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Abstract

In this paper, we study the problem of minimizing a polynomial function with literals over all
binary points, often referred to as pseudo-Boolean optimization. We investigate the fundamental
limits of computation for this problem by providing new necessary conditions and sufficient
conditions for tractability. On one hand, we obtain the first intractability results for pseudo-
Boolean optimization problems on signed hypergraphs with bounded rank, in terms of the
treewidth of the intersection graph. On the other hand, we introduce the nest-set gap, a new
hypergraph-theoretic notion that enables us to move beyond hypergraph acyclicity, and obtain
a polynomial-size extended formulation for the pseudo-Boolean polytope of a class of signed
hypergraphs whose underlying hypergraphs contain β-cycles.

Key words: binary polynomial optimization; pseudo-Boolean optimization; treewidth; pseudo-
Boolean polytope; polynomial-size extended formulation.

1 Introduction

Binary polynomial optimization, i.e., the problem of maximizing a multivariate polynomial function
over the set of binary points, is a fundamental NP-hard problem in discrete optimization. In
this paper, we consider a formulation that encodes the objective function using pseudo-Boolean
functions, often referred to as pseudo-Boolean optimization. To formally define the problem, we
make use of signed hypergraphs, a representation scheme that was recently introduced in [19].
Recall that a hypergraph G is a pair (V,E), where V is a finite set of nodes and E is a set of
subsets of V of cardinality at least two, called the edges of G. A signed hypergraph H is a pair
(V, S), where V is a finite set of nodes and S is a set of signed edges. A signed edge s ∈ S is a
pair (e, ηs), where e is a subset of V of cardinality at least two, and ηs is a map that assigns to
each v ∈ e a sign ηs(v) ∈ {−1,+1}. The underlying edge of a signed edge s = (e, ηs) is e. Two
signed edges s = (e, ηs), s

′ = (e′, ηs′) ∈ S are said to be parallel if e = e′, and they are said to be
identical if e = e′ and ηs = ηs′ . Throughout this paper, we consider signed hypergraphs with no
identical signed edges. However, our signed hypergraphs often contain parallel signed edges. With
any signed hypergraph H = (V, S), and cost vector c ∈ RV ∪S , we associate the pseudo-Boolean
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optimization problem:

max
∑

v∈V
cvzv +

∑

s∈S
cs

∏

v∈s
σs(zv)

s.t. z ∈ {0, 1}V ,
(PBO)

where

σs(zv) :=

{
zv if ηs(v) = +1

1− zv if ηs(v) = −1,

and without loss of generality we assume cs ̸= 0 for all s ∈ S. Several applications such as
maximum satisfiability problems [26], and graphical models [28] can naturally be formulated as
pseudo-Boolean optimization problems. See [4] for a review of existing results on pseudo-Boolean
optimization. We then linearize the objective function of Problem PBO by introducing a variable
zs, for each signed edge s ∈ S, to obtain an equivalent formulation in a lifted space:

max
∑

v∈V
cvzv +

∑

s∈S
cszs

s.t. zs =
∏

v∈s
σs(zv) ∀s ∈ S

z ∈ {0, 1}V ∪S .

(L-PBO)

In [19], the authors introduced the pseudo-Boolean set of the signed hypergraph H = (V, S), as the
feasible region of Problem L-PBO:

PBS(H) :=
{
z ∈ {0, 1}V ∪S : zs =

∏

v∈s
σs(zv), ∀s ∈ S

}
,

and they refer to its convex hull as the pseudo-Boolean polytope and denote it by PBP(H). With
each signed hypergraph H = (V, S), we associate two key hypergraphs: (i) the underlying hyper-
graph of H, which is the hypergraph obtained from H by ignoring the signs and dropping parallel
edges, and (ii) the multilinear hypergraph of H, which is the hypergraph mh(H) = (V,E), where
E is constructed as follows: For each s ∈ S, and every t ⊆ s with ηs(v) = −1 for all v ∈ t, the set
E contains {v ∈ s : ηs(v) = +1} ∪ t, if this set has cardinality at least two.

Let us consider an important special case of Problem PBO obtained by letting ηs(v) = +1 for
every s ∈ S and v ∈ s. In this case, a signed hypergraph H = (V, S) essentially coincides with its
underlying hypergraph G = (V,E), and hence Problem PBO can be equivalently written as the
following binary multilinear optimization problem:

max
∑

v∈V
cvzv +

∑

e∈E
ce

∏

v∈e
zv

s.t. z ∈ {0, 1}V ,
(BMO)

where again without loss of generality we assume ce ̸= 0 for all e ∈ E. In [15], the authors defined
the multilinear set as the feasible region of a linearized multilinear optimization problem:

S(G) :=
{
z ∈ {0, 1}V+E : ze =

∏

v∈e
zv, ∀e ∈ E

}
,

and referred to its convex hull as the multilinear polytope MP(G). Notice that by expanding the
objective function of Problem PBO over a signed hypergraph H, this problem can be reformulated
in the form of problem BMO over the multilinear hypergraph of H; i.e., mh(H).
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In the special case where |e| = 2 for all e ∈ E, Problem BMO simplifies to a binary quadratic
optimization (BQO) problem and the multilinear polytope coincides with the well-known Boolean
quadric polytope introduced by Padberg [34] and later studied by others.

1.1 Polynomial-time solvable classes

It is well known that if the objective function of Problem PBO is super-modular, then the pseudo-
Boolean optimization problem can be solved in strongly polynomial time [37]. However, the recogni-
tion of supermodularity of pseudo-Boolean functions of degree four (or higher) is NP-complete [25].
Another celebrated line of research relates the complexity of combinatorial optimization problems
to the treewidth of a corresponding graph. In [11] the authors proved that if the intersection graph
of the underlying hypergraph of Problem PBO has a bounded treewidth, then this problem can
be solved in linear time using dynamic programming. Recall that given a hypergraph G = (V,E),
the intersection graph of G is the graph with node set V , and where two nodes v, v′ ∈ V are
adjacent if v, v′ ∈ e for some e ∈ E. In [6], authors present a strongly polynomial-time algorithm
for Problem PBO, assuming that the incidence graph of the underlying hypergraph has a bounded
treewidth. Recall that given a hypergraph G = (V,E), the incidence graph of G is a bipartite graph
whose vertex set is V ∪ E and the edge set is {{v, e} : v ∈ V, e ∈ E, v ∈ e}. For any hypergraph,
the treewidth of the incidence graph is upper bounded by the treewidth of the intersection graph.
Moreover, while the problem of computing the treewidth of a graph is NP-hard in general, it is
fixed-parameter tractable when parameterized by the treewidth [3].

