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Abstract

Quantum Interior Point Methods (QIPMs) have been attracting significant interests recently
due to their potential of solving optimization problems substantially faster than state-of-the-art
conventional algorithms. In general, QIPMs use Quantum Linear System Algorithms (QLSAs)
to substitute classical linear system solvers. However, the performance of QLSAs depends on
the condition numbers of the linear systems, which are typically proportional to the square of
the reciprocal of the duality gap in QIPMs. To improve conditioning, a preconditioned inexact
infeasible QIPM (II-QIPM) based on optimal partition estimation is developed in this work. We
improve the condition number of the linear systems in II-QIPMs from quadratic dependence on
the reciprocal of the duality gap to linear, and obtain better dependence with respect to the
accuracy when compared to other II-QIPMs. Our method also attains better dependence with
respect to the dimension when compared to other inexact infeasible Interior Point Methods.

1 Introduction

Linear Optimization (LO) is defined as optimizing a linear objective function under a set of linear
constraints. The two most popular families of algorithms for solving LO problems are simplex
algorithms and Interior Point Methods (IPMs) [3, 25]. Despite its efficiency for many practical
problems, simplex methods may take exponentially many iterations to find an optimal solution,
whereas IPMs guarantee an optimal solution in polynomial number of iterations.

The modern age of IPMs were launched by Karmarkar’s projective method for LO problems [15].
Since then, many IPM variants have been proposed and studied for not only LO problems but also
nonlinear optimization problems [25, 21, 22]. Contemporary IPMs start from an interior point and
progress to the optimal set by moving within a neighbourhood of an analytic curve, known as the
central path. Depending on whether feasibility is satisfied by the iterates, IPMs can be categorized
into feasible IPMs and infeasible IPMs. Feasible IPMs start with a strictly feasible solution and
maintain feasibility at each iterations, whereas infeasible IPMs does not require feasibility to be
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exactly satisfied by any iterates. To find an ϵ-approximate solution for an LO problem with n
variables and m constraints (m ≤ n), feasible IPMs require O (

√
n log(1/ϵ)) IPM iterations while

infeasible IPMs require O (n log(1/ϵ)) IPM iterations [23, 24].
In each IPM iteration, a Newton linear system needs to be solved for the search direction, which

is called the Newton direction. The Newton linear system can take different forms, including full
Newton system, augmented system, and normal equation system. Specifically, the full Newton
system is asymmetric and can be solved exactly using Gaussian elimination with O

(
n3
)
arithmetic

operations. The augmented system is symmetric but indefinite, and it can be solved exactly using
Bunch–Parlett factorization with O

(
n3
)
arithmetic operations [4]. The normal equation system is

symmetric positive definite and can be solved exactly using Cholesky decomposition with O
(
n3
)

arithmetic operations. These systems can also be solved inexactly using methods including Krylov
subspace methods, which may require fewer iterations if the target accuracy is moderate. How-
ever, the Newton directions obtained in this way are inexact, which may make the IPM iterates
infeasible. Thus, the resulting IPMs are infeasible IPMs and have worse iteration complexity. On
the other hand, it is possible to maintain feasibility when using inexact Newton system solutions.
For example, in [18, 28, 2], the authors proposed an orthogonal subspace system whose inexact
solutions give feasible Newton directions.

The recent development of quantum computing has triggered the study of novel quantum al-
gorithms, including hybrid quantum-classic algorithms [9]. Many hybrid algorithms use Quantum
Linear System Algorithms (QLSAs) as they can solve some linear systems faster than classical lin-
ear system algorithms [13, 7, 6]. For example, based on the seminal work of the QLSA [13], various
approaches that improve the performance of IPMs by solving the Newton systems with QLSAs are
proposed [17, 19, 2]. Although QLSAs are more efficient w.r.t. dimension, there are several issues
when applying them to IPMs. One issue is that QLSAs only produce quantum states, which cannot
be used by classical IPMs directly. So QLSAs are always coupled with quantum state tomography
algorithms (QTAs) [11], which extract classical results from the quantum results. At each iteration
of these quantum IPMs (QIPMs), QLSAs are used to solve quantized Newton systems and QTAs
are used to obtain classical solutions. Here, QTAs have polynomial complexity with respect to
the reciprocal of their precisions. Also, such precisions should be of the same magnitude as the
precision of QIPMs. As a result, although many QIPMs attain better complexities with respect
to problem size than their classical counterparts, they could have worse complexity with respect
to precision. Another issue with QLSAs is their linear (or worse) complexity dependence on the
condition number of Newton systems. The condition number of the Newton systems arising from
IPMs can increase to infinity when IPMs approach optimality. Despite the improved dependence
on the problem size, the dependence on condition number indicates the necessity to precondition
the Newton systems arising from QIPMs.

In this work, we propose a preconditioned II-QIPM using the preconditioning method proposed
by Chai and Toh in [5] and the II-QIPM framework proposed by Mohammadisiahroudi et al in [19].
We prove the condition number of the preconditioned linear system is improved from O

(
1/µ2

)
to

O (1/µ), where µ is the corresponding central path parameter. Our algorithm demonstratesO(1/ϵ3)
speed-up compared with the II-QIPM proposed in [19] when the iterative refinement method is not
used.
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2 Preliminaries

In this section, we introduce the notation used in this paper. Then we give a brief introduction to
classical inexact infeasible IPMs (II-IOMs) for LO problems. Finally, we introduce the II-QIPM
for LO proposed in [19].

2.1 Notation

In this work, we take the following conventions. Vectors are denoted by lowercase letters, matrices

by capital letters. For a vector v ∈ Rn, its ith element is denoted by v[i], i.e., v =
(
v[1], . . . , v[n]

)T
.

For a vector with subscript, e.g., v1 ∈ Rn, its ith element is denoted by v1,[i]. For a diagonal matrix
M ∈ Rn×n, its ith diagonal element is denoted by M[i]. For a diagonal matrix with subscript, e.g.,
M1 ∈ Rn×n, its ith diagonal element is denoted by M1,[i].

For a matrix M ∈ Rm×n with m ≤ n, it has m singular values. We assume that the singular
values are sorted in non-increasing order starting from index 1. The singular values of M are
denoted by

σ1(M) ≥ σ2(M) ≥ · · · ≥ σm(M),

except for the special notation σ0(M) denoting the smallest nonzero singular value of M . For a
matrix M ∈ Rm×n (m ≤ n) with k (k < m) nonzero singular values, we have

σ1(M) ≥ · · · ≥ σk(M) = σ0(M) > σk+1(M) = · · · = σm(M) = 0.

The condition number of matrix M is denoted by κ(M) and is defined as

κ(M) =
σ1(M)

σ0(M)
,

which implies that, in this work, the condition number for any matrix, except zero matrices, is
always finite. For a nonsingular matrix M ∈ R(n+m)×(n+m) with the following 2-2 block structure

M =

[
M11 M12

M21 M22

]
,

where M11 ∈ Rn×n and M22 ∈ Rm×m and both nonsingular, we denote the Schur complements [8]
of M by

(M/M11) = M22 −M21M
−1
11 M12 and (M/M22) = M11 −M12M

−1
22 M21.

We use en and 0n to denote the n-dimensional all one vector and all zero vector, respectively. When
the dimension is obvious from the context, we may use e and 0 for simplicity. We use In×m and
0n×m to denote the n ×m dimensional identity matrix and zero matrix, respectively. When the
dimension is obvious from the context, we may write I or 0. We take the convention of big-O, big-
Omega, and big-Theta notations for complexity. We also use˜above these notations when ignoring
the polylogarithmic overhead. For example, Õn(n

2) = O(n2poly log(n)).

