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NOMENCLATURE

Abbreviations2
additiveGP Additive Gaussian Process method3
GP Gaussian Process4
HMC Hamiltonian Monte Carlo5
HMCad Hard-constrained Hamiltonian Monte Carlo with adaptivity6
HMCboth Hard-constrained Hamiltonian Monte Carlo with both adaptivity and variance7
HMCsoftad Soft-constrained Hamiltonian Monte Carlo with adaptivity8
HMCsoftboth Soft-constrained Hamiltonian Monte Carlo with both adaptivity and variance9
HMCsoftvar Soft-constrained Hamiltonian Monte Carlo with variance10
HMCvar Hard-constrained Hamiltonian Monte Carlo with variance11
MCMC Markov chain Monte Carlo12
MH Metropolis-Hastings13
PDE Partial differential equations14
QHMC Quantum-inspired Hamiltonian Monte Carlo15
QHMCad Hard-constrained Quantum-inspired Hamiltonian Monte Carlo with adaptivity16
QHMCboth Hard-constrained Quantum-inspired Hamiltonian Monte Carlo with adaptivity and17

variance18
QHMCsoftad Soft-constrained Quantum-inspired Hamiltonian Monte Carlo with adaptivity19
QHMCsoftboth Soft-constrained Quantum-inspired Hamiltonian Monte Carlo with both adaptivity and20

variance21
QHMCsoftvar Soft-constrained Quantum-inspired Hamiltonian Monte Carlo with variance22
QHMCvar Hard-constrained Quantum-inspired Hamiltonian Monte Carlo with variance23
SNR Signal-to-noise ratio24
tnHMC Truncated Gaussian method with Hamiltonian Monte Carlo sampling25
tnQHMC Truncated Gaussian method with Quantum-inspired Hamiltonian Monte Carlo sampling26
Symbols27
δx,x′ Kronecker Delta28
σ2 Signal variance29
θ Hyperparameters of Gaussian model30
l Length-scale31
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ABSTRACT32

In this work, we propose a new Gaussian process (GP) regression framework that enforces the33
physical constraints in a probabilistic manner. Specifically, we focus on inequality and monotonicity34
constraints. This GP model is trained by the quantum-inspired Hamiltonian Monte Carlo (QHMC)35
algorithm, which is an efficient way to sample from a broad class of distributions by allowing a36
particle to have a random mass matrix with a probability distribution. Integrating the QHMC into the37
inequality and monotonicity constrained GP regression in the probabilistic sense, our approach38
enhances the accuracy and reduces the variance in the resulting GP model. Additionally, the39
probabilistic aspect of the method leads to reduced computational expenses and execution time.40
Further, we present an adaptive learning algorithm that guides the selection of constraint locations.41
The accuracy and efficiency of the method are demonstrated in estimating the hyperparameter42
of high-dimensional GP models under noisy conditions, reconstructing the sparsely observed43
state of a steady state heat transport problem, and learning a conservative tracer distribution44
from sparse tracer concentration measurements.45

1 INTRODUCTION

In many real-world applications, measuring complex systems or evaluating computational models can46
be time-consuming, costly or computationally intensive. Gaussian process (GP) regression is one of47
the Bayesian techniques that addresses this problem by building a surrogate model. It is a supervised48
machine learning framework that has been widely used in regression and classification tasks. A GP can49
be interpreted as a suitable probability distribution on a set of functions, which can be conditioned on50
observations using Bayes’ rule (Lange-Hegermann, 2021). GP regression has found applications in various51
challenging practical problems including multi-target regression problems Nabati et al. (2022), biomedical52
applications Dürichen et al. (2014); Pimentel et al. (2013), robotics Williams et al. (2008) and mechanical53
engineering applications Song et al. (2021); Li et al. (2023), etc. The recent research demonstrate that a GP54
regression model can make predictions incorporating prior information (kernels) and generate uncertainty55
measures over predictions (Rasmussen et al., 2006). However, prior knowledge often includes physical laws,56
and using the standard GP regression framework may lead to an unbounded model in which some points can57
take infeasible values that violate physical laws (Lange-Hegermann, 2021). For example, non-negativity is58
a requirement for various physical properties such as temperature, density and viscosity (Pensoneault et al.,59
2020). Incorporating physical information in GP framework can regularize the behaviour of the model and60
provide more realistic uncertainties, since the approach concurrently evaluates problem data and physical61
models (Swiler et al., 2020; Ezati et al., 2024).62

A significant amount of research has been conducted to incorporate physical information in GP framework,63
resulting in various techniques and methodologies (Swiler et al., 2020). For example, a probit model for64
the likelihood of derivative information can be employed to enforce monotonicity constraints (Riihimäki65
and Vehtari, 2010). Although this approach can also be used to enforce convexity in one dimension, an66
additional requirement on Hessian is incorporated for higher dimensions (Da Veiga and Marrel, 2012).67
In (López-Lopera et al., 2022) an additive GP approach is introduced to account for monotonicity constraints.68
Although posterior sampling step can be challenging, the additive GP framework enables to satisfy the69
constraints everywhere in the input space, and it is scalable to higher dimensions. The work presented70
in Gulian et al. (2022) presents a framework in which spectral decomposition covariance kernels and71
differential equation constraints are used in a co-kriging setup to perform GP regression constrained by72
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boundary value problems. With their inherent advantages, physics-informed GP models that incorporate73
physical constraints has applications in diverse areas, such as manufacturing Qiang et al. (2023), forecasting74
in power grids Mao et al. (2020) or urban flooding models Kohanpur et al. (2023), mimicing drivers’75
behavior Wang et al. (2021), monitoring intelligent tire systems Barbosa et al. (2021), predicting fuel flow76
rate Chati and Balakrishnan (2017), designing wind turbines Wilkie and Galasso (2021), etc. Due to their77
flexibility, physics-informed GP models can be combined with several approaches to enhance the accuracy78
of model predictions. These works show that integrating physical knowledge into the prediction process79
provides accurate results.80

Enforcing inequality constraints into a GP is typically challenging as the conditional process, subject to81
these constraints, does not retain the properties of a GP (Maatouk and Bay, 2017). One of the approaches82
to handle this problem is a data augmentation approach in which the inequality constraints are enforced at83
various locations and approximate samples are drawn from the predictive distribution (Abrahamsen and84
Benth, 2001), or using a block covariance kernel (Raissi et al., 2017). Implicitly constrained GP regression85
method proposed in (Salzmann and Urtasun, 2010) shows that the mean prediction of a GP implicitly86
satisfies linear constraints, if the constraints are satisfied by the training data. A similar approach shows that87
when we impose linear inequality constraints on a finite set of points in the domain, the resulting process is88
a compound Gaussian Process with a truncated Gaussian mean (Agrell, 2019). Most of the approaches89
assume that the inequalities are satisfied on a finite set of input locations. Based on that assumption, the90
methods approximate the posterior distribution given those constraint input points. The approach introduced91
in (Da Veiga and Marrel, 2012) is an example of these methods, where maximum likelihood estimation of92
GP hyperparameters are investigated under the constraint assumptions. In practice, this should also limit93
the number of constraint points needed for an effective discrete-location approximation. In addition, the94
method is not efficient on high-dimensional datasets as it takes a large amount of time to train the GP95
model.96

