
Koopman Spectral Linearization vs. Carleman
Linearization: A Computational Comparison Study

DONGWEI SHI1 AND XIU YANG1

1Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 18015
USA

ISE Technical Report 24T-013

Citation: Shi, D.; Yang, X. Koopman

Spectral Linearization vs. Carleman

Linearization: A Computational

Comparison Study. Mathematics 2024,

12, 2156. https://doi.org/10.3390/

math12142156

Academic Editor: Davide Valenti

Received: 31 May 2024

Revised: 6 July 2024

Accepted: 6 July 2024

Published: 9 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Koopman Spectral Linearization vs. Carleman Linearization:
A Computational Comparison Study
Dongwei Shi and Xiu Yang *

Department of Industrial and System Engineering, Lehigh University, Bethlehem, PA 18015, USA;
dos222@lehigh.edu
* Correspondence: xiy518@lehigh.edu

Abstract: Nonlinearity presents a significant challenge in developing quantum algorithms involving
differential equations, prompting the exploration of various linearization techniques, including the
well-known Carleman Linearization. Instead, this paper introduces the Koopman Spectral Lineariza-
tion method tailored for nonlinear autonomous ordinary differential equations. This innovative
linearization approach harnesses the interpolation methods and the Koopman Operator Theory to
yield a lifted linear system. It promises to serve as an alternative approach that can be employed in
scenarios where Carleman Linearization is traditionally applied. Numerical experiments demon-
strate the effectiveness of this linearization approach for several commonly used nonlinear ordinary
differential equations.

Keywords: quantum algorithms; differential equations; Koopman operator; Carleman linearization

MSC: 65N35; 34B15; 35Q99; 68Q12

1. Introduction

Differential equations find extensive applications in diverse fields such as fluid dy-
namics, biology, and finance. For instance, in fluid dynamics, the Navier–Stokes equations
serve as fundamental tools for modeling fluid behavior [1]. In epidemiology, ordinary
differential equations, such as those based on the Susceptible–Infectious–Recovered (SIR)
model, are indispensable for analyzing the spread of infectious diseases [2]. Additionally,
in finance, the Black–Scholes model relies on differential equations to facilitate option
pricing [3]. However, computing solutions for high-dimensional differential equations
presents a significant challenge. This challenge arises from the curse of dimensionality,
wherein traditional numerical methods entail discretizing equations at grid points. As the
dimension of equations increases, the number of grid points grows exponentially. Conse-
quently, even basic linear algebra computations within these numerical algorithms become
prohibitively complex.

A promising strategy for mitigating this complexity involves using quantum com-
puting techniques since quantum computer leverages unique features such as quantum
entanglement and superposition, enabling exponential speedups in specific computational
tasks. As previous research has pointed out, replacing the linear systems solvers in clas-
sical numerical methods with their quantum counterparts, the Quantum Linear Systems
Algorithm (QLSA), [4] can yield provably efficient quantum algorithms for solving lin-
ear ordinary differential equations (ODEs) [5–8] and linear Partial Differential Equations
(PDEs) [7,9–11]. Additionally, quantum algorithms based on Hamiltonian simulation,
rather than the QLSA, have also been theoretically shown to efficiently solve computational
problems involving linear differential equations, whether for the standard Hamiltonian
simulation or non-Hermitian Hamiltonian simulation [12].

However, despite a series of theoretical successes in developing quantum algorithms
for linear differential equations, addressing nonlinear cases remains an open problem.

Mathematics 2024, 12, 2156. https://doi.org/10.3390/math12142156 https://www.mdpi.com/journal/mathematics

Mathematics 2024, 12, 2156 2 of 16

Early attempts [13] to directly combine QLSA with nonlinear ODEs proved to have poor
scaling with evolution time. Recently, Liu et al. [14] demonstrated significant improvements
by introducing Carleman Linearization to certain nonlinear ODEs. Using QLSA on the
linearized differential equations greatly enhanced the complexity bound with respect
to the evolution time. This approach has motivated many researchers to consider first
employing linearization techniques, such as Carleman Linearization [15–17], Koopman von
Neumann linearization [18–20] and the level set method [21], to approximate or represent
low-dimensional nonlinear differential equations with high-dimensional linear ones, and
then using quantum algorithms designed for linear differential equations to solve these
problems. Figure 1 illustrates the work flow of these various quantum algorithms for
solving nonlinear ODEs.

Figure 1. Quantum algorithms for nonlinear ODEs.

As highlighted in reference [22], the Carleman matrix is, in fact, a transposed finite-
section matrix approximation of the Koopman Operator’s generator on a polynomial
basis. This specific connection and the weaker performance of Carleman Linearization in
nonpolynomial cases motivate our research. Despite this connection, modern research on
the Koopman Operator and Carleman Linearization follows distinct paths. Investigations
into the Koopman Operator predominantly adopt a data-driven approach, as they use
spatiotemporal data without requiring the explicit equation to find an approximation of
the principal Koopman modes and, correspondingly, Koopman eigenpairs. In particular,
numerical schemes such as dynamic mode decomposition (DMD) [23–25] and its diverse
variations, including Extended Dynamic Mode Decomposition (EDMD) [26], make use of
the data collected from time snapshots of a specified dynamical system. These approaches
employ Singular Value Decomposition (SVD) and other matrix decomposition techniques
to reveal the temporal and spatial–spectral attributes of the system. Expanding beyond
DMD, EDMD, and its variants, methods for obtaining tractable representations have
been further connected with deep neural networks [27,28]. Two specific neural network
architectures have been explored in this context. One is based on the autoencoder principle,
employing a low-dimensional latent space to enhance the interpretability of outcomes.
The other architecture involves a higher-dimensional latent space, which often yields
improved results when dealing with dynamical systems featuring continuous spectra. A
comprehensive review of the theoretical framework and algorithms related to Data-Driven
Koopman Operators is provided by [29].