2.2 Inexact Infeasible IPMs for LO Problems

In this section, we briefly review II-IPMs for LO problems. In this work, an LO problem is defined
as follows.
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Definition 1 (LO Problem). For vectors b ∈ Rm, c ∈ Rn, and matrix A ∈ Rm×n with rank(A) =
m ≤ n, we define the primal LO problem as:

min
x∈Rn

cTx, s.t. Ax = b, x ≥ 0 (P)

and the dual LO problem as

max
y∈Rm,s∈Rn

bT y, s.t. AT y + s = c, s ≥ 0. (D)

We make the following assumptions on problems (P) and (D).

Assumption 1. The input data, i.e., entries of b, c, and A, are integers.

Assumption 2. There exists a solution (x, y, s) such that

Ax = b, AT y + s = c, and (x, s) > 0.

Assumption 1 implicitly exists in most IPMs work. In this paper, it is explicitly used to prove
Theorem 1. Assumption 2 is not restrictive because we can apply the self-dual embedding model
[25] to problem (P) and (D) to obtain an equivalent LO problem which has a strictly feasible
solution. The set of primal-dual feasible solutions can be defined as

PD =
{
(x, y, s) ∈ Rn × Rm × Rn : Ax = b, AT y + s = c, (x, s) ≥ 0

}
and the set of interior primal-dual feasible solutions can be defined as

PD0 =
{
(x, y, s) ∈ Rn × Rm × Rn : Ax = b, AT y + s = c, (x, s) > 0

}
.

According to the Strong Duality Theorem [25], the set of optimal solutions can be defined as

PD∗ = {(x, y, s) ∈ PD : XSe = 0} ,

where X = diag(x) and S = diag(s). Next, let ϵ > 0, and the set of ϵ-approximate solutions to
problem (P) and (D) can be defined as

PDϵ =
{
(x, y, s) ∈ Rn × Rm × Rn : xT s ≤ nϵ, ∥(rp, rd)∥2 ≤ ϵ

}
,

where rp = b−Ax, rd = c−AT y−s. Under Assumption 2, for any µ > 0, the perturbed optimality
conditions

Ax = b, x ≥ 0

AT y + s = c, s ≥ 0

XSe = µe,

(1)

have a unique solution (x(µ), y(µ), s(µ)) that defines the primal and dual central path

CP =
{
(x, y, s) ∈ PD0 | XSe = µe, ∀µ > 0

}
.

IPMs apply Newton’s method to solve system (1) approximately. At each iteration of inexact
infeasible IPMs (II-IPMs), a candidate solution to problem (P) and (D) is updated by moving
along the solution to the full Newton system (NS), i.e., by solvingA 0 0

0 AT I
S 0 X

∆x
∆y
∆s

 =

rprd
rc

 , (NS)

5



where rc = β1µe − XSe and β1 ∈ (0, 1) is the central path parameter reduction factor. Here,
(rp, rd, rc) are defined at each iteration but for simplicity here we omit the superscript for iteration
index. (NS) can be reduced into the so-called augmented system (AS)[

−D AT

A 0

] [
∆x
∆y

]
=

[
rdc
rp

]
, (AS)

where D = X−1S and rdc = rd − X−1rc. (AS) can be further reduced into the normal equation
system (NES)

AD−1AT∆y = AD−1rdc + rp. (NES)

In each II-IPM iterations, a linear solver is used to inexactly solve for the Newton direction
(∆x,∆y,∆s). Depending on which linear system is solved and which linear solver is used, the
requirements and properties of the inexact Newton directions might be different [10, 16, 1]. If
one uses any inexact method to solve (NS), then all the three residual terms will be nonzero, i.e.,
A∆x − rp ̸= 0, AT∆y + ∆s − rd ̸= 0, S∆x + X∆s − rc ̸= 0. These nonzero residual terms will
bring more challenges in the analysis of II-IPMs. In [1, 20], the authors used similar techniques to
eliminate the residuals for the first two equations in (NS) and to move all the residuals into the
third equation. This is helpful for convergence analysis and we discuss this in more details in the
next section. Once an inexact Newton direction is obtained, the candidate solution is updated by
moving along the Newton direction while staying in a neighbourhood of the central path. In this
work, for any 0 < γ1 < 1 and 1 ≤ γ2, we define a central path neighborhood as

N (γ1, γ2) =
{
(x, y, s) ∈ Rn+m+n : (x, s) ≥ 0, xs ≥ γ1µe, ∥(rp, rd)∥2 ≤ γ2µ

}
, (2)

where µ = xT s/n.

2.3 Inexact Infeasible QIPMs for LO Problems

QIPMs use quantum algorithms to solve Newton linear systems. Due to the non-negligible inaccu-
racy in current quantum computers, the Newton directions obtained from quantum algorithms are
inexact and thus might be infeasible. In [19], the authors designed and analyzed the first II-QIPM
for LO problems. They followed the general framework of the II-IPM proposed in [1] and used
quantum algorithms to obtain the Newton directions. Instead, if one solves (NES) using quantum
algorithms to get ∆y and sets

∆s = rd −AT∆y

∆x = S−1 (rc −X∆s) ,

then the second and third equation in (NS) are satisfied exactly while the residual of the first
equation in (NS) equals to the residual of (NES). It was recognized in [1, 10] that one can move
the residual from the first equation to the third, which makes the first two equations in (NS) be
satisfied exactly and makes the analysis easier. To do so, one first needs a basis for A. In [19], the
authors claimed that the cost to find such a basis is dominated by the cost of solving (NS) and
thus ignored. In this work, for simplicity and w.l.o.g., we assume such a basis is known.

Assumption 3. Matrix A is of the form A =
[
AB AN

]
with AB ∈ Rm×m being nonsingular and

the condition number of AB being no larger than that of A.
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In fact, Assumption 3 is not restrictive because we can rewrite problem (P) into the canonical
form

min
x∈Rn

cTx

s.t.

[
A
−A

] [
x
x

]
≤
[
b
−b

]
x ≥ 0.

Then, we can apply the self-dual embedding model to the canonical form and obtain another
standard form LO problem with both Assumption 2 and 3 satisfied. See [18] for details.

With Assumption 3, we partition D correspondingly as

D =

[
DB 0
0 DN

]
,

where DB is an m ×m matrix and DN is an (n −m) × (n −m) diagonal matrix. We also define
Â = A−1

B A and b̂ = A−1
B b. In the general case where AB is not trivial, this one-time computation

contributes O(mn2) arithmetic operations to total complexity, which can also be avoided if one
uses the aforementioned canonical form reformulation and applies the self-dual embedding model
as described in [18]. Following [19], we can rewrite (NES) as the following modified normal equation
system (MNES) (

D
1
2
BÂ

)
D−1

(
D

1
2
BÂ

)T

z =

(
D

1
2
BA

−1
B

)(
AD−1rdc + rp

)
. (MNES)

We introduce the following notations:

MNES = AD−1AT

MB =

(
D

1
2
BA

−1
B

)T

MMNES = MT
BMNESMB

vMNES = MT
B

(
AD−1rdc + rp

)
.

∆y and z satisfies the bijective relationship: ∆y = MBz. In [19], the authors introduced the
following procedure to obtain inexact Newton directions.

Step 1. Find z such that ∥r∥2 ≤ η
√

µ/n, where η ∈ (0, 1) and

r = MMNESz − vMNES. (3)

Step 2. Calculate
∆y = MBz. (4)

Step 3. Calculate ν =

[
D

− 1
2

B r
0

]
∈ Rn.

Step 4. Calculate ∆s = rd −AT∆y and ∆x = S−1 (rc −X∆s)− ν.
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We are not using this procedure to calculate Newton steps, but introducing this procedure helps us
determine the convergence condition of our proposed algorithm. For the Newton directions obtained
in this way, the residual of (NS) only shows up in its third equation as X∆s+ S∆x− rc = −Sν.
To get the II-QIPM converge, the authors in [19] proposed the stopping criteria

∥Sν∥∞ ≤ ηµ.

They proved the following lemma.

Lemma 2.1 (Lemma 4.2 in [19]). If ∥r∥2 ≤ η
√

µ/n, then ∥Sν∥∞ ≤ ηµ.