Next, we review the existing results on polynomial-size extended formulations for the multilinear
polytope and the pseudo-Boolean polytope. Note that if a polynomial-size extended formulation
of PBP(H) (resp. MP(G)) is readily available, then Problem PBO (resp. Problem BMO) can be
solved in polynomial time. However, the converse may not hold, in general. In [34], Padberg
proved that if G = (V,E) is an acyclic graph, then the Boolean quadric polytope BQP(G) is
defined by 4|E| inequalities in the original space. The notion of graph acyclicity has been extended
to several different notions of hypergraph acyclicity; in increasing order of generality, one can name
Berge-acyclicity, γ-acyclicity, β-acyclicity, and α-acyclicity. We should remark that polynomial-
time algorithms for determining acyclicity level of hypergraphs are available [24]. In [16, 5, 14,
18], the authors obtained a complete characterization of acyclic hypergraphs whose multilinear
polytopes admit polynomial-size extended formulations. Henceforth, we denote by r the rank of the
hypergraph G = (V,E), defined as the maximum cardinality of an edge in E. In [16, 5], the authors
proved that if G is Berge-acyclic, then MP(G) is defined by |V |+(r+2)|E| inequalities in the original
space. Moreover, in [16], the authors proved that if G is γ-acyclic, then MP(G) has a polynomial-
size extended formulation with at most |V |+2|E| variables and at most |V |+(r+2)|E| inequalities.
In [18], the authors present a polynomial-size extended formulation for the multilinear polytope of β-
acyclic hypergraphs with at most (r−1)|V |+|E| variables and at most (3r−4)|V |+4|E| inequalities.
In [19], the authors introduced the pseudo-Boolean polytope, and subsequently generalized the
earlier results by proving that if the underlying hypergraph of a signed hypergraph H = (V, S) is
β-acyclic, then PBP(H) has a polynomial-size extended formulation with O(r|V ||S|) variables and
inequalities. Note that this result is more general than the previous ones because it only requires
the β-acyclicity of the underlying hypergraph of H. Indeed, the multilinear hypergraph of H may
contain many β-cycles. In this paper, we obtain a significant generalization of this result.

On the other hand, in [14], the authors prove that Problem BMO is strongly NP-hard over α-
acyclic hypergraphs. This result implies that, unless P = NP, one cannot construct a polynomial-
size extended formulation for the multilinear polytope of α-acyclic hypergraphs. However, in [17],
the authors showed that if the rank r of an α-acyclic hypergraph is upper bounded by the logarithm
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of a polynomial in the size of the hypergraph, then the multilinear polytope has a polynomial-size ex-
tended formulation with O(2r|V |) variables and inequalities. Interestingly, this sufficient condition
is equivalent to assuming a bounded treewidth for the intersection graph of Problem BMO [39, 33, 2]
(see Section 4 of [17] for the proof of equivalence). For further results regarding polyhedral relax-
ations of multilinear sets of degree at least three, see [12, 20, 17, 13, 29, 9, 21, 31].

1.2 Our contributions

In this paper, we investigate the fundamental limits of computation for pseudo-Boolean optimiza-
tion, by providing new necessary conditions and sufficient conditions for tractability. Henceforth,
for brevity, whenever we say the treewidth of a hypergraph (resp. a signed hypergraph), we refer
to the treewidth of the intersection graph of the hypergraph (resp. underlying hypergraph of the
signed hypergraph). The main contributions of this paper are twofold:

Intractability results. In Section 2, we obtain the first intractability results for pseudo-Boolean
optimization. Namely, under some mild assumptions, we show that for every sequence of hyper-
graphs {Gk}∞k=1 indexed by the treewidth k and with bounded rank, the complexity of solving Prob-
lem PBO on a signed hypergraph whose underlying hypergraph is Gk grows super-polynomially in
k (see Theorem 4). To prove this result, we first obtain an intractability result for BQO problems
which is based on a complexity result for inference in graphical models [7] (see Theorem 3). Sub-
sequently, using the inflation operation introduced in [19], we present a polynomial-time reduction
of intractable BQO instances to pseudo-Boolean optimization instances. Notice that the bounded
rank assumption is key here, as for example Problem PBO over signed hypergraphs whose under-
lying hypergraphs are β-acyclic can be solved in polynomial time and a β-acyclic hypergraph with
unbounded rank has an unbounded treewidth as well.

Tractability results. In Section 3, we move beyond hypergraph acyclicity and obtain new
polynomial-size extended formulations for the pseudo-Boolean polytope of signed hypergraphs
whose underlying hypergraphs contain β-cycles. To this end, we make use of the hypergraph-
theoretic notion of nest-sets recently introduced in [32], which is a natural generalization of nest-
points. We then introduce the notion of nest-set gap for a hypergraph, a quantity equal to zero if
and only if the hypergraph is β-acylic. We then prove that if the nest-set gap of the underlying
hypergraph is bounded, then the pseudo-Boolean polytope admits a polynomial-size extended for-
mulation (see Theorem 10). The complexity of checking whether the nest-set gap of a hypergraph
is bounded is unknown. However, checking the boundedness of a related quantity; namely, the nest-
set width of a hypergraph can be solved in polynomial time. The nest-set width of a hypergraph
equals one if and only if the hypergraph is β-acyclic. Moreover, the nest-set width of a hypergraph
is lower bounded by its nest-set gap; this, in turn, implies that the pseudo-Boolean polytope of
a signed hypergraph with bounded nest-set width has a polynomial-size extended formulation as
well.

Figure 1 summarizes various types of hypergraphs (resp. underlying hypergraphs) for which
tractability or intractability of Problem BMO (resp. Problem PBO) is known.

2 Intractability results for pseudo-Boolean optimization

In this section, we discuss the limits of tractability of Problems BMO and PBO. For a graph G,
we denote by tw(G) the treewidth of G. For a hypergraph G, we denote by tw(G) the treewidth
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α-acyclic

β-acyclic

γ-acyclic

Berge-acyclic

bounded nest-set width

bounded nest-set gap

bounded treewidth ≡
α-acyclic with bounded rank

bounded incidence treewidth

Figure 1: Hypergraph classes (resp. underlying hypergraph classes) for which tractability or in-
tractability of Problem BMO (resp. Problem PBO) is known. The NP-hard class is depicted in
dashed lines, while polynomial-time solvable classes are depicted in solid lines. Our contributions
in this paper are depicted in thick solid lines. Arcs are directed from less general to more general.
Properties with no directed connection are incomparable.

of the intersection graph of G. For a signed hypergraph H, we denote by tw(H) the treewidth
of the underlying hypergraph of H. Henceforth, we denote by poly(n), a polynomial function in
n. In the combinatorial optimization literature, it is well-understood that treewidth is a crucial
metric in measuring the difficulty of many graph problems. In our context, if the treewidth of the
intersection graph of the hypergraph is bounded, then the multilinear polytope admits a polynomial
size extended formulation [39, 33, 2]:

Theorem 1. Let G = (V,E) be hypergraph with tw(G) = k. Then MP(G) has an extended
formulation with O(2k|V |) variables and inequalities. Moreover, if k ∈ O(log poly(|V |, |E|)), then
MP(G) has a polynomial-size extended formulation.

Theorem 1 implies that if the hypergraph has a bounded treewidth, then Problem BMO can be
solved in polynomial-time. A similar result can be stated for the pseudo-Boolean polytope PBP(H)
in terms of tw(H) (see theorem 6 in [19]). In this section, we obtain necessary conditions in terms
of treewidth of G (resp. H) for polynomial-time solvability of Problem BMO (resp. Problem PBO).
To this end, we first obtain an intractability result for the special case where the objective function
is quadratic. Building upon this result, we then obtain intractability results for higher degree binary
polynomial optimization problems.

