
Tensor Train Solution to Uncertain Optimization
Problems with Shared Sparsity Penalty

HARBIR ANTIL1, SERGEY DOLGOV2, AND AKWUM ONWUNTA3

1The Center for Mathematics and Artificial Intelligence (CMAI) and Department of Mathematical
Sciences, George Mason University, Fairfax, VA 22030, USA

2Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK

3Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 18015
USA

ISE Technical Report 24T-018

TENSOR TRAIN SOLUTION TO UNCERTAIN OPTIMIZATION PROBLEMS WITH
SHARED SPARSITY PENALTY∗

HARBIR ANTIL† , SERGEY DOLGOV‡ , AND AKWUM ONWUNTA§

Abstract. We develop both first and second order numerical optimization methods to solve non-smooth optimization
problems featuring a shared sparsity penalty, constrained by differential equations with uncertainty. To alleviate the curse of
dimensionality we use tensor product approximations. To handle the non-smoothness of the objective function we introduce
a smoothed version of the shared sparsity objective. We consider both a benchmark elliptic PDE constraint, and a more
realistic topology optimization problem. We demonstrate that the error converges linearly in iterations and the smoothing
parameter, and faster than algebraically in the number of degrees of freedom, consisting of the number of quadrature points in
one variable and tensor ranks. Moreover, in the topology optimization problem, the smoothed shared sparsity penalty actually
reduces the tensor ranks compared to the unpenalized solution. This enables us to find a sparse high-resolution design under a
high-dimensional uncertainty.

Key words. Shared sparsity, nonsmooth regularization, penalization, smoothing, tensor train, topology optimization

MSC codes. 49J55, 93E20, 49K20, 49K45, 90C15, 65D15, 15A69, 15A23

1. Introduction. Constrained optimization is a standard approach in computer-aided design, where
one needs to achieve a certain state of a mathematical model of a physical or technological process, often
written in the form of Partial Differential Equations (PDE) nowadays, by minimizing a certain cost function,
either fitting data or measuring the desired state (e.g. rigidity) in some other way. However, it becomes
increasingly important to quantify the uncertainty emerging from the model and/or data, to both obtain
and certify a control that is resilient to uncertainty, eventually paving the way towards ‘digital twins’ [4, 1].
Such optimization problems are starting to receive a tremendous amount of attention. There have been
developments in all directions: modeling [11], analysis [32, 31], numerical analysis [2, 12, 18, 28], numerical
linear algebra [9], and algorithms [18].

We consider a PDE

(1.1) c(y, u, ξ(ω)) = 0,

with y(x, ξ) ∈ Y and u(x, ξ) ∈ Uad being the state and control belonging to a Hilbert state space Y and the
admissible control subset Uad ⊂ U of a Hilbert space U , respectively, c ∈ Z where Z is a residual Hilbert

space, x ∈ D ⊂ Rd̂, a physical domain with Lipschitz boundary ∂D, and ξ(ω) : Ω 7→ Ξ ⊂ Rd is a random
vector. The latter is defined through a complete probability space (Ω,F,P), where Ω is a space of all possible
outcomes, F ⊂ 2Ω is a σ-algebra on Ω and P : F → [0, 1] is an appropriate probability measure. For simplicity
of exposition, we make a finite-dimension noise assumption encapsulated by the map ξ from Ω to a finite
dimensional domain Ξ = ξ(Ω) ⊂ Rd and continuous probability density function ρ(ξ). The decision making
then becomes a problem of optimizing a cost function,

(1.2) min
y∈Y,u∈Uad

J (y, u), J (y, u) := E[J(y, ξ)] + E[S(u)] +R(u),

constrained by (1.1). Here J is the random-variable objective, S and R respectively denote smooth and
nonsmooth control regularizations.

∗HA is partially supported by NSF grant DMS-2408877, the AirForce Office of Scientific Research under Award NO: FA9550-
22-1-0248, and Office of Naval Research (ONR) under Award NO: N00014-24-1-2147. SD is thankful for the support from
Engineering and Physical Sciences Research Council (EPSRC) New Investigator Award EP/T031255/1.