Diverging from the previously discussed data-driven methods, our approach con-
stitutes a progressive evolution of the linearization technique. This distinction mainly
arises from our method of constructing the infinitesimal generator for the approximated
Koopman operator. Rather than relying on data, we utilize the values from the right-hand
side function of the ODEs at various discrete spatial points, thereby necessitating an explicit
equation. More precisely, our method integrates the differentiation matrix in the spectral
method [30,31], yielding an explicit matrix approximation of the Koopman Operator’s
generator. Subsequently, this matrix generates an explicit higher-dimensional linear equa-
tion that closely approximates the original nonlinear system. In this context, the identical
approximation matrix was employed across various scalar observable configurations, with
only the initial value being altered. This innovative approach was motivated by the spec-
tral method for differential equations discussed in [32,33]. Therefore, like other spectral

Mathematics 2024, 12, 2156 3 of 16

methods, our approach’s effectiveness and convergence rate are influenced by the choice
of the basis function. Potential options for the elements of D include polynomials [34],
Fourier modes [32], radial basis functions [35], and spectral elements [36]. The best choice
of basis functions is likely dependent on the specific characteristics of the underlying
dynamical system and the data sampling strategy. Specifically, we adapt the Chebyshev
Differentiation Matrix for demonstration purposes. This study focuses on autonomous
systems and potentially serves as an alternative approach applicable in situations where
Carleman Linearization has been conventionally utilized.

In addition to applications in quantum computing, our methods also hold potential
for applications in traditional computational contexts. The most conventional method of
linearization involves using a first-order Taylor expansion of the system dynamics. This
technique, while proven effective and widely utilized in areas such as Model Predictive
Control (MPC) and related domains, is limited to applications within a very narrow vicinity
around the expansion point. To address these limitations more comprehensively, a range of
more sophisticated linearization techniques such as Carleman Linearization [37] and the
Koopman Operator [38] have been utilized. These methods were originally applied in the
fields of dynamical systems and control [22].

The paper is structured as follows: Section 2 presents the background knowledge
and discusses the Koopman Spectral Linearization Method in Section 3. In Section 4, we
provide the numerical results, and the subsequent sections delve into the discussion and
conclusions in Section 5.

2. Background
2.1. Carleman Linearization

Carleman Linearization provides a systematic methodology for deriving the corre-
sponding lifted dynamics from an initial value problem defined as follows [37]:

dx
dt

= B1x + B2x⊗2 + · · ·+ Bkx⊗k with x0 = x(t0) (1)

Here, the matrices Bi ∈ Rd×di
are time-independent, k is the degree of the poly-

nomial ODE, and x⊗i denotes the i-fold tensor product for each positive integer i. We
define an infinite-dimensional vector y = (y1, y2, y3,)T with yi = x⊗i, and formulate
matrices Ai

i+j−1

Ai
i+j−1 =

i

∑
v=1

⊗iBj (2)

where ⊗iB = I ⊗ I ⊗ I ⊗ · · · ⊗ B ⊗ · · · ⊗ I with B at the (d − i + 1)-th position. Further,
Formula (2) leads to the following equation:

dyi

dt
=

k

∑
j=1

Ai
i+j−1yi+j−1 (3)

Formally, this can be represented as an infinite-dimensional ordinary differential equation:

dy
dt

= Ay with yi(t0) = x(t0)
⊗i (4)

where A is an infinite-dimensional matrix defined as:

A =

A1
1 A1

2 A1
3 . . . A1

k 0 0 . . .
0 A2

2 A2
3 . . . A2

k A2
k+1 0 . . .

0 0 A3
3 . . . A3

k A3
k+1 A3

k+2 . . .
...

...
...

...
...

...

 (5)

Mathematics 2024, 12, 2156 4 of 16

In practice, the system is often truncated at a certain order N. Here is an illustrative
example [37] of Carleman Linearization applied to the following system:

dx
dt

= x2 (6)

The Carleman Linearization procedure can derive a linear ODE-like

d
dt

x
x2

x3

...

 =

0 1 0 0 0 . . .
0 0 2 0 0 . . .
0 0 0 3 0 . . .
...

...
...

...
...

x
x2

x3

...

 (7)

2.2. Koopman Operator

Firstly, consider a d-dimension (i.e., x ∈ X ⊂ Rd) dynamical system described by
first-order autonomous order ordinary differential equations with t ∈ [t0, T]:

dx(t)
dt

= f (x(t)) (8)

where x = (x1, x2, . . . , xd)
T belongs to a space X, and this dynamics f is also a d-dimensional

vector valued function with f = (f1, f2, . . . , fd)
T . For our analysis, we introduce observ-

ables or measurement functions, represented by the function g : X → R; note that this is a
function on G(X) (e.g., an L2 Hilbert space). And the flow map Ft represents the evolution
of the system dynamics as a mapping on X:

Ft : x(t0) → x(t + t0) (9)

The Koopman operator family, denoted as {Kt}, is defined as:

Kt : g(x(t0)) → g(Ft(x(t0))) = g(x(t0 + t)) (10)

Alternatively, we can express Kt as a composition of functions:

Kt : g → g ◦ Ft (11)

It is crucial to note that the Koopman operator is linear, owing to the linearity of the
function space G(X). Further, we can define the generator of the Koopman operator K

Kg := lim
t→0

Ktg − g
t

=
∂g
∂t

(12)

The generator can be explicitly formulated as follows:

Kg =
∂g
∂t

= ∇g(x)
dx
dt

= ∇g(x) · f (x) (13)

The transformation of representing it in the form of an operator can be further extended
as follows:

K = ∇ · f (x) =
d

∑
i=1

fi(x)
∂

∂xi
(14)

As a trade-off, we convert a nonlinear mapping on the variable x into a linear operator
on the variable g, which leads to an infinite-dimensional space.