To the best of our knowlege, the first Gaussian method that satisfies certain inequalities at all the97
input space is proposed by Maatouk and Bay (Maatouk and Bay, 2017). The GP approximation of the98
samples are performed in the finite-dimensional space functions, and a rejection sampling method is used99
for approximating the posterior. The convergence properties of the method is investigated in (Maatouk100
et al., 2015). Although using the rejection sampling to obtain posterior helps convergence, it might101
be computationally expensive. Similar to the previous approaches in which a set of inputs satisfy the102
constraints, this method also suffers from the curse of dimensionality. Later, the truncated Gaussian103
approach (López-Lopera et al., 2018) extends the framework in (Maatouk and Bay, 2017) to general sets of104
linear inequalities. Building upon the approaches in (Maatouk and Bay, 2017) and (Maatouk et al., 2015),105
the work presented in (López-Lopera et al., 2018) introduces a finite-dimensional approach that incorporates106
inequalities for both data interpolation and covariance parameter estimation. In this work, the posterior107
distribution is expressed as a truncated multinormal distribution. The method uses different Markov Chain108
Monte Carlo (MCMC) methods and exact sampling methods to obtain the posterior distribution. Among the109
various MCMC sampling techniques including Gibbs, Metropolis-Hastings (MH) and Hamiltonian Monte110
Carlo (HMC), the results indicate that HMC sampling is the most efficient one. The truncated Gaussian111
approaches offer several advantages, including the ability to achieve high accuracy and the flexibility in112
satisfying multiple inequality conditions. However, although those types of methods address the limitations113
in (Maatouk and Bay, 2017), they might be time consuming particularly in applications with large datasets114
or high-dimensional spaces.115
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In this work, we use QHMC algorithm to train the GP model, and enforce the inequality and monotonicity116
constraints in a probabilistic manner. Our work addresses the computational limitations caused by high117
dimensions or large datasets. Unlike truncated Gaussian methods in (López-Lopera et al., 2018) for118
inequality constraints, or additive GP (López-Lopera et al., 2022) with monotonicity constraints, the119
proposed method can maintain its efficiency on higher dimensions. Further, we adopt an adaptive learning120
algorithm that selects the constraint locations. The efficiency and accuracy of the QHMC algorithms121
are demonstrated on inequality and monotonicity constrained problems. Inequality constrained examples122
include lower and higher dimensional synthetic problems, a conservative tracer distribution from sparse123
tracer concentration measurements and a three-dimensional heat transfer problem, while monotonicity124
constrained examples provide lower and higher dimensional synthetic problems. Our contributions can be125
summarized in three key points: (i) QHMC reduces difference between posterior mean and the ground126
truth, (ii) utilizing QHMC in a probabilistic sense decreases variance and uncertainty, and (iii) the proposed127
algorithm is a robust, efficient and flexible method applicable to a wide range of problems. We implemented128
QHMC sampling in the truncated Gaussian approach to enhance accuracy and efficiency while working129
with the QHMC algorithm.130

2 GAUSSIAN PROCESS UNDER INEQUALITY CONSTRAINTS

2.1 Standard GP regression framework131

Suppose we have a target function represented by values y = (y(1), y(2), ..., y(T ))N , where y(i) ∈ R132
are observations at locations X = {x(i)}Ni=1. Here, x(i) represents d-dimensional vectors in the domain133
D ∈ Rd. Using the framework provided in Kuss and Rasmussen (2003), we approximate the target function134
by a GP, denoted as Y (., .) : D × Ω→ R. We can express Y as135

Y (x) := GP [µ(x), K(x, x′)], (1)

where µ(.) is the mean function and K(x, x′) is the covariance function defined as136

µ(x) = E[Y (x)], and K(x, x′) = E[Y (x)− µ(x)][Y (x′)− µ(x′)] (2)

Typically, the standard squared exponential covariance kernel can be used as a kernel function:137

K(x, x′) = σ2 exp

(
−||x− x′||22

2l2

)
+ σ2nδx,x′ , (3)

where σ2 is the signal variance, δx,x′ is the Kronecker delta function and l is the length-scale. We then138
assume that the observation includes an additive independent identically distributed (i.i.d.) Gaussian noise139
term ϵ and having zero mean and variance σ2n. We denote the hyperparameters by θ = (σ, l, σn), and140
estimate them using the training data. The parameters can be estimated by minimizing the negative marginal141
log-likelihood Kuss and Rasmussen (2003); Stein (1988); Zhang (2004):142

− log[p(Y|X, θ)] =
1

2
[(y − µ)TK−1(y − µ) + log |K|+N log(2π)]. (4)

The following section shows how the parameter updates are performed using the QHMC method.143
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2.2 Quantum-inspired Hamiltonian Monte Carlo144

QHMC is an enhanced version of the HMC algorithm that incorporates a random mass matrix for the145
particles, following a probability distribution. In conventional HMC, the position is represented by the146
original variables (x), while Gaussian momentum is represented by auxiliary variables (q). Utilizing the147
energy-time uncertainty relation of quantum mechanics, QHMC allows a particle to have a random mass148
matrix with a probability distribution. Consequently, in addition to the position and momentum variables, a149
mass variable (m) is introduced within the QHMC framework. Having a third variable offers the advantage150
of exploring various landscapes in the state-space. As a result, unlike standard HMC or conventional151
sampling methods such as MH and Gibbs, QHMC can perform well on discontinuous, non-smooth and152
spiky distributions Barbu and Zhu (2020); Liu and Zhang (2019). In particular, while the performance of153
HMC and MH sampling degrade when the distribution is ill-conditioned or multi-modal, the performance154
of QHMC does not have these limitations. Moreover, QHMC maintains its performance with almost zero155
additional cost of resampling the mass variable. Due to its efficiency and adaptibility, QHMC can easily156
integrate with other techniques, or be modified to enhance its performance based on specific objectives157
and applications. For example, stochastic versions of QHMC can yield accurate solutions with increased158
efficiency, and the approach is applicable to various scenarios involving missing data Liu and Zhang (2019);159
Kochan et al. (2022).160

The quantum nature of QHMC can be understood by considering a one-dimensional harmonic oscillator161
example provided in Liu and Zhang (2019). Let us consider a ball with a fixed mass m attached to a spring162
at the origin. Assuming x is the displacement, the magnitude of the restoring force that pulls back the ball163
to the origin is F = −kx, and the ball oscillates around the origin with period T = 2π

√
m
k . In contrast164

to standard HMC where the mass m is fixed at 1, QHMC incorporates a time-varying mass, allowing165
the ball to experience acceleration and explore various distribution landscapes. That is, QHMC has the166
capability to employ a short time period T , corresponding to a small mass m, to efficiently explore broad167
but flat regions. Conversely, in spiky regions, it can switch to a larger time period T , i.e. larger m, to ensure168
thorough exploration of all corners of the landscape Liu and Zhang (2019).169

The implementation of QHMC is straightforward: (i) construct a stochastic process M(t) for the mass,170
and at each time t, (ii) sample M(t) from a distribution PM (M). Resampling the positive-definite mass171
matrix is the only additional step to the standard HMC procedure. In practice, assuming that PM (M) is172
independent of x and q, a mass density function PM (M) with mean µm and variance σ2m can be where I is173
the identity matrix. QHMC framework simulates the following dynamical system:174

d

(
x

q

)
= dt

(
M(t)−1q

−∇U(x)

)
. (5)

In this setting, the potential energy function of the QHMC system is U(x) = − log[p(Y|X, θ)], i.e., the175
negative of marginal log-likelihood. Algorithm 1 summarizes the steps of QHMC sampling, and, here,176
we consider the location variables {x(i)}Ni=1 in GP model as the position variables x in Algorithm 1. The177
method evolves the QHMC dynamics to update the locations x. In this work, we implement the QHMC178
method for inequality constrained GP regression in a probabilistic manner.179

