
Fast-Forwarding Quantum Algorithms For Linear
Dissipative Differential Equations

DONG AN1,2, AKWUM ONWUNTA3, AND GENGZHI YANG2,4

1Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing,
China

2Joint Center for Quantum Information and Computer Science, University of Maryland, College
Park, MD, USA

3Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 18015
USA

4Department of Mathematics, University of Maryland, College Park, MD, USA

ISE Technical Report 24T-014

Fast-forwarding quantum algorithms for linear dissipative

differential equations

Dong An1,2 Akwum Onwunta3 Gengzhi Yang2,4

1Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing, China.
2Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA.

3Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA.
4Department of Mathematics, University of Maryland, College Park, MD, USA.

October 17, 2024

Abstract

We establish improved complexity estimates of quantum algorithms for linear dissipative ordinary
differential equations (ODEs) and show that the time dependence can be fast-forwarded to be sub-linear.
Specifically, we show that a quantum algorithm based on truncated Dyson series can prepare history
states of dissipative ODEs up to time T with cost Õ(log(T)(log(1/ϵ))2), which is an exponential speedup
over the best previous result. For final state preparation at time T , we show that its complexity is
Õ(

√
T (log(1/ϵ))2), achieving a polynomial speedup in T . We also analyze the complexity of simpler

lower-order quantum algorithms, such as the forward Euler method and the trapezoidal rule, and find
that even lower-order methods can still achieve Õ(

√
T) cost with respect to time T for preparing final

states of dissipative ODEs. As applications, we show that quantum algorithms can simulate dissipative
non-Hermitian quantum dynamics and heat process with fast-forwarded complexity sub-linear in time.

Contents

1 Introduction 2
1.1 Main results . 3
1.2 Additional results . 5
1.3 Related works and comparison . 7
1.4 Applications . 7
1.5 Discussions and open questions . 8
1.6 Organization . 8

2 Dissipative ODEs and stability 8

3 Quantum ODE algorithm 9
3.1 Time discretization . 9
3.2 Algorithms . 10

3.2.1 History state preparation . 10
3.2.2 Final state preparation . 10

4 Fast-forwarded complexity 11
4.1 Condition number . 11
4.2 Complexity of history state preparation . 13

4.2.1 General inhomogeneous case . 13
4.2.2 Homogeneous case . 16

4.3 Complexity of final state preparation . 17

1

5 Specific numerical methods 19
5.1 Truncated Dyson series method . 20
5.2 Lower-order methods . 23

5.2.1 Forward Euler method . 23
5.2.2 Trapezoidal rule . 25

6 Applications 27
6.1 Quantum dynamics with non-Hermitian Hamiltonian . 27
6.2 Generalized heat equation . 28

A Proof of Lemma 5 32

B Proof of Lemma 6 32

C Proof of Theorem 9 33

D Proof of Corollary 13 35

E Constructing block-encodings in lower-order methods 36
E.1 Forward Euler method . 36
E.2 Trapezoidal rule . 38

F Error analysis of lower-order numerical schemes 40
F.1 Forward Euler . 40

F.1.1 Evolution operator . 40
F.1.2 Inhomogeneous term . 40

F.2 Trapezoidal rule . 41
F.2.1 Evolution operator . 41
F.2.2 Inhomogeneous term . 42

1 Introduction

Differential equations are fundamental in modeling the dynamics of a system and have been widely used in
physics, chemistry, engineering, economics, and other disciplines. In this paper, we consider the solution of
a system of ordinary differential equations (ODE) of the form

du(t)

dt
= A(t)u(t) + b(t), t ∈ [0, T], (1)

u(0) = u0. (2)

Here, A(t) ∈ CN×N and b(t) ∈ CN . We are interested in approximating the final solution u(t) at time t = T ,
or computing a history state encoding the trajectory of the dynamics, i.e., u = [u0;u1; · · · ;uM]⊤ such that
uj ≈ u(jT/M) where M is the number of time steps, and we let h = T/M denote the time step size.

In practice, the dimension N of Eq. (1) can be huge, especially in semi-discretized partial differential
equations with high accuracy or systems that model the motion and interaction of a large number of ob-
jects. This high dimensionality poses significant computational challenges for efficient classical simulation
of Eq. (1), and has evoked emerging interest in exploring quantum algorithms for differential equations with
substantially improved efficiency.

The first efficient quantum algorithm for general ODEs can be dated back to [1], which leverages the power
of quantum linear system algorithms. Specifically, the algorithm in [1] first discretizes Eq. (1) by a multi-step
method, formulates the discretized ODE as a linear system of equations, and solves the linear system by
the Harrow–Hassidim–Lloyd (HHL) algorithm [2]. Since then, there have been several subsequent works on
improved quantum ODE algorithms based on the same idea of converting the ODE to a linear system of
equations but with more advanced time discretization methods and quantum linear system algorithms [3–
6]. There have also been attempts on designing quantum ODE algorithms based on ideas other than the

2

linear-system-based approach, such as time-marching [7], quantum eigenvalue processing [8], and reduction
to Hamiltonian simulation problems [9–12].

Since simulating ODEs for a long time period appears ubiquitously in scientific and engineering com-
putation, an important aspect among others of quantum ODE algorithms is how the complexity depends
on the evolution time T . The state-of-the-art linear-system-based algorithm is the truncated Dyson series
method [6], which uses the truncated Dyson series for time discretization, applies optimal quantum linear

system algorithm [13], and achieves Õ(T) query complexity. Similarly, the best available method without

solving a linear system of equations also has query complexity Õ(T) [10]. Both of the two strategies scale
almost linearly in the evolution time T , which can still be expensive for long time simulation.

In this work, we explore the possibility of further fast-forwarding quantum ODE algorithms in time
dependence and focus on the following question:

Can we solve (a subset of) differential equations on a quantum computer with a sub-linear cost
in the evolution time?

Notice that for Hamiltonian simulation problems where A(t) is anti-Hermitian and b(t) ≡ 0, [14] establishes
a lower bound with linear time dependence Ω(T), so we do not expect such fast-forwarding to be generically
possible, though fast-forwarded Hamiltonian simulation of specific systems has been proposed in [15, 16].
Instead, in this work we focus on dissipative ODEs where A(t) has a uniformly negative logarithmic norm.

For dissipative ODEs, we establish an improved complexity estimate for all linear-system-based algo-
rithms regardless of time discretization scheme. When applied to the truncated Dyson series method, our
analysis yields an Õ(poly log(T/ϵ)) query complexity for history state preparation. This is an exponential
improvement in evolution time T compared to existing results. For final state preparation, we show that the
truncated Dyson series method can scale only Õ(

√
T poly log(1/ϵ)), achieving a quadratic speedup over the

best existing results. We also analyze the complexity of linear-system-based algorithms with simpler lower-
order time discretization schemes, including the forward Euler method and trapezoidal rule. Interestingly,
we find that with lower-order methods we can still achieve Õ(

√
T) for final state preparation in terms of T ,

and lower convergence order only worsens the error dependence. Our algorithms and analysis can be applied
to simulating dissipative quantum dynamics with non-Hermitian Hamiltonian and heat process.

1.1 Main results

We study fast-forwarding quantum algorithms for linear dissipative ODEs. In Eq. (1), we assume the
logarithmic norm of A(t) is uniformly negative, i.e., there exists a constant η > 0 such that

A(t) +A(t)† ≤ −2η < 0. (3)

We are interested in computing a final state proportional to u(T), or a history state proportional to

uexact = [u(0);u(T/M);u(2T/M); · · · ;u(T)], (4)

where M is the number of time steps. Our main mathematical result is a general quantum complexity
estimate for dissipative ODEs.

Result 1 (Informal version of Theorem 8 and Corollary 11). Consider Eq. (1) with A(t)+A(t)† ≤ −2η < 0
for a constant η > 0 and we use M steps for time discretization. Then, we can prepare an ϵ-approximation
of

1. the history state uexact/∥uexact∥ up to time T with query complexity

O
(
M

T
log

(
1

ϵ

))
, (5)

2. the final state u(T)/∥u(T)∥ at time T with query complexity

Õ
(
maxt∥u(t)∥
∥u(T)∥

M√
T

log

(
1

ϵ

))
. (6)

3

The algorithm used in Result 1 is a slightly modified linear-system-based approach from [1, 3–6]. Specifi-
cally, for history state preparation, we useM many equidistant time steps to discretize Eq. (1). Since Eq. (1)
is linear, its discretized version is naturally a linear system of equations with solution u = [u0;u1;u2; · · · ;uM]
where each uj aims to approximate u(jT/M). Then we solve this linear system of equations by quantum
algorithms with optimal asymptotic scaling (e.g., [13, 17, 18]) to prepare the desired history state. Notice
that a final state u(T)/∥u(T)∥ can be directly obtained from the history state by post-selecting the register
encoding the index of the time step onto M . However, the success probability can be small as most blocks
in the history state are intermediate steps. To boost the success probability, we may use the padding trick
introduced in [1] by adding trivial lines at the end of the linear system of equations to make multiple copies
of the final state. A difference from [1] is that we can use much fewer padding lines for dissipative ODEs, and
we will discuss the reason later. A detailed discussion on the quantum algorithms is presented in Section 3.

For history state preparation, our Result 1 shows that the complexity is only O
(
M
T log

(
1
ϵ

))
, where the

factor O(M/T) is the condition number of the linear system, and the O(log(1/ϵ)) is due to the optimal
quantum linear system algorithm. Compared to the previous analysis, our improvement lies in a better
estimate of the condition number. Specifically, previous analysis [1, 3–6] only bounds the condition number
by O(M), so we gain a multiplicative factor of O(1/T). Such an improvement is crucially dependent on the
additional dissipation in the dynamics. Recall that the condition number of the linear system represents
how a small perturbation in the right-hand side is amplified in the solution. For a stable but non-dissipative
dynamics1, a small perturbation in the initial condition u0 or the inhomogeneous term b(t) can be carried
out to the entire dynamics with the same amplitude, so the condition number becomes linear in terms of
the number of steps. However, in a dissipative ODE, the effect of a small perturbation in u0 or b(t) decays
exponentially in time, so such perturbation will only introduce non-trivial perturbations on the dynamics
for a fixed time period instead of the entire time period up to T . This is why in the condition number we
can obtain a O(1/T) multiplicative factor improvement.

For final state preparation, our Result 1 gives an Õ
(

maxt∥u(t)∥
∥u(T)∥

M√
T
log
(
1
ϵ

))
query complexity, while pre-

vious analysis in [1, 3–6] suggests the query complexity to be Õ
(

maxt∥u(t)∥
∥u(T)∥ M log

(
1
ϵ

))
. Unlike the history

state preparation case, here we only obtain an O(1/
√
T) factor of improvement. This is because of the fewer

padding lines we use in the linear system. Specifically, notice that if we addMp many padding lines, then the
condition number will be increased by an additive factor O(Mp). In the general stable but non-dissipative
case, the condition number of the linear system without padding is O(M), so we can add as many asMp =M
padding lines while not increasing the condition number asymptotically. Then the number of copies of the
final state u(T) is the same as the number of intermediate steps u(jT/M) for j < M , so the probability
of extracting u(T) from the padded history state only depends on the norm decay rate maxt∥u(t)∥/∥u(T)∥
and the overall complexity is still linear in O(M). However, for the dissipative ODEs, we have shown that
the condition number without padding is just O(M/T), so the maximum number of extra padding lines
allowed without increasing the condition number asymptotically is just Mp ∼M/T , which is asymptotically
smaller than the number of time steps. Then we need more repeats to successfully extract the final state
u(T) from the padded history state, and with amplitude amplification, this cancels an O(

√
T) factor. We

remark that the choice Mp ∼M/T is indeed optimal: we show in Theorem 10 the query complexity of final
state preparation for any choice of Mp and find the optimal choice to be O(M/T) in Corollary 11.

So far we have not specified a concrete time discretization method in the algorithm. In fact, our Result 1
works for any single step time discretization method, including the simplest forward Euler method, Runge-
Kutta method, and the truncated Dyson series method, while the choice of M to achieve a certain level of
accuracy varies among different methods. For the truncated Dyson series method [6], our analysis yields the
following complexity for dissipative ODEs.

Result 2 (Informal version of Corollary 12). Consider the truncated Dyson series method for Eq. (1) with
A(t) +A(t)† ≤ −2η < 0. Then, we can prepare an ϵ-approximation of

1This refers to the dynamics Eq. (1) where A(t) has only non-positive logarithmic norm, i.e., A(t) + A(t)† ≤ 0, instead
of the dissipative ODE which requires the logarithmic norm to be strictly smaller than 0. Notice that the stable condition
A(t)+A(t)† ≤ 0 is also assumed in previous works for quantum ODE algorithms [6, 9, 10] and includes the case of Hamiltonian
simulation.

4

1. the history state uexact/∥uexact∥ up to time T with query complexity

O
(
log(T)

(
log

(
1

ϵ

))2
)
, (7)

2. the final state u(T)/∥u(T)∥ at time T with query complexity

Õ
(
maxt∥u(t)∥
∥u(T)∥

√
T

(
log

(
1

ϵ

))2
)
. (8)

The proof of Result 2 is discussed in Section 5.1, which we can obtain from our general Result 1 by
noticing that M = O(T) is sufficient in the truncated Dyson series method. The extra log(T) factor in the
history state preparation cost is due to the truncated order of the Dyson series, which typically depends on
the evolution time and requires more queries to the matrix A(t) for constructing the linear system. The
highlight of Result 2 is the time dependence: in both history and final state preparation cases, we obtain
sub-linear scalings in time T and this is better than previous results. We will make a careful comparison
between Result 2 and existing works later in Section 1.3.

1.2 Additional results

Lower-order methods: In Result 2, we have analyzed the query complexity of the truncated Dyson
series method for dissipative ODEs. Although the truncated Dyson series method can achieve high-order
convergence, its quantum implementation requires complicated quantum control logic. In Section 5.2, we
also discuss the complexity of two lower-order methods that can be implemented in a much simpler way: the
first-order forward Euler method and the second-order trapezoidal rule.

Result 3. Consider the forward Euler method and the trapezoidal rule for Eq. (1) with A(t)+A(t)† ≤ −2η <
0. Then, we can prepare an ϵ-approximation of

1. the history state uexact/∥uexact∥ up to time T with query complexity2

O
(
T 1/(2p)

ϵ1/p
log

(
1

ϵ

))
, (9)

where p = 1 for the forward Euler, and p = 2 for the trapezoidal rule,

2. the final state u(T)/∥u(T)∥ at time T with query complexity

Õ
(√

T

ϵ1/p
log

(
1

ϵ

))
, (10)

where p = 1 for the forward Euler, and p = 2 for the trapezoidal rule.

From Result 3, we can see that the error dependence is standard, i.e., O(ϵ−1/p) for a p-th order method,
but the time dependence is always sub-linear. For history state preparation, higher-order method can provide
a further improved time scaling. Interestingly, for final state preparation, both methods scale O(

√
T), which

is exactly the same as the truncated Dyson series method. Therefore, if we only care about complexity in
terms of time T , the simplest Euler method suffices to achieve the best available scaling. The reason why we
can achieve the same time scaling is, although the condition number of the linear system becomes larger for
lower-order methods as suggested by the complexity of history state preparation, we may correspondingly
add more padding lines to increase the probability of measuring onto the final state without further increasing
the condition number, so the final state preparation complexity can still remain asymptotically the same.
We also expect Result 3 to hold for general p-th order time discretization method.

2For technical simplicity, here we only focus on the explicit dependence of T and ϵ, and assume all the other parameters to
be constants (e.g., the decay rate maxt∥u(t)∥/∥u(T)∥, the norms maxt∥A(t)∥ and ∥b(t)∥, and parameters related to the stability
condition). The same also applies for the final state preparation.