In Koopman Spectral Theory, eigenvalues and eigenfunctions (or eigenpairs for brevity)
are employed for practical numerical computations [24,39]. Suppose (λ, ϕ(x)) is an eigen-
pair for the generator K. By definition,

Kϕ(x(t + t0)) =
dϕ(x(t + t0))

dt
= λϕ(x(t + t0)) (15)

Mathematics 2024, 12, 2156 5 of 16

Based on the ODE in Equation (15), we can derive the following outcomes:

ϕ(x(t + t0)) = ϕ(x(t0))eλt (16)

Actually, ϕ(x) is also an eigenfunction for Kt; this can be observed from

Ktϕ(x(t + t0)) = ϕ(x(t0 + 2t)) = eλtϕ(x(t0 + t)) (17)

Therefore, if we denote eλt as µ, then (µ, ϕ) = (eλt, ϕ) is an eigenpair for Kt.
If g ∈ G(X) ⊂ Span{ϕk}, then even the nonlinear observable can be represented as a

linear combination of eigenfunctions. This can be formulated as g = ∑j cjϕj, where cj ∈ R
is the corresponding coefficient of g concerning ϕj. Further, as pointed out in [39], the
evolution of the observable can also be represented as a linear combination of eigenpairs
which is derived from:

Ktg(x(t + t0)) = Kt(
∞

∑
j=1

cjϕj(x(t0 + t))) =
∞

∑
j=1

cje
λjtϕj(x(t0 + t)) =

∞

∑
j=1

cjµjϕj(x(t0 + t)) (18)

Hence, we can infer

g(x(t + t0)) =
∞

∑
j=1

cje
λjtϕj(x(t0)) (19)

Multi-dimensional observables are based in the same manner. Just consider vector-
valued cj with the same dimension of the observable. cj is also known as the j-th Koopman
mode [29].

3. Koopman Spectral Linearization Method
3.1. Construction of the Lifted Matrix

By adopting a construction of the matrix approximation from [30,31], the generator of
the Koopman Operator can be approximated as follows.

Currently, when d = 1, for some eigenpairs (ϕ, λ) based on Equation (7),

Kϕ = f · ∂

∂x
· ϕ (20)

To derive a finite-dimensional approximation, we start from a polynomial interpolation
of the eigenfunction ϕ(x) on spatial discretized Gauss–Lobatto points {ξi}N

i=1, which
gives us

ϕ(x) ≈ ϕN(x) =
N

∑
i=1

ϕN(ξi)Li(x) (21)

where Lj are Lagrange polynomials such that Lj(ξi) = δij, where δij is the delta function.
Therefore, we obtain

K

ϕN(ξ0)

ϕN(ξ1)

...

ϕN(ξN)

=

f (ξ0)
f (ξ1)

. . .
f (ξN)

D

ϕN(ξ0)

ϕN(ξ1)

...

ϕN(ξN)

(22)

Based on Equation (22), the finite representation of K is

K = diag{ f (ξ0), f (ξ1), . . . , f (ξN)}D, (23)

Mathematics 2024, 12, 2156 6 of 16

where diag creates a diagonal matrix with the main diagonal elements. When d = 2, let
{ξi}N

i=1 and {ηj}N
j=1 be the Gauss–Lobatto points near x1 and x2. And denote

Θ = {(ξi, ηj)}N
i,j=1. Now, for every bivariate eigenfunction ϕ(x1, x2), we have polyno-

mial interpolation ϕN

ϕ(x1, x2) ≈ ϕN(x1, x2) =
N

∑
i=1

N

∑
j=1

ϕN(ξi, ηj)Li(x1)Lj(x2) (24)

Hence, all function values on the collocation points can be formed as a matrix denoted
as ϕN(Θ)

ϕN(Θ) =

ϕN(ξ1, η1) ϕN(ξ1, η2) . . . ϕN(ξ1, ηN)
ϕN(ξ2, η1) ϕN(ξ2, η2) . . . ϕN(ξ2, ηN)

...
...

. . .
...

ϕN(ξN , η1) ϕN(ξN , η2) . . . ϕN(ξN , ηN)

 (25)

Let D1, D2 be the differentiation matrices for x1 and x2, respectively, and f1(Θ), f2(Θ)
be the matrices of f1, f2 evaluated at (ξi, ηj). And we denote KϕN(Θ)ij = KϕN(ξi, ηj).
Then, the formula below can be derived based on (7):

KϕN(Θ) = f1(Θ)⊙ (D1ϕN(Θ)) + f2(Θ)⊙ (ϕN(Θ)DT
2) (26)

In the equation above, ⊙ means the Hadamard product. We vectorize all the matrix
operations as vector operations via vec, which flatten a matrix into a column vector; this
process can be formulated as:

Kvec(ϕN(Θ)) = vec(f1(Θ))⊙ ((I ⊗ D1)vec(ϕN(Θ))) + vec(f2(Θ))⊙ ((D2 ⊗ I)vec(ϕN(Θ)))

= [diag(vec(f1(Θ)))(I ⊗ D1) + diag(vec(f2(Θ))(D2 ⊗ I))]vec(ϕN(Θ)

= Kvec(ϕN(Θ)

(27)

Therefore, for d = 2 cases, the construction of matrix K is given by

K = diag(vec(f1(Θ)))(I ⊗ D1) + diag(vec(f2(Θ))(D2 ⊗ I)) (28)