To solve (MNES) to the desired accuracy above, i.e., ∥r∥2 ≤ η
√

µ/n, the authors in [19] analyzed
the accuracy required from the quantum algorithm. Specifically, they used the QLSA by [6] and the
QTA by [27]. Before introducing their conclusion on the required accuracy for quantum algorithm,
we first compare the different meanings of accuracy between classical linear system solves and
quantum linear system solves. Different from classical solvers, QLSAs compute a quantum state
representing the normalized vector of the classical solution and store the quantum state in the
quantum machine. We use QTAs to get a classical normalized vector close to the quantum state
and then rescale it properly. Therefore, we take into account the precision of QTAs in the analysis.

Now we discuss the accuracy needed for the quantum algorithms. Let us consider (NES). When
we use classical algorithms to compute an ϵc-approximate solution ∆y, we get ∆ŷ such that

ϵc =
∥∥MNES∆ŷ −AD−1rdc − rp

∥∥
2
= ∥MNES(∆ŷ −∆y)∥2 .

According to the definition of (MNES) and the definition of r, see equation (3), it is obvious that

ϵc = ∥MNES(∆ŷ −∆y)∥2 =
∥∥∥(MT

B

)−1
r
∥∥∥
2
. (5)

In contrast, when we use QLSAs and QTAs to solve (NES) with accuracy ϵq, we get a classical unit
vector ∆ỹ with accuracy ϵq such that

Eq =
∆ỹ

∥∆ỹ∥2
− ∆y

∥∆y∥2
= ∆ỹ − ∆y

∥∆y∥2
with ∥Eq∥2 = ϵq. (6)

The norm of the actual solution ∆y can be retrieved inexactly using quantum algorithms [6]. But
this approach introduces extra inexactness to the algorithm. Instead, we consider rescaling ∆ỹ
to minimize the ℓ2 norm of the residual of (MNES). Denote the rescaling factor by l∆ỹ. The
minimization problem is a univariate convex quadratic optimization problem with unique optimal
solution

l∗∆ỹ = arg min
l∆ỹ∈R

∥∥MMNESM
−1
B l∆ỹ∆ỹ − vMNES

∥∥
2
.

With this rescaling choice, one can show the resulting residual rMNES satisfies

∥rMNES∥2 ≤
∥∥MMNESM

−1
B ∥∆y∥2∆ỹ − vMNES

∥∥
2

=
∥∥MMNESM

−1
B (∆y + ∥∆y∥2Eq)− vMNES

∥∥
2

=
∥∥MMNESM

−1
B ∥∆y∥2Eq

∥∥
2

=
∥∥MMNESM

−1
B Eq

∥∥
2
∥∆y∥2

=
∥∥MMNESM

−1
B Eq

∥∥
2

∥∥∥(MMNESM
−1
B

)−1
vMNES

∥∥∥
2

≤ κMMNESM
−1
B
∥vMNES∥2ϵq.
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Combining the inequality and Lemma 2.1, we get the following choice of accuracy

ϵQLSA = ϵQTA = ϵq =
η

κMMNESM
−1
B
∥vMNES∥2

√
µ

n
. (7)

After obtaining the solution from QLSA and QTA, one updates the solution by taking a step along
the Newton direction with the step length introduced in [19]. Before we provide the pseudocode
for the II-QIPM proposed in [19], we define the following quantities:

ω∗ = max
PD∗
∥(x, 0× y, s)∥∞,

ωk = ∥(xk, 0× yk, sk)∥∞,

ω̄ = max
k=1,...,k̄

ωk,

(8)

where (xk, yk, sk) is the iterate in the kth iteration and k̄ is the total number of iterations. In some
sections later, the superscript for iteration index might be ignored. In those context, we simply use
ω for ωk, i.e., ω = ωk. The pseudocode for the II-QIPM proposed in [19] is provided in Algorithm
1.

Algorithm 1 II-QIPM [19]

1: Choose ϵ > 0, γ1 ∈ (0, 1), γ2 > 0, 0 < η < β1 < β2 < 1,

2: k ← 0, (x0, y0, s0)← (ω∗e, 0e, ω∗e), and γ2 ← max
{
1,

∥(r0p,r0d)∥2
µ0

}
,

3: while (xk, yk, sk) /∈ PDϵ do

4: µk ← (xk)T sk

n
5: set ϵkQLSA and ϵkQTA using (7),

6: (∆xk,∆yk,∆sk)← solve (MNES)(β1) by QLSA+QTA
7: with precisions ϵkQLSA and ϵkQTA, respectively,

8: α̂k ← max
{
ᾱ ∈ [0, 1] | for all α ∈ [0, ᾱ] we have

9:
(
(xk, yk, sk) + α(∆xk,∆yk,∆sk)

)
∈ N (γ1, γ2) and

10: (xk + α∆xk)T (sk + α∆sk) ≤
(
1− α(1− β2)

)
(xk)T sk

}
,

11: (xk+1, yk+1, sk+1)← (xk, yk, sk) + α̂k(∆xk,∆yk,∆sk),
12: if ∥xk+1, sk+1∥∞ > ω∗ then
13: return Primal or dual is infeasible.
14: end if
15: k ← k + 1
16: end while
17: return (xk, yk, sk)

While II-QIPMs have better dependence on the dimension of the problem, they have linear
dependence on the condition number of the coefficient matrix of (MNES), which in the worst case
can be larger than the condition number of the coefficient matrix of (NES). It is known that the
condition number of normal equation systems can go to infinity for LO problems [12]. In this work,
we are interested in investigating how to precondition the linear systems arising from II-QIPMs
and analyzing how preconditioning can improve the complexity of II-QIPMs.

9



3 Preconditioned Quantum Interior Point Method

In this section, we propose a new QIPM using the preconditioning method proposed by Chai
and Toh in [5], analyze the condition number of the preconditioned linear system, and prove the
complexity of our preconditioned II-QIPM. The preconditioning method we present here is a special
adaption of the method proposed in [5]. Then, we discuss how to use this method in the QIPM
setting and analyze the effect of the proposed preconditioning. Finally, we discuss the complexity
of the proposed preconditioned QIPM.

3.1 A Special Adaptation & Analysis of Chai & Toh’s Method

As explained in [5], when IPMs approach optimality with duality gap µ, according to the optimal
partition of the problem, the diagonal entries in D will go into two clusters, one is of magnitude
O(µ) and the other O(1/µ). Before the optimal partition is revealed, one can predict the optimal
partition according to some partition rules and permute the matrix D into the following form:

D =

[
D1

D2

]
,

where D1 and D2 are both diagonal matrices and the diagonal elements of D1 and D2 are O(µ) and
O(1/µ) respectively. Subsequently, one can partition all the related objects in the same manner,
i.e.,

A =
[
A1 A2

]
and

∆x =

[
∆x1
∆x2

]
, rdc =

[
(rdc)1
(rdc)2

]
,

etc. These matrices and vectors are redefined1 at each iteration, but for simplicity we have dropped
the iteration index superscripts here and in the remaining of this section.

With the aforementioned partition, it is shown in [5] that (AS) can be transformed into another
linear system as specified in the following lemma.

Lemma 3.1 (Lemma 4.1 in [5]2). The solution of (AS) can be computed from the following reduced
augmented system (RAS): [

H B
BT −D1

] [
∆y
∆x̃1

]
=

[
h

F
−1/2
1 (rdc)1

]
, (RAS)

where F1 = I +D1, and

∆x̃1 = F
−1/2
1 ∆x1,

B = A1F
−1/2
1 ,

H = Adiag(F−1
1 , D−1

2 )AT = BBT +A2D
−1
2 AT

2 ,

h = rp +Adiag(F−1
1 , D−1

2 )rdc.
1Ultimately, when the optimal partition is correctly identified, ∆x1 and ∆x2 correspond to the index partition in

the optimal partition.
2Lemma 3.1 is a special case of Lemma 4.1 in [5] when their matrix E1 is the identity matrix.
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In this work, we take the following partition rule:

Definition 2. If x[i] ≥
√

[(1− γ1)n+ γ1]µ, then i is included in the index set defining partition
indicated by subscript ”1”; else, i is included in the partition indicated by ”2”.