2.3 Proposed method180

Instead of enforcing all constraints strictly, the approach introduced in Pensoneault et al. (2020) minimizes181
the negative marginal log-likelihood function in Equation 4 while allowing constraint violations with a182
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small probability. For example, for non-negativity constraints, the following requirement is imposed to the183
problem:184

P [(Y(x)|x, θ) < 0] ≤ η, for all x ∈ D, (6)

where 0 < η << 1.185

In contrast to enforcing the constraint via truncated Gaussian assumption Maatouk and Bay (2017) or186
performing inference based on the Laplace approximation and expectation propagation Jensen et al. (2013),187
the proposed method preserves the Gaussian posterior of the standard GP regression. The method uses a188
slight modification of the existing cost function. Given a model that follows a Gaussian distribution, the189
constraint can be re-expressed by the posterior mean and posterior standard deviation:190

y∗(x) + ϕ−1(η)s(x) ≥ 0, for all x ∈ D, (7)

where y∗(x) stands for the posterior mean, s is the standard deviation and ϕ is the cumulative distribution191
function of a Gaussian random variable. Following the work in Pensoneault et al. (2020), in this study192
η was set to 2.2% for demonstration purposes. As a result, ϕ−1(η) = −2, indicating that two standard193
deviations below the mean is still nonnegative. Then, the formulation of the optimization problem is given194
as195

argminθ − log[p(Y|X, θ)] such that

y∗(x)− 2s(x) ≥ 0.
(8)

In this particular form of the optimization problem, a functional constraint described by Equation 8 is196
existent. It can be prohibitive or impossible to satisfy this constraint at all points across the entire domain.197
Therefore, we adopt a strategy where Equation 8 is enforced only on a selected set of m constraint points198

denoted as Xc = x
(i)
c

m

i=1. The optimization problem can be reformulated as199

argminθ − log[p(Y|X, θ)] such that

y∗(x(i)c )− 2s(x
(i)
c ) ≥ 0 for all i = 1, 2, ...,m,

(9)

where hyperparameters are estimated to enforce bounds. Solving this optimization problem can be very200
challenging, and hence, in Pensoneault et al. (2020) additional regularization terms are added. Rather than201
directly solving the optimization problem, this work adopts the soft-QHMC method, which introduces202
inequality constraints with a high probability (e.g., 95%) by selecting a specific set of m constraint points in203
the domain. Then non-negativity on the posterior GP is enforced at these selected points. The log-likelihood204
in Equation 4 is minimized using the QHMC algorithm. Leveraging the Bayesian estimation Gelman et al.205
(2014), we can approximate the posterior distribution by log-likelihood function and prior probability206
distribution as shown in the following:207

p(X, θ|Y) ∝ p(X, θ,Y) = p(θ)p(X|θ)p(Y|X, θ). (10)

The QHMC training flow starts with this Bayesian learning and proceeds with an MCMC procedure for208
drawing samples generated by the Bayesian framework. A general sampling procedure at step t is given as209

X(t+1) ∼ π(X|θ) = p(X|θ(t), Y ),

θ(t+1) ∼ π(θ|X) = p(θ|X(t+1), Y ).
(11)
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The workflow of soft inequality-constrained GP regression is summarized in Algorithm 2, where QHMC210
sampling (provided in Algorithm 1) is used as a GP training method. In this version of non-negativity211
enforced GP regression, the constraint points are located where the posterior variance is highest.212

Algorithm 1 QHMC Training for GP with Inequality Constraints
Input: Initial point x0, step size ϵ, number of simulation steps L, mass distribution parameters µm and
σm.

1: for t = 1, 2, ... do
2: Resample Mt ∼ PM (M)

Resample qt ∼ N(0,Mt)

(x0, q0) = (x(t), q(t))
q0 ← q0 − ϵ

2∇U(x0)
3: for i = 1, 2, ..., L− 1 do
4: xi ← xi−1 + ϵM−1

t qi−1

qi ← qi−1 − ϵ
2∇U(xi)

5: end for
xL ← xL−1 + ϵM−1

t qL−1

qL ← qL−1 − ϵ
2∇U(xL)

(x̂, q̂) = (xL, qL)
MH step: u ∼ Uniform[0, 1];
ρ = e−H(x̂,q̂)+H(x(t),q(t));

6: if u < min(1, ρ) then
7: (x(t+1), q(t+1)) = (x̂, q̂)
8: else
9: (x(t+1), q(t+1) = (x(t), q(t))

10: end if
11: end for

Output: {x(1), x(2), ...}

Algorithm 2 Soft Inequality-constrained GP Regression

1: Specify m constraint points denoted by Xc = x
(i)
c

m

i=1, where corresponding observation y∗(xc)(i).
2: for i = 1, 2, ...,m do
3: Compute the MSE of s2(x(i)c ) of MLE prediction y∗(xc) for xc ∈ D.

Obtain observation y∗(xc)(i) at x(i)c

Locate x
(i+1)
c for the maximum of s2(x(i)c ) for xc ∈ D.

4: end for
Construct the MLE prediction of y∗(x) using QHMC training.

2.3.1 Enforcing Monotonicity Constraints213

Monotonicity constraints on a GP can be enforced using the likelihood of derivative observations. After214
the selection of active constraints, non-negativity constraints are incorporated in the partial derivative, i.e.215

∂f

∂xi
(xi) ≥ 0, (12)

where f is a vector of N latent values. In the soft-constrained GP method, we introduce the non-negativity216
information in Equation 12 on a set of selected points, and apply the same procedure as in Equation 9.217

Frontiers 7



Kochan et al. GP with Soft Constraints

Since the derivative is also a GP with with mean and covariance matrix Riihimäki and Vehtari (2010):218

µ(x′) = E
[
∂Y (x)

∂xi

]
, and K(x, x′) =

∂

∂xi

∂

∂x′i
K(x, x′), (13)

the new posterior distribution is given as219

p(y∗, θ|y,x,x∗) =
∫

p(y∗, θ|f∗)p(f∗|y,x,x∗)df,

p(f∗|y,x,x∗) =
∫ ∫

p(f∗|x∗, f, f ′)p(f, f ′|x,y)dfdf ′,
(14)

where y∗ and f∗ denote the predictions at location x∗.220

3 THEORETICAL ANALYSIS OF THE METHOD

In this section, employing Bayes’ Theorem, we demonstrate how QHMC is capable of producing a steady-221
state distribution that approximates the actual posterior distribution. Then, we examine the convergence222
characteristics of the probabilistic approach on the optimization problem outlined in Equation 9.223

3.1 Convergence of QHMC training224

The study presented in Liu and Zhang (2019) demonstrates that the QHMC framework can effectively225
capture a correct steady-state distribution that describes the desired posterior distribution p(x) ∝226
exp(−U(x)) via Bayes’ rule. The joint probability density of (x, q,M) can be calculated by Bayesian227
theorem:228

p(x, q,M) = p(x, q|M)PM (M), (15)

where the conditional distribution is approximated as follows:229

p(x, q|M) ∝ exp (−U(x)−K(q)) = exp (−U(x)) exp

(
−1

2
qTM−1q

)
, (16)

Then, p(x) can be written as230

p(x) =

∫

q

∫

M
dqdMp(x, q,M) ∝ exp(−U(x)), (17)

which shows that the marginal steady distribution approaches the true posterior distribution Liu and Zhang231
(2019).232

3.2 Convergence properties of probabilistic approach233

In this section, we show that satisfying the constraints on a set of locations x in the domain D preserves234
convergence. Recall the following inequality-constrained optimization problem:235

argminθ − log[p(Y|X, θ)] such that

y∗(x(i)c )− 2s(x
(i)
c ) ≥ 0 for all i = 1, 2, ...,m.