Given an instance Λ of Problem BMO or Problem PBO, in this section, we refer to the size of
Λ (also known as bit size, or length), denoted by ∥Λ∥, as the number of bits required to encode
it, which is the standard definition in the mathematical programming literature (see for example
[36, 10]). Recall that the Bounded-error Probabilistic Polynomial time (BPP) is the class of decision
problems solvable by a probabilistic Turing machine in polynomial time with an error probability
bounded by 1/3 for all instances. Our tractability results in this section are under the assumption
that NP ̸⊆ BPP. It is widely believed that P = BPP, which implies that NP ̸⊆ BPP is equivalent
to P ≠ NP. For a precise definition of BPP and the commonly believed NP ̸⊆ BPP hypothesis,
we refer the reader to [1].
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2.1 Intractability of binary quadratic optimization

Our intractability result, which is closely related to theorem 5.1 in [7] and theorem 7 in [23], implies
that there exists no class of graphs with unbounded treewidth for which every BQO problem on
these graphs can be solved in time polynomial in the treewidth. More precisely, for every sequence
of graphs {Gk}∞k=1 indexed by treewidth k, there exists a choice of objective function coefficients
c such that the runtime of any algorithm that solves the BQO problem is super-polynomial in
treewidth k. In theorem 5.1 of [7], the authors prove a similar result for the inference problem on
binary pair-wise graphical models. It is known that this inference problem can be formulated as
a BQO problem. However, we state an independent proof since first our proof is direct; i.e., it is
concerned with a BQO problem and not inference, and second theorem 5.1 in [7] is proved under
the stronger assumption NP ̸⊆ P/ poly, where P/ poly denotes the class of decision problems that
can be solved by a polynomial-time Turing machine with advice strings of length polynomial in the
input size. Unlike other polynomial-time classes such as P or BPP, the class P/poly, is considered
impractical for computing. In theorem 7 of [23], the authors prove an intractability result similar to
ours, for quadratically constrained quadratic optimization problems and their reduction arguments
relies on the fact that the optimization problem has linear and quadratic constraints. In spite of
these technical differences, we should mention that our proof technique follows the general scheme
first proposed in [7] and later refined in [23].

Our proof relies on the next theorem, which is essentially a consequence of the celebrated graph
minor theorem [8]. The proof of this theorem is stated inside the proof of theorem 7 in [23]. We
include it here for completeness.

Theorem 2. Any planar graph Ḡ with n nodes is a minor of any graph G with treewidth at least
κ(n) ∈ O(n98 poly log(n)). Furthermore, there is a randomized algorithm that, given G, outputs
the sequence of minor operations transforming G into Ḡ in time O(poly(|V (G)| · κ(n))), with high
probability.

Proof. Let Ḡ be a planar graph with n nodes, and let G be a graph with treewidth at least
κ(n) ∈ O(n98 poly log(n)). Since Ḡ is planar, it is a minor of the n/c× n/c grid, for some constant
c [35], and the sequence of minor operations can be found in linear time [38]. It follows from [8]
that the n/c× n/c grid is a minor of G, and that we can find the corresponding sequence of minor
operations (with high probability) in O(poly(|V (G)| · κ(n))) time.

Henceforth, we say that a countable family of graphs {Gk}∞k=1 is polynomial-time enumerable if
a description of Gk is computable in poly(k) time. This in turn implies that an encoding of Gk of
size polynomial in k exists. The next theorem provides a necessary condition for polynomial-time
solvability of BQO problems.

Theorem 3. Let {Gk}∞k=1 be a polynomial-time enumerable family of graphs with tw(Gk) = k,
for all k. Let f be an algorithm that solves any instance Λk of BQO on graph Gk in time T (k) ·
poly(∥Λk∥). Then, assuming NP ̸⊆ BPP, T (k) grows super-polynomially in k.

Proof. The problem Max 2-SAT on a planar graph, also known as planar Max-2SAT, is NP-
complete [27]. It can be checked that an instance of Max-2SAT on a planar graph Ḡ = (V̄ , Ē) can
be formulated as a BQO problem on the same graph Ḡ, and with objective coefficients c̄v ∈ {±1, 0}
for all v ∈ V̄ and c̄e ∈ {±2,±1, 0} for all e ∈ Ē. Let n := |V̄ |. By Theorem 2, Ḡ is a minor
of Gκ(n) = (Vκ(n), Eκ(n)), where κ(n) is as defined in the statement of the theorem. Since by
the enumerability assumption Vκ(n) is bounded by a polynomial in κ(n), by Theorem 2, there is a
polynomial-time randomized algorithm that, given Gκ(n), outputs the sequence of minor operations
transforming Gκ(n) into Ḡ, with high probability.
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We now show that, given an instance of a BQO problem on a planar graph Ḡ = (V̄ , Ē) with
c̄v ∈ {±1, 0} for all v ∈ V̄ and c̄e ∈ {±2,±1, 0} for all e ∈ Ē, we can construct in polynomial time
an equivalent instance of a BQO problem on Gκ(n). First, we observe that Gκ(n) can be constructed
in time bounded by a polynomial in κ(n), due to our enumerability assumption. It suffices to show
the equivalence for a single minor operation; The result then follows from a repeated application
of this technique. Let H = (VH , EH) be graph and denote by H ′ = (VH′ , EH′) a graph obtained
from H after a single minor operation. Consider an instance Λ′ of a BQO problem on H ′ with
objective function coefficients c′. We show how to solve this instance Λ′ by solving an instance Λ
of a BQO problem on H with objective function coefficients c. Recall that there are three graph
minor operations (see for example [7]):

1. Node deletion: Let u ∈ VH and denote by Eu all edges of H containing u. Then the minor
of H obtained by deleting node u is H ′ = (VH \ {u}, EH \Eu). In this case, the objective function
coefficients c of Λ can defined as follows: cu = 0, ce = 0 for all e ∈ Eu and cp = c′p for all p ∈ VH \{u}
and p ∈ EH \ Eu.

2. Edge deletion: Let f ∈ EH . Then the minor of H obtained by deleting edge f is H ′ =
(VH , EH \{f}). In this case, the objective function coefficients c of Λ can defined as follows: cf = 0
and cp = c′p for all p ∈ VH and p ∈ EH \ {f}.

3. Edge contraction: Let {u, v} ∈ EH and denote by Eu all edges of H containing u. Let E′
u be

set obtained by replacing u with v in every element of Eu and subsequently dropping {v, v} from it.
Then the minor of H obtained by contracting edge {u, v} to node v is H ′ = (VH \{u}, EH∪E′

u\Eu).
Define M :=

∑
p∈VH′∪EH′ |c′p|. In this case, the objective function coefficients c of Λ can defined as

follows: cu = −M , cv = c′v −M , c{u,v} = 2M , cp = c′p for all p ∈ VH \ {u, v} and p ∈ EH \Eu, and
ce = c′e∪{v}\{u} for all e ∈ Eu \ {u, v}. To see that Λ′ is equivalent to Λ, first note that Λ′ is given
by

max
∑

w∈VH′

c′wxw +
∑

{w,q}∈EH′

c′w,qxwxq

s.t. xw ∈ {0, 1}, w ∈ VH′ .

Then Λ′ can be equivalently solved by solving the following optimization problem on H:

max
∑

w∈VH

c′′wxw +
∑

{w,q}∈EH

c′′w,qxwxq (1)

s.t. xu = xv

xw ∈ {0, 1}, w ∈ VH ,

where c′′u = 0, c′′{u,v} = 0, c′′p = c′p for all p ∈ VH \ {u} and p ∈ EH \ Eu, and c′′e = c′e∪{v}\{u} for all

e ∈ Eu \ {u, v}. In order to reformulate Problem (1) as a BQO problem on H, it suffices to remove
the constraint xu = xv and instead subtract the penalty term M(xu − xv)

2 from the objective
function. The equivalence then follows.