Lemma 3.2. Under the partition rule in Definition 2, the value of D1,[i] lies in the interval
[γ1µ
ω2 , 1]; the value of F1,[i] lies in the interval [γ1µ

ω2 + 1, 2]; the value of D2,[j] lies in the interval

[ γ1
(1−γ1)n+γ1

, ω2

γ1µ
].

Proof. From the definition of the neighbourhood (2), we have

x[i]s[i] ≥ γ1µ, for all i ∈ {1, . . . , n},

so

x[i]s[i] = xT s−
∑
j ̸=i

x[j]s[j] ≤ nµ− γ1(n− 1)µ.

From the first inequality we have

D1,[i] = x−1
1,[i]s1,[i] = x1,[i]s1,[i]/x

2
1,[i] ≥

γ1µ

x21,[i]
≥ γ1µ

ω2
,

and from the second inequality and Definition 2 we derive

D1,[i] = x−1
1,[i]s1,[i] = x1,[i]s1,[i]/x

2
1,[i] ≤

nµ− γ1(n− 1)µ

x21,[i]
≤ 1.

Similarly, we can obtain the conclusion for F1,[i] since F1,[i] = D1,[i] + 1. As for D2,[j], from the
definition of the neighbourhood N (γ1, γ2), see (2), we have

D2,[j] = x−1
2,[j]s2,[j] = (x2,[j]s2,[j])

−1s22,[j] ≤
s22,[j]

γ1µ
≤ ω2

γ1µ

and

D2,[j] = x−1
2,[j]s2,[j] =

x2,[j]s2,[j]

x22,[j]
≥ γ1µ

x22,[j]
≥ γ1

(1− γ1)n+ γ1
,

that completes the proof.

Denote the coefficient matrix of (RAS) by K, i.e.,

K =

[
H B
BT −D1

]
.

It is proven in [5] that K,H and D1 are all nonsingular. So one can use the Schur complement to
write out the inverse matrix of K as

K−1 =

[
H−1 −H−1BZ−1BTH−1 H−1BZ−1

Z−1BTH−1 −Z−1

]
,

11



where Z = −(K/H) = BTH−1B+D1. This naturally leads to the preconditioner with the following
block structure

P−1
c =

[
Ĥ−1 − Ĥ−1BẐ−1BT Ĥ−1 Ĥ−1BẐ−1

Ẑ−1BT Ĥ−1 −Ẑ−1

]
,

where Ĥ is a selected positive definite matrix and Ẑ is an approximation of Z by using Ĥ as the
approximation of H. The preconditioned (RAS) system, that we refer to as P-RAS, is

P−1
c K = P−1

c

[
h

F
−1/2
1 (rdc)1

]
. (P-RAS)

The coefficient matrix of (P-RAS) is

P−1
c K =

[
Ĥ−1H − Ĥ−1BẐ−1BT (Ĥ−1H − I) Ĥ−1BẐ−1(Ẑ −BT Ĥ−1B −D1)

Ẑ−1BT (Ĥ−1H − I) Ẑ−1(BT Ĥ−1B +D1)

]
,

and the right-hand-side vector is[
ξ′

ξ′′

]
= P−1

c

[
h

F
− 1

2
1 (rdc)1

]
=

[
Ĥ−1h− Ĥ−1BẐ−1BT Ĥ−1h+ Ĥ−1BẐ−1F

− 1
2

1 (rdc)1

Ẑ−1BT Ĥ−1h− Ẑ−1F
− 1

2
1 (rdc)1

]
.

In this work, we choose
Ĥ = ĥI

ĥ = γ1σ
2
0(A)/ω2

Ẑ = BT Ĥ−1B +D1.

Then the coefficient matrix of (P-RAS) can be simplified to

P−1
c K =

[
Ĥ−1H + Ĥ−1BẐ−1BT − Ĥ−1BẐ−1BT Ĥ−1H 0

Ẑ−1BT (Ĥ−1H − I) I

]
.

Take the following notations:

(P−1
c K)11 = Ĥ−1H + Ĥ−1BẐ−1BT − Ĥ−1BẐ−1BT Ĥ−1H

(P−1
c K)21 = Ẑ−1BT (Ĥ−1H − I).

Then (P-RAS) can be simplified as

(P−1
c K)11∆y = ξ′

(P−1
c K)21∆y +∆x̃1 = ξ′′.

Notice that we only need the first equation to compute ∆y. So we call the normalized first equation
of (P-RAS) as reduced (P-RAS), that we refer to as (RP-RAS), i.e.,

Ξ∆y = ξ, (RP-RAS)

where

Ξ =
(P−1

c K)11

∥(P−1
c K)11∥2

, ξ =
ξ′

∥(P−1
c K)11∥2

.

We build and solve (RP-RAS) instead of (MNES) using the QLSA in [6] and the QTA in [27]. We
discuss how to build and solve (RP-RAS) in Section 3.3. Before that, we analyze (RP-RAS) and
determine the target accuracy for the quantum subroutine in the next section. The pseudocode for
preconditioned II-QIPM is provided here.

12



Algorithm 2 Preconditioned II-QIPM

1: Choose ϵ > 0, γ1 ∈ (0, 1), γ2 > 0, 0 < η < β1 < β2 < 1,

2: k ← 0, (x0, y0, s0)← (ω∗e, 0e, ω∗e), and γ2 ← max
{
1,

∥(r0p,r0d)∥2
µ0

}
,

3: while (xk, yk, sk) /∈ PDϵ do

4: µk ← (xk)T sk

n
5: Partition according to Definition 2
6: set ϵkQLSA and ϵkQTA using (7)

7: (∆xk,∆yk,∆sk)← build and solve (RP-RAS) by QLSA+QTA
8: with precision ϵkQLSA and ϵkQTA

9:

α̂k ← max
{
ᾱ ∈ [0, 1] | for all α ∈ [0, ᾱ] we have(

(xk, yk, sk) + α(∆xk,∆yk,∆sk)
)
∈ N (γ1, γ2) and

(xk + α∆xk)T (sk + α∆sk) ≤
(
1− α(1− β2)

)
(xk)T sk

}
10: (xk+1, yk+1, sk+1)← (xk, yk, sk) + α̂k(∆xk,∆yk,∆sk)
11: if ∥xk+1, sk+1∥∞ > ω∗ then
12: return Primal or dual is infeasible.
13: end if
14: k ← k + 1
15: end while
16: return (xk, yk, sk)

3.2 Condition Number Analysis

In this section, we analyze the condition number of the coefficient matrix of (RP-RAS), or more
precisely, the condition numbers of matrix Ẑ and Ξ. To do so, we define

G = Ĥ−1/2BẐ−1BT Ĥ−1/2

and

Y = G+ (I −G)Ĥ−1/2HĤ−1/2.

By construction, Y = (P−1
c K)11. We first show that the smallest nonzero singular value of matrix

G is bounded from below by a constant.

Lemma 3.3. The smallest nonzero singular value of G satisfies σ0(G) ≥ 1
1+2ĥσ−2

0 (A1)
.

Proof. Let J = BT Ĥ− 1
2 and denote the singular value decomposition (SVD) of J by J = QΣP T =

Q0Σ0P
T
0 , where the first SVD is the full SVD and the second one is the reduced SVD. Then matrix

G can be expressed using J and D1,

G = JT (JJT +D1)
−1J = PΣT (ΣΣT +QTD1Q)−1ΣP T .