(18)
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Now, it is necessary to demonstrate that the result obtained by using the selected set of input locations236
converge to the value of the regression model’s output. This convergence ensures that probabilistic approach237
will eventually result in a model that satisfy the desired conditions.238

Note that throughout the proof, it is assumed that D is finite. The proof can be constructed for the cases239
whether the domain is countable or uncountable.240

(i) Assume that the domain D is a countable set containing N elements. Then, select a subset Dm ∈ D241

with m points, where x
(1)
c , x

(2)
c , ..., x

(m)
c ∈ Dm. For each point x ∈ D, there exists a Gaussian probability242

distribution. The set of distributions associated with x ∈ D is denoted as P . For the constraint points243
x ∈ Dm, there are m constraints and their corresponding probability distributions, which can be defined as244
Pm. Additionally, we introduce a set H(x) such that245

H(x) := {θ|p(Y|X, θ) < 0}, (19)

which covers the locations where the non-negativity constraint is violated. For each fixed x ∈ D, define246

v(x) := inf
P∈P

P (Y|X, θ) < 0 ≡ inf
P∈P

P (H(x)), and

vm(x) := inf
P∈Pm

P (Y|X, θ) < 0 ≡ inf
P∈Pm

P (H(x)).
(20)

(ii) Assume that the domain D is a finite but uncountable set. In this case, a countable subset D̃ with x ∈ D̃247
can be constructed. The set of probability distributions are defined as in case (i). Since D is finite, the set248
D ∪ {x} is also finite. Consequently, the sets H(x), v(x) and vm(x) can be constructed as in the first case.249
Next steps establish a convergence of vm over v as Pm converges to P .250

First, let us provide distance metrics used throughout the proof. Following the definitions in Guo et al.251
(2015), let252

d(x,A) := inf
x′∈A
||x− x′|| (21)

denote the distance from a point x to a set A. Then, the distance of two compact sets A and B can be253
defined as254

D(A,B) := sup
x∈A

d(x,B). (22)

Then, the Hausdorff distance between A and B is defined as H(A,B) := max{D(A,B),D(B,A)}. Finally,255
we define a pseudo-metric d to describe the distance between two probability distributions P and P̃ as256

d(P, P̃ ) := sup
x∈D
|P (H(x))− P̃ (H(x))|, (23)

where D is the domain specified in Section 3.2.257

ASSUMPTION 1. Suppose that the probability distributionsP andPm satisfy the following conditions:258

1. There exists a weakly compact set P̃ such that P ⊂ P̃ and Pm ⊂ P̃ .259

2. lim
m→N

d(P ,Pm) = 0, with probability 1.260

3. lim
m→N

d(Pm,P) = 0, with probability 1.261
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Now, we show that Theorem 1 holds under the assumptions in Assumption 1. Recall that we have262

H(convV, convVm) = max

{∣∣∣∣ sup
P∈Pm

P (H(x))− sup
P∈P

P (H(x))

∣∣∣∣ ,
∣∣∣∣ inf
P∈Pm

P (H(x))− inf
P∈P

P (H(x))

∣∣∣∣
}
.

Based on the definition and property of Hausdorff distance Hess (1999) we also have263

H(convV, convVm) ≤ H(V, Vm) ≤ max{D(V, Vm),D(Vm, V )}. (24)

Consider the distance of two sets:264

D(V, Vm) = sup
v∈V

inf
v′∈Vm

||v − v′||

= sup
P∈P

inf
P̃∈Pm

||P (H(x))− P̃ (H(x))||

≤ sup
P∈P

inf
P̃∈Pm

sup
x∈D
||P (H(x))− P̃ (H(x))||

= d(P ,Pm),

(25)

and apply the same procedure to obtain D(Vm, V ) ≤ d(Pm,P). Hence,265

H(convV, convVm) ≤ H(V, Vm) ≤ H(Pm,P). (26)

Consequently, we obtain266

|vm(x)− v(x)| ≤
∣∣∣∣ inf
P∈Pm

P (H(x))− inf
P∈P

P (H(x))

∣∣∣∣

≤ H(convV, convVm)

≤ H(Pm,P).

(27)

THEOREM 1. vm converges to v as Pm converges to P , that is267

lim
m→N

sup
x∈D
|vm(x)− v(x)| = 0.

PROOF. Let us assume that x ∈ D is fixed, and define268

V := {P (H(x)) : P ∈ clP}, and, Vm := {P (H(x)) : P ∈ clPm}, (28)

where cl represents the closure. Note that both V and Vm are bounded subsets in Rd. Let us define a, b, am269
and bm such that270

a := inf
v∈V

v, b := sup
v∈V

v, am := inf
v∈Vm

v, bm := sup
v∈Vm

v, (29)

The Hausdorff distance between convex hulls (conv) of the sets V and Vm are calculated as Hess (1999)271

H(convV, convVm) = max{|bm − b|, |a− am|}. (30)
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Since we know that272

bm − b = sup
v∈Vm

v − sup
v∈V

v, and am − a = inf
v∈Vm

v − inf
v∈V

v, (31)

we have273

H(convV, convVm) = max

{∣∣∣∣ sup
P∈Pm

P (H(x))− sup
P∈P

P (H(x))

∣∣∣∣ ,
∣∣∣∣ inf
P∈Pm

P (H(x))− inf
P∈P

P (H(x))

∣∣∣∣
}

(32)
Based on the definition and property of Hausdorff distance Hess (1999) we have274

H(convV, convVm) ≤ H(V, Vm), (33)

resulting in Guo et al. (2015)275

|vm(x)− v(x)| ≤ H(V, Vm) ≤ H(P ,Pm). (34)

In this setting, x can be any point in D, and the right hand side of the inequality is independent of x. The276
proof can be completed by taking the supremum of each side with respect to x Guo et al. (2015).277

4 NUMERICAL EXAMPLES

In this section, we evaluate the performance of the proposed algorithms on various examples including278
synthetic and real data. The evaluations consider the size and dimension of the datasets. Several versions of279
QHMC algorithms are introduced and compared depending on the selection of constraint point locations280
and probabilistic approach.281

Rather than randomly locating m constraint points, the algorithm starts with an empty constraint set and282
determine the locations of the constraint points one by one adaptively. Throughout this process, various283
strategies are employed for adding the constraints. The specific approaches are outlined as follows:284

1. Constraint-adaptive approach: This approach examines whether the constraint is satisfied at a location.285
The function value is calculated, and if the constraint is violated at that location, then a constraint point286
is added.287

2. Variance-adaptive approach: This approach calculates the prediction variance in the test set. Constraint288
points are identified at the positions where the variance values are highest. The goal here is basically to289
reduce the variance in predictions and increase the stability.290

3. Combination of constraint and variance adaption: In this approach, a threshold value (e.g. 0.20) is291
determined for the variance, and the algorithm locates constraint points to the locations where the292
highest prediction variance is observed. Once the variance reduces to the threshold value, the algorithm293
switches to the first strategy, in which it locates constraint points where the violation occurs.294