5

Methods
Assumptions Query complexities

Time Stability History state Final state

p-th order multi-step [1] TI Re(eig(A)) ≤ 0 Õ
(
T 2+2/p/ϵ1+2/p

)
Õ
(
T 2+2/p/ϵ2

)

Taylor [3] TI Re(eig(A)) ≤ 0 Õ(T poly log(1/ϵ)) Õ(T poly log(1/ϵ))

Improved Taylor [5] TI maxt
∥∥eAt

∥∥ = O(1) Õ(T poly log(1/ϵ)) Õ(T poly log(1/ϵ))

Spectral [4] TD Re(eig(A(t))) ≤ 0 Õ(T poly log(1/ϵ)) Õ(T poly log(1/ϵ))

Dyson [6] TD A(t) +A(t)† ≤ 0 Õ
(
T (log(1/ϵ))2

)
Õ
(
T (log(1/ϵ))2

)

Eigenvalue processing [8] TI A+A† ≤ 0 / O((T + log(1/ϵ)) log(1/ϵ))

Time-marching [7] TD A(t) +A(t)† ≤ 0 / Õ
(
T 2 log(1/ϵ)

)

Schrödingerization [11] TD A(t) +A(t)† ≤ 0 / Õ(T/ϵ)

LCHS [10] TD A(t) +A(t)† ≤ 0 / Õ
(
T (log(1/ϵ))2+o(1)

)

Fast-forwarded Taylor [20] TI PA+A†P < 0 Õ
(
T 1/2(log(1/ϵ))2

)
Õ
(
T 3/4(log(1/ϵ))2

)

Fast-forwarded Euler (this work) TD A(t) +A(t)† < 0 O
(
T 1/2/ϵ

)
O
(
T 1/2/ϵ

)

Fast-forwarded Dyson (this work) TD A(t) +A(t)† < 0 O
(
log(T)(log(1/ϵ))2

)
Õ
(
T 1/2(log(1/ϵ))2

)

Table 1: A comparison among our fast-forwarded results and previous works. Here in the “Assumptions:
Time” column, “TI” means “time-independent”(the algorithm only applies to ODEs with time-independent
matrix A(t) ≡ A), and “TD” means “time-dependent” (the algorithm works for ODEs with possibly time-
dependent matrix A(t)). The “Assumptions: Stability” column indicates further stability condition on A(t)
for the algorithm to be effective. In the query complexities, we only present explicit scalings in time T and
error ϵ, and assume all the other parameters to be constants (e.g., the decay rate maxt∥u(t)∥/∥u(T)∥, the
norm maxt∥A(t)∥, and parameters related to the stability condition).

Homogeneous ODEs: So far, all the presented results hold for possibly inhomogeneous ODEs. Here
we consider the special homogeneous case where b(t) ≡ 0. Notice that the final state preparation problem
for homogeneous dissipative ODEs always has exponential dependence on the evolution time T , since the
solution u(t) decays exponentially and extracting an exponentially small component from a quantum state
requires exponential cost [19]. So we only consider the history state preparation and have the following
result.

Result 4. Consider Eq. (1) with A(t) + A(t)† ≤ −2η < 0 and b(t) ≡ 0. Then, for preparing the history
state uexact/∥uexact∥ up to time T with error at most ϵ,

1. the truncated Dyson series method has query complexity O
((

log
(
1
ϵ

))2)
,

2. the forward Euler method has query complexity O
(
1
ϵ log

(
1
ϵ

))
, and the trapezoidal rule has query com-

plexity O
(

1√
ϵ
log
(
1
ϵ

))
.

Result 4 suggests that we can completely get rid of any explicit time dependence for homogeneous
dissipative ODEs, no matter which time discretization method we use. Intuitively, this is because the
solution of a homogeneous dissipative ODE decays exponentially in time, so the non-trivial part in a history
state is always within a constant time period.

6

1.3 Related works and comparison

As we discussed earlier, several generic quantum ODE algorithms have been proposed during the past decade.
They can be roughly divided into two categories. The first category is the linear-system-based approach [1,
3–6], which discretizes the dynamics in time, formulates the discretized ODE as a linear system of equations,
and solves the linear system by quantum linear system solvers. The second category includes those that
attempt to directly implement the time evolution operator of Eq. (1) [7–11], and we call them evolution-
based approach. Our algorithm in this work is almost the same as the linear-system-based approach only
with a slight difference in the number of padding lines for final state preparation, and our contribution
mainly lies in the improved complexity analysis.

In Table 1, we compare query complexities of our fast-forwarded Dyson and Euler methods with these
generic quantum ODE algorithms. The first group in Table 1 is the linear-system-based approach for ODEs
with time-independent coefficient matrix A(t) ≡ A, the second group is the linear-system-based approach
for time-dependent A(t), and the third group is the evolution-based approach. In previous works, it was
not clearly stated how the evolution-based approach can efficiently prepare a history state, so we exclude
them from the comparison of history state preparation. Notice that all the previous generic quantum
ODE algorithms require additional stability conditions, specified in the third column of Table 1. Though
technically different, these ensure the dynamics to be stable but not necessarily strictly dissipative, i.e.,
the homogeneous time evolution operator T e

∫ t
0
A(s)ds does not increase asymptotically for long time. Our

results require stronger stability condition that the dynamics needs to be strictly dissipative, but we can
obtain improved time dependence. Compared with the best previous method, for history state preparation,
our fast-forwarded results achieve an exponential improvement (O(log(T)) versus Õ(T)), and for final state

preparation, our fast-forwarded results achieve a quadratic speedup (Õ(
√
T) versus Õ(T)).

Other than generic algorithms, there have been a few attempts at fast-forwarding algorithms for special
types of ODEs. An earlier work [20] also fast-forwards linear-system-based quantum ODE algorithms for
dissipative ODEs by analyzing the condition number of the linear system. We compare our results with [20] in
the last group of Table 1, and there are two main differences. First, the applicable regimes are different. [20]
considers the time-independent matrix A and imposes the Lyapunov stability condition that there exists an
invertible matrix P such that PA+A†P < 0. Our results generalize the fast-forwarding results to the time-
dependent matrix A(t) but require a more restrictive stability on the negative logarithmic norm. Second,
within the commonly applicable regime, our results give a tighter upper bound of the linear system condition
number and yield better complexity estimates in terms of T . Specifically, for history state preparation, we
can achieve O(log(T)) complexity while [20] only has O(

√
T). For final state preparation, our results also

improve the complexity from Õ(T 3/4) to Õ(T 1/2). Besides [20], some other previous works also consider
fast-forwarding quantum ODE algorithms but under different scenarios, such as [15, 16] for Hamiltonian
simulation and [19] for imaginary time evolution.

1.4 Applications

We have discussed quantum algorithms with fast-forwarded complexity for linear dissipative ODEs. Such lin-
ear dissipative ODEs have many applications including quantum dynamics with non-Hermitian Hamiltonian,
heat processes, damped systems, and linearized dissipative nonlinear differential equations.

In Section 6, we discuss two applications in more details. The first application is the dissipative quantum
dynamics with non-Hermitian Hamiltonian, which is described by a time-dependent Schrödinger equation
with a non-Hermitian matrix as the Hamiltonian and has appeared ubiquitously in various branches of
physics and chemistry, such as open quantum system, quantum resonances, quantum transport, field theories,
quantum many-body system, to name a few [21–32]. The second application is the generalized heat equation
with absorbing boundary, which is not only a fundamental model for heat processes but also useful for
modeling hydrodynamical shocks in fluid dynamics, edge detection in image analysis, and option prices in
finance [33–36]. For both examples, we show that quantum algorithms can solve them with fast-forwarded
complexity sub-linear in time.

7

1.5 Discussions and open questions

In this work, we show that quantum algorithms can prepare history states of dissipative ODEs with cost
O
(
log(T)(log(1/ϵ))2

)
, exponentially better than previous results, and can prepare final states of dissipative

ODEs with cost Õ
(√

T (log(1/ϵ))2
)
, achieving a quadratic speedup in T . A natural open question is whether

one can achieve an even better time scaling for final state preparation or an Ω(
√
T) lower bound can be

proved. Another open question is to generalize our fast-forwarding results to more types of ODEs beyond
dissipative ones. One possibility might be ODEs with a time-dependent version of Lyapunov stability
condition P (t)A(t) + A(t)†P (t) < 0 for an invertible time-dependent matrix P (t). However, notice that
the solution of such an ODE might still grow linearly in the worst case as we may construct a piece-wise
constant A(t) by gluing time-independent Lyapunov stable matrices up to their transient growing periods.
So we expect that it is only possible for fast-forwarding under further decay assumption on P (t) to rule out
such growth.

In our work, we focus on analyzing the linear-system-based approach for ODEs. It is interesting to
further explore the possibility of fast-forwarding evolution-based approach as well, especially the best linear
combination of Hamiltonian simulation (LCHS) algorithm in [10]. Since evolution-based approach can achieve
lower state preparation cost by avoiding quantum linear system algorithms (see [10] for a detailed discussion),
fast-forwarded LCHS, if possible, can be an even better quantum ODE algorithm for final state preparation
than those in this work. However, it remains unclear whether the dissipative ODEs are still within the fast-
forwardable class, as the LCHS approach directly reduces the ODE evolution operator to a set of Hamiltonian
simulation problems, of which each does not have dissipation any more.

1.6 Organization

The rest of the paper is organized as follows. We first start with discussing the stability condition for the
dissipative ODEs in Section 2. Then, we state the quantum ODE algorithms for history state preparation
and final state preparation in Section 3, and establish the framework of obtaining fast-forwarded complexity
estimates in Section 4. In Section 5, we show in a more explicit way the complexity of truncated Dyson
series methods and two lower-order methods for stable dynamics. We discuss applications of our algorithms
in Section 6.

2 Dissipative ODEs and stability

This work focuses on fast-forwarding quantum algorithms for dissipative ODEs. The dissipative ODEs in
this work refers to Eq. (1) where the logarithmic norm of A(t) is uniformly negative. Specifically, we assume
that there exists a positive number η > 0 such that

A(t) +A(t)† ≤ −2η < 0. (11)

An important feature of dissipative ODEs is that the homogeneous time evolution operator always decays
exponentially in time. We show it in the following result and give its proof in Appendix A.

Lemma 5. For any 0 ≤ t0 ≤ t1 ≤ T ,

1. we have ∥∥∥T e
∫ t1
t0

A(s)ds
∥∥∥ ≤ e−η(t1−t0). (12)

2. for any quantum state |v⟩, we have

∥∥∥T e
∫ t1
t0

A(s)ds |v⟩
∥∥∥ ≥ e−(t1−t0)maxt∥A(t)∥. (13)

Notice that here the “dissipative” condition is only imposed on the homogeneous time evolution operator.
In the homogeneous case where b(t) ≡ 0, the solution of Eq. (1) can be written as u(t) = T e

∫ t
0
A(s)dsu0,

so Lemma 5 implies an exponential decay of u(t) in time t. However, for general inhomogeneous case with

8

non-trivial b(t), the solution of Eq. (1) does not necessarily decay. In fact, according to Duhamel’s principle,
the solution of Eq. (1) can be written as

u(t) = T e
∫ t
0
A(s)dsu0 +

∫ t

0

T e
∫ t
τ
A(s)dsb(τ)dτ, (14)

and the second term on the right hand side does not necessarily decay. Nevertheless, Eq. (14) suggests that
the inhomogeneous term b(τ) at a fixed time τ only affects the dynamics locally, since the evolution operator

T e
∫ t
τ
A(s)ds has an exponential decay in time.

3 Quantum ODE algorithm

In this section, we discuss the main steps of the quantum ODE algorithm. Our algorithm is a unified
framework of existing linear-system-based approach in [1, 3–5], which can be incorporated with any single-
step time discretization scheme. We first present a general single-step time discretization approach for the
ODE in Eq. (1), and then discuss our algorithms for history state preparation and final state preparation.

3.1 Time discretization

For time discretization, let us consider a single-step scheme of the form

L(j, h)uj+1 = R(j, h)uj + v(j, h). (15)

Here each uj aims at approximating the solution u(jh). L and R are two matrix-valued functions that
might depend on the index j and the step size h. v(j, h) is a vector-valued function for approximating the
inhomogeneous term. For notational convenience, we will omit the explicit h dependence in the matrices
and vectors and denote

Lj = L(j, h), Rj = R(j, h), vj = v(j, h). (16)

The simplest example of Eq. (15) is the forward Euler method, which is given by

uj+1 − uj
h

= A(jh)uj + b(jh). (17)

Observe that Eq. (17) corresponds to the form Eq. (15) with Lj = I, Rj = I + hA(jh) and vj = hb(jh).
Another example is the trapezoidal rule

uj+1 − uj
h

=
1

2
(A(jh)uj + b(jh) +A((j + 1)h)uj+1 + b((j + 1)h)), (18)

i.e., (
I − h

2
A((j + 1)h)

)
uj+1 =

(
I +

h

2
A(jh)

)
uj +

h

2
(b(jh) + b((j + 1)h)). (19)

which corresponds to the form Eq. (15) with

Lj = I − h

2
A((j + 1)h), Rj = I +

h

2
A(jh), vj =

h

2
(b(jh) + b((j + 1)h)). (20)

The Dyson series method [6] truncated at order K can also be represented in the form of Eq. (15) with
Lj = I,

Rj =

K∑

k=0

∫ (j+1)h

jh

dt1

∫ t1

jh

dt2 · · ·
∫ tk−1

jh

dtkA(t1)A(t2) · · ·A(tk), (21)

and

vj =
K∑

k=1

∫ (j+1)h

jh

dt1

∫ t1

jh

dt2 · · ·
∫ tk−1

jh

dtkA(t1)A(t2) · · ·A(tk−1)b(tk). (22)

Notice that even for a specific time discretization scheme, the choices of L, R, and v are not unique, as we
may always multiply both sides of Eq. (15) by any matrix. We will choose proper L, R and v for ease of
algorithmic implementation.

9

3.2 Algorithms

3.2.1 History state preparation

We first aim to obtain a history state proportional to

uexact = [u(0);u(h);u(2h); · · · ;u(Mh)] (23)

encoding the information on all dynamics at M +1 equidistant time steps. The algorithm is designed based
on so-called the all-at-once system, which is a dilated linear system of equations

AM,0u = bM,0. (24)

Here

AM,0 =

I
−R0 L0

−R1 L1

. . .
. . .

−RM−1 LM−1

, bM,0 =

u0
v0
v1
...

vM−1

. (25)

We add two subscripts for A and b. The first subscript indicates the overall number of time steps in the
discrete evolution. The second subscript denotes the number of padding rows, whose meaning will be clear
later. In the case of history state preparation, the second subscript is always 0.

A quantum algorithm for estimating a history state proportional to uexact = [u(0);u(h);u(2h); · · · ;u(T)]
can then be constructed as follows. We first construct a state preparation oracle of bM,0 and a block-
encoding of AM,0, defined in Eq. (25). The state preparation oracle of bM,0 requires access to |u0⟩ and b(s),
and the block-encoding of AM,0 requires access to A(t). Constructions of both oracles typically depend on
specific numerical methods, and we will discuss some examples in Section 5. Then, with these input models
of AM,0 and bM,0, we can apply the optimal quantum linear system algorithm [13, 18] to approximate

|u⟩ = A−1
M,0bM,0/

∥∥∥A−1
M,0bM,0

∥∥∥, which is the desired approximation of the history state.

3.2.2 Final state preparation

Now we discuss quantum algorithms for preparing the state u(T)/∥u(T)∥ only encoding the solution at the
final time. A common strategy to obtain u(T)/∥u(T)∥ is to post select the history state [u(0);u(h); · · · ;u(T)]
obtained by the history state preparation algorithm. Notice that the history state can be written as (up to a

normalization factor)
∑M

j=0∥u(jh)∥ |j⟩ |u(jh)⟩, so if we measure the first ancilla register onto |M⟩, then the
system register will encode the desired final solution. However, the probability of getting M can be small
as we typically use many time steps for accurate simulation. To boost such probability, we may use the
padding trick, introduced in [1], to make multiple copies of the final solution in the history state.

Specifically, for a single step method, instead of solving the linear system defined by Eq. (25), now we
consider AM,Mp−1u = bM,Mp−1 where

AM,Mp−1 =

I
−R0 L0

−R1 L1

. . .
. . .