In general, for a d-dimensional case, consider Gauss–Lobatto points for each coor-
dinate as {ξ1

i1
}N

i1=1,{ξ2
i2
}N

i2=1,. . . ,{ξd
id
}N

id=1. And use Θ to denote the collection of all the

collocation points, i.e., Θ = {(ξ1
i1

, ξ2
i2

, . . . , ξd
id
) : i1, i2, . . . , id, traverse from 1 to N}. And the

eigenfunction ϕ is approximated by

ϕ(x1, . . . , xd) ≈ ϕN(x1, . . . , xd) =
N

∑
i1,...,id=1

ϕN(ξ1
i1 , ξ2

i2 , . . . , ξd
id)Li1(x1) . . . Lid(xd) (29)

Correspondingly, ϕN(Θ) is a tensor of eigenfunction values on collocation points, and
D1, D2, . . . Dd means differentiation matrices. With n-mode multiplication in tensor algebra,
we can write

KϕN(Θ) =
d

∑
i=1

fi(Θ)⊙ (ϕN(Θ)×i Di) (30)

Pursuing the analogous vectorization approach in Equation (27), we can reformulate
Equation (30) as

Kvec(ϕN(Θ)) = {
d

∑
i=1

vec(fi(Θ))⊙ (⊗iDi)}vec(ϕN(Θ))

= {
d

∑
i=1

diag(vec(fi(Θ)))(⊗iDi)}vec(ϕN(Θ))

(31)

Mathematics 2024, 12, 2156 7 of 16

Consequently,

K =
d

∑
i=1

diag(vec(fi(Θ)))(⊗iDi) (32)

where ⊗iDi = I ⊗ I ⊗ I ⊗ · · · ⊗ Di ⊗ · · · ⊗ I with Di at the (d − i + 1)-position. To be more
intuitive, here is an example when d = 3:

K =diag{vec(F1)}I ⊗ I ⊗ D1

+diag{vec(F2)}I ⊗ D2 ⊗ I

+diag{vec(F3)}D3 ⊗ I ⊗ I

(33)

3.2. Solution of the Linear System

Now, let us examine the solution of the linear system to provide further insight
into why it serves as an approximation of the original nonlinear one. Referring back to
Equation (19), we have

g(x(t)) ≈ gN(x(t)) =
N

∑
j=1

ĉjϕ
N
j (x(t0))eλ̂j (34)

When d = 1, for a scalar observable g, consider Gauss–Lobatto points on a region
with radius r around x0, where Θ = {ξi}N

i=1 and ξ1 < ξ2 < · · · < ξN . Here, we pick
the odd number N such that ξ(N+1)/2 = x0 = x(t0). Thus, all Gauss–Lobatto points
are on the interval [x0 − r, x0 + r]. Suppose (λ̂j, vj) is an eigenpair of matrix K. Vector vj

are used to approximate eigenfunction ϕN
j evaluated at the collocation points. We have

(vj)i = ϕN
j (ξi) ≈ ϕj(ξi). Hence,

gN(x(t)) =
N

∑
j=1

ĉjϕ
N
j (x(t0))eλ̂jt =

N

∑
j=1

ĉjϕ
N
j (ξ(N+1)/2)e

λ̂jt =
N

∑
j=1

ĉj(vj) N+1
2

eλ̂jt (35)

Now consider the N-dimensional linear system below

dy
dt

= Ky y0 = (g(x0 − r), . . . , g(x0 + r))T (36)

We can write the analytical solution

y(t) = eKty0 (37)

Suppose that the eigendecomposition of K = VΛV−1, where each column of V is an
eigenvector of K denoted as vj, and Λ contains all the eigenvalues. Further, by setting t = 0
in Equation (35), we have

gN(x0) =
N

∑
j=1

ĉjϕ
N
j (x0) (38)

This is also true for different initial values. Thus,

gN(ξi) =
N

∑
j=1

ĉjϕ
N
j (ξi) =

N

∑
j=1

ĉj(vj)i, i = 1, 2, . . . , N (39)

Mathematics 2024, 12, 2156 8 of 16

Thus, we have V−1y0 = c since y(0) = (gN(ξ1), gN(ξ2), . . . , gN(ξN))
T , where c is

called the Koopman mode:

y(t) = eKty0

= eVΛtV−1
y0

= VeΛtV−1y0

=
[
v1, v2, . . . , vN

]

eλ1t

eλ2t

. . .
eλN t

c1
c2
...

cN

=
N

∑
j=1

cje
λjtvj

(40)

And gN(x(t)) = ∑N
j=1 cje

λjt(vj) N
2

.

Notice that cj are Koopman modes, and eλjt are eigenfunctions. In the general case,
for the d-dimensional nonlinear system, suppose Θ represents d-dimensional collocation
points, and K is constructed as Equation (32). Now consider the linear system given below

dy(t)
dt

= Ky y(0) = vec(g(Θ)). (41)

Again, by vectorization, ϕj(x0) can be approximated by the “middle term” of tensor
ϕN(Θ), which leads to

y(t) =
Nd

∑
j=1

cje
λjt(vj). (42)

Only the middle term is needed for this long vector to compute the observable:

gN(x(t)) =
Nd

∑
j=1

cje
λjt(vj) Nd+1

2
, (43)

which is exactly the solution of (41).
Unlike Carleman Linearization, which captures the information of all variables within a

single linear ordinary differential equation, our linearization approach is primarily tailored
for scalar observables. When we need to compute multi-dimensional or distinct scalar
observables, we can still employ the previously constructed lifted matrix K. However, this
requires transforming the initial conditions accordingly. For instance, when computing an
observable g(x) = x = (g1(x), g2(x), g3(x)), we would need to utilize three different initial
conditions: g1(Θ), g2(Θ), g3(Θ) This adaptation allows us to extend the applicability of
our approach to scenarios involving diverse observable functions since K can be reused.

As for the solution of Carleman Linearization, the matrix A shall be truncated at a
certain level N, which yields the AN matrix as follows:

AN =

A1
1 A1

2 A1
3 . . . A1

k 0 0 . . .
0 A2

2 A2
3 . . . A2

k A2
k+1 0 . . .

