Zoë Holmes, and M Cerezo. A review of barren
plateaus in variational quantum computing. arXiv preprint arXiv:2405.00781, 2024.

[46] Jonas Landman, Natansh Mathur, Yun Yvonna Li, Martin Strahm, Skander Kazdaghli, Anu-
pam Prakash, and Iordanis Kerenidis. Quantum Methods for Neural Networks and Application
to Medical Image Classification. Quantum, 6:881, December 2022.

[47] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293, 2015.

[48] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum
system from very few measurements. Nature Physics, 16(10):1050–1057, 2020.

[49] Joran van Apeldoorn, Arjan Cornelissen, András Gilyén, and Giacomo Nannicini. Quantum
tomography using state-preparation unitaries. In Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1265–1318. SIAM, 2023.

27

[50] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality
regularizations in training deep cnns? In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, page 4266–4276, Red Hook, NY, USA,
2018. Curran Associates Inc.

[51] Shuai Li, Kui Jia, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural
networks. IEEE transactions on pattern analysis and machine intelligence, 43(4):1352–1368,
2019.

[52] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang,
and George Em Karniadakis. A comprehensive and fair comparison of two neural operators
(with practical extensions) based on fair data. Computer Methods in Applied Mechanics and
Engineering, 393:114778, 2022.

[53] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart. Model
Reduction And Neural Networks For Parametric PDEs. The SMAI Journal of computational
mathematics, 7:121–157, 2021.

[54] Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.

[55] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization:
Theory and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

[56] Kuangdai Leng, Mallikarjun Shankar, and Jeyan Thiyagalingam. Zero coordinate shift: Whet-
ted automatic differentiation for physics-informed operator learning. Journal of Computational
Physics, page 112904, 2024.

[57] Daniel Stilck França and Raul Garcia-Patron. Limitations of optimization algorithms on noisy
quantum devices. Nature Physics, 17(11):1221–1227, 2021.

[58] Diego Garćıa-Mart́ın, Martin Larocca, and Marco Cerezo. Effects of noise on the over-
parametrization of quantum neural networks. Physical Review Research, 6(1):013295, 2024.

[59] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.
Cambridge university press, 2010.

[60] IBM. IBM Quantum Platform. https://quantum.ibm.com/, May 2024.

[61] Kenneth Wright, Kristin M Beck, Sea Debnath, JM Amini, Y Nam, N Grzesiak, J-S Chen,
NC Pisenti, M Chmielewski, C Collins, et al. Benchmarking an 11-qubit quantum computer.
Nature communications, 10(1):5464, 2019.

[62] Konstantinos Georgopoulos, Clive Emary, and Paolo Zuliani. Modeling and simulating the
noisy behavior of near-term quantum computers. Physical Review A, 104(6):062432, 2021.

[63] Mirko Amico, Helena Zhang, Petar Jurcevic, Lev S Bishop, Paul Nation, Andrew Wack, and
David C McKay. Defining best practices for quantum benchmarks. In 2023 IEEE International
Conference on Quantum Computing and Engineering (QCE), volume 1, pages 692–702. IEEE,
2023.

[64] Samudra Dasgupta and Travis Humble. Impact of unreliable devices on stability of quantum
computations. ACM Transactions on Quantum Computing, 2024.

28

[65] Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A Zaki, and George Em Karniadakis.
Deepm&mnet: Inferring the electroconvection multiphysics fields based on operator approxi-
mation by neural networks. Journal of Computational Physics, 436:110296, 2021.

[66] Lu Lu, Raphaël Pestourie, Steven G Johnson, and Giuseppe Romano. Multifidelity deep neural
operators for efficient learning of partial differential equations with application to fast inverse
design of nanoscale heat transport. Physical Review Research, 4(2):023210, 2022.

29