We have explained how to reduce (with high probability) a BQO problem on Ḡ = (V̄ , Ē) to a
BQO problem on Gκ(n) = (Vκ(n), Eκ(n)). The number of arithmetic operations performed in the
reduction is clearly polynomially bounded, therefore it suffices to show that the size of the objective
function coefficients of the constructed instance is polynomially bounded by the size of the original
BQO instance. Recall that the objective coefficients of the original instance are c̄v ∈ {±1, 0}
for all v ∈ V̄ , and c̄e ∈ {±2,±1, 0} for all e ∈ Ē. Let us now consider the objective function
coefficients of the constructed instance of BQO problem , denoted by c, and observe that c has

7



integer components. Let M be the sum of the absolute values of all coefficients in the original
instance, i.e., M :=

∑
v∈V̄ |c̄v| +

∑
e∈Ē |c̄e| and observe that M ≤ |V̄ | + 2|Ē|. Our enumerability

assumption, together with |V̄ | ≤ |Vκ(n)|, |Ē| ≤ |Eκ(n)|, imply that M is polynomial in κ(n) as well.
Now consider the three types of minor operations defined above. First note that the first two minor
operations do not change the sum of the absolute values of all coefficients. Let us consider the last
minor operation; i.e., the edge contraction. By construction, after each edge contraction, the sum
of the absolute values of all coefficients doubles. Since there are at most |Eκ(n)| contractions, we
conclude that in the constructed instance, the sum of the absolute values of all coefficients is at
most 2|Eκ(n)|M , whose size, by our enumerability assumption, is polynomial in κ(n).

Now let us use Algorithm f to solve the resulting BQO problem over Gκ(n) in time T (κ(n)) ·
poly(∥Λκ(n)∥) and hence equivalently solving the initial BQO problem over the graph Ḡ with n
nodes. We already showed that ∥Λκ(n)∥ is upper bounded by a polynomial in κ(n), which in
turn is bounded by a polynomial in n. Assume, for a contradiction, that T (k) is bounded by a
polynomial in k. This implies that T (κ(n)) is bounded by a polynomial in κ(n), and therefore by a
polynomial in n. It then follows that planar MAX-2SAT∈ BPP, which contradicts the assumption
that NP ̸⊆ BPP. Therefore, T (k) grows super-polynomially in k.

The following result is a direct consequence of Theorem 3.

Corollary 1. For every positive k, let Gk be the set of all graphs with treewidth k. Let f be an
algorithm that solves any instance Λk of a BQO problem on a graph in Gk in time T (k) ·poly(∥Λk∥).
Then, assuming NP ̸⊆ BPP, T (k) grows super-polynomially in k.

Proof. For every positive k, let Gk be the set of all graphs with treewidth k. Let f be an algorithm
that solves any instance Λk of a BQO problem on a graph in Gk in time T (k) ·poly(∥Λk∥). Consider
a polynomial-time enumerable family of graphs {Gk}∞k=1 as in the statement of Theorem 3, and
note that Gk ∈ Gk for every positive k. Then, f satisfies the assumption of Theorem 3. Hence,
assuming NP ̸⊆ BPP, T (k) grows super-polynomially in k.

Together with Theorem 1, Corollary 1 suggests that a bounded treewidth is necessary and suffi-
cient for polynomial-time solvability of BQO problems. However, notice that there is a gap between
these two results. For every positive integer k, let Gk = (Vk, Ek) be a graph with treewidth k and

with nk := |Vk| ∈ Θ(2
√
k), hence k ∈ Θ(log2 nk). Clearly, {Gk}∞k=1 does not satisfy the assumption

of Theorem 1 because k ̸∈ O(log poly(nk)). On the other hand, {Gk}∞k=1 is not a polynomial-time
enumerable family because nk is not bounded by a polynomial in k and hence Theorem 3 is not
applicable. To the best of our knowledge, at the time of this writing, no tractability or intractability

result is known for the regime k ∈ ω(log nk) and k ∈ o(n
1/c
k ) for any constant integer c.

2.2 Intractability of Problem BMO and Problem PBO

Our next goal is to obtain necessary conditions for polynomial-time solvability of higher-degree
binary polynomial optimization problems. Henceforth, we say that a countable family of hyper-
graphs {Gk}∞k=1 is polynomial-time enumerable if a description of Gk is computable in poly(k)
time. A fairly straightforward application of Theorem 3 gives the following intractability result
for Problem BMO.

Corollary 2. Let {Gk}∞k=1 be a polynomial-time enumerable family of hypergraphs with tw(Gk) = k.
Suppose that for every two nodes u, v contained in an edge of Gk, {u, v} also is an edge of Gk for
all k. Let f be an algorithm that solves any instance Λk of Problem BMO on hypergraph Gk in
time at most T (k) ·poly(∥Λk∥). Then, assuming NP ̸⊆ BPP, T (k) grows super-polynomially in k.
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Proof. For every positive k, denote by G′
k the intersection graph of Gk. Note that, by assumption,

each edge of G′
k is also an edge of Gk. Therefore, the family of intersection graphs {G′

k}
∞
k=1 is

polynomial-time enumerable. The proof then follows from Theorem 3, by setting to zero the costs
of all the edges of Gk of cardinality greater than two.

We observe that the inference problem on higher-order graphical models can be formulated as
Problem BMO satisfying the assumption of Corollary 2. Namely, the corresponding hypergraph
Gk has a fixed rank and therefore has polynomially many edges in |Vk| (and hence in k). Moreover,
for every edge of the hypergraph, all possible subsets of cardinality at least two are also in the edge
set (see [30] for a detailed derivation). Nonetheless, Corollary 2 is rather restrictive, as it does not
consider general sparse hypergraphs. Interestingly, as we show next, for Problem PBO on signed
hypergraphs with a bounded rank, no such restrictive assumption is required.

To prove our next intractability result, we make use of the so-called inflation operation that
was recently introduced in [19] Let H = (V, S) be a signed hypergraph, let s ∈ S, and let e ⊆ V
such that s ⊂ e. Denote by I(s, e) the set of all possible signed edges s′ parallel to e such that
ηs(v) = ηs′(v) for every v ∈ s. Define S′ := S ∪ I(s, e) \ {s}. We say that H ′ = (V, S′) is obtained
from H by inflating s to e.

In the following, we say that a function r(k) is log-poly if 2r(k) is a polynomial function. Recall
that a hypergraph G′ = (V ′, E′) is said to be a partial hypergraph of hypergraph G = (V,E) if
V ′ ⊆ V and E′ ⊆ E. We are now ready to state our intractability result for pseudo-Boolean
optimization:

Theorem 4. Let {Gk}∞k=1 be a polynomial-time enumerable family of hypergraphs with tw(Gk) =
k for all k, and with rank r(k) ≥ 2 that is upper bounded by a log-poly function in k. Let f
be an algorithm that solves any instance Λk of Problem PBO on a signed hypergraph with the
underlying hypergraph Gk, in time T (k) · poly(∥Λk∥). Then, assuming NP ̸⊆ BPP, T (k) grows
super-polynomially in k.