We represent the constraint-adaptive, hard-constrained approach as QHMCad and its soft-constrained295
counterpart as QHMCsoftad. Similarly, QHMCvar refers to the method focusing on variance, while296
QHMCsoftvar corresponds to its soft-constrained version. The combination of the two approaches297
with hard and soft constraints are denoted by QHMCboth and QHMCsoftboth, respectively. For the298
sake of comparison, truncated Gaussian algorithms using an HMC sampler (tnHMC) and a QHMC299
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sampler (tnQHMC) for inequality-constrained examples are implemented, while additive GP (additiveGP)300
algorithm is adapted for monotonicity-constrained examples.301

For the synthetic examples, the time and accuracy performances of the algorithms are evaluated while302
simultaneously changing the dataset size and noise level in the data. Following Pensoneault et al. (2020),303
as our metric, we calculate the relative l2 error between the posterior mean y∗ and the true value of the304

target function f(x) on a set of test points Xt = {x(i)T }Nt
i=1:305

E =

√√√√
∑Nt

i=1[y
∗(x(i)T )− f(x

(i)
T )]2

∑Nt
i=1 f(x

(i)
T )2

. (35)

We solve the constrained optimization problems in MATLAB. Additionally, in order to highlight the306
advantage of QHMC over HMC, the proposed approach is implemented with using the standard HMC307
procedure. The relative error, posterior variance and execution time of each version of QHMC and HMC308
algorithms are presented.309

4.1 Inequaltiy Constraints310

This section provides two synthetic examples and two real-life application examples to demonstrate the311
effectiveness of QHMC algorithms on inequality constraints. Synthetic examples compare the performance312
QHMC approach with truncated Gaussian methods for a 2-dimensional and a 10-dimensional problems. For313
the 2-dimensional example, the primary focus is on enforcing the non-negativity constraints within the GP314
model. In the case of the 10-dimensional example, we generalize our analysis to satisfy a different inequality315
constraint, and evaluate the performances of truncated Gaussian, QHMC and soft-QHMC methods. Third316
example considers conservative transport in a steady-state velocity field in heterogeneous porous media.317
Despite being a two-dimensional problem, the non-homogeneous structure of the solute concentration318
introduces complexity and increases the level of difficulty. The last example is a 3-dimensional heat transfer319
problem in a hallow sphere.320

4.1.1 Example 1321

Consider the following 2D function under non-negativity constraints:322

f(x) = arctan 5x1 + arctanx2, (36)

where {x1, x2} ∈ [0, 1]2. In this example, the GP model is trained via QHMC over 20 randomly selected323
locations.324

Figure 1 presents the relative error values of the algorithms with respect to two parameters: the size of325
the dataset and signal-to-noise ratio (SNR). It can be seen that the most accurate results without adding326
any noise are provided by QHMCboth and tnQHMC algorithms with around 10% relative error. However,327
upon introducing the noise to the data and increasing its magnitude, a distinct pattern is observed. The328
QHMC methods exhibit relative error values of approximately 15% within the SNR range of 15% to 20%.329
In contrast, the relative error of the truncated Gaussian methods increases to 25% within the same noise330
range. This pattern demonstrates that QHMC methods can tolerate noise and maintain higher accuracy331
under these conditions.332

In Table 1, the comparison between QHMC and HMC algorithms with a dataset size of 200 is presented.333
The relative error values indicate that QHMC yields approximately 20% more accurate results than HMC,334
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Table 1. Comparison of QHMC and HMC on 2D, inequality.
Method Error Posterior Var Time Method Error Posterior Var Time
QHMC-ad 0.10 0.14 46s HMC-ad 0.12 0.17 52s
QHMC-soft-ad 0.11 0.16 39s HMC-soft-ad 0.13 0.19 48s
QHMC-var 0.11 0.12 40s HMC-var 0.13 0.14 46s
QHMC-soft-var 0.12 0.15 34s HMC-soft-var 0.15 0.14 42s
QHMC-both 0.08 0.13 48s HMC-both 0.10 0.14 53s
QHMC-soft-both 0.09 0.13 39s HMC-soft-both 0.12 0.15 44s

and it achieves this with a shorter processing time. Consequently, QHMC demonstrates both higher335
accuracy and efficiency compared to HMC.336
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Figure 1. Relative error of the algorithms with different SNR and data sizes for Example 1 (2D), inequality.

Further, we compare the time performances of the algorithms in Figure 2 which demonstrates that QHMC337
methods, especially the probabilistic QHMC approaches can perform much faster than the truncated338
Gaussian methods. In this simple 2D example, the presence of noise does not significantly impact the339
running times of the QHMC algorithms. In contrast, truncated Gaussian algorithms are slower under noisy340
environment even when the dataset size is small. Additionally, it can be observed in Figure 3 that the341
QHMC algorithms, especially QHMCvar and QHMCboth are the most robust ones, as their small relative342
error comes with a small posterior variance. In contrast, the posterior variance values of the truncated343
Gaussian methods are higher than QHMC posterior variances even when there is no noise, and gets344
higher along with the relative error (see Figure 1) when the SNR levels increase. Combining all of these345
experiments, the inference is that QHMC methods achieve higher accuracy within a shorter time frame.346
Consequently, these methods prove to be more efficient and robust as they can effectively tolerate changes347
in parameters. Additionally, it is worth noting that a slight improvement is achieved in the performance of348
truncated Gaussian algorithms by implementing tnQHMC. Based on the numerical results obtained by349
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tnQHMC, it can be concluded that employing tnQHMC not only yields higher accuracy but also saves350
some computational time compared to tnHMC.
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Figure 2. Execution times (in seconds) of the algorithms with different SNR and datasizes for Example
1 (2D), inequality.
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Figure 3. Posterior variances of the algorithms with different SNR and datasizes for Example 1 (2D),
inequality.
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Table 2. Comparison of QHMC and HMC on 10D, inequality.

Method Error Posterior Var Time Method Error Posterior Var Time
QHMC-ad 0.10 0.13 39m 17s HMC-ad 0.12 0.15 43m 33s
QHMC-soft-ad 0.11 0.14 36m 21s HMC-soft-ad 0.13 0.15 41m 10s
QHMC-var 0.11 0.11 37m 4s HMC-var 0.13 0.12 41m 31s
QHMC-soft-var 0.12 0.11 34m 23s HMC-soft-var 0.14 0.12 37m 42s
QHMC-both 0.09 0.12 40m 8s HMC-both 0.10 0.14 44m 23s
QHMC-soft-both 0.10 0.12 37m 53s HMC-soft-both 0.12 0.14 42m 5s

4.1.2 Example 2352

Consider the 10D Ackley function Eriksson and Poloczek (2021) defined as follows:353

f(x) = −a exp


−b

√√√√1

d

d∑

i=1

x2i


− exp


−b

√√√√1

d

d∑

i=1

cos cxi


+ a+ exp 1, (37)

where d = 10, a = 20, b = 0.2 and c = 2π. We study the performance of the algorithms on the domain354
[−10, 10]10 while enforcing the function to be greater than 5.355

Figure 4 illustrates that QHMCboth, QHMCsoftboth and truncated Gaussian algorithms yield the lowest356
error when there is no noise in the data. However, as the noise level increases, truncated Gaussian methods357
fall behind all QHMC approaches. Specifically, both the QHMCboth and QHMCsofthboth algorithms358
demonstrate the ability to tolerate noise levels up to 15% with an associated relative error of approximately359
15%. However, other variants of QHMC methods display greater noise tolerance when dealing with larger360
datasets. With fewer than 100 data points, the error rate reaches around 25%, but it decreases to 15− 20%361
when the number of data points exceeds 100.362