0 0 A3
3 . . . A3

k A3
k+1 A3

k+2 . . .
...

...
...

...
...

...
0 0 0 0 0 0 AN

N

. (44)

Mathematics 2024, 12, 2156 9 of 16

Then, the infinite linear system can be approximated by

dy
dt

= AN y (45)

and the approximated solution of an original nonlinear system is exactly the first d elements
of the solution for Equation (45).

4. Numerical Result

This section presents the performance comparison of Koopman Spectral Lineariza-
tion against Carleman Linearization on five nonlinear dynamic models in Section 4.1.
In each example, we visualized the curves of specific solution components and investi-
gated the influence of truncation order N on accuracy. As N increases, both the preci-
sion of linearization and the computational effort increase correspondingly. In practical
applications, the selection of parameter N should be based on the required accuracy
and available computational resources. Since Carleman Linearization can only be ap-
plied to polynomial cases, all the following nonpolynomial examples are converted to
polynomial form using higher-order Taylor expansions before computation. The refer-
ence solution is generated by The 4th order Runge–Kutta method (RK4) is used if no
closed-form solution is available. We also aim to compare the loss of accuracy in the
linearization step under the assumption of an ideal quantum computing environment,
where a high-precision quantum linear solver or other quantum algorithms for linear
ODEs are available. Hence, the solutions of the resulting linear ODEs are directly com-
puted using the exp function in MATLAB 2022a. Next, in Section 4.2, we further compare
the matrix size and computational cost (all the MATLAB codes can be downloaded at
https://github.com/DongDongShiShi/Koopman-Comparison (accessed on 30 May 2024).

4.1. Linearize Dynamics with Koopman Spectral Linearization
4.1.1. Quadratic Model

We start with a simple nonlinear ODE, and the governing ODE is given by

dx
dt

= x2

We set x(0) = 0.08 and T = 10 in this example. This quadratic model has a closed
form solution x(t) = 1

(1/x0)−t . In the tests, we fix r = 0.03. Figure 2 summarizes the results
of the first comparison. Figure 2b shows the exponential convergence of our approach
concerning the truncation order, which is similar to the conclusion in the conventional
Carleman Linearization method. Further, our approach shows a faster convergence rate.

(a) Solutions with different N (b) Test of Truncation Order

Figure 2. Quadratic model: (a) solutions by the Koopman Linearization with different N; (b) the L1

error of the linearized ODE with truncation order N.

Mathematics 2024, 12, 2156 10 of 16

4.1.2. Cosine Square Model

This cosine square model is a synthetic model invented as a nonpolynomial case for
our demonstrative purposes. The governing equation is given as

dx
dt

= cos2(x).

And we set x(0) = 0.1, T = 10. Despite the nonlinear nature, we still have a closed-
form solution x(t) = arctan(−0.5t + tan(x0)). We fix r = 0.3 in the tests. It is important
to note that as the system evolves over time, errors gradually accumulate. This is particularly
evident when using lower-order polynomial interpolation (i.e., N = 3). Specifically, in Figure
3a, beyond t = 8, the curve begins to exhibit a more pronounced deviation from the standard
solution. Figure 3b shows the exponential convergence of our approach concerning the trun-
cation order, which is still similar to the conclusion in the previous example. Conversely, for
this nonpolynomial model, the accuracy of Carleman Linearization is very low, and we did not
observe any significant changes in accuracy across the different values of N.

(a) Test of Solution (b) Test of Truncation Order

Figure 3. Cosine square model: (a) solutions by Koopman Linearization with different N; (b) the L1

error of the linearized ODE with truncation order N.

4.1.3. Simple Pendulum Model

The simple pendulum is a well-studied model in science and engineering. The movement
of the pendulum is described by the following second-order ordinary different equation:

d2θ

dt
= −g

L
sin(θ),

where L is the length of the pendulum, θ is the displacement angle, and the parameter g is
the gravity acceleration. This second-order equation can be converted to a two-dimensional
first-order ODE system. As a notation, we define x1 = θ and x2 = dθ

dt . Also, we set
L = g = 9.8 for simplicity. Correspondingly,

dx1

dt
= x2,

dx2

dt
= − sin(x1),

and we set x(0) = (0.1, 0.1)T , T = 5. We fix r = 1 in the tests.
Figure 4 presents the numerical result of a simple pendulum. Similar to the previous

result, the exponential convergence of error concerning truncation order N is observed
from Figure 4b. Although the accuracy of Carleman Linearization for this nonpolynomial
model is significantly higher compared to its application on the cosine square model and
even more accurate than Koopman Spectral Linearization at N = 3 and N = 5, the accuracy
does not significantly change as N increases.

Mathematics 2024, 12, 2156 11 of 16

(a) Test of Solution (b) Test of Truncation Order

Figure 4. Simple pendulum model: (a) solutions by Koopman Linearization with different N; (b) the
L1 error of the linearized ODE with truncation order N.

4.1.4. Lotka–Volterra Model

The Lotka–Volterra model, also known as the predator–prey model [40], is a mathemat-
ical model used to describe the interactions between predators and prey in an ecosystem.
The model describes the interaction between two fundamental populations: prey and
predator populations. Here, we define as below:

dx1

dt
= 1.1x1 − 0.4x1x2,

dx2

dt
= 0.1x1x2 − 0.4x2.

We set x(0) = (5, 5)T , T = 10 and r = 3.
Figure 5 presents the results of these tests for the Lotka–Volterra model. Again, errors

are decreased exponentially with respect to the truncation order. For this polynomial model,
the accuracy of Carleman Linearization improves with increasing N. However, regarding
both numerical accuracy and convergence speed, Koopman Spectral Linearization shows a
significant advantage.