Proof. For every positive k, let Gk = (Vk, Ek), and let G′
k = (Vk, E

′
k) be the intersection graph of

Gk, which has the treewidth k. Note that |E′
k| ≤ |Vk|2, thus |E′

k| is bounded by a polynomial in k.
It follows that {G′

k}
∞
k=1 is a polynomial-time enumerable family of graphs with tw(G′

k) = k for all
k. In the remainder of the proof, we show that every instance Λ′

k of problem BQO on graph G′
k

can be polynomially reduced to an instance Λk of Problem PBO on a signed hypergraph Hk, whose
underlying hypergraph is a partial hypergraph of Gk. Since each obtained Problem PBO can be
stated as a Problem PBO on a signed hypergraph with underlying hypergraph Gk, by setting the
costs of additional poly(k) signed edges to zero, the result then follows from Theorem 3. In the
remainder of the proof, we consider one fixed k.

First, we define the signed hypergraph Hk. By the definition of G′
k, for each edge e ∈ E′

k,
there exists an edge g ∈ Ek such that e ⊆ g; we denote by g(e) one such edge of Ek. We then
define the signed hypergraph Hk = (Vk, Sk) obtained from G′

k by inflating e to I(e, g(e)). Note
that, technically, the inflation operation is defined only for signed hypergraphs, while here G′

k is
non-signed; however, we can think of G′

k as signed, with all signs equal to +1. Since the rank of
Gk is upper bounded by r(k), we have |g(e)| ≤ r(k), therefore the number of signed edges in Sk

parallel to g(e) that we just introduced is at most 2r(k). As a result, |Sk| ≤ 2r(k) · |E′
k|, thus |Sk| is

bounded by a polynomial in k. By definition of Hk, we then have I(e, g(e)) ⊆ Sk, where we recall
that I(e, g(e)) denotes the set of all possible signed edges e′ parallel to g(e) such that ηe(v) = ηe′(v)
for every v ∈ e.

Denote by c′v for v ∈ Vk, and c′e for e ∈ E′
k, the objective function coefficients of the instance

Λ′
k. Next, we define the cost coefficients of the instance Λk, which we denote by cv for v ∈ Vk, and
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cs for s ∈ Sk. We initialize cv := c′v for every v ∈ Vk, and cs := 0 for every s ∈ Sk. Next, for each
edge e ∈ E′

k, we update the cost coefficients of Λk recursively as follows: For every s ∈ I(e, g(e)),
we update cs := cs + c′e.

To complete the proof, we observe that the instances Λ′
k and Λk are equivalent, in the sense

that, for every feasible point zv ∈ {0, 1}, for v ∈ V , its objective value in Λ′
k is equal to its objective

value in Λk. This claim follows because, for every e ∈ E′
k the following equation holds:

c′e
∏

v∈e
zv = c′e

∏

v∈e
zv

∏

v∈g(e)\e
(zv + (1− zv)) = c′e

∑

s∈I(e,g(e))

∏

v∈s
σs(zv).

Note that Theorem 4 also holds if r(k) is a constant greater than or equal to two. We then
obtain the following corollary.

Corollary 3. For every positive k, let Gk be the set of all hypergraphs with treewidth k and with
rank equal to a constant r ≥ 2. Let f be an algorithm that solves any instance Λk of Problem PBO
on a signed hypergraph with underlying hypergraph in Gk, in time T (k)·poly(∥Λk∥). Then, assuming
NP ̸⊆ BPP, T (k) grows super-polynomially in k.

Proof. Consider a polynomial-time enumerable family of hypergraphs {Gk}∞k=1 as in the statement
of Theorem 4 with r(k) equal to a constant r ≥ 2. For every positive k, let Gk be the set of all
hypergraphs with rank r and with treewidth k. Then, Gk ∈ Gk for every positive k. Let f be an
algorithm that solves any instance Λk of Problem PBO on a signed hypergraph with underlying
hypergraph in Gk, in time T (k) · poly(∥Λk∥). Theorem 4 implies that, assuming NP ̸⊆ BPP, T (k)
grows super-polynomially in k.

Together with Theorem 1, Theorem 4 suggests that for pseudo-Boolean optimization on signed
hypergraphs of log-poly rank, a bounded treewidth is a necessary and sufficient condition for
tractability. It is important to note that the log-poly rank assumption is the key here, as otherwise
such a conclusion is not valid, see for example Theorem 5. Similar to our discussion following
Corollary 1, there is a subtle gap between these necessary and sufficient conditions; that is, to the

best of our knowledge, for treewidth k satisfying k ∈ ω(log nk) and k ∈ o(n
1/c
k ) for any constant

integer c, no tractability or intractability result is known.

2.3 Two open questions

We conclude this section by posing two open questions; below we give two statements which we do
not know if they are true or false. We say that a countable family of signed hypergraphs {Hk}∞k=1

is polynomial-time enumerable if a description of Hk is computable in poly(k) time. The first
statement is again for Problem PBO.

Statement 1. Let {Hk}∞k=1 be a polynomial-time enumerable family of signed hypergraphs with
tw(Hk) = k for all k, and with rank r(k) ≥ 2 that is upper bounded by a log-poly function in k. Let
f be an algorithm that solves any instance Λk of Problem PBO on signed hypergraph Hk, in time
T (k) · poly(∥Λk∥). Then, assuming NP ̸⊆ BPP, T (k) grows super-polynomially in k.

If true, Statement 1 would constitute as a stronger version of Theorem 4. In fact, while the
thesis is the same, the assumptions of Statement 1 are much weaker than those in Theorem 4.
Namely, for each k, in Theorem 4, we assume that f solves Problem PBO over instances on all
signed hypergraphs with underlying hypergraph Gk. On the other hand, in Statement 1, we assume
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that f solves Problem PBO over instances on just one signed hypergraph Hk. The idea used in the
proof of Theorem 4 does not seem to be applicable to Statement 1, since in the reduction we need
to introduce a very specific set of signed edges.

Our second statement is similar to Theorem 4, but is concerned with Problem BMO. It is
important to note that the proof technique employed in Theorem 4 is not applicable to prove
hardness for Problem PBO, as it uses the inflation operation, which involves the introduction of
signed edges.

Statement 2. Let {Gk}∞k=1 be a polynomial-time enumerable family of hypergraphs with tw(Gk) =
k for all k, and with rank r(k) ≥ 2 that is upper bounded by a log-poly function in k. Let f be an
algorithm that solves any instance Λk of Problem BMO on hypergraph Gk, in time T (k)·poly(∥Λk∥).
Then, assuming NP ̸⊆ BPP, T (k) grows super-polynomially in k.

We remark that, to the best of our knowledge, even if instead of a log-poly function in k, we
assume that the rank r is a constant, Statements 1 and 2 remain open.

3 Tractability beyond hypergraph acyclicity for pseudo-Boolean
optimization

In this section, we move beyond acyclic hypergraphs and identify more general classes of binary
polynomial optimization problems that are solvable in polynomial time. In a recent work [19], the
authors introduce the pseudo-Boolean polytope, a generalization of the multilinear polytope that
enables them to unify and extend all prior results on the existence of polynomial-size extended
formulations for the convex hull of the feasible region of binary polynomial optimization problems
of degree at least three. In particular, given a signed hypergraph H = (V, S), the authors prove
that if the underlying hypergraph of H is β-acyclic, then PBP(H) has an extended formulation
of size polynomial in |V |, |S|. Recall that a β-cycle of length ℓ for some ℓ ≥ 3 in a hypergraph G
is a sequence v1, e1, v2, e2, . . . , vℓ, eℓ, v1 such that v1, v2, . . . , vℓ are distinct nodes, e1, e2, . . . , eℓ are
distinct edges, and vi belongs to ei−1, ei and no other ej for all i = 1, . . . , ℓ, where e0 = eℓ. A
hypergraph is β-acyclic if it does not contain any β-cycles.