†The Center for Mathematics and Artificial Intelligence (CMAI) and Department of Mathematical Sciences, George Mason
University, Fairfax, VA 22030, USA. hantil@gmu.edu

‡Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK. s.dolgov@bath.ac.uk
§Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA. ako221@lehigh.edu

1

There exist two versions of the uncertain PDE-constrained optimal control problem (1.1)–(1.2). Firstly,
we can introduce random variables in the PDE, but seek a deterministic control u(x) [27, 28, 18, 29]. A
straightforward objective function of the state thus depends on the random variables too. Turning it into
a deterministic total cost needs an expectation of either the objective itself (risk-neutral optimal control
problem) or another function of the objective (risk-averse problem). Such controls are easy to realize, but
may be restrictive or lack robustness. Secondly, we can introduce random variables in both state y(x, ξ) and
control u(x, ξ) [12, 9, 40, 33]. This provides uncertainty quantification for control, but it is not immediately
clear how to realize a random field control in practice.

An interesting compromise was introduced in [30], which develops the notion of ‘shared-sparsity’. The
idea is to consider an L1-norm in the spatial (physical) domain and an L2-norm in the random variable, i.e.,

(1.3) R(u(x, ξ)) = β

∫

D

(∫

Ξ

|u(x, ξ)|2ρ(ξ)dξ
) 1

2

dx ,

where β ≥ 0 is the regularization parameter. The optimization with a 1-norm penalty to promote sparsity
(that is, to drive near-zero coefficients or gradients to be exactly zero) is a well-known technique in inverse
problems [42, 32]. Here, we make the sparsity of the control (almost) deterministic, shared over all the
realizations of the random variable. During the online stage, one can apply the mean or quantile of the
control, or estimate a particular ξ from state measurements using e.g. Bayesian filtering [25, 7] and apply
the control evaluated on this ξ. Crucially, since the positions of the zeros in the control are (almost)
deterministic, one can fix the actuators to the rest of the spatial domain independently of the system state.

Our paper focuses on this approach. As the main application, we consider a topology optimization under
uncertain Young’s modulus. The goal is to find an optimal material distribution given by volume V̄ over a
given domain D by minimizing the compliance of a structure subject to elasticity equations as constraints. In
this context, finding sparsity corresponds to identifying locations where one must add material. Then in the
online stage, a structure can be designed using different realizations of the random variables, all producing
a robust design. Topology optimization under uncertainty has received some attention recently [26, 41, 16],
but these references do not focus on sparsity.

The main difficulty of uncertainty quantification is the curse of dimensionality: the number of random
variables d needed to parametrize often originally infinite-dimensional random field can be tens to thousands.
Direct discretization of each variable independently produces the number of unknowns growing exponentially
in d, quickly becoming unfeasible. Except for particularly low d or smooth functions, where one can use
sparse grids for instance [40, 33], almost all the existing algorithms in the nonsmooth setting use Monte-Carlo
based sampling, which may converge rather slowly and lead to a sheer computational complexity due to the
need to solve a lot of PDEs during the optimization.

Another approach that can approximate high-dimensional functions (like discretized random fields)
is hierarchical tensor decompositions [21]. The idea is that we discretize a function using a Cartesian
product of univariate basis functions, but instead of storing the tensor of expansion coefficients explicitly, we
approximate it by a sum of products of low-dimensional factors. Smooth functions [22, 38], or probability
density functions of weakly correlated random variables [36], were proven to admit low tensor ranks of such
approximations, e.g. depending poly-logarithmically on the approximation error. Moreover, hierarchical
tensor decompositions (specifically, the Tensor-Train (TT) decomposition [34] we use in this paper) are
equipped with fast adaptive cross approximation algorithms [35, 14].