−RM−1 LM−1

−I I
−I I

. . .
. . .

−I I

, (26)

bM,Mp−1 = [u0; v0; v1; · · · ; vM−1; 0; 0; · · · ; 0]. (27)

Here AM,Mp−1 is a dilation of that in Eq. (25) by having (Mp−1) many additional rows, of which each has an
identity on the diagonal block and a negative identity on the sub-diagonal block. bM,Mp−1 is correspondingly

10

dilated by appending zeros. The second subscriptMp−1 denotes the number of the additional rows, whereMp

is a positive integer. Notice that the case Mp = 1 implies no padding row and becomes the matrix Eq. (25)
used in history state preparation. Then, the exact solution of the linear system AM,Mp−1u = bM,Mp−1

becomes u = [u0;u1;u2; · · · ;uM−1;uM ;uM ; · · · ;uM], which is the history solution (up to step M − 1)
followed by Mp copies of the final solution uM .

Our quantum algorithm for preparing the final solution first solves the linear system defined by Eq. (26)
and Eq. (27) using optimal quantum linear system algorithm [13, 18], then measures the index register until
success. The algorithm succeeds if the measurement outcome is larger than or equal toM . To further reduce
the complexity quadratically, we may combine it with the amplitude amplification technique [37].

The choice of Mp heavily affects the complexity of the algorithm. If Mp is too small, then there will be
too few copies of the final solution and thus small success probability. If Mp is too large, then the condition
number of AM,Mp−1 will increase, and solving corresponding linear system of equations becomes expensive.
Later we will present a complexity estimate for any value of Mp and any single-step method, and discuss
optimal choices of Mp in specific schemes.

4 Fast-forwarded complexity

Here we establish our fast-forwarded complexity analysis for dissipative ODEs. First, for any value of M
and Mp, we bound the condition number of the matrix AM,Mp−1 in the linear system Eq. (26), which is
the dominant factor in quantum linear system algorithms. Then we estimate the complexity of history state
preparation, and final state preparation separately. For history state preparation, we give a complexity
estimate for general inhomogeneous ODEs. In the special case of homogeneous ODEs, although the general
theorem also applies, by more careful analysis we may obtain a better complexity, which we will present
separately. For final state preparation, we will only focus on the general inhomogeneous case, as the final
solution of the homogeneous dissipative ODE always decays exponentially and becomes trivial.

4.1 Condition number

We estimate the condition number of AM,Mp−1 by bounding
∥∥AM,Mp−1

∥∥ and
∥∥∥A−1

M,Mp−1

∥∥∥. Our main

technique is a bound of the spectral norm of a block matrix through the spectral norms of its blocks, which
we state here and prove in Appendix B.

Lemma 6. Let M be the block matrix as

M =

M0,0 · · · M0,n−1

...
...

Mn−1,0 · · · Mn−1,n−1

 (28)

where Mij’s are d dimensional square matrices. Then

∥M∥ ≤

√√√√
(
max

j

n−1∑

k=0

∥Mk,j∥
)(

max
i

n−1∑

k=0

∥Mi,k∥
)
. (29)

The spectral norm of AM,Mp−1 can be bounded straightforwardly from Lemma 6. For A−1
M,Mp−1, we may

first perform block version of Gaussian elimination to have an explicit form of A−1
M,Mp−1, then apply Lemma 6

to bound its spectral norm.

Lemma 7. Let A(t) be a matrix such that A(t) + A(t)† ≤ −2η < 0, and AM,Mp−1 be the matrix defined
in Eq. (26). Suppose that ηh ≤ 1 and the local truncation error is bounded as

∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ 1

2
ηhe−ηh, ∀0 ≤ j ≤M − 1. (30)

11

Then, for any M > T , we have
∥∥AM,Mp−1

∥∥ ≤ 2 + max
j

∥Lj∥+max
j

∥Rj∥, (31)

∥∥∥A−1
M,Mp−1

∥∥∥ ≤
(
2eM

ηT
+Mp

)(
1 + max

j

∥∥L−1
j

∥∥
)
. (32)

Proof. The upper bound of
∥∥AM,Mp−1

∥∥ can be directly obtained by applying Lemma 6 and noticing that

the block row sums and column sums of
∥∥AM,Mp−1

∥∥ are both bounded by 2 +maxj∥Lj∥+maxj∥Rj∥.
We focus on bounding

∥∥∥A−1
M,Mp−1

∥∥∥. For notation simplicity, let us denote

Lj = I, j = −1 or M ≤ j ≤M +Mp − 2, (33)

and
Rj = I, M ≤ j ≤M +Mp − 2. (34)

Then we can simply write

AM,Mp−1 =

L−1

−R0 L0

−R1 L1

. . .
. . .

−RM+Mp−2 LM+Mp−2

. (35)

By Gaussian elimination, we have A−1
M,Mp−1 = (Bi,j), where the block

Bi,j = 1i≥j

i−1∏

l=j

L−1
l Rl

L−1

j−1. (36)

To apply Lemma 6, we first bound the spectral norm of the block Bi,j . Notice that, for any 0 ≤ j ≤M−1,
according to Eq. (30) and Lemma 5, we have

∥∥L−1
j Rj

∥∥ ≤
∥∥∥L−1

j Rj − T e
∫ (j+1)h
jh A(s)ds

∥∥∥+
∥∥∥T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ 1

2
ηhe−ηh + e−ηh ≤ e−ηh/2, (37)

where the last inequality is because 1 + x ≤ ex for any x ≥ 0. In other words, we may write
∥∥L−1

j Rj

∥∥ ≤ ch, 0 ≤ j ≤M − 1, (38)

for a constant
c = e−η/2. (39)

Notice that L−1
j = Rj = I for j ≥M . Then

∥Bi,j∥ ≤ 1i≥j

i−1∏

l=j

∥∥L−1
l Rl

∥∥

(
1 + max

l

∥∥L−1
l

∥∥
)

≤

c(i−j)h
(
1 + maxl

∥∥L−1
l

∥∥), M − 1 ≥ i ≥ j,

c(M−j)h
(
1 + maxl

∥∥L−1
l

∥∥), i ≥M > j,

1 + maxl
∥∥L−1

l

∥∥, i ≥ j ≥M,

0, i < j.

(40)

Using this upper bound of ∥Bi,j∥, we may bound the block row sums of A−1
M,Mp−1 as

M+Mp−1∑

k=0

∥Bi,k∥ ≤
{∑i

k=0 c
(i−k)h

(
1 + maxl

∥∥L−1
l

∥∥), i ≤M − 1,(∑M
k=0 c

(M−k)h + i−M
)(

1 + maxl
∥∥L−1

l

∥∥), i ≥M
(41)

≤
{

1
1−ch

(
1 + maxl

∥∥L−1
l

∥∥), i ≤M − 1,(
1

1−ch
+ i−M

)(
1 + maxl

∥∥L−1
l

∥∥), i ≥M
(42)

≤
(

1

1− ch
+Mp

)(
1 + max

l

∥∥L−1
l

∥∥
)
, (43)

12

and the block column sums as

M+Mp−1∑

k=0

∥Bk,j∥ ≤
{(∑M−1

k=j c(k−j)h +Mpc
(M−j)h

)(
1 + maxl

∥∥L−1
l

∥∥), j ≤M − 1,

(M +Mp − j)
(
1 + maxl

∥∥L−1
l

∥∥), j ≥M
(44)

≤
{(

1
1−ch

+Mp

)(
1 + maxl

∥∥L−1
l

∥∥), j ≤M − 1,

(M +Mp − j)
(
1 + maxl

∥∥L−1
l

∥∥), j ≥M
(45)

≤
(

1

1− ch
+Mp

)(
1 + max

l

∥∥L−1
l

∥∥
)
. (46)

According to Lemma 6, we have

∥∥∥A−1
M,Mp−1

∥∥∥ ≤
(

1

1− ch
+Mp

)(
1 + max

l

∥∥L−1
l

∥∥
)
. (47)

Notice that 1− ch = 1− e−ηh/2 ≥ ηh/(2e) since the inequality 1− ex ≥ −x/e holds for x ∈ [−1, 0]. Thus,

∥∥∥A−1
M,Mp−1

∥∥∥ ≤
(
2e

ηh
+Mp

)(
1 + max

l

∥∥L−1
l

∥∥
)

=

(
2e

η

M

T
+Mp

)(
1 + max

l

∥∥L−1
l

∥∥
)
. (48)

4.2 Complexity of history state preparation

In the history state preparation, we choose Mp = 1. We first derive quantum complexity in the general
inhomogeneous case, then present a simpler version only applicable to the homogeneous case.

4.2.1 General inhomogeneous case

Theorem 8. Consider the ODE in Eq. (1) such that A(t)+A(t)† ≤ −2η < 0. Let ϵ > 0 be the target error,
T ≥ (max∥A(t)∥)−1 be the evolution time, and M be the number of time steps. Suppose that we use the
single-step method in Eq. (15) for its time discretization, the time step size h = T/M is chosen such that
ηh ≤ 1 and for all 0 ≤ j ≤ T/h− 1,

∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ min

1

2
ηhe−ηh,

η3/2hϵ

144
√
2
√
1 + T max∥b(t)∥2

η∥u0∥2

√
max∥A(t)∥+ max∥b(t)∥

∥u0∥

, (49)

and ∥∥∥∥∥L
−1
j vj −

∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ ∥u0∥ηhϵ
72

√
2
√
T
√

max∥A(t)∥+ max∥b(t)∥
∥u0∥

. (50)

Then, we can obtain an ϵ-approximation of the history state uexact/∥uexact∥, using

O
((

1 + max
j

∥Lj∥+max
j

∥Rj∥
)(

1 + max
j

∥∥L−1
j

∥∥
)
M

ηT
log

(
1

ϵ

))
(51)

queries to the block-encoding of AM,0 and the state preparation oracle of |bM,0⟩.

Proof. We first show that, under the assumptions in the statement of the theorem, the exact normalized
solution of the linear system AM,0u = bM,0 is an ϵ/2-approximation of the ideal history state.

Let M = T/h, u = A−1
M,0bM,0 and |u⟩ = u/∥u∥. We denote L−1 = I. Let

ϵ1 =
η3/2hϵ

144
√
2
√

1 + T max∥b∥2

η∥u0∥2

√
max∥A(t)∥+ max∥b(t)∥

∥u0∥

, ϵ2 =
∥u0∥ηhϵ

72
√
2
√
T
√
max∥A(t)∥+ max∥b(t)∥

∥u0∥

. (52)

13

Then the assumptions on the local operators become

∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ ϵ1, (53)

and ∥∥∥∥∥L
−1
j vj −

∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ ϵ2. (54)

The numerical scheme becomes

uj+1 = L−1
j Rjuj + L−1

j vj = Pjuj + L−1
j vj , (55)

where we denote
Pj = L−1

j Rj . (56)

Thus, applying Eq. (55) iteratively, we have

uk =

k−1∏

j=0

Pj

u0 +

k−1∑

j=0

k−1∏

l=j+1

Pl

L−1

j vj . (57)

Similarly, for the exact solution u(t), by Duhamel’s principle we have

u((j + 1)h) = T e
∫ (j+1)h
jh A(s)dsu(jh) +

∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds = Qju(jh) + wj , (58)

where we denote

Qj = T e
∫ (j+1)h
jh A(s)ds, wj =

∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds. (59)

Hence, we have

u(kh) =

k−1∏

j=0

Qj

u0 +

k−1∑

j=0

k−1∏

l=j+1

Ql

wj . (60)

Subtracting Eq. (60) from Eq. (57) and using triangle inequality, we have

∥uk − u(kh)∥ ≤

∥∥∥∥∥∥

k−1∏

j=0

Pj −
k−1∏

j=0

Qj

∥∥∥∥∥∥
∥u0∥+

k−1∑

j=0

∥∥∥∥∥∥

k−1∏

l=j+1

Pl

L−1

j vj −

k−1∏

l=j+1

Ql

wj

∥∥∥∥∥∥
. (61)

For the first term in the right-hand side of Eq. (60), we use the triangle inequality to write

∥∥∥∥∥∥

k−1∏

j=0

Pj −
k−1∏

j=0

Qj

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

k−1∑

l=0

k−1∏

j=l+1

Pj

(Pl −Ql)

l−1∏

j=0

Qj

∥∥∥∥∥∥

(62)

≤
k−1∑

l=0

k−1∏

j=l+1

∥Pj∥

∥Pl −Ql∥

l−1∏

j=0

∥Qj∥

 (63)

≤ ϵ1

k−1∑

l=0

k−1∏

j=l+1

∥Pj∥

l−1∏

j=0

∥Qj∥

. (64)

By Lemma 5 and the proof of Lemma 7, we have ∥Qj∥ ≤ e−ηh ≤ e−ηh/2 and ∥Pj∥ ≤ e−ηh/2, and thus

∥∥∥∥∥∥

k−1∏

j=0

Pj −
k−1∏

j=0

Qj

∥∥∥∥∥∥
≤ kϵ1e

−η(k−1)h/2. (65)

14

For the second term in the right-hand side of Eq. (61), we again use the triangle inequality to obtain (the
following derivation assumes j ≤ k − 2, but the final conclusion also holds true for j = k − 1)

∥∥∥∥∥∥

k−1∏

l=j+1

Pl

L−1

j vj −

k−1∏

l=j+1

Ql

wj

∥∥∥∥∥∥
(66)

≤

∥∥∥∥∥∥

k−1∏

l=j+1

Pl −
k−1∏

l=j+1

Ql

wj

∥∥∥∥∥∥
+

∥∥∥∥∥∥

k−1∏

l=j+1

Pl

(L−1

j vj − wj

)
∥∥∥∥∥∥

(67)

≤

∥∥∥∥∥∥

k−1∏

l=j+1

Pl −
k−1∏

l=j+1

Ql

∥∥∥∥∥∥
∥wj∥+

k−1∏

l=j+1

∥Pl∥

∥∥L−1

j vj − wj

∥∥. (68)

Using ∥Pl∥ ≤ e−ηh/2, ∥wj∥ ≤ hmax∥b(t)∥ from the definition of wj , and
∥∥∥
∏k−1

l=j+1 Pl −
∏k−1

l=j+1Ql

∥∥∥ ≤
(k − j − 1)ϵ1e

−η(k−j−2)h/2 which can be obtained by the same proof of Eq. (65), we have

∥∥∥∥∥∥

k−1∏

l=j+1

Pl

L−1

j vj −

k−1∏

l=j+1

Ql

wj

∥∥∥∥∥∥
≤ (k − j − 1)ϵ1e

−η(k−j−2)h/2hmax∥b(t)∥+ e−η(k−j−1)h/2ϵ2. (69)

Plugging Eqs. (65) and (69) back to Eq. (61), we have

∥uk − u(kh)∥ (70)

≤ kϵ1e
−η(k−1)h/2∥u0∥+

k−1∑

j=0

(k − j − 1)ϵ1e
−η(k−j−2)h/2hmax∥b(t)∥+

k−1∑

j=0

e−η(k−j−1)h/2ϵ2 (71)

= kϵ1e
−η(k−1)h/2∥u0∥+ ϵ1hmax∥b(t)∥1− e−ηkh/2 − ke−η(k−1)h/2(1− e−ηh/2)

(1− e−ηh/2)2
+ ϵ2

1− e−ηkh/2

1− e−ηh/2
(72)

≤ kϵ1e
−η(k−1)h/2∥u0∥+

ϵ1hmax∥b(t)∥
(1− e−ηh/2)2

+
ϵ2

1− e−ηh/2
. (73)

Then the error in the unnormalized history vector can be bounded as

∥u− uexact∥ =

√√√√
M∑

k=1

∥uk − u(kh)∥2 (74)

≤
√
3

√√√√
M∑

k=1

k2ϵ21e
−η(k−1)h∥u0∥2 +

M∑

k=1

ϵ21h
2 max∥b(t)∥2

(1− e−ηh/2)4
+

M∑

k=1

ϵ22
(1− e−ηh/2)2

(75)