(a) Test of Solution (b) Test of Truncation Order

Figure 5. Lotka–Volterra model: (a) solutions by Koopman Linearization with different N; (b) the L1

error of the linearized ODE with truncation order N.

Mathematics 2024, 12, 2156 12 of 16

4.1.5. Kraichnan–Orszag Model

The Kraichnan–Orszag model was presented in [41] for modeling fluid dynamics. This
three-dimensional nonlinear model is given by

dx1

dt
= x2x3,

dx2

dt
= x1x3,

dx3

dt
= −2x1x2.

We set x(0) = (0.1,−0.2, 0.3)T , T = 5 and r = 0.1.
Figure 6 presents the results of the Kraichnan–Orszag model. Different from the

previous example, a shorter time period is set due to the strong oscillations of the Kraichnan–
Orszag model.

(a) Test of Solution (b) Test of Truncation Order

Figure 6. Kraichnan–Orszag model: (a) solutions by Koopman Linearization with different N; (b) the
L1 error of the linearized ODE with truncation order N.

The truncation order testing figures illustrate the error as a function of the truncation
order N and provide a comparison between Carleman Linearization and our method. The
mistake of Carleman Linearization in polynomial cases (i.e., Sections 4.1.1, 4.1.4 and 4.1.5)
exhibits exponential decay, a phenomenon that has been substantiated by recent theoret-
ical research [42,43]. Similarly, our method leverages the Chebyshev node interpolation
approach, which also enjoys exponential convergence guarantees and demonstrates similar
exponential convergence in numerical experiments.

For all the polynomial examples in Sections 4.1.1, 4.1.4 and 4.1.5, it is evident that our
approach exhibits higher accuracy at the same truncation order, and the error decreases
more rapidly as the truncation order is increasing. Moreover, when applied to nonpolyno-
mial dynamical systems, our method showcases superior numerical accuracy and faster
convergence rates. In Sections 4.1.2 and 4.1.3, we present a comparative analysis of the
error–truncation order relationship in nonpolynomial dynamical systems. Both nonpoly-
nomial dynamics are subjected to 12th-order Taylor expansions to transform them into
polynomial forms. The Carleman method exhibits significantly lower accuracy in this
scenario, with notably slower convergence. This limitation arises because in nonpolyno-
mial cases, the relevant part of the Taylor expansion is confined to orders lower than the
truncation order, resulting in substantial errors when employing relatively small expansion
orders as demonstrated in our study. Consequently, our method demonstrates heightened
precision in nonpolynomial cases. Even in the case of the ‘simple pendulum’ where N = 3,
our method initially exhibits lower accuracy. However, as N increases to 9, the errors
obtained by our method rapidly become dramatically smaller than those produced by the
Carleman method.

Mathematics 2024, 12, 2156 13 of 16

4.2. Matrix Size and Computational Cost Comparison

Following the construction procedure introduced in Section 3, we apply the tensor
product rule to construct collocation points. Consequently, the approximation matrix of
the Koopman generator has a size of Nd × Nd. However, we can reuse the lifted matrix
with different initial values for multi-dimensional dynamics. In the case of the Carleman
Linearization procedure, the matrix size will be ∑N

i=1 di × ∑N
i=1 di, and we can approximate

the size of the Carleman lifted matrix as O(dN). Therefore, when considering the matrix
size of the derived linear system with a relatively small truncation order N, the matrix in
our approach can be significantly smaller than the matrix in Carleman Linearization. To
further illustrate this point, Figure 7 compares our approach with the size of the Carleman
Linearization matrix.

(a) Matrix Size Comparison for 1D Case (b) Matrix Size Comparison for 2D Case

(c) Matrix Size Comparison for 3D Case

Figure 7. Matrix size comparison of Koopman Spectral and Carleman Linearizations.

While our approach generates d linear systems with the same matrix but different
initial values, which may not be as convenient as Carleman Linearization, where only one
linear system is produced, the significant difference in matrix sizes results in a notable
increase in computational cost. As an illustrative example, we present the running time
and error in Table 1 for a truncation order of N = 9. The computational time required
for Carleman Linearization is slower than our approach, especially when d = 2 or 3. In
particular, for the Kraichnan–Orszag model (d = 3), the Carleman Linearization procedure
took 32.0546 s, being considerably slower than our approach.

On the other hand, our method’s capacity to yield numerical results with smaller
matrices, reduced computational time, and increased accuracy, all under the same trun-
cation order, hinges upon a critical prerequisite—namely, the selection of an appropriate
parameter r, a requirement not present in the Carleman Linearization method. Further-
more, when only the time-domain evolution differential equations of the dynamical system
are available in advance, without access to spatial evolution information of the state, our
method cannot capture the state’s spatial evolution. Therefore, unless supplementary
information is accessible regarding the spatial evolution of the dynamical system, allowing

Mathematics 2024, 12, 2156 14 of 16

for a reasonable estimation of r and surpassing the precision of Carleman Linearization
remains unattainable.

Table 1. Error and time cost compared with Carleman Linearization (N = 9).