Theorem 5. [19] Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph is
β-acyclic. Then the pseudo-Boolean polytope PBP(H) has a polynomial-size extended formulation
with at most O(r|S||V |) variables and inequalities. Moreover, all coefficients and right-hand side
constants in the extended formulation are 0,±1.

Theorem 5 is a generalization of the earlier result in [18] stating that the multilinear polytope
of a β-acyclic hypergraph has a polynomial-size extended formulation. Namely, Theorem 5 only
requires the β-acyclicity of the underlying hypergraph of H. Indeed, the multilinear hypergraph of
H, i.e., mh(H) may contain many β-cycles. In this section, we present a significant generalization
of Theorem 5 that gives polynomial-size extended formulations for the pseudo-Boolean polytope of
a class of signed hypergraphs whose underlying hypergraph contains β-cycles. To define this class
of hypergraphs, we make use of the notion of “gap” introduced in [19]. In this paper, we use this
concept in a slightly more general form, which we define next. Consider a hypergraph G = (V,E),
and let V ′ ⊆ V ; we define the gap of G induced by V ′ as

gap(G,V ′) := max
{
|V ′| − |e ∩ V ′| : e ∈ E, e ∩ V ′ ̸= ∅

}
. (2)

Moreover, for a signed hypergraph H = (V, S), and V ′ ⊆ V , the gap of H induced by V ′, denoted
by gap(H,V ′) is defined as the gap of the underlying hypergraph of H induced by V ′. In [19]
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the authors prove that thanks to the inflation operation, if gap(H,V ) = O(log poly(|V |, |S|)), the
pseudo-Boolean polytope PBP(H) has a polynomial-size extended formulation.

3.1 Nest-set, nest-set width, and nest-set gap

In the following, we introduce some new hypergraph theoretic notions that enable us to obtain new
polynomial-size extended formulations for the pseudo-Boolean polytope. The proof of Theorem 5
relies on the key concept of nest points. Let G = (V,E) be a hypergraph. A node v ∈ V is a nest
point of G if the set of the edges of G containing v is totally ordered with respect to inclusion.
It is simple to see that nest points can be found in polynomial time. Let N ⊂ V . We define the
hypergraph obtained from G by deleting N as the hypergraph G−N with set of nodes V \N and
set of edges {e \ N : e ∈ E, |e \ N | ≥ 2}. When N = {v}, we write G − v instead of G − N . A
nest point elimination order is an ordering v1, . . . , vn of the nodes of G, such that v1 is a nest point
of G, v2 is a nest point of G − v1, and so on, until vn is a nest point of G − v1 − · · · − vn−1. The
following result provides a characterization of β-acyclic hypergraphs, in terms of nest points:

Theorem 6 ([22]). A hypergraph G is β-acyclic if and only if it has a nest point elimination order.

Recently, in the context of satisfiability problems, Lanzinger [32] generalizes the concept of nest
points to nest-sets, which we define next. Let G = (V,E) be a hypergraph and let N ⊆ V . We say
that N is a nest-set of G if the set

{e \N : e ∈ E, e ∩N ̸= ∅}, (3)

is totally ordered with respect to inclusion. Clearly if |N | = 1, then N consists of a nest point
of G. Let N1, N2, . . . , Nt be pairwise disjoint subsets of V such that ∪i∈[t]Ni = V . We say that
N = N1, · · · , Nt is a nest-set elimination order of G, if N1 is a nest-set of G, N2 is a nest-set of
G−N1, and so on, until Nt is nest-set of G−N1 − · · · −Nt−1.

Given a nest-set elimination order N of G, we define nest-set width of N , denoted by nswN (G),
as the maximum cardinality of any element in N . We then define nest-set gap of N as

nsgN (G) := max
{
gap(G−N1 − · · · −Ni−1, Ni) : i ∈ [t]

}
,

where gap(·) is defined by (2). From these definitions, it follows that

nsgN (G) ≤ nswN (G)− 1. (4)

In fact, nsgN (G) can be much smaller than nswN (G). The following example demonstrates this
fact.

Example 1. Consider a hypergraph G = (V,E) whose edge set E consists of all subsets of V of
cardinality |V | − 1. Letting N = V \ {v̄}, {v̄} for some v̄ ∈ V , it follows that nswN (G) = |V | − 1,
while nsgN (G) = 1.

We define the nest-set width of G, denoted by nsw(G), as the minimum value of nswN (G)
over all nest-set elimination orders N of G. Similarly, we define the nest-set gap of G, denoted by
nsg(G), as the minimum value of nsgN (G) over all nest-set elimination orders N of G. Consider the
hypergraph of Example 1. It can be checked that nsw(G) = |V | − 1, while nsg(G) = 1. We define
the nest-set gap of a signed hypergraph as the nest-set gap of its underlying hypergraph. Similarly,
we define the notions of nest point, nest-set, and nest-set width, also for signed hypergraphs. See
Figures 2 to 4 for an illustration of nest-sets, nest-set widths, and nest-set gaps.
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Figure 2: A hypergraph G with nsw(G) = 2 and nsg(G) = 1. A nest-set elimination order of G is
given by N = {8}, {7}, {6}, {5}, {4}, {12, 13}, {14}, {9, 10}, {11}, {2, 3}, {1}. G contains β-cycles of
length three.
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Figure 3: A hypergraph G with nsw(G) = 2 and nsg(G) = 1. A nest-set elimination order of
G is given by N = {1, 2}, {3}, {4}, {5}, {6, 7}, {8}, {9}, {10}, {11, 12}, {13}. G contains β-cycles of
length three.
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Figure 4: A hypergraph G with nsw(G) = 3 and nsg(G) = 1. A nest-set elimination order of G is
given by N = {2}, {5}, {1, 3, 4}, {6}. G contains β-cycles of length three.

13



b

2

b

b

b5

1

63 4 bbbb 87

Figure 5: An illustration of the graph of Example 2 with n = 8. This graph contains cycles of
length four only, however, its nest-set width is seven.

From Theorem 6 it follows that nsw(G) = 1, if and only if G is β-acyclic; that is, hypergraphs
with nsw(G) ≥ 2 contain β-cycles. Hence, a natural question is whether nsw(G) is in general
related to the length of β-cycles of G. In lemma 6 in [32], the author proves that if G has a β-cycle
of length ℓ, then nsw(G) ≥ ℓ− 1. Next, we strengthen this lower bound on the nest-set width:

Proposition 1. Let C = v1, e1, v2, e2, . . . , vℓ, eℓ, v1 be a β-cycle of length ℓ in a hypergraph G. Let
U1 := (eℓ ∩ e1) \ ∪ℓ−1

j=2ej. Similarly, for i = 2, . . . , ℓ, let Ui := (ei−1 ∩ ei) \ ∪j∈[ℓ]\{i−1,i}ej. For every

nest-set s of G we have that s ∩ (∪ℓ
j=1Uj) is either the empty set, or contains at least ℓ − 1 sets

among Uj, for j ∈ [ℓ]. Furthermore, nsw(G) ≥ mink∈[j]
∑

j∈[ℓ]\k |Uj |.