=
√
3

√√√√
M∑

k=1

k2ϵ21e
−η(k−1)h∥u0∥2 +

ϵ21Thmax∥b(t)∥2
(1− e−ηh/2)4

+
ϵ22(T/h)

(1− e−ηh/2)2
. (76)

Notice that

M∑

k=1

k2e−η(k−1)h =
(2M2 + 2M − 1)e−η(M+1)h −M2e−η(M+2)h − (M + 1)2e−ηMh + e−ηh + 1

(1− e−ηh)3
(77)

=
1 + e−ηh

(1− e−ηh)3
− M2e−ηMh(1− e−ηh)2

(1− e−ηh)3
− 2Me−ηMh(1− e−ηh)

(1− e−ηh)3
− e−ηMh(1 + e−ηh)

(1− e−ηh)3
(78)

≤ 2

(1− e−ηh)3
, (79)

15

so, together with the inequality 1− e−x ≥ x/2 for x ∈ [0, 1], we have

∥u− uexact∥ ≤
√
3

√
2ϵ21∥u0∥2

(1− e−ηh)3
+
ϵ21Thmax∥b(t)∥2
(1− e−ηh/2)4

+
ϵ22(T/h)

(1− e−ηh/2)2
(80)

≤
√

48ϵ21∥u0∥2
η3h3

+
48ϵ21T max∥b(t)∥2

η4h3
+

12ϵ22T

η2h3
. (81)

The error in the (normalized) quantum states is bounded as

∥|u⟩ − |uexact⟩∥ ≤ 2

∥uexact∥
∥u− uexact∥, (82)

so we need to find a lower bound of ∥uexact∥. To this end, we will find a lower bound of the number of u(kh)
such that its norm is bounded from below by a constant. Specifically, by Duhamel’s principle and Lemma 5,
we have

∥u(kh)∥ =

∥∥∥∥∥T e
∫ kh
0

A(s)dsu0 +

∫ kh

0

T e
∫ kh
s

A(τ)dτ b(s)ds

∥∥∥∥∥ (83)

≥
∥∥∥T e

∫ kh
0

A(s)dsu0

∥∥∥−
∥∥∥∥∥

∫ kh

0

T e
∫ kh
s

A(τ)dτ b(s)ds

∥∥∥∥∥ (84)

≥ e−khmax∥A(t)∥∥u0∥ − khmax∥b(t)∥. (85)

Notice that for k ≤ 1
3hmax{max∥A(t)∥,max∥b(t)∥/∥u0∥} , we always have kh ≤ log(3/2)

max∥A(t)∥ and kh ≤ ∥u0∥
3max∥b(t)∥ ,

which imply e−khmax∥A(t)∥ ≥ 2/3 and khmax∥b(t)∥ ≤ ∥u0∥/3, and thus ∥u(kh)∥ ≥ ∥u0∥/3. Then

∥uexact∥ =

√√√√
M∑

k=0

∥u(kh)∥2 ≥
√

∥u0∥2
9

1

3hmax{max∥A(t)∥,max∥b(t)∥/∥u0∥}
(86)

=
∥u0∥
3
√
3

1√
hmax{max∥A(t)∥,max∥b(t)∥/∥u0∥}

. (87)

Plugging Eqs. (81) and (87) back to Eq. (82), we have

∥|u⟩ − |uexact⟩∥ ≤ 36

√
max

{
max∥A(t)∥,max

∥b(t)∥
∥u0∥

}√
4ϵ21
η3h2

+
4ϵ21T max∥b(t)∥2

η4h2∥u0∥2
+

ϵ22T

η2h2∥u0∥2
, (88)

which is further upper bounded by ϵ/2 by the choices of ϵ1 and ϵ2 in Eq. (52).
Then, solving the linear system of equations AM,0u = bM,0 up to error ϵ/2 gives the ϵ-approximation

of |uexact⟩. According to [13], it requires O(κ log(1/ϵ)) queries to the block-encoding of AM,0 and the

state preparation oracle of bM,0, where κ = ∥AM,0∥
∥∥∥A−1

M,0

∥∥∥ is the condition number of AM,0. According

to Lemma 7, we have

κ = O
((

1 + max
j

∥Lj∥+max
j

∥Rj∥
)(

1 + max
j

∥∥L−1
j

∥∥
)
M

ηT

)
(89)

and complete the proof.

4.2.2 Homogeneous case

Now we consider the special homogeneous case where b(t) ≡ 0. Notice that Theorem 8 directly applies to
the homogeneous case by letting b(t) = 0 in the complexity. However, we can obtain a better homogeneous
complexity estimate by leveraging tighter discretization error bound. We show it in the next result and give
its proof in Appendix C.

16

Theorem 9. Consider the ODE in Eq. (1) with b(t) ≡ 0 and A(t) + A(t)† ≤ −2η < 0. Let ϵ > 0 be the
target error, T ≥ (max∥A(t)∥)−1 be the evolution time, and M be the number of time steps. Suppose we use
the single step method in Eq. (15) for its time discretization, the time step size h = T/M is chosen such that
ηh ≤ 1 and

∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ min

{
1

2
ηhe−ηh,

η3/2hϵ

32
√

max∥A(t)∥

}
, 0 ≤ j ≤ T/h− 1. (90)

Then, we can obtain an ϵ-approximation of the history state uexact/∥uexact∥, using

O
((

1 + max
j

∥Lj∥+max
j

∥Rj∥
)(

1 + max
j

∥∥L−1
j

∥∥
)
M

ηT
log

(
1

ϵ

))
(91)

queries to the block-encoding of AM,0 and the state preparation oracle of |u0⟩.

4.3 Complexity of final state preparation

For the final state preparation, there are two components of the complexity: the cost of solving linear system
of equations AM,Mp−1u = bM,Mp−1, and the probability of measuring the ancilla register onto the correct
index. As we discussed earlier, the choice of Mp heavily affects the overall complexity. Here we first present
a complexity estimate for any choice of Mp.

Theorem 10. Consider the ODE in Eq. (1) such that A(t)+A(t)† ≤ −2η < 0. Let ϵ > 0 be the target error,
T ≥ (max∥A(t)∥)−1 be the evolution time, M be the number of time steps, and Mp be the number of copies
of the final state in the linear system of equations. Suppose we use the single step method in Eq. (15) for its
time discretization, the time step size h = T/M is chosen such that ηh ≤ 1 and for all 0 ≤ j ≤ T/h− 1,

∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ min

{
1

2
ηhe−ηh,

∥u(T)∥
∥u0∥+max∥b(t)∥/η

ηhϵ

128

}
, (92)

and ∥∥∥∥∥L
−1
j vj −

∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ ∥u(T)∥ηhϵ
32

. (93)

Then, we can obtain an ϵ-approximation of the final state u(T)/∥u(T)∥, using

Õ
((

1 + max
j

∥Lj∥+max
j

∥Rj∥
)(

1 + max
j

∥∥L−1
j

∥∥
)
maxt∥u(t)∥
∥u(T)∥

√
M +Mp

Mp

(
M

ηT
+Mp

)
log

(
1

ϵ

))
(94)

queries to the block-encoding of AM,Mp−1 and the state preparation oracle of |bM,Mp−1⟩.
Proof. Let M = T/h and

ϵ1 =
∥u(T)∥

∥u0∥+max∥b(t)∥/η
ηhϵ

128
, ϵ2 =

∥u(T)∥ηhϵ
32

. (95)

Then the assumptions on the local operators become
∥∥∥L−1

j Rj − T e
∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ ϵ1, (96)

and ∥∥∥∥∥L
−1
j vj −

∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ ϵ2. (97)

In the proof of Theorem 8, we show that the time discretization error at step k can be bounded as

∥uk − u(kh)∥ ≤ kϵ1e
−η(k−1)h/2∥u0∥+

ϵ1hmax∥b(t)∥
(1− e−ηh/2)2

+
ϵ2

1− e−ηh/2
. (98)

17

Using the facts that 1 − e−x ≥ x/2 for x ∈ [0, 1] and the function xe−η(x−1)h/2 attains its maximum at
x = 2/(ηh), we can further bound the time discretization error as

∥uk − u(kh)∥ ≤ 2∥u0∥√
e

ϵ1
ηh

+
16ϵ1 max∥b(t)∥

η2h
+

4ϵ2
ηh

(99)

≤ 16ϵ1
ηh

(
∥u0∥+

max∥b(t)∥
η

)
+

4ϵ2
ηh

. (100)

We can verify that the choices of ϵ1 and ϵ2 in Eq. (95) ensures

∥uk − u(kh)∥ ≤ ∥u(T)∥ϵ
4

. (101)

Eq. (101) also holds for k =M . Then the error in the normalized solutions becomes

∥∥∥∥
uM
∥uM∥ − u(T)

∥u(T)∥

∥∥∥∥ ≤ 2

∥u(T)∥∥uM − u(T)∥ ≤ ϵ

2
. (102)

Now let us determine the required accuracy in solvingAM,Mp−1u = bM,Mp−1. Let u = A−1
M,Mp−1bM,Mp−1

and |u′⟩ be the state produced by a quantum linear system algorithm up to error ϵ′, in the sense that

∥|u′⟩ − u/∥u∥∥ ≤ ϵ′. (103)

Let |u′⟩ = [u′0;u
′
1; · · · ;u′M+Mp−1] be partitioned in the same way as u. Then for any k ≥M , we have

∥u′k − uM/∥u∥∥ ≤ ϵ′. (104)

Upon a successful measurement, we would get the state |u′k⟩, which satisfies

∥|u′k⟩ − |uM ⟩∥ =

∥∥∥∥
u′k
∥u′k∥

− uM/∥u∥
∥uM/∥u∥∥

∥∥∥∥ ≤ 2∥u∥
∥uM∥∥u

′
k − uM/∥u∥∥ ≤ 2∥u∥

∥uM∥ϵ
′. (105)

Using Eq. (101) and triangle inequality, we have, for any 0 ≤ k ≤M ,

∥u(kh)∥ − ∥u(T)∥ϵ
4

≤ ∥uk∥ ≤ max
t

∥u(t)∥+ ∥u(T)∥ϵ
4

, (106)

so
∥uM∥ ≥ ∥u(T)∥(1− ϵ/4), (107)

and

∥u∥ ≤
√
M +Mp max

k
∥uk∥ ≤

√
M +Mp

(
max

t
∥u(t)∥+ ∥u(T)∥ϵ

4

)
≤
√
M +Mp max

t
∥u(t)∥

(
1 +

ϵ

4

)
. (108)

Then Eq. (105) can be further bounded as

∥|u′k⟩ − |uM ⟩∥ ≤ 2
√
M +Mp maxt∥u(t)∥(1 + ϵ/4)

∥u(T)∥(1− ϵ/4)
ϵ′ ≤ 4

√
M +Mp maxt∥u(t)∥

∥u(T)∥ ϵ′. (109)

In order to bound this by ϵ/2, it suffices to choose

ϵ′ =
∥u(T)∥

8
√
M +Mp maxt∥u(t)∥

ϵ. (110)

Then
∥|u′k⟩ − |uM ⟩∥ ≤ ϵ

2
. (111)

We have shown in Eqs. (102) and (111) that, by solving the linear system up to ϵ′ defined in Eq. (110) and
successfully measuring the index register, the produced quantum state is an ϵ-approximation of the exact

18

final state |u(T)⟩. According to [13], solving the linear system requires O(κ log(1/ϵ′)) queries to the block-

encoding of AM,Mp−1 and the state preparation oracle of bM,Mp−1, where κ =
∥∥AM,Mp−1

∥∥
∥∥∥A−1

M,Mp−1

∥∥∥ is

the condition number of AM,Mp−1. According to Lemma 7, we have

κ = O
((

1 + max
j

∥Lj∥+max
j

∥Rj∥
)(

1 + max
j

∥∥L−1
j

∥∥
)(

M

ηT
+Mp

))
. (112)

So the query complexity in each run of the algorithm before measurement is

O
((

1 + max
j

∥Lj∥+max
j

∥Rj∥
)(

1 + max
j

∥∥L−1
j

∥∥
)(

M

ηT
+Mp

)
log

(
(M +Mp)maxt∥u(t)∥

∥u(T)∥ϵ

))
. (113)

Now we estimate the number of repeats of solving the linear system. The successful case is when the
measurement outcome k ≥M . To boost the successful probability to Ω(1) with amplitude amplification, we

need O(1/

√∑M+Mp−1
k=M ∥u′k∥

2
) rounds. For each k ≥ M , according to Eqs. (104), (107) and (108) and the

definition of ϵ′ in Eq. (110), we can bound

∥u′k∥ ≥ ∥uM∥
∥u∥ −ϵ′ ≥ ∥u(T)∥(1− ϵ/4)√

M +Mp maxt∥u(t)∥(1 + ϵ/4)
− ∥u(T)∥
8
√
M +Mp maxt∥u(t)∥

ϵ ≥ ∥u(T)∥
4
√
M +Mp maxt∥u(t)∥

.

(114)
So the number of amplitude amplification rounds becomes

O

 1√∑M+Mp−1

k=M ∥u′k∥
2

 = O

(
maxt∥u(t)∥
∥u(T)∥

√
M +Mp

Mp

)
, (115)

which contributes to another multiplicative factor in the overall complexity and completes the proof.

In Theorem 10, we can see two opposite effects of the parameter Mp. The factor
√

M+Mp

Mp
is due to the

amplitude amplification, and will decrease as we choose larger Mp to have more copies of the final solution.
However, larger Mp will increase the condition number of the linear system and thus the complexity of
solving it, as shown in the factor M

ηT +Mp. The following result shows the optimal choice of Mp to best
balance these two effects for large T .

Corollary 11. Under the same conditions as Theorem 10 and by choosing

Mp = ⌈M
ηT

⌉, (116)

we can obtain an ϵ-approximation of the final state u(T)/∥u(T)∥, using

Õ
((

1 + max
j

∥Lj∥+max
j

∥Rj∥
)(

1 + max
j

∥∥L−1
j

∥∥
)
maxt∥u(t)∥
∥u(T)∥

M
√
1 + ηT

ηT
log

(
1

ϵ

))
(117)

queries to the block-encoding of AM,Mp−1 and the state preparation oracle of |bM,Mp−1⟩.

Proof. It is a straightforward consequence of Theorem 10 by noticing that f(x) =
√

M+x
x

(
M
ηT + x

)
achieves

its minimum at x = 2M

ηT (1+
√

1+8/(ηT))
.

5 Specific numerical methods

We have established a complexity estimate for preparing a history state and a final state of a dissipative
ODE in Section 4. Notice that the results in Section 4 work for any single-step numerical method, yet the
overall complexity in terms of T and ϵ still remains unclear as the number of time steps M still has implicit
time and precision dependence. Here we discuss several examples of numerical methods and present their

19

complexity estimates in a more explicit way. Examples include the state-of-the-art truncated Dyson series
method, and two lower-order methods.

Throughout this section, we assume the state preparation oracle Ou0
for |u0⟩ such that

Ou0
|0⟩ = |u0⟩ , (118)

the input model OA for A(t) such that

OA |0⟩ |t⟩ |ψ⟩ = 1

αA
|0⟩ |t⟩A(t) |ψ⟩+ |⊥⟩ , (119)

and the input model Ob for b(t) such that

Ob |0⟩ |t⟩ |0⟩ =
1

αb
|0⟩ |t⟩ |b(t)⟩+ |⊥⟩ . (120)

Here OA is a time-dependent block-encoding of A(t), and Ob is a time-dependent state preparation oracle of
b(t). The normalization factors αA and αb satisfy αA ≥ maxt∥A(t)∥ and αb ≥ maxt∥b(t)∥. |t⟩ represents an
encoding of the time which usually refers to the index in specific methods. Such time-dependent version of
the block-encoding model of A(t) and state preparation of b(t) have also been assumed in existing quantum
algorithms for Hamiltonian simulation [38] and general differential equations [6, 7, 10].