Let G′ = ΣΣT +QTD1Q. Then G′ and G′−1 can be expressed as

G′ =

[
Σ2
0 +Φ11 Φ12

Φ21 Φ22

]
and G′−1 =

[
(G′−1)11 (G′−1)12
(G′−1)21 (G′−1)22

]
, (9)

13



where Φij are submatrices of the matrix Φ = QTD1Q and (G′−1)11 = (Σ2
0+(Φ/Φ22))

−1. So matrix
G can be expressed as

G = P

[
(I +Σ−1

0 (Φ/Φ22)Σ
−1
0 )−1 0

0 0

]
P T (10)

and the singular values of matrix G are the same as the singular values of the matrix in the middle
of the right-hand-side expression. By Lemma A.5, the nonzero singular values of the matrix in

the middle equals to the singular values of
(
I +Σ−1

0 (Φ/Φ22) Σ
−1
0

)−1
, i.e., the reciprocal of the

result of the singular values of Σ−1
0 (Φ/Φ22) Σ

−1
0 plus 1. By Lemma A.2, the singular values of

Σ−1
0 (Φ/Φ22)Σ

−1
0 are bounded from above by the largest singular value of Σ−1

0 ΦΣ−1
0 . Then, by

using Lemma A.3, we have

σ1(Σ
−1
0 ΦΣ−1

0 ) ≤ σ1(Σ
−1
0 )σ1(Φ)σ1(Σ

−1
0 )

= [σ0(Σ0)]
−2σ1(D1)

= [σ0(F
− 1

2
1 AT

1 )]
−2ĥσ1(D1)

≤ [σ0(F
− 1

2
1 )σ0(A

T
1 )]

−2ĥσ1(D1)

= ĥσ−2
0 (A1)σ1(F1)σ1(D1)

≤ 2ĥσ−2
0 (A1),

where the second inequality follows from Lemma A.4 and the last inequality follows from Lemma
3.2. Thus

σ0(G) ≥ 1

1 + 2ĥσ−2
0 (A1)

. (11)

The proof is complete.

Lemma 3.4. The largest singular value of G satisfies σ1(G) ≤
(
1 + ĥγ1µ

ω2 σ−2
1 (A1)

)−1
.

Proof. Similar to the proof for Lemma 3.3, we have σ1(G) ≤
(
1 + σ0(Σ

−1
0 ΦΣ−1

0 )
)−1

. Apply Lemma
A.4 twice, then it follows that

σ0(Σ
−1
0 ΦΣ−1

0 ) ≥ σ0(Σ
−1
0 )σ0(Φ)σ0(Σ

−1
0 )

= [σ1(Σ0)]
−2σ0(D1)

= [σ1(F
− 1

2
1 AT

1 )]
−2ĥσ0(D1)

≥ [σ1(F
− 1

2
1 )σ1(A

T
1 )]

−2ĥσ0(D1)

= ĥσ−2
1 (A1)σ0(F1)σ0(D1)

≥ ĥγ1µ

ω2
σ−2
1 (A1),

that completes the proof.
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With the spectral properties of matrix G, we then analyze matrix Y . For simplicity of the
analysis we denote the SVD of matrix G as G = RΨRT = R0Ψ0R

T
0 , where the former SVD is the

full SVD and the latter one is the reduced SVD. To study the properties of matrix Y , it is worth
mentioning that Y can be represented in the following way

RTY R = RTGR+RT (I −G)
1

ĥ
HR

= RTGR+RT (I −G)RRT 1

ĥ
HR

= Ψ+ (I −Ψ)
1

ĥ
RTHR

=

[
Ψ0 0
0 0

]
+

[
I −Ψ0 0

0 I

]
A

=

[
Ψ0 + µ(I −Ψ0)

µI

]
+

[
I −Ψ0

I

]
(A− µI),

(12)

where

A =
1

ĥ
RTHR.

We present the spectral properties of matrix A in the following lemma and then we study the
spectral properties of matrix Y .

Lemma 3.5. The smallest nonzero singular value of A satisfies σ0(A) ≥ µ and the largest singular

value of A satisfies σ1(A) ≤ (1−γ1)n+γ1
γ1ĥ

σ2
1(A).

Proof. Denote

[
F

− 1
2

1 0

0 D
− 1

2
2

]
by MFD. By Lemma A.4, it follows that

σ0(A) =
1

ĥ
σ0(AMFD)

2 ≥ 1

ĥ
σ0(A)2σ0(MFD)

2 ≥ γ1µ

ĥω2
σ0(A)

2 ≥ µ,

where the second inequality follows from Lemma 3.2. Similarly, by Lemma A.3 and Lemma 3.2,

σ1(A) ≤
(1− γ1)n+ γ1

γ1ĥ
σ2
1(A),

that completes the proof.

Now we are ready to study the condition number of Y .

Lemma 3.6. Using the partition rule in Definition 2, the singular values of Y satisfy σ0(Y ) = Ω (µ)
and

σ1(Y ) ≤ 1 +
(1− γ1)n+ γ1

γ1ĥ
σ2
1(A),

thus the condition number of Y satisfies

κ(Y ) = O
(
1

µ

(
1 +

(1− γ1)n+ γ1

γ1ĥ
σ2
1(A)

))
.
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Proof. Notice that[
Ψ0 + µ(I −Ψ0) 0

0 µI

]
+

[
I −Ψ0 0

0 I

]
(A− µI)

=

(([
Ψ0 + µ(I −Ψ0) 0

0 µI

]
+

[
I −Ψ0 0

0 I

]
(A− µI)

)[
I −Ψ0 0

0 I

])[
I −Ψ0 0

0 I

]−1

.

The matrix in the outer parentheses is nonsingular because it is the summation of a positive diagonal
matrix and a positive semidefinite matrix. The matrix outside the parentheses is positive diagonal.
Applying Lemma A.4, it follows that

σ0(Y ) ≥ σ0

(([
Ψ0 + µ(I −Ψ0) 0

0 µI

]
+

[
I −Ψ0 0

0 I

]
(A− µI)

)[
I −Ψ0 0

0 I

])
× σ0

([
I −Ψ0 0

0 I

]−1
)

≥ σ0

([
Ψ0 + µ(I −Ψ0) 0

0 µI

] [
I −Ψ0 0

0 I

])
σ0

([
I −Ψ0 0

0 I

]−1
)
,

where the second inequality follows from the fact that, the first matrix in the first line is the
summation of a positive diagonal matrix and a positive semidefinite matrix, and thus we only keep
the positive diagonal one. Then, using Lemma 3.4 and Lemma 3.3, we can get

σ0(Y ) = min
{
σ0(G)(1− σ1(G)) + µ(1− σ1(G))2, µ

}
× 1 = Ω (µ) .

Recall that (MNES) is equivalent to (NES), thus Y has no zero singular value, so σm(Y ) = σ0(Y ).
As for the largest singular value, we have the following bound:

σ1(Y ) ≤ 1 + 1× (σ1(A)− µ) ≤ 1 +
(1− γ1)n+ γ1

γ1ĥ
σ2
1(A).

The proof is complete.

We have proved that the condition number of the coefficient matrix of (MNES) is O(1/µ).
However, when constructing the coefficient matrix, the inverse matrix of Ẑ is also needed. Thus
the condition number of Ẑ also matters.

Lemma 3.7. The singular values of Ẑ satisfy σ0(Ẑ) ≥ γ1µ/ω
2 and σ1(Ẑ) ≤ 1 + 1

ĥ
σ2
1(A1); the

condition number of Ẑ satisfies κ(Ẑ) ≤ 1
µ
ω2

γ1
(1 + 1

ĥ
σ1(A)2).

Proof. By the definition of Ẑ that Ẑ = BĤ−1BT + D1 and Lemma 3.2, the smallest nonzero
singular value of Ẑ satisfies σ0(Ẑ) ≥ 0+σ0(D1) ≥ γ1µ/ω

2. The largest singular value of Ẑ satisfies

σ1(Ẑ) ≤ 1

ĥ
σ1(BBT ) + σ1(D1)

≤ 1

ĥ
σ1(A1)

2σ0(F1)
−1 + σ1(D1)

≤ 1

ĥ
σ1(A1)

2 + 1,

16



where the first inequality holds because both terms in Ẑ are positive definite, the second inequality
follows from Lemma A.3, and the third follows from Lemma 3.2. Combining the above with
σ1(A1) ≤ σ1(A), we have the claimed result.