Error Time (s)

Carleman Koopman Carleman Koopman

Quadratic 4.19 × 10−3 2.56 × 10−5 0.0147 0.0089
Lotka-Volterra 1.49 × 10−1 6.39 × 10−6 0.1525 0.0188

Kraichnan-Orszag 8.80 × 10−3 1.99 × 10−7 32.0546 0.1370
Cosine Square 1.26 7.39 × 10−4 0.0059 0.0049

Simple Pendulum 1.20 × 10−3 7.02 × 10−5 0.0368 0.0141

5. Discussion and Conclusions

The Koopman Spectral Linearization method explicitly uses the differentiation matrix
to derive the lifted matrix of nonlinear autonomous dynamical systems. It provides a finite-
dimensional representation for the generator of the Koopman Operator with a polynomial
basis. Therefore, similar to Carleman Linearization, our approach offers a linearization
method for nonlinear autonomous ordinary differential equations. In each numerical
experiment presented, our approach exhibits exponential convergence with respect to
truncation order N, just like Carleman Linearization. Under the same truncation order,
Koopman Spectral Linearization tends to exhibit significantly higher accuracy associated
with lower time cost compared to Carleman Linearization, especially when the dynamics
are not polynomial. Therefore, it is more suitable as an alternative linearization method
where high-accuracy approximations are needed and f is nonpolynomial. Different from
Carleman Linearization, which describes the evolution of the state itself, our approach is
used to describe a scalar smooth observable, which is more flexible.

However, despite its advantages, the Koopman Spectral Linearization method has
some limitations. It is essential to consider certain drawbacks when evaluating its ap-
plicability since a reasonable estimation of radius r is necessary to obtain an accurate
approximation of the eigenfunctions. We employ interpolation within a local space of
radius r around the initial point x0 to approximate the eigenfunctions across in a local
domain. However, since the spatial range of the system evolution during the process is
not known in advance, it is very challenging to select the value of r without additional
information; when theoretical guidance is unavailable, r is chosen empirically as a rela-
tively small value (i.e., 0.1–0.5) to ensure a higher precision of approximation. If the spatial
range of the system’s evolution is known beforehand, such as the case of fluid moving
in a pipeline, r can then be selected based on spatial constraints. To further understand
how this parameter r influences the accuracy, a comprehensive numerical analysis will be
included in future work. In addition, the global interpolation method might overcome
the limitation of the estimate r. Besides concerns regarding the parameter r, the degree
of nonlinearity in physical systems can vary significantly, which might also influence the
performance of our linearization method. Particularly for highly nonlinear systems such
as turbulence, no linearization technique is capable of providing high-precision linear
approximations over extended periods and large areas. In such instances, data-driven
approaches may offer more satisfactory solutions, addressing the complexities inherent in
these systems more effectively.

Regarding the matrix size as indicated in Section 4.2, the Koopman Spectral Method
obtains a much smaller matrix with even higher accuracy compared with Carleman Lin-
earization. However, the matrix size is exponential increased with respect to dimension d
(i.e., Nd) since the tensor product rule is applied. Therefore, both Carleman Linearization
(i.e., O(dN)) and our approach might not be efficient for the relatively high-dimensional
problems on classic computers. A possible way to overcome this limitation is to adapt
sparse grid methods to construct collocation points, which has been found successful

Mathematics 2024, 12, 2156 15 of 16

in [30]. As pointed out in the Koopman Operator Theory, Carleman Linearization and our
approach rely on tensor product rule; therefore, they need further modification to deal
with high-dimensional problems on classical computers. However, on quantum computers,
tensor products may not be a challenge, which may lead to innovative designs of algorithms
that are completely different from their counterpart on classical computers. This is the main
reason we conduct these comparisons.

As previous sections noted, the underlying principle (Schrödinger equation) of quan-
tum computers is linear. Consequently, there are fundamental difficulties in using quantum
computing to solve nonlinear ODEs/PDEs. Currently, the linearization of differential
equations appears to be an unavoidable step in addressing this challenge. In particular,
Carleman Linearization as a solution strategy has garnered significant attention in recent
research [17]. By reviewing the underlying theory of Carleman Linearization—Koopman
Operator Theory—and integrating it with the concept of differentiation matrices in spectral
methods, we propose the Koopman Spectral Linearization method. Our novel linearization
approach might be useful when designing quantum algorithms for nonlinear ODEs/PDEs
under certain situations.

Author Contributions: Conceptualization, X.Y.; methodology, X.Y. and D.S.; software, D.S.; validation,
D.S.; writing—original draft preparation, X.Y. and D.S.; project administration, X.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation (NSF) under Grant No. 2143915.

Data Availability Statement: Inquiries about data availability should go directly to the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ODE Ordinary Differential Equation
PDE Partial Differential Equation
QLSA Quantum Linear System Algorithm
DMD Dynamic Mode Decomposition
EDMD Extended Dynamic Mode Decomposition
SVD Singular Value Decomposition

References
1. Łukaszewicz, G.; Kalita, P. Navier–Stokes Equations; Advances in Mechanics and Mathematics; Springer: Cham, Switzerland, 2016.
2. Cooper, I.; Mondal, A.; Antonopoulos, C.G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos

Solitons Fractals 2020, 139, 110057. [CrossRef]
3. Merton, R.C. Applications of option-pricing theory: Twenty-five years later. Am. Econ. Rev. 1998, 88, 323–349.
4. Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502.

[CrossRef]
5. Berry, D.W. High-order quantum algorithm for solving linear differential equations. J. Phys. Math. Theor. 2014, 47, 105301.

[CrossRef]
6. Berry, D.W.; Childs, A.M.; Ostrander, A.; Wang, G. Quantum algorithm for linear differential equations with exponentially

improved dependence on precision. Commun. Math. Phys. 2017, 356, 1057–1081. [CrossRef]
7. Montanaro, A.; Pallister, S. Quantum algorithms and the finite element method. Phys. Rev. A 2016, 93, 032324. [CrossRef]
8. Childs, A.M.; Liu, J.P. Quantum spectral methods for differential equations. Commun. Math. Phys. 2020, 375, 1427–1457.

[CrossRef]
9. Linden, N.; Montanaro, A.; Shao, C. Quantum vs. classical algorithms for solving the heat equation. Commun. Math. Phys. 2022,

395, 601–641. [CrossRef]
10. Engel, A.; Smith, G.; Parker, S.E. Quantum algorithm for the Vlasov equation. Phys. Rev. A 2019, 100, 062315. [CrossRef]
11. Costa, P.C.; Jordan, S.; Ostrander, A. Quantum algorithm for simulating the wave equation. Phys. Rev. A 2019, 99, 012323.