Proof. Let U := ∪ℓ
j=1Uj . Suppose that s ∩ U is nonempty. That is, at least one node in U is in

s. Since we can rotate the indices of a cycle arbitrarily, we assume, without loss of generality that
this is a node u1 ∈ U1. Then e1 and eℓ are both in I(s), where we denote by I(s) the set of edges
of G that contain at least one node in s. By the definition of U2, we have U2 ⊆ e1 \ eℓ. Similarly,
Uℓ ⊆ eℓ \ e1. Thus, e1 and eℓ can only be comparable to ⊆s if U2 or Uℓ is contained in s. Suppose,
without loss of generality, U2 ⊆ s.

Then we have e2 and eℓ in I(s) and the same argument can be applied again, as long as the
two edges are not adjacent in the cycle, and we find that U3 or Uℓ is contained in s, without loss
of generality, U3 ⊆ s. We then obtain U2, U3, . . . , Uℓ−1 ⊆ s.

Next, we consider the edges e1 and eℓ−1, which are both in I(s). We have U1 ⊆ e1 \ eℓ−1 and
Uℓ ⊆ eℓ−1 \ e1. Thus, e1 and eℓ−1 can only be comparable to ⊆s if U1 or Uℓ is contained in s. In
either case, s contains at least ℓ− 1 sets among Uj , for j ∈ [ℓ].

Since any node in the β-cycle C has to be removed at some point in any nest-set elimination
order, we obtain nsw(G) ≥ mink∈[j]

∑
j∈[ℓ]\k |Uj |.

Notice that if the edge set of hypergraph G of Proposition 1 is E = {e1, · · · , eℓ}, then the bound
given in this lemma is sharp; i.e., nsw(G) = mink∈[j]

∑
j∈[ℓ]\k |Uj |. The next example demonstrates

that the lower bound given in Proposition 1 is not sharp, in general.

Example 2. Consider a graph G = (V,E) with V = {v1, · · · , vn} for some n ≥ 5 and E =
{{v1, vi}, {v2, vi},∀i ∈ {3, · · · , n}}. See Figure 5 for an illustration. It can be checked that G
contains cycles of length four only hence the lower bound on nsw(G) given by Proposition 1 is
three. However, nsw(G) = n− 1 > 3 since by assumption n ≥ 5. To see this, first note that either
v1 or v2 should be in a nest set, as otherwise set (3) will contain {v1} and {v2} and hence will not
be totally ordered. Without loss of generality, suppose that v1 is in the nest set. Second, note that
vi, for all i ∈ {3, · · · , n} should also be in the nest set as otherwise set (3) will contain {v2} and
{vj} for some j ∈ {3, · · · , n} and hence will not be totally ordered. Therefore, nsw(G) = n− 1.

A future direction of research is to investigate whether it is possible to give a characterization
of nest-set width in terms of the “size” of the β-cycles in the hypergraph.
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As we detail in the next section, if the nest-set gap of the underlying hypergraph is bounded,
then the pseudo-Boolean polytope has a polynomial-size extended formulation. Hence, we would
like to understand the complexity of checking whether the nest-set gap of a hypergraph is bounded.
Notice that by (4), if the nest-set width is bounded, so is the nest-set gap. The complexity of
checking the nest-set width of a hypergraph was settled in [32]. Lanzinger proves that deciding
whether nsw(G) ≤ k for any integer k is NP-complete (see Theorem 10 in [32]). However, when
parameterized by k, this problem is fixed-parameter tractable:

Proposition 2 (Theorem 15 in [32]). There exists a 2O(k2) poly(|V |, |E|) time algorithm that takes
as input hypergraph G = (V,E) and integer k ≥ 1 and returns a nest-set elimination order N with
nswN (G) = k if one exists, or rejects otherwise.

As Example 1 indicates, there exist hypergraphs G = (V,E) with large nest-set width (e.g.
nsw(G) = θ(|V |)) but with fixed nest-set gap. At the time of this writing, the complexity of
checking whether the nest-set gap of a hypergraph is bounded is an open question.

3.2 The pseudo-Boolean polytope of signed hypergraphs with a bounded nest-
set gap

In this section, we present a polynomial-size extended formulation for the pseudo-Boolean polytope
of signed hypergraphs with a bounded nest-set gap. The result we present in this section serves
as a significant generalization of Theorem 5, which was proved in [19]. To obtain this extended
formulation, we make use of three tools developed in [19]. The first result is concerned with
decomposability of the pseudo-Boolean polytope PBP(H). Consider a signed hypergraph H =
(V, S), let s = (e, ηs) ∈ S, and let U ⊆ V . In the following, when we write s ∈ U , we mean e ∈ U .
If v ∈ s, we denote by s − v the signed edge s′ = (e′, ηs′), where e′ := e \ {v}, and ηs′ is the
restriction of ηs that assigns to each v ∈ e′ the sign ηs′(v) = ηs(v).

Let H = (V, S) be a signed hypergraph and let V1, V2 ⊆ V such that V = V1 ∪V2, let S1 ⊆ {s ∈
S : s ⊆ V1}, S2 ⊆ {s ∈ S : s ⊆ V2} such that S = S1 ∪ S2. Let H1 := (V1, S1) and H2 := (V2, S2).
We say that PBP(H) is decomposable into PBP(H1) and PBP(H2), if the system comprised of
a description of PBP(H1) and a description of PBP(H2), is a description of PBP(H). The next
theorem provides a sufficient condition for decomposability of the pseudo-Boolean polytope.

Theorem 7 (Theorem 1 in [19]). Let H = (V, S) be a signed hypergraph, and assume that it
has a nest point v. Let s1 ⊆ s2 ⊆ · · · ⊆ sk be the signed edges of H containing v, and assume
that S contains the signed edges si − v such that |si − v| ≥ 2, for every i ∈ [k]. Then PBP(H) is
decomposable into PBP(H1) and PBP(H2), where H1 and H2 are defined as follows. H1 := (V1, Sv∪
Pv), where V1 is the underlying edge of sk, Sv := {s1, . . . , sk}, Pv := {si − v : |si − v| ≥ 2, i ∈ [k]},
and H2 := H − v.

The next theorem provides a polynomial-size extended formulation for the pseudo-Boolean
polytope of a special type of signed hypergraphs, which we refer to as “pointed.” Consider a signed
hypergraph H = (V, S) and let v ∈ V be a nest point of H. Denote by Sv the set of all signed edges
in S containing v. Define Pv := {s − v : s ∈ Sv, |s| ≥ 3}. We say that H is pointed at v (or is a
pointed signed hypergraph) if V coincides with the underlying edge of the signed edge of maximum
cardinality in Sv and S = Sv ∪ Pv.

Theorem 8 (Theorem 2 in [19]). Let H = (V, S) be a pointed signed hypergraph. Then the pseudo-
Boolean polytope PBP(H) has a polynomial-size extended formulation with at most 2|V |(|S| + 1)
variables and at most 4(|S|(|V | − 2) + |V |) inequalities. Moreover, all coefficients and right-hand
side constants in the system defining PBP(H) are 0,±1.
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The final result is concerned with the inflation operation. Let H = (V, S) be a signed hyper-
graph, let s ∈ S, and let e ⊆ V such that s ⊂ e. Let H ′ = (V, S′) be obtained from H by inflating
s to e. The following theorem indicates that if an extended formulation for PBP(H ′) is available,
one can obtain an extended formulation for PBP(H) as well.