However, tensor approximations struggle with non-smooth functions. To apply them to non-smooth
optimization, [6, 5] introduced smoothed objective functions such that the solution of the smoothed problem
converges to the solution of the original problem as the smoothing parameter goes to zero, whereas for any
positive smoothing parameter the solution exhibits a rapidly converging TT approximation.

We develop an ε-smoothing of the shared sparsity objective (1.3). Specifically, for any ε > 0 we re-

2

place (1.3) by

(1.4) Rε(u(x, ξ)) = β

∫

D

(∫

Ξ

u(x, ξ)2ρ(ξ)dξ + ε2
) 1

2

dx

in the objective function (1.2).
The remainder of the article is organized as follows. Section 2 details the smoothed shared sparsity

objective, its derivatives, optimality conditions in both continuous and discrete settings, and the fully discrete
approximate Newton method with fast application of the Hessian. This formalism is independent of the
particular approximation of functions and expectations over the random parameters. However, for a practical
method free from the curse of dimensionality, we overview the Tensor-Train decomposition in Section 3. In
Section 4 we test our methodology using a couple of numerical examples: an elliptic PDE in Section 4.1
for faster computations and more illustrative behaviour of the method, and a robust topology optimization
problem [26, 41, 8] in Section 4.2.

2. Discretization and optimality conditions. We assume that both y(x, ξ) and u(x, ξ) are approx-
imated by yh(x, ξ) and uh(x, ξ) which are expanded by N̂ basis functions ψ1(x), . . . , ψN̂ (x) in the physical
domain, discretised with a grid of the maximal element diameter h > 0. Without loss of generality, we can
assume that the same basis functions are used for y and u (we can always concatenate different bases and
expand both functions in the joint basis). For the TT decomposition method we further assume that yh(x, ξ)
and uh(x, ξ) are expanded by N basis functions ϕ1(ξ), . . . , ϕN (ξ) on the random variable. Ultimately,

yh(x, ξ) =
N̂∑

i=1

N∑

j=1

yi,jψi(x)ϕj(ξ), uh(x, ξ) =
N̂∑

i=1

N∑

j=1

ui,jψi(x)ϕj(ξ),

and we can collect coefficients into vectors

(2.1) y =
[
y1,1, . . . , yN̂,N

]
, u =

[
u1,1, . . . , uN̂,N

]
.

For Monte Carlo methods, we assume that ξ is sampled in N independent identically distributed points
ξ1, . . . , ξN , so we can expand

yh(x, ξj) =
N̂∑

i=1

yi,jψi(x), uh(x, ξj) =
N̂∑

i=1

ui,jψi(x), j = 1, . . . , N,

and collect the coefficients into vectors similarly to (2.1).

2.1. Full space formulation. First, we consider the Lagrangian formulation. Let λ(x, ξ) ∈ Z∗ be the
Lagrange multiplier belonging to the dual of the residual Hilbert space Z ∋ c, so we can identify Z∗ with
Z. Then we need to find the KKT conditions of the Lagrangian

(2.2) L(y, u, λ) := E[J(y, ξ)] + E[S(u)] +Rε(u)−
∫

D

∫

Ξ

λ(x, ξ)c(y, u, ξ)(x, ξ)ρ(ξ)dξdx.

We assume that the discretized Lagrange multiplier λh(x, ξ) is expanded in the same basis as yh and uh.
Plugging in the discrete solutions into (2.2), we obtain Lh(y,u,λ) := L(yh, uh, λh). Differentiating the

latter with respect to the coefficient vectors y,u,λ ∈ RN̂N , we get the state and adjoint equations, and an
expression of the gradient

(∇yLh)i,j =

∫

D

∫

Ξ

(
∇yJ(yh, ξ)− λh∇yc(yh, uh, ξ)

)
ψiϕjρdξdx = 0,(2.3)

(∇λLh)i,j = −
∫

D

∫

Ξ

c(yh, uh, ξ)ψiϕjρdξdx = 0,(2.4)