In the sequel we use κY and κ(Y ) (resp. κẐ and κ(Ẑ)) interchangeably. In the next section, we
describe how to use QLSAs and QTAs to solve (RP-RAS).

3.3 Solve (RP-RAS) w. QLSAs & QTAs

In this work, we follow the II-QIPM introduced in [19] and use the QLSA proposed in [11] as well
as the QTA proposed in [27] to solve (RP-RAS). In this section, we discuss the block-encoding
of (RP-RAS). We assume that we have access to quantum RAM (QRAM) and have the initial
data stored in QRAM. For those operations that contribute polylogarithmic overhead, we say those
operations can be implemented efficiently without spelling out their complexity. We also assume we
can efficiently construct diagonal matrices from vectors with the diagonal entries being powers of
the entries of vectors. For example, if we have a vector x in QRAM, then we can efficiently construct
X and X−1/2 in QRAM. Finally, we assume that we can efficiently construct submatrices of any
matrix stored in QRAM.

Provided access to QRAM, the complexity associated with block-encoding the involved ma-
trices and preparing a quantum state encoding of the right-hand-side amounts to polylogarithmic
overhead, which is dominated by the cost of the block-encoding of negative powers of matrices and
that of QLSAs and QTAs. Thus, we ignore the cost of the block-encoding of matrices here and,
in turn, we can ignore the accuracy parameter of block-encoding in our analysis – we keep the
accuracy parameters of block-encoding in our analysis but we do not analyze their value.

We start with the block-encoding of B. Recall that the definition of B is provided in Lemma

3.1 as B = A1F
−1/2
1 . We have the following lemma.

Lemma 3.8 (Block-encodings of A and A1). An (∥A∥F , log(n) + 2, ϵA)-block-encoding of A and
an (∥A1∥F , log(n) + 2, ϵA1)-block-encoding of A1 can be implemented efficiently.

Proof. The results follow directly from the two assumptions we just made earlier in this section
and Lemma 50 from [11].

The following lemma indicates that the block-encoding of a diagonal matrix with entries bounded
between −1 and 1 can be implemented easily.

Lemma 3.9 (Block encode diagonal matrices). Let M ∈ Rn×n and M̃ ∈ Rn×n be two diagonal
matrices and let us assume that for all i ∈ {1, . . . , n}, the following conditions hold:

M[i] ∈ [−1, 1], M̃[i] ∈ [−1, 1], M2
[i] + M̃2

[i] = 1.

Then, a (1,O(log(n)), 0)-block-encoding of M can be implemented efficiently3.

Proof. By construction,[
M M̃

M̃ −M

] [
M M̃

M̃ −M

]T
=

[
M2 + M̃2 0

0 M2 + M̃2

]
= I.

Then according Lemma 50 from [11] the conclusion holds.

3Note that a (p1, p2, p3)-block-encoding can be implemented efficiently indicates that the cost of the block-encoding
is polylogarithmic in terms of p1, p2, and p3.
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Based on this lemma, we can have the following corollary.

Corollary 3.1. Let M ∈ Rn×n be a diagonal matrix and ∥M∥max be the maximum of the absolute
value of the entries of M . Then, an (αM ,O(log(n)), 0)-block-encoding of M can be implemented
efficiently, where αM ≥ ∥M∥max.

Then we can efficiently implement the block-encoding of diagonal matrices with proper scaling.
Now we discuss the block-encoding of matrix B.

Lemma 3.10. An (
∥A1∥F ∥F−1/2

1 ∥max,O(log(n)), ϵB
)

-block-encoding of matrix B can be implemented efficiently.

Proof. Using Lemma 3.8, we can implement an

(∥A1∥F , log(n1) + 2, ϵA1)

-block-encoding of A1 efficiently. From Corollary 3.1, we can implement an(
∥F−1/2

1 ∥max,O(log(n)), 0
)

-block-encoding of F
−1/2
1 efficiently. Then, by Lemma 50 of [11], we can implement an(

∥A1∥F ∥F−1/2
1 ∥max,O(log(n)), ϵB

)
-block-encoding of B efficiently.

Now we are ready to discuss the block-encoding of matrix H that is defined in Lemma 3.1 as
H = A diag

(
F−1
1 , D−1

2

)
AT .

Lemma 3.11. An (
∥A∥2F max{∥F−1

1 ∥max, ∥D−1
2 ∥max},O(log(n)), ϵH

)
-block-encoding of matrix H can be implemented efficiently.

Proof. From Corollary 3.1, we can implement a(
max{∥F−1

1 ∥max, ∥D−1
2 ∥max},O(log(n)), 0

)
-block-encoding of diag

(
F−1
1 , D−1

2

)
efficiently. Following Lemma 53 of [11] and Lemma 3.8, we can

implement a (
∥A∥2F max{∥F−1

1 ∥max, ∥D−1
2 ∥max},O(log(n)), ϵH

)
-block-encoding of matrix H efficiently.

Then we discuss the block-encoding of matrix Ẑ = BT Ĥ−1B +D1 =
1
ĥ
BTB +D1.

Lemma 3.12. An (
αH∥A1∥2F ∥F

−1/2
1 ∥2max,O(log(n)), ϵẐ

)
-block-encoding of Ẑ can be implemented efficiently, where αH = O

(
1/ĥ
)
.
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Proof. From Lemma 53 of [11] and Lemma 3.10, we can implement an(
∥A1∥2F ∥F

−1/2
1 ∥2max,O(log(n)), ϵBTB

)
-block-encoding of BTB efficiently. From Lemma 3.2, we have ∥D1∥max ≤ 1. Then from Corollary
3.1, we can implement an (

∥A1∥2F ∥F
−1/2
1 ∥2max,O(log(n)), 0

)
-block-encoding of ∥A1∥2F ∥F

−1/2
1 ∥2maxD1 efficiently. From Lemma 52 of [11], we can implement an(

αH∥A1∥2F ∥F
−1/2
1 ∥2max,O(log(n)), ϵẐ

)
-block-encoding of Ẑ efficiently, where

αH = 1/ĥ+ 1/∥A1∥2F ∥F
−1/2
1 ∥2max = O

(
1/ĥ
)
.

The last equation follows from Lemma 3.2.

Then we discuss the block-encoding of Ẑ−1.

Lemma 3.13. A (
2/∥Ẑ∥2,O

(
poly log(n) + poly log κẐ

)
, ϵẐ−1

)
-block-encoding of Ẑ−1 can be implemented with cost

Õn,ϵ

(
κẐ

(
αH∥A1∥2F ∥F

−1/2
1 ∥2max

)
/∥Ẑ∥2

)
.

Proof. By applying Lemma 52 of [11] to Ẑ, we can efficiently implement an((
αH∥A1∥2F ∥F

−1/2
1 ∥2max

)
/∥Ẑ∥2,O(log(n)),

(
αH∥A1∥2F ∥F

−1/2
1 ∥2max

)
/∥Ẑ∥2ϵẐ

)
-block-encoding of Ẑ/∥Ẑ∥2. By applying Lemma 10 of [6] to Ẑ/∥Ẑ∥2, a(

2,O
(
poly log(n) + poly log κẐ

)
, ϵ∥Ẑ∥2Ẑ−1

)
-block-encoding of ∥Ẑ∥2Ẑ−1 can be implemented with cost

Õn,ϵ

(
κẐ

(
αH∥A1∥2F ∥F

−1/2
1 ∥2max

)
/∥Ẑ∥2

)
.

Then the result follows from Lemma 52 of [11].