5.1 Truncated Dyson series method

The truncated Dyson series method is introduced in [6] and achieves high-order convergence. In this method,
we have

Lj = I, (121)

Rj =
K∑

k=0

∫ (j+1)h

jh

dt1

∫ t1

jh

dt2 · · ·
∫ tk−1

jh

dtkA(t1)A(t2) · · ·A(tk), (122)

and

vj =
K∑

k=1

∫ (j+1)h

jh

dt1

∫ t1

jh

dt2 · · ·
∫ tk−1

jh

dtkA(t1)A(t2) · · ·A(tk−1)b(tk). (123)

Here K is the truncation order in the Dyson series and only has a logarithmic dependence on the local
truncation error, according to [6, Section 1].

Notice that in the actual implementation, integrals in Eqs. (122) and (123) need to be further discretized
with sufficiently many grid points, but this only introduces logarithmically many extra ancilla qubits and
gates, and does not affect the overall number of queries to the input model of A(t). For technical simplicity,
here we will omit this further step of integral discretization as well as its discretization error, and refer to [6]
for more details.

We first discuss the complexity in the general inhomogeneous case, which is given in the following result.

Corollary 12. Consider using the truncated Dyson series method for solving the ODE Eq. (1) with A(t)
being a matrix such that A(t) +A(t)† ≤ −2η < 0. Let ϵ > 0 be theon target error, T ≥ η−1 be the evolution
time, αA ≥ max∥A(t)∥ be the block-encoding factor of A(t), and αb ≥ max∥b(t)∥ be the normalization factor
of b(t). Then, we can obtain an ϵ-approximation of

1. the history state uexact/∥uexact∥ using

O
(
αA

η
log

(
(αA + αb)T

∥u0∥ηϵ

)
log

(
1

ϵ

))
(124)

queries to the time-dependent block-encoding OA of A(t) and

O
(
αA

η
log

(
1

ϵ

))
(125)

queries to the state preparation Ou0
of |u0⟩ and Ob of |b(t)⟩.

20

2. the final state u(T)/∥u(T)∥ using

Õ
(
maxt∥u(t)∥
∥u(T)∥

αA

√
T√
η

log

(∥u0∥+ αb

∥u(T)∥
αA

ηϵ

)
log

(
1

ϵ

))
(126)

queries to the time-dependent block-encoding OA of A(t) and

Õ
(
maxt∥u(t)∥
∥u(T)∥

αA

√
T√
η

log

(
1

ϵ

))
(127)

queries to the state preparation Ou0
of |u0⟩ and Ob of |b(t)⟩.

Proof. We first consider the history state preparation. According to [6, Section 3], constructing a block-
encoding of AM,Mp−1 needs K calls to OA, and constructing a state preparation oracle of |bM,Mp−1⟩ needs
K − 1 calls to OA, one call to Ob, and one call to Ou0 . Therefore, Theorem 8 tells that the overall query
complexity is

O
((

1 + max
j

∥Rj∥
)
KM

ηT
log

(
1

ϵ

))
(128)

queries to OA, and

O
((

1 + max
j

∥Rj∥
)
M

ηT
log

(
1

ϵ

))
(129)

queries to Ou0
and Ob.

We need to choose K and M such that the assumptions in Theorem 8 hold. Notice that, under the
assumption ηh ≤ 1 which will be satisfied by the choice of h specified later, the first term on the right hand
side of Eq. (49) is always larger than the second term. So we need to choose K and M such that

∥∥∥Rj − T e
∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ O

 η3/2hϵ√

1 + T max∥b∥2

η∥u0∥2

√
max∥A(t)∥+ max∥b(t)∥

∥u0∥

, (130)

and ∥∥∥∥∥vj −
∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ O

 ∥u0∥ηhϵ
√
T
√

max∥A(t)∥+ max∥b(t)∥
∥u0∥

. (131)

We first choose
M = 2αAT, (132)

then αAh = 1/2 and thus the block-encoding of the Dyson series is well-behaved [6]. As a result, by the
definition of Rj in Eq. (122), we have

∥Rj∥ ≤
K∑

k=0

hk

k!
αk
A ≤ eαAh = O(1). (133)

Furthermore, according to [6, Eq.(6)], the local truncation error can be bounded as

∥∥∥Rj − T e
∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ O
(
(αAh)

K+1

(K + 1)!

)
≤ O

(
1

(K + 1)!

)
≤ O

(
e−K

)
. (134)

In order to bound this error according to Eq. (130), it suffices to choose

K = O

log

√
1 + T max∥b∥2

η∥u0∥2

√
max∥A(t)∥+ max∥b(t)∥

∥u0∥
η3/2hϵ

 = O

(
log

(
(αA + αb)T

∥u0∥ηϵ

))
. (135)

21

For the inhomogeneous error, [6, Eq.(14)] suggests that
∥∥∥∥∥vj −

∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ O
(
αK
A h

K+1αb

(K + 1)!

)
≤ O

(
αbh

(K + 1)!

)
≤ O

(
αbhe

−K
)
. (136)

In order to bound this error according to Eq. (131), it suffices to choose

K = O

log

αb

√
T
√

max∥A(t)∥+ max∥b(t)∥
∥u0∥

∥u0∥ηϵ

 = O

(
log

(
(αA + αb)T

∥u0∥ηϵ

))
, (137)

which is asymptotically the same as the choice of K for bounding the homogeneous error. Plugging the
choices of M and K back to Eqs. (128) and (129) yields the claimed complexity estimates for history state
preparation.

We now move on to the final state preparation, where the proof is quite similar. Corollary 11 tells that
the overall query complexity is

Õ
((

1 + max
j

∥Rj∥
)
maxt∥u(t)∥
∥u(T)∥

KM
√
1 + ηT

ηT
log

(
1

ϵ

))
= Õ

((
1 + max

j
∥Rj∥

)
maxt∥u(t)∥
∥u(T)∥

KM√
ηT

log

(
1

ϵ

))

(138)
queries to OA, and

Õ
((

1 + max
j

∥Rj∥
)
maxt∥u(t)∥
∥u(T)∥

M
√
1 + ηT

ηT
log

(
1

ϵ

))
= Õ

((
1 + max

j
∥Rj∥

)
maxt∥u(t)∥
∥u(T)∥

M√
ηT

log

(
1

ϵ

))

(139)
queries to Ou0

and Ob. So we need to determine the choice of K and M in this case. We can use the
same choice M = 2αAT . Then ∥Rj∥’s are still O(1), and we still have the local truncation error bound
in Eqs. (134) and (136). To satisfy the assumptions in Theorem 10 and Corollary 11, it suffices to require

O(e−K) ≤ O
(∥u(T)∥ηhϵ
∥u0∥+max∥b(t)∥/η

)
, (140)

and
O(αbhe

−K) ≤ O(∥u(T)∥ηhϵ). (141)

By solving these two inequalities, we can derive a sufficient condition for K to be

K = O
(
log

(∥u0∥+ αb

∥u(T)∥
αA

ηϵ

))
. (142)

Plugging these choices back to Eqs. (138) and (139) completes the second part of the proof.

In the special homogeneous case, the complexity for preparing a history state can be slightly improved
by applying the tighter estimate in Theorem 9. We state its complexity in the following result and give its
proof in Appendix D.

Corollary 13. Consider using the truncated Dyson series method for solving the ODE Eq. (1) with b(t) ≡ 0
and A(t) being a matrix such that A(t)+A(t)† ≤ −2η < 0. Let ϵ > 0 be the target error, T ≥ (max∥A(t)∥)−1

be the evolution time, and αA ≥ max∥A(t)∥ be the block-encoding factor of A(t). Then, we can obtain an
ϵ-approximation of the history state uexact/∥uexact∥, using

O
(
αA

η
log

(
αA

ηϵ

)
log

(
1

ϵ

))
(143)

queries to the time-dependent block-encoding OA of A(t) and

O
(
αA

η
log

(
1

ϵ

))
(144)

queries to the state preparation Ou0
of |u0⟩.

22

5.2 Lower-order methods

We have shown that the truncated Dyson series method can scale O(poly log(T/ϵ)) for history state prepara-

tion and Õ(
√
Tpoly log(1/ϵ)) for final state preparation. The dependence on time T achieves fast-forwarding

compared to the previous linear scaling. In this subsection, we will show that such a fast-forwarded time
dependence can also be achieved by much simpler lower-order methods such as forward Euler method and
trapezoidal rule.

To highlight our main point and simplify the technical analysis, throughout this subsection, we will
only focus on the explicit complexity in terms of time T and error ϵ, and treat all the other parameters
as constants and absorb them into the big-O notation. We will require the time-discretization h = T/N
to satisfy hαA = O(1). Thus we are able to construct the block-encoding of AM,Mp−1 defined in Eq. (26)
corresponding to different numerical schemes with a O(1) normalization factor. The constructing process is
postponed to Appendix E.

5.2.1 Forward Euler method

The forward Euler method is to approximate T e
∫ (j+1)h
jh A(s)ds by I + hA(jh). According to the analysis in

Appendix F, we know ∥∥∥T e
∫ (j+1)h
jh A(s)ds − (I + hA(jh))

∥∥∥ = O(h2) (145)

and ∥∥∥∥∥hb((j + 1)h)−
∫ h

0

T e
∫ (j+1)h
s

A(t)dtb(s)dt

∥∥∥∥∥ = O(h2). (146)

We first present its complexity estimate for the general inhomogeneous ODE.

Corollary 14. To solve the ODE Eq. (1) with A(t) satisfying the stability condition Eq. (11) by the forward

Euler method, let ϵ be the desired precision, T > (max ∥A(t)∥)−1
be the evolution time, then we can obtain

an ϵ-approximation of

1. the history state uexact/∥uexact∥ using

O
(√

T

ϵ
log

(
1

ϵ

))
(147)

queries to the time-dependent block-encoding OA of A(t) and the state preparation oracle.

2. the final state u(T)/∥u(T)∥ using

Õ
(√

T

ϵ
log

(
1

ϵ

))
(148)

queries to the time-dependent block-encoding OA of A(t) and the state preparation oracle.

Proof. According to the discussion in Appendix E, we need one query of OA to construct the block-encoding
of AM,Mp−1. Theorem 8 tells us that we need Eq. (49) and Eq. (50) hold for the numerical scheme.

In the inhomogeneous case, the first requirement is

∥∥∥L(j, h)−1R(j, h)− T e
∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ min

1

2
ηhe−ηh,

η3/2hϵ

144
√
2
√

1 + T max∥b(t)∥2

η∥u0∥2

√
max∥A(t)∥+ max∥b(t)∥

∥u0∥

,

(149)
and what we have is ∥∥∥L(j, h)−1R(j, h)− T e

∫ (j+1)h
jh A(s)ds

∥∥∥ = O(h2), (150)

so we can just require

h ≲ min

η,

η3/2ϵ√
1 + T max∥b(t)∥2

η∥u0∥2

√
αA + max∥b(t)∥

∥u0∥

 = O

(
ϵ√
T

)
. (151)

23

For the second requirement
∥∥∥∥∥L(j, h)

−1v(j, h)−
∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ ∥u0∥ηhϵ
72
√
2
√
T
√
maxt ∥A(t)∥+ max∥b(t)∥

∥u0∥

, (152)

we would require

h ≲ ∥u0∥ηϵ
√
T
√
αA + max∥b(t)∥

∥u0∥

= O
(

ϵ√
T

)
. (153)

For the complexity of T and ϵ, equation Eq. (151) and equation Eq. (153) indicate that

M = O
(
T 3/2 1

ϵ

)
. (154)

So according to Theorem 8, we will need

O
(
T 1/2 1

ϵ
log

(
1

ϵ

))
(155)

queries to OA and the state preparation oracle that produces |b⟩.
For the final state preparation, the first requirement in Theorem 10 is

∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ min

{
1

2
ηhe−ηh,

∥u(T)∥
∥u0∥+max∥b(t)∥/η

ηhϵ

128

}
, (156)

and what we have is ∥∥∥L(j, h)−1R(j, h)− T e
∫ (j+1)h
jh A(s)ds

∥∥∥ = O(h2). (157)

So we can just require

h ≲ min

{
η,

∥u(T)∥ηϵ
∥u0∥+max∥b(t)∥/η

}
= O(ϵ). (158)

For the second requirement
∥∥∥∥∥L

−1
j vj −

∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ ∥u(T)∥ηhϵ
32

, (159)

we would require
h ≲ ∥u(T)∥ηϵ = O(ϵ). (160)

It is clear that

M = O
(
T

ϵ

)
. (161)

So according to Corollary 11, we will need

Õ
(
T 1/2 1

ϵ
log

(
1

ϵ

))
(162)

queries to OA and the state preparation oracle.

Corollary 14 shows that complexities of the forward Euler method for history state and final state are the
same O(

√
T). For homogeneous ODE, the complexity for history state preparation can be further improved,

as shown in the next result.

Corollary 15. To solve the ODE Eq. (1) with A(t) satisfying the stability condition Eq. (11) and b(t) ≡ 0

by the forward Euler method, let ϵ be the desired precision, T > (max ∥A(t)∥)−1
be the evolution time, then

we can obtain an ϵ-approximation of the history state uexact/∥uexact∥ using

O
(
1

ϵ
log

(
1

ϵ

))
(163)

queries to OA and the state preparation oracle.

24

Proof. According to Theorem 9, for the homogeneous case, we only require that

∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ min

{
1

2
ηhe−ηh,

η3/2hϵ

32
√

max∥A(t)∥

}
. (164)

This leads to

h ≲ min

{
η,
η3/2ϵ

α
1/2
A

}
= O(ϵ), (165)

meaning

M = O
(
T

ϵ

)
. (166)

So according to Theorem 9, there is no dependence on T , and the dependence on ϵ is O
(
1
ϵ log

(
1
ϵ

))
.

5.2.2 Trapezoidal rule

The trapezoidal rule is to approximate T e
∫ (j+1)h
jh A(s)ds by

(
I − h

2A((j + 1)h)
)−1(

I + h
2A(jh)

)
. According to

the analysis in Appendix F, we know

∥∥∥∥∥T e
∫ (j+1)h
jh A(s)ds −

(
I − h

2
A((j + 1)h)

)−1(
I +

h

2
A(jh)

)∥∥∥∥∥ = O(h3) (167)

and ∥∥∥∥∥

(
I − h

2
A((j + 1)h)

)−1
h

2
(b(h) + b(0))−

∫ h

0

T e
∫ (j+1)h
s

A(t)dtb(s)dt

∥∥∥∥∥ = O(h3). (168)

Corollary 16. To solve the ODE Eq. (1) with A(t) satisfying the stability condition Eq. (11) by the trape-

zoidal rule, let ϵ be the desired precision, T > (max ∥A(t)∥)−1
be the evolution time, then we can obtain an

ϵ-approximation of

1. the history state uexact/∥uexact∥ using

O
(
T 1/4

√
1

ϵ
log

(
1

ϵ

))
(169)

queries to the time-dependent block-encoding OA of A(t) and the state preparation oracle.

2. the final state u(T)/∥u(T)∥ using

Õ
(
T 1/2

√
1

ϵ
log

(
1

ϵ

))
(170)

queries to the time-dependent block-encoding OA of A(t) and the state preparation oracle.