[CrossRef]
12. Jin, S.; Liu, N.; Yu, Y. Quantum simulation of partial differential equations via Schrodingerisation: Technical details. arXiv 2022,

arXiv:2212.14703.
13. Leyton, S.K.; Osborne, T.J. A quantum algorithm to solve nonlinear differential equations. arXiv 2008, arXiv:0812.4423.

Mathematics 2024, 12, 2156 16 of 16

14. Liu, J.P.; Kolden, H.Ø.; Krovi, H.K.; Loureiro, N.F.; Trivisa, K.; Childs, A.M. Efficient quantum algorithm for dissipative nonlinear
differential equations. Proc. Natl. Acad. Sci. USA 2021, 118, e2026805118. [CrossRef] [PubMed]

15. Itani, W.; Succi, S. Analysis of Carleman linearization of lattice Boltzmann. Fluids 2022, 7, 24. [CrossRef]
16. An, D.; Fang, D.; Jordan, S.; Liu, J.P.; Low, G.H.; Wang, J. Efficient quantum algorithm for nonlinear reaction-diffusion equations

and energy estimation. arXiv 2022, arXiv:2205.01141.
17. Krovi, H. Improved quantum algorithms for linear and nonlinear differential equations. Quantum 2023, 7, 913. [CrossRef]
18. Joseph, I. Koopman–von Neumann approach to quantum simulation of nonlinear classical dynamics. Phys. Rev. Res. 2020,

2, 043102. [CrossRef]
19. Engel, A.; Smith, G.; Parker, S.E. Linear embedding of nonlinear dynamical systems and prospects for efficient quantum

algorithms. Phys. Plasmas 2021, 28, 062305 . [CrossRef]
20. Lin, Y.T.; Lowrie, R.B.; Aslangil, D.; Subaşı, Y.; Sornborger, A.T. Koopman von Neumann mechanics and the Koopman

representation: A perspective on solving nonlinear dynamical systems with quantum computers. arXiv 2022, arXiv:2202.02188.
21. Jin, S.; Liu, N. Quantum algorithms for computing observables of nonlinear partial differential equations. arXiv 2022,

arXiv:2202.07834.
22. Mauroy, A.; Susuki, Y.; Mezić, I. Koopman Operator in Systems and Control; Springer: Berlin/Heidelberg, Germany, 2020.
23. Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [CrossRef]
24. Rowley, C.W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D.S. Spectral analysis of nonlinear flows. J. Fluid Mech. 2009,

641, 115–127. [CrossRef]
25. Askham, T.; Kutz, J.N. Variable projection methods for an optimized dynamic mode decomposition. SIAM J. Appl. Dyn. Syst.

2018, 17, 380–416. [CrossRef]
26. Williams, M.O.; Hemati, M.S.; Dawson, S.T.; Kevrekidis, I.G.; Rowley, C.W. Extending data-driven Koopman analysis to actuated

systems. IFAC-PapersOnLine 2016, 49, 704–709. [CrossRef]
27. Manojlović, I.; Fonoberova, M.; Mohr, R.; Andrejčuk, A.; Drmač, Z.; Kevrekidis, Y.; Mezić, I. Applications of Koopman mode

analysis to neural networks. arXiv 2020, arXiv:2006.11765.
28. Lusch, B.; Kutz, J.N.; Brunton, S.L. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 2018,

9, 4950. [CrossRef]
29. Brunton, S.L.; Budišić, M.; Kaiser, E.; Kutz, J.N. Modern Koopman theory for dynamical systems. arXiv 2021, arXiv:2102.12086.
30. Li, B.; Yu, Y.; Yang, X. The Sparse-Grid-Based Adaptive Spectral Koopman Method. arXiv 2022, arXiv:2206.09955.
31. Li, B.; Ma, Y.; Kutz, J.N.; Yang, X. The adaptive spectral koopman method for dynamical systems. SIAM J. Appl. Dyn. Syst. 2023,

22, 1523–1551. [CrossRef]
32. Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2000.
33. Shen, J.; Tang, T.; Wang, L.L. Spectral Methods: Algorithms, Analysis and Applications; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2011; Volume 41.
34. Boyd, J.P. Chebyshev and Fourier Spectral Methods; Courier Corporation: North Chelmsford, MA, USA, 2001.
35. Wendland, H. Meshless Galerkin methods using radial basis functions. Math. Comput. 1999, 68, 1521–1531. [CrossRef]
36. Karniadakis, G.; Sherwin, S.J. Spectral/hp Element Methods for Computational Fluid Dynamics; Oxford University Press: New York,

NY, USA, 2005.
37. Kowalski, K.; Steeb, W.H. Nonlinear Dynamical Systems and Carleman Linearization; World Scientific: Singapore, 1991.
38. Koopman, B.O. Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. USA 1931, 17, 315–318. [CrossRef]
39. Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 2005, 41, 309–325.

[CrossRef]
40. Bomze, I.M. Lotka-Volterra equation and replicator dynamics: A two-dimensional classification. Biol. Cybern. 1983, 48, 201–211.

[CrossRef]
41. Orszag, S.A.; Bissonnette, L. Dynamical Properties of Truncated Wiener-Hermite Expansions. Phys. Fluids 1967, 10, 2603–2613.

[CrossRef]
42. Forets, M.; Pouly, A. Explicit error bounds for Carleman linearization. arXiv 2017, arXiv:1711.02552.
43. Amini, A.; Sun, Q.; Motee, N. Error bounds for Carleman linearization of general nonlinear systems. In Proceedings of the 2021

Conference on Control and its Applications, Virtual, 19–21 July 2021 ; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