Figure 5 illustrates the time comparison of the algorithms, where QHMC methods provide around363
30− 35% time efficiency for the datasets larger than a size of 150. Combining this time advantage with the364
higher accuracy of QHMC indicates that both soft and hard constrained QHMC algorithms outperform365
truncated Gaussian methods across various criteria. QHMC methods offer the flexibility to employ one366
of the algorithms depending on the priority of the experiments. For example, if speed is the primary367
consideration, QHMCsoftvar is the fastest method while maintaining a good level of accuracy. If accuracy368
is the most important metric, employing QHMCboth would be a wiser choice, as it still offers significant369
time savings compared to other methods.370

Figure 6 presents that the posterior variance values of truncated Gaussian methods are significantly higher371
than that of the QHMC algorithms, especially when the noise levels are higher than 5%. As expected,372
QHMCvar and QHMCsoftvar algorithms offer the lowest variance, while QHMCboth and QHMCsoftboth373
follow them. A clear pattern is shown in the figure, in which QHMC approaches can tolerate higher noise374
levels especially when the dataset is large. It is notable that our method demonstrates a significant increase375
in efficiency as the dimension increases. When comparing this 10D example to the 2D case, the execution376
times of the truncated Gaussian methods are notably impacted by the dimension, even in the absence of377
noise in the datasets. Although their relative error levels can remain low without noise, it takes 1.5 times378
longer than the QHMC methods to offer those accuracy. Additionally, this observation holds only for cases379
where the data is noise-free. As soon as noise is present, the accuracy of truncated Gaussian methods380
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Figure 4. Relative error of the algorithms with different SNR and data sizes for Example 2 (10D),
inequality.
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Figure 5. Execution times (in minutes) of the algorithms with different SNR and datasizes for Example
2 (10D), inequality.

deteriorates, whereas QHMC methods can withstand the noise and yield good results in a shorter time span.381
382
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Figure 6. Posterior variances of the algorithms with different SNR and datasizes for Example 2 (10D),
inequality.

4.1.3 Example 3: Solute transport in heterogeneous porous media383

Following the example in Yang et al. (2019), we examine conservative transport within a constant velocity384
field in heterogeneous porous media. Let us denote the solute concentration by C(x, t)(x = (x, y)T), and385
suppose that the measurements of C(x, t) are available at various locations at different times. Conservation386
laws can be used to describe the processes of flow and transport. Specifically, Darcy flow equation describes387
the flow by Yang et al. (2019)388





∇ · (K∇h) = 0, x ∈ D,
∂h
∂n = 0, y = 0 or y = L2,

h = H1, x = 0,

h = H2, x = L1,

(38)

where h(x, w) is the hydraulic head, D = [0, L1] × [0, L2] is the simulation domain with L1 = 256 and389
L2 = 128, H1 and H2 are known boundary head values and K(x, w) is the unknown hydraulic conductivity390
field. The field is represented as a stochastic process, with the distribution of values described by a log-391
normal distribution. Specifically, it is expressed as K(x, w) = expZ(x, w), where is a second-order392
stationary GP with a known exponential covariance function, Cov{Z(x), Z(x′)} = σ2Z exp (−|x− x′|/lz)393
where variance σ2Z = 2 and correlation length lz = 5. The solute transport by the advection-dispersion394
equation Emmanuel and Berkowitz (2005); Lin and Tartakovsky (2009); Yang et al. (2019) can be described395
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Table 3. Comparison of QHMC and HMC on solute transport with nonnegativity.
Method Error Posterior Var Time Method Error Posterior Var Time
QHMC-ad 0.18 0.13 83s HMC-ad 0.20 0.14 89s
QHMC-soft-ad 0.19 0.13 75s HMC-soft-ad 0.22 0.15 83s
QHMC-var 0.20 0.12 80s HMC-var 0.23 0.13 91s
QHMC-soft-var 0.21 0.13 71s HMC-soft-var 0.24 0.14 79s
QHMC-both 0.13 0.12 86s HMC-both 0.15 0.14 97s
QHMC-soft-both 0.14 0.13 74s HMC-soft-both 0.15 0.15 82s
tnQHMC 0.15 0.13 96s tnHMC 0.16 0.16 103s

by396





∂C
∂t +∇ · (vC) = ∇ ·

(
Dw
τ + α||v||2

)
∇C, x in D,

C = Qδ(x− x∗), t = 0,
∂C
∂n = 0, y = 0 or y = L2 or x = L1,

C = 0, x = 0.

(39)

In this context, C(x, t;w) represents the solute concentration defined over D×[0, T ]×Ω, v denotes the fluid397
velocity given by v(x;w) = −K(x;ω)∇h(x, ω)/ϕ with ϕ being porosity; Dw is the diffusion coefficient,398
τ stands for the tortuosity, and α is the dispersivity tensor, with diagonal components αL and αT . In this399
study, the transport parameters are defined as follows: ϕ = 0.317, τ = ϕ1/3, Dw = 2.5 × 10−5, αL = 5400
and αT = 0.5. Lastly, the solute is instantaneously injected at x∗ = (50, 64) at t = 0 with the intensity401
Q = 1 Yang et al. (2019). In Figure 7, the ground truth with observation locations and constraint locations402
are presented to provide an insight into the structure of solute concentration.403

Table 3 presents a comparison of all versions of QHMC and HMC methods, along with the404
truncated Gaussian algorithms. Similar to the results observed with synthetic examples, the QHMCboth,405
QHMCsoftboth, and tnQHMC algorithms demonstrate the most accurate predictions with a relative error406
of 13− 15%. Notably, QHMCsoftboth emerges as the fastest among the methods while achieving higher407
accuracy. For instance, the error value obtained by QHMCsoftboth is 0.14, whereas tnQHMC’s error is408
0.15. However, QHMCsoftboth delivers a 20% time efficiency gain with slightly superior accuracy. In409
Figure 8, a comprehensive comparison of the algorithms is presented. The decrease in relative error values410
is noticeable as constraints are gradually added, following the adopted adaptive approach. Initially, the411
error is 0.5 and gradually decreases to approximately 0.13. Furthermore, it is evident that the QHMCboth412
and QHMCsoftboth methods consistently deliver the most accurate results at each step, whereas the413
performance of the QHMCsoftvar method is outperformed by other approaches.414

4.1.4 Example 4: Heat Transfer in a Hallow Sphere415

This 3-dimensional example considers a heat transfer problem in a hallow sphere. Let Br(0) represent416
a ball centered at 0 with radius r. Defining the hallow sphere as D = B4(0) − B2(0), the equations are417
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Figure 7. Observation locations (black squares) and constraint locations (black stars).

given as Yang et al. (2021)418





∂u(x,t)
∂t −∇ · (κ∇u(x, t)) = 0, x ∈ D,

κ∂u(x,t)
∂n = θ2(π − θ)2ϕ2(π − ϕ)2, if ∥x|2 = 4 and ϕ ≥ 0,

κ∂u(x,t)
∂n = 0, if ∥x∥2 = 4 and ϕ < 0,

u(x, t) = 0, if ∥x∥2 = 2.