Proof. According to the discussion in Appendix E, we need two queries of OA to construct the block-encoding
of AM,Mp−1. Theorem 8 tells us that we need Eq. (49) and Eq. (50) hold for the numerical scheme. In the
inhomogeneous case, the first requirement is

∥∥∥L(j, h)−1R(j, h)− T e
∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ min

1

2
ηhe−ηh,

η3/2hϵ

144
√
2
√

1 + T max∥b(t)∥2

η∥u0∥2

√
max∥A(t)∥+ max∥b(t)∥

∥u0∥

,

(171)
and what we have is ∥∥∥L(j, h)−1R(j, h)− T e

∫ (j+1)h
jh A(s)ds

∥∥∥ = O(h3), (172)

25

so we can just require

h ≲ min

√
η,

 η3/2ϵ√

1 + T max∥b(t)∥2

η∥u0∥2

√
αA + max∥b(t)∥

∥u0∥

1/2

= O
(
ϵ1/2

T 1/4

)
. (173)

For the second requirement
∥∥∥∥∥L(j, h)

−1v(j, h)−
∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ ∥u0∥ηhϵ
72
√
2
√
T
√
maxt ∥A(t)∥+ max∥b(t)∥

∥u0∥

, (174)

we would require

h ≲

 ∥u0∥ηϵ
√
T
√
αA + max∥b(t)∥

∥u0∥

1/2

= O
(
ϵ1/2

T 1/4

)
. (175)

For the complexity of T and ϵ, equation Eq. (173) and equation Eq. (175) indicate that

M = O
(
T 5/4 1√

ϵ

)
. (176)

So according to theorem Theorem 8, we will need

O
(
T 1/4 1√

ϵ
log

(
1

ϵ

))
(177)

queries to OA and the state preparation oracle.
For the final state preparation, the first requirement in Theorem 10 is

∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ min

{
1

2
ηhe−ηh,

∥u(T)∥
∥u0∥+max∥b(t)∥/η

ηhϵ

128

}
, (178)

and what we have is ∥∥∥L(j, h)−1R(j, h)− T e
∫ (j+1)h
jh A(s)ds

∥∥∥ = O(h3), (179)

so we can just require

h ≲ min

{
√
η,

(∥u(T)∥ηϵ
(∥u0∥+max∥b(t)∥/η)

)1/2
}

= O(
√
ϵ). (180)

For the second requirement
∥∥∥∥∥L

−1
j vj −

∫ (j+1)h

jh

T e
∫ (j+1)h
s

A(τ)dτ b(s)ds

∥∥∥∥∥ ≤ ∥u(T)∥ηhϵ
32

, (181)

we would require

h ≲ (∥u(T)∥ηϵ)1/2 = O(
√
ϵ). (182)

It is clear then

M = O
(
T

1√
ϵ

)
. (183)

So according to Corollary 11, we will need

Õ
(
T 1/2 1√

ϵ
log

(
1

ϵ

))
(184)

queries to OA and the state preparation oracle.

26

In the homogeneous case, we have the following further improved complexity estimate for history state
preparation.

Corollary 17. To solve the ODE Eq. (1) with A(t) satisfying the stability condition Eq. (11) and b(t) ≡ 0

by the trapezoidal rule, let ϵ be the desired precision, T > (max ∥A(t)∥)−1
be the evolution time, then we can

obtain an ϵ-approximation of the history state uexact/∥uexact∥ using

O
(

1√
ϵ
log

(
1

ϵ

))
(185)

queries to OA and the state preparation oracle.

Proof. According to Theorem 9, for the homogeneous case, we only require that

∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ min

{
1

2
ηhe−ηh,

η3/2hϵ

32
√
max∥A(t)∥

}
, ∀ 0 ≤ j ≤ T/h− 1. (186)

This leads to

h ≲ min

{
√
η,

√
η3/2ϵ

α
1/2
A

}
= O

(√
ϵ
)
, (187)

meaning

M = O
(
T

1√
ϵ

)
. (188)

So according to Theorem 9, there is no dependence on T , and the dependence on ϵ is O
(

1√
ϵ
log
(
1
ϵ

))
.

6 Applications

In this section, we discuss the complexity of quantum algorithm for some applications of dissipative ODEs,
including quantum dynamics with non-Hermitian Hamiltonian and generalized heat equation. For the best
query complexity, in this section we only focus on the complexity of using the truncated Dyson series method.

6.1 Quantum dynamics with non-Hermitian Hamiltonian

General form of quantum dynamics with non-Hermitian Hamiltonian is given as

i
du(t)

dt
= (H(t) + iL(t))u(t), u(0) = |u0⟩ . (189)

Here the entire matrix H(t) + iL(t) is called the non-Hermitian Hamiltonian, where both H(t) and L(t)
are Hermitian. Eq. (189) is a generalization of the time-dependent Hamiltonian simulation problem. The
H(t) matrix is the standard (Hermitian) Hamiltonian in a closed quantum system, and iL(t) represents the
non-Hermitian correction term to the system.

To apply our fast-forwarded algorithm, we assume Eq. (189) to be dissipative, namely that there exists
a constant η > 0 such that L(t) ≤ −η < 0. We suppose that we are given access to the time-dependent
block-encodings OL and OH of L(t) and H(t), respectively. The block-encoding of H(t)+ iL(t) can be easily
constructed by linearly adding them together using the linear combination of unitaries (LCU) technique [39,
40], and this only requires one query to each of the block-encodings.

Notice that Eq. (189) is a homogeneous ODE, so the dynamics decays exponentially and we only focus
on the task of history state preparation. Quantum complexity is given in the following result, which is just
a reformulation of Corollary 13 and has no explicit time dependence.

Corollary 18. Consider using the truncated Dyson series method for simulating dissipative quantum dy-
namics with non-Hermitian Hamiltonian in Eq. (189) with L(t) ≤ −η < 0. Let ϵ > 0 be the target error, T
be the evolution time, and αL ≥ max∥L(t)∥ and αH ≥ max∥H(t)∥ be the block-encoding factors of L(t) and
H(t), respectively. Then, we can obtain an ϵ-approximation of the history state with complexity

O
(
αL + αH

η
log

(
αL + αH

ηϵ

)
log

(
1

ϵ

))
. (190)

27

6.2 Generalized heat equation

Consider the following evolutionary partial differential equation (PDE) on a d-dimensional unit cube

∂tu(t, x) = a∆u(t, x) + b∇ · u(t, x) + c(t, x)u(t, x) + f(t, x), t ∈ [0, T], x ∈ [0, 1]d, (191)

u(0, x) = u0(x), x ∈ [0, 1]d, (192)

u(t, x) = 0, x ∈ ∂([0, 1]d). (193)

Here a > 0 is a positive parameter called the thermal diffusivity, b is a real parameter called the flow
velocity, c(t, x) ≤ 0 is the potential function, and f(t, x) is the source term. We impose homogeneous
Dirichlet boundary condition on the cube, so the heat process is dissipative.

A standard way of solving Eq. (191) numerically is by the method of lines, which first semi-discretizes
the PDE into an ODE by only performing spatial discretization then solves the resulting ODE by any time
propagator. For spatial discretization, along each direction we use (nx + 1) many equi-distant grid points
j/nx, 0 ≤ j ≤ nx. We discretize the spatial derivatives by central difference, and the semi-discretized heat
equation is given as

du⃗(t)

dt
= aLu⃗(t) + bDu⃗(t) + C(t)u⃗(t) + f⃗(t), (194)

u⃗(0) = u⃗0. (195)

Here u⃗(t) is an (nx+1)d-dimensional vector approximating the solution u(t, x) at x = (j1/nx, j2/nx, · · · , jd/nx),
0 ≤ jk ≤ nx. f⃗(t) is a vector encoding f(t, x) at those points as well. L, D and C(t) are the discretized
version of the Laplace operator ∆, the divergence operator ∇·, and the potential function c(t, x), respectively.
They are given as

L =

d∑

j=1

I⊗(j−1) ⊗ L1 ⊗ I⊗(d−j), L1 = n2x

−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2

, (196)

D =
d∑

j=1

I⊗(j−1) ⊗D1 ⊗ I⊗(d−j), D1 =
1

2
nx

0 1
−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
−1 0

, (197)

and
C(t) = diag(c(t, xj)), xj = (j1/nx, j2/nx, · · · , jd/nx), 0 ≤ jk ≤ nx. (198)

We assume that nx is sufficiently large such that the spatial discretization error is already reasonably
bounded, and we only consider applying quantum algorithm to approximate the semi-discretized solution
u⃗(t) in Eq. (194).

The coefficient matrix of Eq. (194) is A(t) = aL + bD + C(t) and has the following properties. First,
both L and C(t) are Hermitian, and D is anti-Hermitian. The matrix C(t) is negative semi-definite since

c(t, x) ≤ 0, and eigenvalues of L1 are given as λ = −4n2x

(
sin
(

jπ
2(nx+2)

))2
, 1 ≤ j ≤ nx + 1. So, we have

A(t) +A(t)† = 2aL+ 2C(t) ≤ −8adn2x

(
sin

(
π

2(nx + 2)

))2

≤ − 8adn2
x

(nx + 2)2
, (199)

where we have used the fact that sin(πx2) ≥ x for x ∈ [0, 1], and thus Eq. (194) satisfies our assumption for
fast-forwarding by choosing η ∼ d. We also have ∥A(t)∥ = O(dn2

x), supposing c(t, x) is on O(1). So, we have
the following complexity estimate for solving Eq. (194) from Corollary 12.

28

Corollary 19. Consider using the truncated Dyson series method for solving the semi-discretized heat equa-
tion in Eq. (194). Let ϵ > 0 be the target error, T be the evolution time, d be the spatial dimension and nx
be the number of spatial grid points along each dimension. Then, we can obtain an ϵ-approximation of

1. the history state with complexity

Õ
(
n2x log(T)

(
log

(
1

ϵ

))2
)
, (200)

2. the final state with complexity

Õ
(
maxt∥u⃗(t)∥
∥u⃗(T)∥ n2x

√
dT

(
log

(
1

ϵ

))2
)
. (201)

Acknowledgements

We thank Andrew Childs, David Jennings, and Matteo Lostaglio for helpful discussions.

References

[1] Dominic W. Berry. “High-order quantum algorithm for solving linear differential equations”. In: Jour-
nal of Physics A: Mathematical and Theoretical 47.10 (2014), p. 105301. doi: 10.1088/1751-8113/
47/10/105301 (pages 2, 4, 6, 7, 9, 10).

[2] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm for linear systems of
equations”. In: Phys. Rev. Lett. 103 (2009), p. 150502. doi: 10.1103/PhysRevLett.103.150502
(page 2).

[3] Dominic W. Berry, Andrew M. Childs, Aaron Ostrander, and Guoming Wang. “Quantum algorithm
for linear differential equations with exponentially improved dependence on precision”. In: Commu-
nications in Mathematical Physics 356.3 (2017), pp. 1057–1081. doi: 10.1007/s00220-017-3002-y
(pages 2, 4, 6, 7, 9).

[4] Andrew M. Childs and Jin-Peng Liu. “Quantum spectral methods for differential equations”. In: Com-
munications in Mathematical Physics 375.2 (2020), pp. 1427–1457. doi: 10.1007/s00220-020-03699-
z (pages 2, 4, 6, 7, 9).

[5] Hari Krovi. “Improved quantum algorithms for linear and nonlinear differential equations”. In: Quan-
tum 7 (Feb. 2023), p. 913. doi: 10.22331/q-2023-02-02-913 (pages 2, 4, 6, 7, 9).

[6] Dominic W. Berry and Pedro C. S. Costa. Quantum algorithm for time-dependent differential equations
using Dyson series. 2022. arXiv: 2212.03544 [quant-ph] (pages 2–4, 6, 7, 9, 20–22, 35, 36).

[7] Di Fang, Lin Lin, and Yu Tong. “Time-marching based quantum solvers for time-dependent linear
differential equations”. In: Quantum 7 (Mar. 2023), p. 955. doi: 10.22331/q- 2023- 03- 20- 955
(pages 3, 6, 7, 20).

[8] Guang Hao Low and Yuan Su. Quantum eigenvalue processing. 2024. arXiv: 2401.06240 [quant-ph].
url: https://arxiv.org/abs/2401.06240 (pages 3, 6, 7).

[9] Dong An, Jin-Peng Liu, and Lin Lin. “Linear Combination of Hamiltonian Simulation for Nonunitary
Dynamics with Optimal State Preparation Cost”. In: Physical Review Letters 131.15 (Oct. 2023). doi:
10.1103/physrevlett.131.150603 (pages 3, 4, 7).

[10] Dong An, Andrew M. Childs, and Lin Lin. Quantum algorithm for linear non-unitary dynamics with
near-optimal dependence on all parameters. 2023. arXiv: 2312.03916 [quant-ph]. url: https://
arxiv.org/abs/2312.03916 (pages 3, 4, 6–8, 20).

[11] Shi Jin, Nana Liu, and Yue Yu. Quantum simulation of partial differential equations via Schrodingeri-
sation. 2022. arXiv: 2212.13969 [quant-ph] (pages 3, 6, 7).

29

[12] Junpeng Hu, Shi Jin, Nana Liu, and Lei Zhang. Dilation theorem via Schrödingerisation, with ap-
plications to the quantum simulation of differential equations. 2023. arXiv: 2309.16262 [quant-ph]

(page 3).

[13] Pedro C.S. Costa, Dong An, Yuval R. Sanders, Yuan Su, Ryan Babbush, and Dominic W. Berry.
“Optimal scaling quantum linear-systems solver via discrete adiabatic theorem”. In: PRX Quantum 3
(4 2022), p. 040303. doi: 10.1103/PRXQuantum.3.040303 (pages 3, 4, 10, 11, 16, 19, 35).

[14] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. “Expo-
nential improvement in precision for simulating sparse Hamiltonians”. In: Proceedings of the forty-sixth
annual ACM symposium on Theory of computing. 2014, pp. 283–292. doi: 10.1145/2591796.2591854
(page 3).

[15] Yosi Atia and Dorit Aharonov. “Fast-forwarding of Hamiltonians and exponentially precise measure-
ments”. In: Nature Communications 8.1 (2017), p. 1572. doi: 10.1038/s41467-017-01637-7 (pages 3,
7).

[16] Shouzhen Gu, Rolando D. Somma, and Burak Şahinoğlu. “Fast-forwarding quantum evolution”. In:
Quantum 5 (2021), p. 577. doi: 10.22331/q-2021-11-15-577 (pages 3, 7).

[17] Lin Lin and Yu Tong. “Optimal polynomial based quantum eigenstate filtering with application to
solving quantum linear systems”. In: Quantum 4 (2020), p. 361. doi: 10.22331/q-2020-11-11-361
(page 4).

[18] Alexander M. Dalzell. A shortcut to an optimal quantum linear system solver. 2024. arXiv: 2406.12086
[quant-ph]. url: https://arxiv.org/abs/2406.12086 (pages 4, 10, 11).

[19] Dong An, Jin-Peng Liu, Daochen Wang, and Qi Zhao. A theory of quantum differential equation solvers:
limitations and fast-forwarding. 2022. arXiv: 2211.05246 (pages 6, 7).

[20] David Jennings, Matteo Lostaglio, Robert B. Lowrie, Sam Pallister, and Andrew T. Sornborger. The
cost of solving linear differential equations on a quantum computer: fast-forwarding to explicit resource
counts. 2024. arXiv: 2309.07881 [quant-ph]. url: https://arxiv.org/abs/2309.07881 (pages 6,
7).

[21] Carl M Bender. “Making sense of non-Hermitian Hamiltonians”. In: Reports on Progress in Physics
70.6 (May 2007), pp. 947–1018. issn: 1361-6633. doi: 10.1088/0034-4885/70/6/r03. url: http:
//dx.doi.org/10.1088/0034-4885/70/6/R03 (page 7).

[22] M. A. Rego-Monteiro and F. D. Nobre. “Classical field theory for a non-Hermitian Schrödinger equation
with position-dependent masses”. In: Phys. Rev. A 88 (3 Sept. 2013), p. 032105. doi: 10.1103/
PhysRevA.88.032105. url: https://link.aps.org/doi/10.1103/PhysRevA.88.032105 (page 7).

[23] Giulio G. Giusteri, Francesco Mattiotti, and G. Luca Celardo. “Non-Hermitian Hamiltonian approach
to quantum transport in disordered networks with sinks: Validity and effectiveness”. In: Physical Review
B 91.9 (Mar. 2015). issn: 1550-235X. doi: 10.1103/physrevb.91.094301. url: http://dx.doi.
org/10.1103/PhysRevB.91.094301 (page 7).

[24] Ramy El-Ganainy, Konstantinos G. Makris, Mercedeh Khajavikhan, Ziad H. Musslimani, Stefan Rot-
ter, and Demetrios N. Christodoulides. “Non-Hermitian physics and PT symmetry”. In: Nature Physics
14.1 (2018), pp. 11–19. doi: 10.1038/nphys4323. url: https://doi.org/10.1038/nphys4323
(page 7).