Then we discuss the block-encoding of B
(
Ẑ−1

)
BT .

Lemma 3.14. A(
2
(
∥A1∥2F ∥F

−1/2
1 ∥2max

)
/∥Ẑ∥2,O

(
poly log(n) + poly log κẐ

)
, ϵBZB

)
-block-encoding of B

(
Ẑ−1

)
BT can be implemented efficiently.
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Proof. The result follows from Lemma 3.10 and Lemma 3.13 and Lemma 53 of [11].

Then we discuss the block-encoding H +BẐ−1BT .

Lemma 3.15. A2
(
∥A1∥2F ∥F

−1/2
1 ∥2max

)
/∥Ẑ∥2 + ∥A∥2F max{∥F−1

1 ∥max, ∥D−1
2 ∥max},

O
(
poly log(n) + poly log κẐ

)
,

ϵHBZB


-block-encoding of H +BẐ−1BT can be implemented efficiently.

Proof. The result follows from Lemma 3.11, Lemma 3.14, and Lemma 52 of [11].

Lemma 3.16. A 2
(
∥A1∥2F ∥F

−1/2
1 ∥2max

)
∥A∥2F max{∥F−1

1 ∥max, ∥D−1
2 ∥max}/∥Ẑ∥2,

O
(
{poly log(n) + poly log κẐ

)
,

ϵBZBH


-block-encoding of BẐ−1BTH can be implemented efficiently.

Proof. The result follows from Lemma 3.11, Lemma 3.14, and Lemma 53 of [11].

Finally, we have the block-encoding of (RP-RAS).

Lemma 3.17. Let

CRPRAS =

(
2ĥ

(
∥A1∥2F ∥F−1/2

1 ∥2max

)
∥Ẑ∥

2

+ 1

)(
∥A∥2F max{∥F−1

1 ∥max, ∥D−1
2 ∥max}+ 1

)
− 1

ĥ2
∥∥(P−1

c K
)
11

∥∥
2

.

Then a (
CRPRAS,O

(
poly log(n) + poly log κẐ

)
, ϵRPRAS

)
-block-encoding of Ξ can be implemented with Õn,ϵ

(
κẐ

(
αH∥A1∥2F ∥F

−1/2
1 ∥2max

)
/∥Ẑ∥2

)
queries to

QRAM.

Proof. The result follows from Lemma 3.15, Lemma 3.16 and Lemma 52 of [11].

We have the following lemma for the value of CRPRAS.

Lemma 3.18. CRPRAS = O
(

∥A∥4F
ĥ∥Ẑ∥

2
∥Y ∥2

)
.

Proof. From Lemma 3.2, we have ∥∥∥F−1/2
1

∥∥∥2
max

= O(1)

and

max{∥F−1
1 ∥max, ∥D−1

2 ∥max} = O(1).
Then

CRPRAS = O

 ∥A∥4F
ĥ
∥∥∥Ẑ∥∥∥

2

∥∥(P−1
c K

)
11

∥∥
2

 = O

 ∥A∥4F
ĥ
∥∥∥Ẑ∥∥∥

2
∥Y ∥2

 .

The proof is complete.
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3.4 Worst-case Complexity

In this section, we analyze the complexity of Algorithm 2. In each iteration of Algorithm 2, we use
Definition 2 to partition the variables. We use the QLSA of [6] to build and solve (RP-RAS), use
the QTA from [27] to readout the solution, and then use line search to update the iterates. The
complexity is dominated by the complexity of QLSA and QTA.

Theorem 1. In the kth iteration of Algorithm 2, the QLSA by [6] and the QTA by [27] can build
and solve (RP-RAS) with a solution satisfying ∥r̂k∥2 ≤ η

√
µk/n with

Õn,ω̄, 1
ϵ

(
n1.5ω̄13

ϵ6
κ5A∥A∥6F

(∥∥∥Â∥∥∥
2
+
∥∥∥b̂∥∥∥

2

))
queries to QRAM. The total complexity for Algorithm 2 to generate an ϵ-approximate solution is

Õn,ω̄, 1
ϵ

(
n2 ·

(
n1.5ω̄13

ϵ6
κ5A∥A∥6F

(∥∥∥Â∥∥∥
2
+
∥∥∥b̂∥∥∥

2

)))
queries to QRAM and Õn,ω̄, 1

ϵ
(n3m) classical arithmetic operations.

Proof. Let TRPRAS be the cost of implementing the block-encoding of Ξ as in Lemma 3.17. Then,
we have

TRPRAS = Õn,ϵ

(
κẐ

(
αH∥A1∥2F ∥F

−1/2
1 ∥2max

)
/∥Ẑ∥2

)
.

Let Tξ be the cost of implementing state-preparation of ξ in equation (RP-RAS) as introduced in
[6]. Then, the complexity for QLSA + QTA, that we denote by Titer, is

Titer = Õn,κẐ ,κY

(
κY

(
CRPRASTRPRAS log

2

(
κ

ϵQLSA

)
+ Tξ

)
n

ϵQTA

)
queries to QRAM. According to Corollary 2 of [6], Tξ is O (polylogn/ϵ), which is dominated by
TRPRAS. Thus we ignore Tξ in the complexity of QLSA + QTA. Following from Lemma 3.18, and
Lemma 3.13, we have

Titer = Õn,ω, 1
ϵ

(
κY

∥A∥4F
ĥ
∥∥∥Ẑ∥∥∥

2
∥Y ∥2

κẐ

(
αH∥A1∥2F ∥F

−1/2
1 ∥2max

)
/∥Ẑ∥2

n

ϵQTA

)
.

Then, using Lemma 3.2, we have

Titer = Õn,ω, 1
ϵ

(
κY

∥A∥6F
ĥ
∥∥∥Ẑ∥∥∥

2
∥Y ∥2

κẐαH/∥Ẑ∥2
n

ϵQTA

)
.

Now we can use Lemma 3.12 to derive

Titer = Õn,ω, 1
ϵ

(
κY

∥A∥6F
ĥ2
∥∥∥Ẑ∥∥∥

2
∥Y ∥2

κẐ/∥Ẑ∥2
n

ϵQTA

)
.
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Then, by the definition of the condition number, we have

Titer = Õn,ω, 1
ϵ

(
∥A∥6FκẐ

ĥ2σ1(Ẑ)2σ0(Y )

n

ϵQTA

)
.

Following Lemma A.1, we have
σ1(Ẑ) ≥ σ1(B

T Ĥ−1B).

By the definition of the largest singular value, we have

σ1(B
T Ĥ−1B) = max

∥v∥2=1
vTBT Ĥ−1Bv ≥ 1

ĥ

[
1 0 · · · 0

]
BTB

[
1 0 · · · 0

]T
.

Combining this with Assumption 1 and Lemma 3.2, we have

σ1(Ẑ) ≥ 1

2ĥ
.

Then, using the required precision set by equation (7), we have the total number of queries to
QRAM in the kth iteration of Algorithm 2 equals to

Titer =Õn,ω, 1
ϵ

(
∥A∥6F

κẐ
σ0(Y )

n

ϵQTA

)

=Õn,ω, 1
ϵ

(
∥A∥6F

n1.5κẐ
σ0(Y )

κMMNESM
−1
B
∥vMNES∥2

√
µ

)

=Õn,ω, 1
ϵ

(
∥A∥6F

n1.5

µ

1

µ

ω2

γ1
(1 +

1

ĥ
σ1(A)

2)
κMMNESM

−1
B
∥vMNES∥2

√
µ

)

=Õn,ω, 1
ϵ

(
∥A∥6F

n1.5ω2

µ2

1

ĥ
σ1(A)2

κMMNESM
−1
B
∥vMNES∥2

√
µ

)
,

where the second equality follows from Lemma 3.7. By the definition of ĥ, we have

1

ĥ
σ1(A)2 =

κ2Aω
2

γ1
.