(40)

In this context, n denotes the normal vector pointing outward, while θ and ϕ represent the azimuthal and419
elevation angles, respectively, of points within the sphere. We determine the precise heat conductivity using420
κ = 1.0 + exp(0.05u). The quadratic elements with 12,854 degrees of freedom are employed, and we set421
y(x) = u(x, 10) to solve the partial differential equations (PDE). Starting with 6 initial locations at 0 on422
the surface, 6 new constraint locations are introduced based on the active learning approach of the QHMC423
version. In Figure 9, the decrease is evident in relative error while the constraints are added step by step. In424
addition, Figure 10 shows the ground truth and the GP result obtained by QHMCsoftboth algorithm, where425
QHMCsoftboth y∗(x) matches the reference model. The constraint locations of the result are shown in426
Figure 11. Moreover, its posterior variance is small based on the results shown in Table 4. The table also427
provides the error, posterior variance and time performances of QHMC and HMC algorithms, where the428
advantages of QHMC over HMC in all categories, even with the truncated Gaussian algorithm are observed.429
Although all of the algorithms complete the GP regression in less than 1 minute, comparing the truncated430
Gaussian method with QHMC-based algorithms, 40− 60% time efficiency along with compatible accuracy431
of QHMC algorithms is achieved. In addition to the time and accuracy performances, it is shown that the432
posterior variance values are smallest with QHMCvar and QHMCboth approaches, followed by tnQHMC433
and QHMCad approaches. Using HMC sampling in all methods generates larger posterior variances.434
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Figure 8. The change in relative error while adding constraints, solute transport.

Table 4. Comparison of QHMC and HMC on heat transfer with nonnegativity.
Method Error Posterior Var Time Method Error Posterior Var Time
QHMC-ad 0.04 0.04 34s HMC-ad 0.06 0.07 40s
QHMC-soft-ad 0.05 0.04 30s HMC-soft-ad 0.07 0.07 32s
QHMC-var 0.05 0.02 30s HMC-var 0.09 0.05 27s
QHMC-soft-var 0.06 0.03 26s HMC-soft-var 0.10 0.05 29s
QHMC-both 0.02 0.03 32s HMC-both 0.04 0.05 37s
QHMC-soft-both 0.03 0.03 27s HMC-soft-both 0.05 0.06 35s
tnQHMC 0.04 0.05 51s tnHMC 0.06 0.07 56s

4.2 Monotonicity Constraints435

This section provides two numerical examples to investigate the effectiveness of our algorithms on436
monotonicity constraints. As stated in Section 2.3.1, the monotonicity constraints are enforced in the437
direction of active variables. Similar to the comparisons in previous section, we illustrate the advantages of438
QHMC over HMC, and then compare the performance of QHMC algorithms with additive GP approach439
introduced in López-Lopera et al. (2022) with respect to the same criteria as in the previous section.440

4.2.1 Example 1441

Consider the following 5D function with monotonicity constraints López-Lopera et al. (2022):442

f(x) = arctan (5x1) + arctan (2x2) + x3 + 2x24 +
2

1 + exp−10(x5 − 1
2)
. (41)
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Figure 9. The change in relative error while adding constraints, heat equation.

Table 5. Comparison of QHMC and HMC on 5D, monotonicity.

Method Error Posterior Var Time Method Error Posterior Var Time
QHMC-ad 0.11 0.16 2m 23s HMC-ad 0.13 0.17 3m 14s
QHMC-soft-ad 0.14 0.18 1m 57s HMC-soft-ad 0.17 0.20 2m 48s
QHMC-var 0.12 0.15 2m 13s HMC-var 0.15 0.17 2m 58s
QHMC-soft-var 0.15 0.17 1m 42s HMC-soft-var 0.18 0.19 2m 16s
QHMC-both 0.10 0.13 2m 25s HMC-both 0.12 0.15 2m 58s
QHMC-soft-both 0.12 0.14 1m 55s HMC-soft-both 0.14 0.15 2m 39s

Table 5 shows the performances of HMC and QHMC algorithms, where we observe that QHMC achieves443
higher accuracy with lower variance in a shorter amount of time. The comparison proves that each version444
of QHMC is more efficient than HMC In addition, Figure 12 shows the relative error values of QHMC and445
additive GP algorithms with respect to the change in SNR and dataset size. Based on the results, it is clear446
that QHMCboth and QHMCsoftboth provide the most accurate results under every different condition,447
while the difference is more remarkable for the cases in which noise is higher. Although QHMCboth and448
QHMCsoftboth provides the most accurate results, other QHMC versions also generate more accurate449
results then additive GP method. Moreover, Figure 13 shows that the soft-constrained QHMC approaches450
are faster than the hard-constrained QHMC, while hard-constrained QHMC versions are still faster than451
additive GP algorithm.452

4.2.2 Example 2453

We provide a 20-dimensional example to indicate the applicability and effectiveness of QHMC algorithms454
on higher dimensions with monotonicity constraint. We consider the target function used in López-Lopera455
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Figure 10a. Heat equation data, ground truth y(x).

Figure 10b. QHMCsoftboth prediction y∗(x).

Figure 10. Comparison of the ground truth and QHMCsoftboth result.

et al. (2022); Bachoc et al. (2022)456

f(x1, x2, ..., xd) =
d∑

i=1

arctan 5

[
1− i

d+ 1

]
xi (42)

with d = 20.457

Table 6 illustrates accuracy and time advantages of QHMC over HMC. For each version of QHMC and458
HMC, using QHMC sampling in a specific version accelerates the process while increasing the accuracy.459
Overall comparison shows that among all versions with QHMC and HMC sampling, QHMCboth is the460
most accurate approach, while QHMCsoftboth is the fastest and ranked second in accuracy. Figure 15461
and Figure 16 show the relative error and time performances of QHMC-based algorithms, HMCsoftboth462
and additive GP algorithm, respectively. In this final example with the highest dimension, the same463
phenomenon is observed as in previous results: soft-constrained versions demonstrate greater efficiency,464
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Figure 11a. Initial locations.

Figure 11b. Constraint locations added by QHMC.

Figure 11. Initial locations (squares) and adaptively added constraint locations (stars).

while hard-constrained QHMC approaches remain faster than additive GP across different conditions,465
including high noise levels. Based on Figure 15, QHMCboth can tolerate noise levels up to 10% with466
the smallest error, and it can still provide good accuracy (error is around 0.15) even when the SNR is467
higher than 10%. It is also worth to mention that although the error values generated by HMCsoftboth and468
additiveGP are pretty close, HMCsoftboth performs faster than additiveGP, especially when the dataset is469
larger and noise level is higher.470

471

4.3 Discussion472

In the scope of the proposed QHMC-based method, this work investigates the advantages and473
disadvantages of using soft-constrained approach on physics-informed GP regression. The comparison of474
modified versions of proposed algorithm along with a recent method is further performed to validate the475
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Figure 12. Relative error of the algorithms with different SNR and data sizes for Example 1 (5D),
monotonicity.

Table 6. Comparison of QHMC and HMC on 20D, monotonicity.