Theorem 9 (Theorem 3 in [19]). Let H = (V, S) be a signed hypergraph, let s ∈ S, and let e ⊆ V
such that s ⊂ e. Let H ′ = (V, S′) be obtained from H by inflating s to e. Then an extended
formulation of PBP(H) can be obtained by juxtaposing an extended formulation of PBP(H ′) and
the equality constraint

zs =
∑

s′∈I(s,e)
zs′ . (5)

Moreover, if PBP(H ′) has a polynomial-size extended formulation and |e|−|s| = O(log poly(|V |, |S|)),
then PBP(H) has a polynomial-size extended formulation as well.

We are now ready to state the main result of this section.

Theorem 10. Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph
G = (V,E) satisfies nsg(G) ≤ k. Then the pseudo-Boolean polytope PBP(H) has an extended
formulation with O(r2k|V ||S|) variables and inequalities. In particular, if k ∈ O(log poly(|V |, |E|)),
then PBP(H) has a polynomial-size extended formulation. Moreover, all coefficients and right-hand
side constants in the system defining PBP(H) are 0,±1.

Proof. Denote by N = N1, · · · , Nt a nest-set elimination order of G with nsgN (G) ≤ k. Consider
the nest-set N1.

Assume N1 = {v} for some v ∈ V . Then, v is a nest point of G. Denote by Sv the set of
all signed edges of H containing v. By definition, the set Sv is totally ordered. Define the signed
hypergraph H ′

1 := (V, Sv ∪ Pv), where Pv := {s − v : s ∈ Sv, |s| ≥ 3}. Clearly, an extended
formulation for PBP(H ′

1) serves as an extended formulation for PBP(H) as well. Now define the
pointed signed hypergraph Hv := (V1, Sv ∪ Pv), where V1 denotes the underlying edge of a signed
edge of maximum cardinality in Sv. We then have H ′

1 = Hv ∪ (H − v), where we used the fact that
H ′

1−v = H−v. Hence by Theorem 7, the pseudo-Boolean polytope PBP(H ′
1) is decomposable into

pseudo-Boolean polytopes PBP(Hv) and PBP(H− v), and a polynomial-size extended formulation
of PBP(Hv) exists by Theorem 8.

Now assume |N1| ≥ 2; let S1 ⊆ S denote the set of signed edges containing some v ∈ N1.
Consider s ∈ S1, denote by e the underlying edge of s, and define ē := e∪N1. Inflate s to ē; repeat
a similar inflation operation for every s ∈ S1 to obtain a new signed hypergraph H̄ = (V, S̄). It
then follows that H̄ satisfies two key properties:

(i) |S̄| ≤ 2k|S|, since by assumption nsgN (G) ≤ k, implying that gap(G,N1) ≤ k,

(ii) all nodes in N1 are nest points of the underlying hypergraph of H̄. To see this, denote by Ḡ
the underlying hypergraph of H̄ and denote by F̄ the set of all edges in Ḡ containing some
node in N1. By definition of a nest-set, {f \N1 : f ∈ F̄} is totally ordered. Moreover, by the
inflation operation defined above, we have f ∩N1 = N1 for all f ∈ F̄ . It then follows that F̄
is totally ordered as well; hence, all nodes in N1 are nest points of Ḡ.

By Theorem 9 and property (i) above, by obtaining a polynomial-size extended formulation for
PBP(H̄), we obtain a polynomial-size extended formulation for PBP(H) as well. Now consider a
node v1 ∈ N1. Since v1 is a nest point of Ḡ, we can use the technique described above to decompose
PBP(H̄) into PBP(H̄v1) and PBP(H̄ − v1), where as before H̄v1 is a signed hypergraph pointed at
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v1. Moreover, denoting by S̄v1 the number of edges in H̄v1 containing v1 we have S̄v1 ≤ 2k|S|. Next
consider the signed hypergraph H̄ − v1; it follows that any node v ∈ N1 \ {v1} is a nest point of
the underlying hypergraph of H̄− v1. Hence we can apply our decomposition technique recursively
to all nest points in N1 to decompose PBP(H̄) into PBP(H̄ − N1) and PBP(H̄v) for all v ∈ N1,
where PBP(H̄v) is a pointed signed hypergraph at v with at most 2k+1|S| edges for all v ∈ N1.
Since the nodes in N1 are contained in the same signed edges of H̄ obtained by inflating any edge
in H containing some node in N1 to their union, it follows that the number of signed edges of
H̄ −N1 is upper bounded by |S|. Next, we apply the above inflation and decomposition technique
to the signed hypergraph H̄ −N1 together with the nest-set N2. Repeating this argument t times
for all Ni ∈ N , we conclude that an extended formulation for PBP(H) is obtained by juxtaposing
extended formulations of pointed signed hypergraphs PBP(H̄vi) for all vi ∈ V , together with t
equalities of the form (5).

Now consider the pointed signed hypergraph H̄vi for some vi ∈ V . Denote by Vi the node
set of H̄vi , denote by S̄vi the set of edges containing vi and let P̄vi denote the remaining edges
of H̄vi . By Theorem 8 the polytope PBP(H̄vi) has an extended formulation consisting of at most
2|Vi|(|Svi |+|Pvi |+1) ≤ 2r(2k|S|+2k|S|+1) variables and at most 4(|Svi |+|Pvi |)(|Vi|−2)+4|Vi| ≤ (r−
2)2k+3|S|+ 4|V | inequalities, where the inequalities follow since |Vi| ≤ r and |P̄vi | ≤ |S̄vi | ≤ 2k|S|.
Therefore, PBP(H) has an extended formulation with O(r2k|V ||S|) variables and inequalities.
Moreover, by Theorem 8 and Theorem 9 all coefficients and right-hand side constants in the system
defining this extended formulation are 0,±1.

Notice that Theorem 5 is a special case of Theorem 10 obtained by letting k = 1. Using
inequality (4), we obtain the following result regarding the pseudo-Boolean polytope of signed
hypergraphs with bounded nest-set width:

Corollary 4. Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph
G = (V,E) satisfies nsw(G) ≤ k. Then the pseudo-Boolean polytope PBP(H) has an extended
formulation with O(r2k|V ||S|) variables and inequalities. In particular, if k ∈ O(log poly(|V |, |E|)),
then PBP(H) has a polynomial-size extended formulation. Moreover, all coefficients and right-hand
side constants in the system defining PBP(H) are 0,±1.

Recall that by Proposition 2, if k ∈ O(
√

log poly(|V |, |E|)), then deciding whether nsw(G) ≤ k
can be performed in polynomial-time. Together with Corollary 4 this settles the complexity of recog-
nition and solution of Problem PBO over signed hypergraphs with nsw(G) ∈ O(

√
log poly(|V |, |E|)).

However, for the regime k ∈ ω(
√

log poly(|V |, |E|)) and k ∈ O(log poly(|V |, |E|)), while by Corol-
lary 4 we can solve Problem PBO in polynomial-time, the complexity of checking whether nsw(G) ≤
k remains an open question.

Finally, let us examine the connections between Theorem 1, Theorem 4, and Corollary 4. From
Lemma 9 of [32] it follows that for a hypergraph G of rank r we have

tw(G) ≤ nsw(G)(r − 1).

Hence, if the rank r is fixed, then Corollary 4 is implied by Theorem 1 as in this case, bounded nest-
set width implies bounded treewidth. However, if r is not fixed, then one can consider hypergraphs
with bounded nest-set width and unbounded treewidth in which case Theorem 1 is not applicable,
while Corollary 4 gives polynomial-size extended formulations for the pseudo-Boolean polytope.
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