By the definition of the condition number and the sub-multiplicativity of spectral norm, we have

κMMNESM
−1
B

= κMT
BMNES

≤ κMB
κNES

≤ κ3Aκ
1.5
D ,

where the last inequality holds due to Assumption 3 and the fact that D is a positive diagonal
matrix. It follows from Lemma 3.2 that

κD ≤
ω4

µ2
.
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From the proof of part (ii) of Theorem 4.2 in [19], we have

∥vMNES∥2√
µ

= O

ω3
(∥∥∥Â∥∥∥

2
+
∥∥∥b̂∥∥∥

2

)
µ

 .

Putting all this together, in each IPM iteration we need

Õn,ω, 1
ϵ

(
n1.5ω13

µ6
κ5A∥A∥6F

(∥∥∥Â∥∥∥
2
+
∥∥∥b̂∥∥∥

2

))

queries to QRAM. Recall the relationship between ω, ωk and ω̄ in equation (8), and the stopping
criteria, µ ≤ ϵ. The total number of queries to QRAM is

Õn,ω̄, 1
ϵ

(
n2 ·

(
n1.5ω̄13

ϵ6
κ5A∥A∥6F

(∥∥∥Â∥∥∥
2
+
∥∥∥b̂∥∥∥

2

)))
.

And the total classical arithmetic operations for building (RP-RAS) and updating variables is

Õn,ω̄, 1
ϵ

(
n3m

)
,

where O(nm) is the number of classical arithmetic operations needed for matrix-vector multiplica-
tion in the updating process.

The total number of queries to QRAM of the preconditioned II-QIPM is better than the orig-

inal II-QIPM proposed in [19] with a improvement factor O
(
ω̄6

ϵ3

)
when ∥A∥F = O(∥A∥2). The

improvement comes from two sources: one is the preconditioning and the other is different rescaling.
Preconditioning mainly improves the complexity of the QLSA, which relies on the condition

number of the linear system to be solved and the complexity to build the linear system using

block-encoding. Due to preconditioning, both of these two terms are improved by O
(
ω̄2

ϵ

)
.

Rescaling mainly affects the complexity of QTA, which is almost linear with respect to the
reciprocal of the accuracy of QTA. The accuracy of QTA is determined by the convergence condition
and the residual of (MNES), see Lemma 2.1. In [19], they solve (MNES) to get z directly. They
then analyze the residual of (MNES) to determine the required accuracy of QTA, which is linear
in the reciprocal of the condition number of (MNES).

In our algorithm, we solve (RP-RAS) to get ∆y and then plug ∆y into (MNES) using (4),
which gives a linear system different from, but similar to (MNES). Similar analysis shows that the
required accuracy of our QTA is linear in the reciprocal of the condition number of the different

linear system, whose condition number is better than (MNES) by O
(
ω̄2

ϵ

)
. The total improvement

is the product of the improvements from these different sources.

4 Conclusion

To mitigate the negative implication that the complexity of QLSA has linear dependence on con-
dition number, and that the condition number of the Newton systems in II-QIPMs tend to infinity
as optimality is approached, a preconditioned II-QIPM is proposed in this work. With the pre-
conditioning method introduced by Chai and Toh in [5], we prove that the condition numbers in
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II-QIPMs are improved from O(1/µ2) to O(1/µ). In each II-QIPM iteration, the computational
complexity dependence on n comparable to the O(n2) in [19] and comparable to the computational
complexity of matrix-vector multiplication in conjugate gradient methods for solving linear systems
when ∥A∥F = O(∥A∥2). The complexity dependence on ϵ is O(1/ϵ6), which is worse than most
classical II-IPMs but is quadratically better than the II-QIPM in [19]. It is possible to further
improve the dependence on ϵ by using the iterative refinement methods as discussed in [19] but it
is out of the scope of this paper.
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Appendix A

The following lemma is a special case of Theorem 4 from [26] by considering positive semi-definite
matrices instead of Hermitian matrices.

Lemma A.1 (Special case of Theorem 4 in [26]). Consider two symmetric positive semi-definite
matrices (M1,M2) ∈ Rn×n × Rn×n, and let rank(M2) = k. Then their singular values satisfy

1. σi(M1 +M2) ≥ σi(M1), for i = 1, 2, . . . , n, and

2. σi+k(M1 +M2) ≤ σi(M1), for i = 1, 2, . . . , n− k.

For block matrices, we have the following lemma as a special case of Theorem 5 in [26] by
considering i = 1 and i = n− r.
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Lemma A.2. Let M be a symmetric positive definite matrix with 2× 2 block structure,

M =

[
M11 M12

M21 M22

]
,

where M11 and M22 are nonsingular. Then, the singular values of M and the singular values of its
Schur complement (M/M22) satisfy

σ0(M) ≤ σ0(M/M22) ≤ σ1(M/M22) ≤ σ1(M).

From Example 5.6.6 in [14], it is known that the largest singular value of any matrix coincides
with its spectral norm. So the following lemma is equivalent to the submultiplicativity of spectral
norm of matrices [14].

Lemma A.3. Let M1 ∈ Rm×n and M2 ∈ Rn×l, then the largest singular value of M1M2 is bounded
from above by the largest singular values of M1 and M2, i.e.,

σ1(M1M2) ≤ σ1(M1)σ1(M2).

Below we prove two lemmas involving the smallest nonzero singular value.

Lemma A.4. Let M1 ∈ Rm×n be a nonzero matrix and M2 ∈ Sn×n
++ be a diagonal matrix. The

smallest nonzero singular value of M1M2 is bounded by the smallest nonzero singular value of M1

and the smallest singular value, i.e., diagonal element, of M2:

σ0(M1M2) ≥ σ0(M1)σ0(M2).

Proof. Without loss of generality, we can assume M1M2 has k nonzero singular values:

σ0(M1M2) = σk(M1M2).

Let S ⊆ Rn be a subspace. According to Courant-Fischer Min-Max theorem [14], it follows that

σk(M1M2) =

√
min

S:dim(S)=m−k+1
max

x∈S\{0}

x⊤M1M2(M1M2)⊤x

x⊤x
.

It can be rewritten as

σk(M1M2) =

√
min

S:dim(S)=m−k+1
max

x∈S\{0}

(M⊤
1 x)⊤M2M⊤

2 M⊤
1 x

(M⊤
1 x)⊤M⊤

1 x

(M⊤
1 x)⊤M⊤

1 x

x⊤x
.

Notice that
(M⊤

1 x)⊤M2M
⊤
2 M⊤

1 x

(M⊤
1 x)⊤M⊤

1 x
≥ σ0(M2M

⊤
2 )

as long as M⊤
1 x ̸= 0, which is true for σk(M1M2) since M1M2 has k nonzero singular values. So

σk(M1M2) ≥

√
min

S:dim(S)=m−k+1
max

x∈S\{0}

(M⊤
1 x)⊤M⊤

1 x

x⊤x
σ0(M2M⊤

2 )

= σk(M1)σ0(M2).
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On one hand, if M1 has more than k nonzero singular values, then we can prove that M1M2

has more than k nonzero singular values, which violates the assumption. On the other hand, if
σk(M1) = 0, then we have found an x ∈ S \ {0} with dim(S) = m − k such that M⊤

1 x = 0, which
means σ0(M1M2) = σk(M1M2) = 0 and violates the definition of σ0(M1M2). So σ0(M1) = σk(M1)
and σ0(M1M2) ≥ σ0(M1)σ0(M2).

Lemma A.5. Let M1 ∈ Sn++ and M2 ∈ S(n+l)×(n+l) with l ∈ Z+ and

M2 =

[
M1 0
0 0

]
.

Then the smallest nonzero singular value of M2 equals to the smallest nonzero singular value of
M1, i.e.,

σ0(M1) = σ0(M2),

and the largest singular value of M2 equals to the largest singular value of M1, i.e.,

σ1(M1) = σ1(M2).

Proof. The results are straightforward by checking the SVD of M1 and M2.
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