(∇uLh)i,j =

∫

D

∫

Ξ

(
∇uS(uh)− λh∇uc(yh, uh, ξ)

)
ψiϕjρdξdx+ (∇uRε)i,j ,(2.5)

3

where ∇y and ∇u in the right-hand-side are Fréchet derivatives, in contrast to the gradient with respect
to discrete coefficients in the left-hand-side. The latter finite-dimensional gradients will be used for the TT
method. For the Monte Carlo method, we replace the integrals over ξ in the Lagrangian by the averages
over samples at ξ1, . . . , ξN :

LN (y,u,λ) :=
1

N

N∑

j=1

[
J(yh, ξj) + S(uh(x, ξj))−

∫

D

λh(x, ξj)c(yh, uh, ξj)dx

]
+Rε,N (u),

where

(2.6) Rε,N (u) = β

∫

D


 1

N

N∑

j=1

uh(x, ξj)
2 + ε2




1
2

dx.

Since the coefficients corresponding to different samples are independent, the sum over j collapses in the
following gradients:

(∇yLN)i,j =
1

N

[
(∇yJ)i,j −

∫

D

λh(x, ξj)(∇yc(yh, uh, ξj))ψidx

]
= 0,

(∇λLN)i,j = − 1

N

∫

D

c(yh, uh, ξj)ψidx = 0,

(∇uLN)i,j =
1

N

[
(∇uS)i,j −

∫

D

λh(x, ξj)(∇uc(yh, uh, ξj))ψidx

]
+ (∇uRε,N)i,j .

2.2. Derivatives of the shared sparsity penalty. Both first and second derivatives of J, S and c will
be instantiated in concrete examples to simplify their derivation. Here, we are concerned with the derivatives
of (1.4) and (2.6).

For the TT method, plugging in the discretized solution into (1.4), we obtain

Rε(uh(x, ξ)) = β

∫

D



∫

Ξ


∑

i

∑

j

ui,jψi(x)ϕj(ξ)




2

ρ(ξ)dξ + ε2




1
2

dx,(2.7)

(∇uRε)i,j = β

∫

D

∫
Ξ

(∑
i′
∑

j′ ui′,j′ψi′(x)ϕj′(ξ)
)
ψi(x)ϕj(ξ)ρdξ

√∫
Ξ

(∑
i′
∑

j′ ui′,j′ψi′(x)ϕj′(ξ)
)2
ρ(ξ)dξ + ε2

dx.(2.8)

In practice, we can always use the Lagrange interpolation basis functions ϕ1(ξ), . . . , ϕN (ξ), centered at
nodes ξ1, . . . , ξN of a multivariate Gaussian grid, such that ϕj(ξj′) = δj,j′ . The integral over ξ can then be
approximated by a quadrature,

∫

Ξ

f(ξ)ρ(ξ)dξ ≈
N∑

j=1

wjf(ξj),

where w1, . . . , wN are quadrature weights. Moreover, the Gaussian quadrature is exact for polynomials of
degree up to 2N − 1. This gives

∫

Ξ


∑

i

∑

j

ui,jψi(x)ϕj(ξ)




2

ρ(ξ)dξ =
N∑

j=1

wj




N̂∑

i,i′=1

[ui,jui′,jψi(x)ψi′(x)]


 .

4

The integral over x is taken of a non-polynomial function, and needs a quadrature too. The usual finite
element practice is to take ψ1(x), . . . , ψN̂ (x) to be nodal functions on a grid x1, . . . , xN , i.e. ψi(xi′) = δi,i′ .
We can introduce a quadrature on the same nodes,

∫

D

f(x)dx ≈
N̂∑

i=1

ŵif(xi).