[25] Zongping Gong, Yuto Ashida, Kohei Kawabata, Kazuaki Takasan, Sho Higashikawa, and Masahito
Ueda. “Topological Phases of Non-Hermitian Systems”. In: Physical Review X 8.3 (Sept. 2018). issn:
2160-3308. doi: 10.1103/physrevx.8.031079. url: http://dx.doi.org/10.1103/PhysRevX.8.
031079 (page 7).

[26] Nobuyuki Okuma, Kohei Kawabata, Ken Shiozaki, and Masatoshi Sato. “Topological Origin of Non-
Hermitian Skin Effects”. In: Phys. Rev. Lett. 124 (8 Feb. 2020), p. 086801. doi: 10.1103/PhysRevLett.
124.086801 (page 7).

[27] Yuto Ashida, Zongping Gong, and Masahito Ueda. “Non-Hermitian physics”. In: Advances in Physics
69.3 (July 2020), pp. 249–435. doi: 10.1080/00018732.2021.1876991. url: https://doi.org/10.
1080/00018732.2021.1876991 (page 7).

30

[28] Norifumi Matsumoto, Kohei Kawabata, Yuto Ashida, Shunsuke Furukawa, and Masahito Ueda. “Con-
tinuous Phase Transition without Gap Closing in Non-Hermitian Quantum Many-Body Systems”. In:
Phys. Rev. Lett. 125 (26 Dec. 2020), p. 260601. doi: 10.1103/PhysRevLett.125.260601 (page 7).

[29] Kun Ding, Chen Fang, and Guancong Ma. “Non-Hermitian topology and exceptional-point geome-
tries”. In: Nature Reviews Physics 4.12 (Oct. 2022), pp. 745–760. issn: 2522-5820. doi: 10.1038/
s42254-022-00516-5. url: http://dx.doi.org/10.1038/s42254-022-00516-5 (page 7).

[30] Guangze Chen, Fei Song, and Jose L. Lado. “Topological Spin Excitations in Non-Hermitian Spin
Chains with a Generalized Kernel Polynomial Algorithm”. In: Phys. Rev. Lett. 130 (10 Mar. 2023),
p. 100401. doi: 10.1103/PhysRevLett.130.100401 (page 7).

[31] Mingchen Zheng, Yi Qiao, Yupeng Wang, Junpeng Cao, and Shu Chen. “Exact Solution of the Bose-
Hubbard Model with Unidirectional Hopping”. In: Phys. Rev. Lett. 132 (8 Feb. 2024), p. 086502. doi:
10.1103/PhysRevLett.132.086502. url: https://link.aps.org/doi/10.1103/PhysRevLett.132.
086502 (page 7).

[32] Pei-Xin Shen, Zhide Lu, Jose L. Lado, and Mircea Trif. “Non-Hermitian Fermi-Dirac Distribution in
Persistent Current Transport”. In: Phys. Rev. Lett. 133 (8 Aug. 2024), p. 086301. doi: 10.1103/
PhysRevLett.133.086301. url: https://link.aps.org/doi/10.1103/PhysRevLett.133.086301
(page 7).

[33] Lawrence C. Evans. Partial differential equations. Vol. 19. American Mathematical Soc., 2010 (page 7).

[34] David Vernon Widder. The heat equation. Vol. 67. Academic Press, 1976 (page 7).

[35] John Rozier Cannon. The one-dimensional heat equation. 23. Cambridge University Press, 1984 (page 7).

[36] R. K. Michael Thambynayagam. The diffusion handbook: applied solutions for engineers. McGraw Hill
Professional, 2011 (page 7).

[37] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. “Quantum amplitude amplification and
estimation”. In: Contemp. Math. 305 (2002), pp. 53–74. doi: 10.1090/conm/305/05215 (page 11).

[38] Guang Hao Low and Nathan Wiebe. Hamiltonian Simulation in the Interaction Picture. 2019. arXiv:
1805.00675 [quant-ph] (page 20).

[39] Andrew M. Childs and Nathan Wiebe. “Hamiltonian Simulation Using Linear Combinations of Unitary
Operations”. In: Quantum Information and Computation 12 (2012), pp. 901–924. doi: 10.26421/
qic12.11-12 (pages 27, 37, 39).

[40] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. “Quantum algorithm for systems of linear
equations with exponentially improved dependence on precision”. In: SIAM J. Comput. 46 (2017),
pp. 1920–1950. doi: 10.1137/16M1087072 (page 27).

31

A Proof of Lemma 5

Proof of Lemma 5. Let ∆t = t1 − t0. We first prove the upper bound. We use the convergence of the
first-order time-dependent Trotter formula and obtain

T e
∫ t1
t0

A(s)ds = lim
r→∞

r−1∏

j=0

e
∆t
r A(t0+j∆t/r). (202)

For each fixed integer r and 0 ≤ j ≤ r − 1, by the definition of η, we have

∥∥∥e∆t
r A(t0+j∆t/r)

∥∥∥ ≤ e−η∆t/r, (203)

so

∥∥∥T e
∫ t1
t0

A(s)ds
∥∥∥ ≤ lim

r→∞

r−1∏

j=0

∥∥∥e∆t
r A(t0+j∆t/r)

∥∥∥ ≤ lim
r→∞

r−1∏

j=0

e−η∆t/r = e−η∆t. (204)

For the lower bound, notice that
(
T e

∫ t1
t0

A(s)ds
)−1

= T e−
∫ t1
t0

A(t0+t1−s)ds. We have

1 = ∥|v⟩∥ =
∥∥∥
(
T e−

∫ t1
t0

A(t0+t1−s)ds
)(

T e
∫ t1
t0

A(s)ds
)
|v⟩
∥∥∥ ≤

∥∥∥T e−
∫ t1
t0

A(t0+t1−s)ds
∥∥∥
∥∥∥T e

∫ t1
t0

A(s)ds |v⟩
∥∥∥, (205)

and thus ∥∥∥T e
∫ t1
t0

A(s)ds |v⟩
∥∥∥ ≥

∥∥∥T e−
∫ t1
t0

A(t0+t1−s)ds
∥∥∥
−1

. (206)

It suffices to derive an upper bound of T e−
∫ t1
t0

A(t0+t1−s)ds, which can be achieved by the similar technique
as in the first part of the proof. Specifically, by the Trotter formula again, we have

T e−
∫ t1
t0

A(t0+t1−s)ds = lim
r→∞

r−1∏

j=0

e−
∆t
r A(t1−j∆t/r). (207)

Noticing that
∥∥∥e−∆t

r A(t1−j∆t/r)
∥∥∥ ≤ e(∆t/r)maxt∥A(t)∥ for every r and 0 ≤ j ≤ r − 1, we have

∥∥∥T e−
∫ t1
t0

A(t0+t1−s)ds
∥∥∥ ≤ lim

r→∞

r−1∏

j=0

∥∥∥e−∆t
r A(t1−j∆t/r)

∥∥∥ ≤ lim
r→∞

r−1∏

j=0

e(∆t/r)maxt∥A(t)∥ = e∆tmaxt∥A(t)∥. (208)

Therefore ∥∥∥T e
∫ t1
t0

A(s)ds |v⟩
∥∥∥ ≥

∥∥∥T e−
∫ t1
t0

A(t0+t1−s)ds
∥∥∥
−1

≥ e−∆tmaxt∥A(t)∥. (209)

B Proof of Lemma 6

Proof of Lemma 6. The idea is that, for any matrix M, its spectral norm is the square root of the spectral
norm of the Hermitian matrixM†M, and the spectral norm of a Hermitian matrix is bounded by its “1-norm”
in terms of the blocks.

Specifically, we write M†M = (Bi,j), where

Bi,j =
n−1∑

k=0

M†
k,iMk,j . (210)

32

Let λ be the largest eigenvalue of M†M, and x = [x0;x1; · · · ;xn−1] be its eigenvector. Suppose that
q = argmaxj∥xj∥, and by the definition of an eigenvector we have

n−1∑

j=0

Bq,jxj = λxq. (211)

By triangle inequality,

λ∥xq∥ ≤
n−1∑

j=0

∥Bq,j∥∥xj∥, (212)

and

λ ≤
n−1∑

j=0

∥Bq,j∥
∥xj∥
∥xq∥

≤
n−1∑

j=0

∥Bq,j∥ ≤ max
i

n−1∑

j=0

∥Bi,j∥. (213)

Therefore

∥M∥ =
√
λ ≤ max

i

√√√√
n−1∑

j=0

∥Bi,j∥ ≤ max
i

√√√√
n−1∑

j=0

n−1∑

k=0

∥Mk,i∥∥Mk,j∥ = max
i

√√√√
n−1∑

k=0

n−1∑

j=0

∥Mk,i∥∥Mk,j∥. (214)

For each fixed i and k, we have

n−1∑

j=0

∥Mk,i∥∥Mk,j∥ = ∥Mk,i∥

n−1∑

j=0

∥Mk,j∥

 ≤ ∥Mk,i∥

max

l

n−1∑

j=0

∥Ml,j∥

. (215)

So

∥M∥ ≤ max
i

√√√√√
n−1∑

k=0

∥Mk,i∥

max

l

n−1∑

j=0

∥Ml,j∥

 =

√√√√√
(
max

i

n−1∑

k=0

∥Mk,i∥
)
max

l

n−1∑

j=0

∥Ml,j∥

, (216)

which is the claimed inequality despite different notation of indices.

C Proof of Theorem 9

Proof of Theorem 9. The idea is the same as proving Theorem 8 but with tighter upper bound for the
numerical discretization error. For the ease of reading, here we still present a complete proof, which has
some overlap with the proof of Theorem 8 but can be read independently.

LetM = T/h, u = A−1
M,0bM,0 and |u⟩ = u/∥u∥, and we denote L−1 = I. We first show that |u⟩ is indeed

an ϵ/2-approximation of |uexact⟩. Let
ϵ′ =

η3/2hϵ

32
√

max∥A(t)∥
. (217)

Now the local truncation error is bounded as∥∥∥L−1
j Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ ϵ′. (218)

Then, for each 1 ≤ k ≤ T/h, we have

∥uk − u(kh)∥ =

∥∥∥∥∥∥

k−1∏

j=0

L−1
j Rju0 − T e

∫ kh
0

A(s)dsu0

∥∥∥∥∥∥
(219)

≤

∥∥∥∥∥∥

k−1∏

j=0

L−1
j Rj − T e

∫ kh
0

A(s)ds

∥∥∥∥∥∥
∥u0∥ (220)

=

∥∥∥∥∥∥

k−1∏

j=0

Pj −
k−1∏

j=0

Qj

∥∥∥∥∥∥
∥u0∥, (221)

33

where we denote Pj = L−1
j Rj and Qj = T e

∫ (j+1)h
jh A(s)ds. We use the triangle inequality to write

∥uk − u(kh)∥ ≤

∥∥∥∥∥∥

k−1∑

l=0

k−1∏

j=l+1

Pj

(Pl −Ql)

l−1∏

j=0

Qj

∥∥∥∥∥∥
∥u0∥ (222)

≤
k−1∑

l=0

k−1∏

j=l+1

∥Pj∥

∥Pl −Ql∥

l−1∏

j=0

∥Qj∥

∥u0∥ (223)

≤ ϵ′
k−1∑

l=0

k−1∏

j=l+1

∥Pj∥

l−1∏

j=0

∥Qj∥

∥u0∥. (224)

By Lemma 5 and the proof of Lemma 7, we have ∥Qj∥ ≤ e−ηh ≤ e−ηh/2 and ∥Pj∥ ≤ e−ηh/2, and thus

∥uk − u(kh)∥ ≤ kϵ′e−η(k−1)h/2∥u0∥. (225)

Therefore, the error in the unnormalized history vector can be bounded as

∥u− uexact∥ (226)

=

√√√√
M∑

k=1

∥uk − u(kh)∥2 (227)

≤ ∥u0∥ϵ′
√√√√

M∑

k=1

k2e−η(k−1)h (228)

= ∥u0∥ϵ′
√

(2M2 + 2M − 1)e−η(M+1)h −M2e−η(M+2)h − (M + 1)2e−ηMh + e−ηh + 1

(1− e−ηh)3
(229)

= ∥u0∥ϵ′
√

1 + e−ηh

(1− e−ηh)3
− M2e−ηMh(1− e−ηh)2

(1− e−ηh)3
− 2Me−ηMh(1− e−ηh)

(1− e−ηh)3
− e−ηMh(1 + e−ηh)

(1− e−ηh)3
(230)

≤ ∥u0∥ϵ′
√

2

(1− e−ηh)3
(231)

≤ 4
∥u0∥ϵ′
(ηh)3/2

. (232)

The error in the quantum states becomes

∥|u⟩ − |uexact⟩∥ ≤ 2

∥uexact∥
∥u− uexact∥ ≤ 8

∥u0∥ϵ′
∥uexact∥(ηh)3/2

. (233)

34

According to the lower bound in Lemma 5, the norm of the exact unnormalized history vector satisfies

∥uexact∥ =

√√√√
M∑

j=0

∥u(jh)∥2 (234)

=

√√√√
M∑

j=0

∥∥∥T e
∫ jh
0

A(s)dsu0

∥∥∥
2

(235)

≥ ∥u0∥

√√√√
M∑

j=0

e−2jhmax∥A(t)∥ (236)

= ∥u0∥
√

1− e−2(T+h)max∥A(t)∥

1− e−2hmax∥A(t)∥ (237)

≥ ∥u0∥
2
√
hmax∥A(t)∥

. (238)

Then Eq. (233) becomes

∥u− uexact∥ ≤ 16

√
max∥A(t)∥ϵ′
hη3/2

≤ ϵ

2
, (239)

where the last inequality is due to the choice of ϵ′ in Eq. (217).
Then, solving the linear system of equations AM,0u = bM,0 up to error ϵ/2 gives the ϵ-approximation

of |uexact⟩. According to [13], it requires O(κ log(1/ϵ)) queries to the block-encoding of AM,0 and the

state preparation oracle of bM,0, where κ = ∥AM,0∥
∥∥∥A−1

M,0

∥∥∥ is the condition number of AM,0. According

to Lemma 7, we have

κ = O
((

1 + max
j

∥Lj∥+max
j

∥Rj∥
)(

1 + max
j

∥∥L−1
j

∥∥
)
M

ηT

)
(240)

and complete the proof.

D Proof of Corollary 13

Proof of Corollary 13. According to [6, Section 3], constructing a block-encoding of AM,0 needs K calls to
OA. Also notice that Lj = I in the truncated Dyson series method. Then Theorem 9 tells that the overall
query complexity is

O
((

1 + max
j

∥Rj∥
)
KM

ηT
log

(
1

ϵ

))
(241)

queries to OA and

O
((

1 + max
j

∥Rj∥
)
M

ηT
log

(
1

ϵ

))
(242)

queries to Ou0
.

We need to choose K and M such that Eq. (90) holds. Notice that, under the assumption ηh ≤ 1 which
will be satisfied by the choice of h specified later, we have

ηhe−ηh = Ω(ηh) = Ω

(
η3/2h√

max∥A(t)∥

)
= Ω

(
η3/2hϵ√
max∥A(t)∥

)
. (243)

Then it suffices to choose K and M such that
∥∥∥Rj − T e

∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ O(ϵ′) (244)

35

with

ϵ′ =
η3/2hϵ√
max∥A(t)∥

. (245)

We first choose
M = 2αAT, (246)

then αAh = 1/2 and thus the block-encoding of the Dyson series is well-behaved [6]. As a result, by the
definition of Rj in Eq. (122), we have

∥Rj∥ ≤
K∑

k=0

hk

k!
αk
A ≤ eαAh = O(1). (247)

Furthermore, according to [6, Eq.(6)], the local truncation error can be bounded as

∥∥∥Rj − T e
∫ (j+1)h
jh A(s)ds

∥∥∥ ≤ O
(
(αAh)

K+1

(K + 1)!