Method Error Posterior Var Time Method Error Posterior Var Time
QHMC-ad 0.13 0.18 33m 1s HMC-ad 0.15 0.21 35m 38s
QHMC-soft-ad 0.15 0.19 31m 21s HMC-soft-ad 0.18 0.22 33m 41s
QHMC-var 0.14 0.16 32m 53s HMC-var 0.17 0.17 34m 21s
QHMC-soft-var 0.16 0.17 29m 42s HMC-soft-var 0.19 0.18 31m 17s
QHMC-both 0.11 0.14 33m 45s HMC-both 0.14 0.16 36m 21s
QHMC-soft-both 0.12 0.15 29m 48s HMC-soft-both 0.15 0.17 33m 11s

superiority of the approach. The significant findings and the corresponding possible reasons are summarized476
as follows:477

1. Synthetic examples are designed to highlight the robustness and efficiency of proposed method. In one478
example, considering two criteria: dataset size and SNR. The QHMC-based algorithms are evaluated479
in an environment with a range of 0− 20% SNR, and results provided in Figure 1, Figure 4 , Figure 12,480
and Figure 15 have shown that both soft and hard-constrained versions of proposed method tolerate the481
noise in the data, especially if it is less then 10%. In addition, the methods are more tolerant when the482
dataset size increases. This part of the experiments for each synthetic example proved the robustness483
of the proposed method.484

2. Additionally, the numerical results of synthetic examples include the execution times for when the SNR485
and dataset size increase in each example. The goal is to underscore the effectiveness of the proposed486
algorithm. Figure 2, Figure 5, Figure 13, Figure 16 show the time advantages of the algorithms,487
especially for the soft-constrained versions.488
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Figure 13. Execution times (in seconds) of the algorithms with different SNR and data sizes for Example
1 (5D), monotonicity.
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Figure 14. Posterior variances of the algorithms with different SNR and data sizes for Example 1 (5D),
monotonicity.

3. The dimensions of synthetic examples are selected to verify that the robustness and efficiency of489
the algorithms remain for higher dimensions. For inequality-constrained scenarios, evaluations are490
performed on 2D and 10D problems, while for monotonicity-constrained algorithms evaluations are491
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Figure 15. Relative error of the algorithms with different SNR and data sizes for Example 2 (20D),
monotonicity.
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Figure 16. Execution times (in minutes) of the algorithms with different SNR and data sizes for Example
2 (20D), monotonicity.

performed on 5D and 20D problems. The results have verified that the performance of proposed492
methods can maintain the accuracy for higher-dimensional cases in a relatively short amount of times.493

4. The real-life applications are chosen to verify that the proposed method is promising to generalize494
different type of problems. The solute concentration example is a 2D problem with non-homogeneous495
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Figure 17. Posterior variances of the algorithms with different SNR and data sizes for Example 2 (20D),
monotonicity.

structure, while heat transfer problem is a 3D problem that requires PDE solving. On the contrary of496
synthetic examples, in this set of experiments, the dataset size is fixed and there is no injected Gaussian497
noise in the data. We present a comprehensive comparison of all methods along with the truncated498
Gaussian algorithm. Step by step decrease in the error is presented in Figure 8 and Figure 9, where the499
success of all versions are verified.500

5. The proposed method is a combination of QHMC algorithm and a probabilistic approach for phiysics-501
informed GP. QHMC training provides accuracy due to its broad state space exploration, while502
probabilistic approach lowers the variance. In each case, we start with the experiments conducted503
with fixed dataset size and zero SNR to demonstrate the superiority of QHMC over HMC. The504
HMC versions of the proposed methods are implemented and compared to the corresponding QHMC505
algorithms in Table 1, Table 2, Table 5, Table 6, Table 3. The findings for every single case confirm that506
QHMC enhances the accuracy, robustness and efficiency. After demonstrating the superiority of QHMC507
method, a comprehensive evaluation is performed for QHMC-based methods in different scenarios.508
Again, for the sake of verification of efficiency of soft-constrained QHMC, we implemented the hard509
constrained versions by choosing the violation probability as 0.005. The findings indicate that the510
soft-constrained approaches reduce computational expenses while maintaining accuracy comparable to511
that of the hard-constrained counterparts. Releasing the constraints by a probabilistic sense has brought512
efficiency, while decreasing the posterior variance.513

6. We should also note that while the numerical results indicate that the current approach is a robust514
and efficient QHMC algorithm, the impact of the probability of constraint violation should be further515
investigated. The experiments were conducted with a relatively low probability of releasing the516
constraints (around 5%) and the accuracy was maintained under these conditions. However, allowing517
for more violations may pose limitations. In addition, the performance of the proposed approach on518
different type of constrained optimization problems, including those involving equality constraints,519
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can be more challenging. Addressing these challenges can be both a limitation and a potential future520
work for QHMC-based, physics-informed GP regression.521

5 CONCLUSION

Leveraging the accuracy of QHMC training and the efficiency of probabilistic approach, this work522
introduced a soft-constrained QHMC algorithm to enforce inequality and monotonicity constraints on the523
GP. The proposed algorithm reduces the difference between ground truth and the posterior mean in the524
resulting GP model, while increasing the efficiency by attaining the accurate results in a short amount of525
time. To further enhance the performance of the QHMC algorithms across various scenarios, modified526
versions of QHMC are implemented adopting adaptive learning. These versions provide flexibility in527
selecting the most suitable algorithm based on the specific priorities of a given problem.528

We provided the convergence of QHMC by showing that its steady-state distribution approach the true529
posterior density, and theoretically justified that the probabilistic approach preserves convergence. Finally,530
we have implemented our methods to solve several types of optimization problems. Each experiment531
initially outlined the benefits of QHMC sampling in comparison to HMC sampling. These advantages532
remained consistent across all cases, resulting in approximately a 20% time-saving and 15% higher accuracy.533
Having demonstrated the advantages of QHMC sampling, further evaluation on the performances of the534
algorithms across various scenarios was performed. The examples cover higher-dimensional problems535
featuring both inequality and monotonicity constraints. Furthermore, the evaluations include real-world536
applications where injecting physical properties is essential, particularly in cases involving inequality537
constraints.538

In the context of inequality-constrained Gaussian processes (GPs), we explored 2-dimensional and539
10-dimensional synthetic problems, along with two real applications involving 2-dimensional and 3-540
dimensional data. For synthetic examples, the relative error, posterior variance and execution time of the541
algorithms were compared while gradually increasing the noise level and dataset size. Overall, QHMC-542
based algorithms outperformed the truncated Gaussian methods. Although the truncated Gaussian methods543
provide high accuracy in the absence of noise and are compatible with QHMC approaches, their relative544
error and posterior variances increase as the noise appeared and increased. Moreover, the advantages of545
soft-constrained QHMC became more evident, particularly in higher-dimensional cases, when compared to546
truncated Gaussian and even hard-constrained QHMC. The time comparison of the algorithms underscores547
that the truncated Gaussian methods are significantly impacted by the curse of dimensionality and large548
datasets, exhibiting slower performance under these conditions. In real-world application scenarios featuring549
2-dimensional and 3-dimensional data, the findings were consistent with those observed in the synthetic550
examples. Although the accuracy level may not reach the highest levels observed in the synthetic examples551
and 3-dimensional heat equation problem, the observed trend remains consistent. The lower accuracy552
observed in the latter problem can be attributed to the non-homogeneous structure of solute concentration.553

In the case of monotonicity-constrained GP, we addressed 5-dimensional and 20-dimensional examples,554
utilizing the same configuration as employed for inequality-constrained GP. A comprehensive comparison555
was conducted between all versions of QHMC algorithms and the additive GP method. The results indicate556
that QHMC-based approaches hold a notable advantage, particularly in scenarios involving noise and large557
datasets. While additive GP proves to be a strong method suitable for high-dimensional cases, QHMC558
algorithms performed faster and yielded lower variances.559
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In conclusion, the work has demonstrated that soft-constrained QHMC is a robust, efficient and flexible560
method that can be applicable to higher dimensional cases and large datasets. Numerical results have shown561
that soft-constrained QHMC is promising to be generalized to various applications with different physical562
properties.563
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