For example, the Trapezoidal rule with piecewise linear basis functions satisfies this assumption and gives
the second order of consistency. This gives

Rε,h(u) = β
N̂∑

i=1

ŵi

√√√√
N∑

j=1

[
wju2i,j

]
+ ε2,(2.9)

(∇uRε,h)i,j = βŵi
ui,jwj√∑N

j′=1

[
wj′u2i,j′

]
+ ε2

,(2.10)

(∇2
uuRε,h)i,j,i′,j′ =

βŵiwjδj,j′δi,i′√∑N
j′′=1

[
wj′′u2i,j′′

]
+ ε2

− βŵiwjwj′ui,jui,j′δi,i′
(∑N

j′′=1

[
wj′′u2i,j′′

]
+ ε2

) 3
2

.(2.11)

For the Monte Carlo method, ∇uRε,N and ∇2
uuRε,N have the same form as (2.10) and (2.11), respectively,

with wj = 1/N .

2.3. Linear-Quadratic problem. Practical expressions are more convenient to write assuming linear
constraints and quadratic costs. Let us assume that the spaces Y,Z and U are Bochner spaces Y = L2

ρ(Ξ;Y),
Z = L2

ρ(Ξ;Z), and U = L2
ρ(Ξ;U), where Y, Z and U are Hilbert spaces of functions of x only (for example,

L2(D)), and L2
ρ is a space of functions of ξ with the L2 inner product weighted with the probability density

function ρ(ξ). Now we can assume that

J(y, ξ) =
1

2
∥y − yd(x, ξ)∥2My

, S(u) =
α

2
∥u∥2Mu

, c(y, u, ξ) = A(ξ)y −B(ξ)u− f(ξ),

where My : Y → Y is a self-adjoint positive semi-definite operator, yd(x, ξ) ∈ Y is a desired state, Mu : U →
U is a self-adjoint positive definite operator, ∥f∥M :=

√
⟨f,Mf⟩L2(D) is the induced M -norm, α ≥ 0 is a

regularization parameter, A(ξ) : Y → Z for any ξ ∈ Ξ is a linear PDE operator on the state, B(ξ) : U → Z
is a linear actuator operator of the control, and f(ξ) ∈ Z is an uncontrollable right hand side of the PDE.
In this case,

∇yJ(yh, ξ) =My (yh(x, ξ)− yd(x, ξ)) ,

∇uS(uh) = αMuuh(x, ξ),

∇yc = A(ξ),

∇uc = −B(ξ).

To assemble (2.3)–(2.5), we introduce the mass matrices with elements

(My)i,i′ =

∫

D

ψi(x)Myψi′(x)dx, (Mu)i,i′ =

∫

D

ψi(x)Muψi′(x)dx,

the desired state vector (yd(ξ))i =
∫
D
ψi(x)yd(x, ξ)dx, the stiffness matrices with elements

(A(ξ))i,i′ =

∫

D

ψi(x)A(ξ)ψi′(x)dx, (B(ξ))i,i′ =

∫

D

ψi(x)B(ξ)ψi′(x)dx,

5

and the right hand side (f(ξ))i =
∫
D
ψi(x)f(x, ξ)dx. Replacing the integral over ξ by the quadrature, we

can write the fully discrete Lagrangian gradient

(∇yLh)i,j = wj

N̂∑

i′=1

[(My)i,i′yi′,j − λi′,j(A(ξj))i′,i]− wj(yd(ξj))i,(2.12)

(∇uLh)i,j = wj

N̂∑

i′=1

[α(Mu)i,i′ui′,j + λi′,j(B(ξj))i′,i] + (∇uRε,h)i,j ,(2.13)

(∇λLh)i,j = wj

N̂∑

i′=1

[−(A(ξj))i,i′yi′,j + (B(ξj))i,i′ui′,j + (f(ξj))i](2.14)

to be used for the TT method. The expressions for the Monte Carlo method are the same replacing wj by
1/N and Rε,h by Rε,N . To write the Hessian in a more convenient matrix form, let

A =



A(ξ1)

. . .

A(ξN)


 , B =



B(ξ1)

. . .