)
≤ O

(
1

(K + 1)!

)
≤ O

(
e−K

)
. (248)

Therefore, to bound the local truncation error by ϵ′, it suffices to choose K = O(log(1/ϵ′)), which in turn,
according to the choice of ϵ′ in Eq. (245), becomes

K = O
(
log

(
max∥A(t)∥

ηhϵ

))
= O

(
log

(
αA

ηϵ

))
. (249)

Plugging Eqs. (246), (247) and (249) back to Eqs. (241) and (242) yields the claimed complexity estimates.

E Constructing block-encodings in lower-order methods

In order to design a quantum algorithm, it is crucial to determine the input model. Recall Eq. (119), here
we mainly follow the paradigm in [6], by assuming we can query A(t) in the following way:

OA |0a⟩ |t⟩ |ψ⟩ = 1

αA
|0a⟩ |t⟩A(t) |ψ⟩+ |⊥⟩ . (250)

Here a is the number of ancilla qubits, and the first register is used to indicate a successful or failed
measurement. |t⟩ ranges from |0⟩ to |M − 1⟩, representing a uniform grid on the time interval [0, T]. |⊥⟩
represents a possibly unnormalized state such that (|0a⟩ ⟨0a| ⊗ I) |⊥⟩ = 0, and αA ≥ max∥A(t)∥ is the
block-encoding factor.

Because of the definition of Eq. (26), we could encounter the scenario that the clock register may contain
some state that is beyond time T . However we could pay the price of at most Mp controlled-X gate acting
on the first register controlled on the clock register is greater than |M − 1⟩, so the definition in Eq. (119)
will not be influenced.

Another useful operator is the ADD operator, namely

OADD :=

M+Mp−1∑

t=0

|(t+ 1) mod (M +Mp − 1)⟩ ⟨t| . (251)

E.1 Forward Euler method

Lemma 20. When using the Forward Euler method, we are able to construct a block-encoding of the matrix
AM,Mp−1 defined in Eq. (26) with block-encoding factor 2 + hαA, using 1 query to OA, 2 queries to the
ADD operator, 2 queries to the preparation oracles defined in Eq. (257), and at most Mp + 1 multi-qubit
controlled-X gate.

36

Proof. The Forward Euler method is defined as follows:

uj+1 = (I + hA(jh))uj . (252)

So in this scenario we have
Lj = I, Rj = I + hA(jh). (253)

Thus the matrix AM,Mp−1 becomes

AM,Mp−1 =

I
−I − hA(0) I

−I − hA(h) I
. . .

. . .

−I − hA((M − 1)h) I
−I I

−I I
. . .

. . .

−I I

= I+

0
−I − hA(0) 0

−I − hA(h) 0
. . .

. . .

−I − hA((M − 1)h) 0
−I 0

−I 0
. . .

. . .

−I 0

= I−
M+Mp−2∑

t=0

|t+ 1⟩ ⟨t| ⊗ I −

0
−hA(0) 0

−hA(h) 0
. . .

. . .

−hA((M − 1)h) 0
0 0

0 0
. . .

. . .

0 0

= I−
M+Mp−2∑

t=0

|t+ 1⟩ ⟨t| ⊗ I − h

M−1∑

t=0

|t+ 1⟩ ⟨t| ⊗A(t).

(254)

Let us now consider the queries needed for constructing a block-encoding of the AM+Mp−1 above. Notice
that

(I ⊗OADD ⊗ I)(|0a⟩ |t⟩ |ψ⟩) = |0a⟩ |(t+ 1) mod (M +Mp − 1)⟩ |ψ⟩ , (255)

then controlled on the second register being |0⟩, flip the first register to |1⟩ |0a−1⟩, we then have a block-

encoding of
∑M−1

j=0 |j + 1⟩ ⟨j| ⊗ I. Denote this block-encoding as U2.
Similarly,

(I ⊗OADD ⊗ I)OA(|0a⟩ |t⟩ |ψ⟩) =
1

αA
|0a⟩ |t+ 1⟩A(t) |ψ⟩+ |⊥⟩ , (256)

thus we have U3, which is a block-encoding of h
∑M−1

j=0 |j + 1⟩ ⟨j| ⊗ A(jh) with block-encoding factor αAh.
By leveraging the linear combination of unitaries technique [39], we need two additional ancilla qubits. We

37

construct the preparation oracle as

Oprep =
1√

2 + hαA

1 ∗ ∗ ∗
ı ∗ ∗ ∗

ı
√
αAh ∗ ∗ ∗
0 ∗ ∗ ∗

 (257)

and the select oracle to be
Osel = |01⟩ ⟨01| ⊗ U2 + |10⟩ ⟨10| ⊗ U3. (258)

Simple computation yields

(Oprep ⊗ Ia ⊗ I)†Osel(Oprep ⊗ Ia ⊗ I) = |00⟩ ⟨00| 1

2 + hαA
(Ia ⊗ I− U2 − (αAh)U3) + P⊥. (259)

Here Oprep is the conjugate of Oprep, and P
⊥ satisfies (⟨00| ⊗ Ia ⊗ I)P⊥(|00⟩⊗ Ia ⊗ I) = 0. Thus we are able

to have a block-encoding for AM,Mp−1 with block-encoding factor 2 + hαA.

E.2 Trapezoidal rule

Lemma 21. When using the trapezoidal rule, we are able to construct a block-encoding of the matrix
AM,Mp−1 defined in Eq. (26) with block-encoding factor 2 + hαA, using 2 queries to OA, 2 queries to the
ADD operator, 2 queries to the preparation oracles defined in Eq. (257), and at most 2Mp + 1 multi-qubit
controlled-X gate.

Proof. For the trapezoidal rule, we have

uj+1 = uj +
1

2
h(A(jh)uj + b(jh) +A((j + 1)h)uj+1 + b((j + 1)h)). (260)

(
I − h

2
A((j + 1)h)

)
uj+1 =

(
I +

h

2
A(jh)

)
uj +

h

2
(b(jh) + b((j + 1)h)). (261)

So we would have

Lj = I − h

2
A((j + 1)h), Rj = I +

h

2
A(jh). (262)

38

Thus the matrix AM,Mp−1 becomes

AM,Mp−1

=

I
−I − h

2A(0) I − h
2A(h)

−I − h
2A(h) I − h

2A(2h)
. . .

. . .

−I − h
2A((M − 1)h) I − h

2A(Mh)
−I I

−I I
. . .

. . .

−I I

= I+

0
−I − h

2A(0) −h
2A(h)

−I − h
2A(h) −h

2A(2h)
. . .

. . .

−I − h
2A((M − 1)h) −h

2A(Mh)
−I 0

−I 0
. . .

. . .

−I 0

= I−
M+Mp−2∑

t=0

|t+ 1⟩ ⟨t| ⊗ I −

0
−h

2A(0) −h
2A(h)

−h
2A(h) −h

2A(2h)
. . .

. . .

−h
2A((M − 1)h) −h

2A(Mh)
0 0

0 0
. . .

. . .

0 0

= I−
M+Mp−2∑

t=0

|t+ 1⟩ ⟨t| ⊗ I − h

2

M−1∑

t=0

|t+ 1⟩ ⟨t| ⊗A(t)− h

2

M∑

t=1

|t⟩ ⟨t| ⊗A(t).

(263)

The rest is pretty similar to the process in the forward Euler part. Recall Eq. (255), we have a block-

encoding V2 of
∑M+Mp−2

t=0 |t+ 1⟩ ⟨t| ⊗ I using one query to OADD and one multi-qubit controlled-X gate.

Similarly, we have a block-encoding V3 of h
2

∑M−1
t=0 |t+ 1⟩ ⟨t|⊗A(t) with block-encoding factor 1

2hαA and

a block-encoding V4 of h
2

∑M
t=1 |t⟩ ⟨t| ⊗ A(t) with block-encoding factor 1

2hαA. Constructing them will cost
us at most 2Mp multi-qubit controlled-X gate additionally.

By leveraging the linear combination of unitaries technique [39], we will need two additional ancilla
qubits. We construct the preparation oracle as

Oprep =
1√

2 + hαA

1 ∗ ∗ ∗
ı ∗ ∗ ∗

ı
√
αAh/2 ∗ ∗ ∗

ı
√
αAh/2 ∗ ∗ ∗

 (264)

and the select oracle to be

Osel = |01⟩ ⟨01| ⊗ V2 + |10⟩ ⟨10| ⊗ V3 + |11⟩ ⟨11| ⊗ V4. (265)

39

Simple computation yields

(Oprep ⊗ Ia ⊗ I)†Osel(Oprep ⊗ Ia ⊗ I) = |00⟩ ⟨00| 1

2 + hαA

(
Ia ⊗ I− V2 −

αAh

2
V3 −

αAh

2
V4

)
+ P⊥. (266)

Here Oprep is the conjugate of Oprep, and P
⊥ satisfies (⟨00| ⊗ Ia ⊗ I)P⊥(|00⟩⊗ Ia ⊗ I) = 0. Thus we are able

to have a block-encoding for AM,Mp−1 with block-encoding factor 2 + hαA.

F Error analysis of lower-order numerical schemes

In the following, we demonstrate that Forward Euler and Trapezoidal rule have local error scale as O(h2)
and O(h3) respectively, when approximating the time-ordering matrix exponential. For simplicity, we only
consider the time interval [0, h], where h is the step size. Furthermore, we would require that A(t) is in C3.

F.1 Forward Euler

F.1.1 Evolution operator

Since
∥∥∥T e

∫ h
0

A(s)ds − (I + hA(0))
∥∥∥ = sup

∥v∥=1

∥∥∥
(
T e

∫ h
0

A(s)ds − (I + hA(0))
)
v
∥∥∥. (267)

Let us now consider

du

dt
= A(t)u,

u(0) = v,
(268)

we can then denote T e
∫ h
0

A(s)dsv as u(h).

sup
∥v∥=1

∥u(h)− (I + hA(0))v∥ = sup
∥v∥=1

∥∥∥∥∥v +A(0)h+

∫ h

0

d2u

dt2
t dt− (I + hA(0))v

∥∥∥∥∥

= sup
∥v∥=1

∥∥∥∥∥

∫ h

0

d2u

dt2
t dt

∥∥∥∥∥ ≤ sup
∥v∥=1

sup
0≤t≤h

h2

2

∥∥∥∥
d2u

dt2

∥∥∥∥.
(269)

Notice that

d2u

dt2
=

d

dt
(A(t)u(t)) = A′(t)u(t) +A2(t)u(t), (270)

so we have the estimation

sup
∥v∥=1

sup
0≤t≤h

∥∥∥∥
d2u

dt2

∥∥∥∥ = sup
∥v∥=1

sup
0≤t≤h

∥A′(t)u(t) +A2(t)u(t)∥ ≤ sup
0≤t≤h

(∥A(t)∥2 + ∥A′(t)∥). (271)

Plugging Eq. (271) back into Eq. (269), we have

∥∥∥T e
∫ h
0

A(s)ds − (I + hA(0))
∥∥∥ ≤ 1

2
sup

0≤t≤h
(∥A(t)∥2 + ∥A′(t)∥)h2 = O(h2). (272)

F.1.2 Inhomogeneous term

Here, we want to bound
∥∥∥∥∥hb(h)−

∫ h

0

T e
∫ h
s

A(t)dtb(s)ds

∥∥∥∥∥ = O(h2). (273)

40

Since

f(s)|s=h := T e
∫ h
s

A(t)dtb(s)a

∣∣∣∣
s=h

= b(h), (274)

then we have

∫ h

0

f(s)ds− hf(h) =

∫ h

0

f(h) + (s− h)f ′(h) +O((s− h)2) ds− hf(h) = O(h2). (275)

F.2 Trapezoidal rule

F.2.1 Evolution operator

For the trapezoidal rule, we are estimating

∥∥∥∥T e
∫ h
0

A(s)ds − (I − h

2
A(h))−1(I +

h

2
A(0))

∥∥∥∥ = sup
∥v∥=1

∥∥∥∥
(
T e

∫ h
0

A(s)ds − (I − h

2
A(h))−1(I +

h

2
A(0))

)
v

∥∥∥∥.

(276)

According to the Neumann series, we know that

(I − h

2
A(h))−1(I +

h

2
A(0)) =

∞∑

k=0

(
h

2
A(h))k(I +

h

2
A(0))

= I +
h

2
A(0) +

h

2
A(h) +

h2

4
A(h)A(0) +

h2

4
A2(h) +O(h3).

(277)

Now, since

A(h) = A(0) + hA′(0) +
h2

2
A′′(0) +O(h3), (278)

we can further write Eq. (277) as

(I − h

2
A(h))−1(I +

h

2
A(0)) = I + hA(0) +

h2

2
A′(0) +

h2

2
A2(0) +O(h3). (279)

Next, using a similar notation in the above section, we know that

sup
∥v∥=1

∥∥∥∥u(h)− (I − h

2
A(h))−1(I +

h

2
A(0))v

∥∥∥∥

= sup
∥v∥=1

∥∥∥∥∥v + hu′(0) +
h2

2
u′′(0) +

1

2

∫ h

0

d3u

dt3
t2 dt− (I − h

2
A(h))−1(I +

h

2
A(0))v

∥∥∥∥∥.
(280)

Notice that
u′(t) = A(t)u(t), (281)

u′′(t) =
d

dt
u′(t) =

d

dt
A(t)u(t) = A′(t)u(t) +A2(t)u(t), (282)

u′′′(t) =
d

dt
u′′(t) =

d

dt
(A′(t)u(t)+A2(t)u(t)) = A′′(t)u(t)+A′(t)A(t)u(t)+2A(t)A′(t)u(t)+A3(t)u(t), (283)

we know

v + hu′(0) +
h2

2
u′′(0) = (I + hA(0) +

h2

2
(A′(0) +A2(0)))v, (284)

Compare Eq. (284) and Eq. (279) and plug everything in then equation Eq. (276) could be O(h3).

41

F.2.2 Inhomogeneous term

Here we need to bound
∥∥∥∥∥(I −

h

2
A(h))−1h

2
(b(h) + b(0))−

∫ h

0

T e
∫ h
s

A(t)dtb(s)ds

∥∥∥∥∥ = O(h3), (285)

which can be achieved by the following computation

∥∥∥∥∥

(
I − h

2
A(h))−1h

2
(b(h) + b(0))

)
−
∫ h

0

T e
∫ h
s

A(t)dtb(s)ds

∥∥∥∥∥

=

∥∥∥∥∥

(
I +

h

2
A(h) +O(h2)

)
h

2
(b(h) + b(0))−

∫ h

0

T e
∫ h
s

A(t)dtb(s)ds

∥∥∥∥∥

≤
∥∥∥∥
(
I +

h

2
A(h) +O(h2)

)
h

2
(b(h) + b(0))− h

2

(
b(h) + e

∫ h
0

A(t)dtb(0)
)∥∥∥∥

+

∥∥∥∥∥
h

2

(
b(h) + e

∫ h
0

A(t)dtb(0)
)
−
∫ h

0

T e
∫ h
s

A(t)dtb(s)ds

∥∥∥∥∥

≤
∥∥∥∥
(
I +

h

2
A(h) +O(h2)

)
h

2
(b(h) + b(0))− h

2

(
b(h) + e

∫ h
0

A(t)dtb(0)
)∥∥∥∥+O(h3)

=

∥∥∥∥
h2

4
A(h)b(h) +

(
I +

h

2
A(h)

)
h

2
b(0)− h

2
e
∫ h
0

A(t)dtb(0)

∥∥∥∥+O(h3)

=

∥∥∥∥
h2

4
A(h)b(h) +

(
I +

h

2
A(h)

)
h

2
b(0)− h

2
(b(0) + hA(0)b(0))

∥∥∥∥+O(h3)

=

∥∥∥∥
h2

4
A(0)b(0) +

(
I +

h

2
A(0)

)
h

2
b(0)− h

2
(b(0) + hA(0)b(0))

∥∥∥∥+O(h3) = O(h3).

(286)

42