B(ξN)


 ,

W =



w1

. . .

wN


⊗ IN̂ , f =



f(ξ1)
...

f(ξN)


 , yd =



yd(ξ1)

...
yd(ξN)


 ,

where Im ∈ Rm×m is the identity matrix, and ⊗ is the Kronecker product, then

∇2Lh =



W (IN ⊗My) 0 −WA⊤

0 W (αIN ⊗Mu) +∇2
uuRε,h WB⊤

−WA WB 0


 ,

with the familiar replacements for the Monte Carlo Hessian ∇2LN .

2.4. Approximate block-diagonal Hessian and Newton’s method. All terms in the Hessian
above are block-diagonal with respect to j except ∇2

uuRε,h. In turn, only the second term in (2.11) breaks
this block-diagonality. Moreover, while both terms of (2.11) have the same asymptotic scaling in u (O(1/|u|)
for |ui,j | ≥ |u| ≫ ε and O(1/ε) for |ui,j | ≪ ε), the second term has an additional factor wj′ < 1, since
wj > 0 and

∑
j wj = 1 for the probability normalization. In fact, wj′ = 1/N for the Monte Carlo method,

and wj′ ≤ C/N ≪ 1 for the TT method, since typically N ≫ 1 for both TT and Monte Carlo. Thus, we

omit the second term of (2.11), and approximate ∇2
uuRε,h by ∇̃2

uuRε,h whose components are given by

(∇̃2
uuRε,h)i,j,i′,j′ =

βŵiδj,j′δi,i′√∑N
j′′=1

[
wj′′u2i,j′′

]
+ ε2

,(2.15)

∇̃2Lh = (I3 ⊗W)



IN ⊗My 0 −A⊤

0 αIN ⊗Mu + ∇̃2
uuRε,h B⊤

−A B 0


 .(2.16)

6

Note that now all terms contain wj in front of them, so we can take W out of the Hessian, which will cancel
with W in front of the gradient

∇yLh = W
[
(IN ⊗My)y −A⊤λ− yd

]
,(2.17)

∇uLh = W
[
(αIN ⊗Mu)u+B⊤λ+ ∇̃uRε,h

]
,(2.18)

∇λLh = W [−Ay +Bu+ f] ,(2.19)

where a gradient without wj reads

(∇̃uRε,h)i,j = βŵi
ui,j√∑N

j′=1

[
wj′u2i,j′

]
+ ε2

.

This allows us to write the Newton’s method as summarized in Algorithm 2.1. Note that we rewrite the
update as a linear equation on the next iterate directly. This will be beneficial for the TT computations
in Section 3.2. This also uses the step size of 1. For globalization, one can rewrite Steps 3–4 in the usual
increment form, followed by a line search, although the TT ranks of the increment s[k+1] − s[k] can be larger
than the TT ranks of s[k] or s[k+1] alone. The linear solution (Step 4) can be implemented in the TT format
in a problem-dependent way. One example is shown in the next section.

Algorithm 2.1 Approximate Newton’s method for the shared-sparsity optimization

Require: Initial guess y[0],u[0],λ[0], stopping tolerance tol > 0, maximum number of iterations K.
Ensure: Updated iterations y[k],u[k],λ[k].
1: for k = 0, 1, . . . ,K − 1 do

2: Let s[k] =
[
(y[k])⊤, (u[k])⊤, (λ[k])⊤

]⊤
be the previous solution vector.

3: Assemble ∇̃2Lh and b := ∇̃2Lhs
[k] −∇Lh with y = y[k], u = u[k] and λ = λ[k] as shown in (2.16)

and (2.17)–(2.19).
4: Solve ∇̃2Lhs

[k+1] = b.

5: Split the components
[
(y[k+1])⊤, (u[k+1])⊤, (λ[k+1])⊤

]⊤
= s[k+1].

6: if ∥s[k+1] − s[k]∥ ≤ tol · ∥s[k+1]∥ then
7: break.
8: end if
9: end for

2.5. Reduced space formulation. Assuming that for every u ∈ Uad there is a unique solution
y(u;x, ξ) ∈ Y to (1.1), we can introduce a control-to-state map Uad ∋ u(x, ξ) 7→ Υ(u)(x, ξ) := y(u;x, ξ), and
the reduced version of the cost (1.2):

(2.20) min
u∈Uad

j(u), j(u) := E[J(Υ(u), ξ)] + E[S(u)] +Rε(u).

The reduced cost and its derivatives can be discretized using the basis or Monte Carlo methods from above,
and the quadrature weights wj or 1/N can be cancelled in the Hessian and gradient.

Existence of the solution to (2.20) and convergence of the smoothed approximation was established
in [30] for linear constraints.

Proposition 2.1 ([30], Theorem 4 and Corollary 5). There exists a unique solution to

(2.21) min
u∈Uad

∫

D

[∫

Ξ

(A−1(Bu+ f)− yd)
2 + αu2

]
dxρ(ξ)dξ +Rε(u),

7

if A : Y ⊂ H1(D) → H−1(D) is linear and invertible, yd ∈ Y, α > 0, for any β ≥ 0 and ε ≥ 0.

Proposition 2.2 ([30], Lemma 6). Let uε be the solution to (2.21) with the smoothing parameter ε ≥ 0,
and let u0 be the solution to (2.21) with ε = 0. If D is bounded, then

∥uε − u0∥2L2
ρ(Ξ;L2(D)) ≤ εβα−1|D|.

This implies the convergence of the smoothed approximation with the rate of O(ε1/2). However, in the
numerical experiments with the linear elliptic PDE we observe a faster rate of O(ε).

3. Functional Tensor Train approximation. In the course of optimization iterations we need to
compute expectations of random vectors. Traditional Monte Carlo method may suffer from slow convergence.
In this work we propose to approximate random vectors by the Functional Tensor Train depending on ξ.

We start with a Cartesian product discretization. We assume that the parametrizing random variables
ξ1, . . . , ξd are independent, so their probability density function factorizes, ρ(ξ) = ρ1(ξ1) · · · ρd(ξd). For each
ξk, k = 1, . . . , d, we introduce a Gauss quadrature weighted with ρk, with n nodes {ξjk}nj=1 and weights

{wj
k}nj=1. The expectation of any scalar continuous function is approximated by the combined quadrature

(3.1) E [f(ξ)] ≈
n∑

j1=1

· · ·
n∑

jd=1

wj1
1 · · ·wjd

d f(ξ
j1
1 , . . . , ξ

jd
d).

The convergence rate of this quadrature is bound by the convergence rates of individual quadratures, and,
if f is sufficiently smooth, they all can be much faster (e.g. exponential) than the Monte Carlo convergence
rate. However, direct application of this quadrature suffers from the curse of dimensionality : it involves the
computation of nd evaluations of f(ξ), which quickly becomes infeasible already for a moderate d.

3.1. Tensor Train decomposition. The Tensor Train (TT) decomposition [34] alleviates this problem
by approximating the tensor of coefficients

Fj1,...,jd = f(ξj11 , . . . , ξ
jd
d), jk = 1, . . . , n, k = 1, . . . , d,

by the following expansion:

(3.2) Fj1,...,jd ≈ F̃j1,...,jd :=

r0,...,rd∑

s0,...,sd=1

F
(1)
s0,j1,s1

F
(2)
s1,j2,s2

· · ·F (d)
sd−1,jd,sd

,

where the factors F (k) are called TT cores, and the ranges rk of the new summation indices are called TT
ranks, rk(F̃) if we want to emphasize that these are TT ranks of the TT decomposition F̃ . For convenience,
we introduce the maximal TT rank r := maxk=0,...,d rk, and, unless we address individual TT ranks, we will

omit the word “maximal”, and refer to r as the TT rank r(F̃) of a TT decomposition F̃ . Note that the TT
cores contain O(dnr2) elements, which can be much fewer than nd elements in F , if the TT rank r is small.
For example, the probability density function of independent random variables sampled on a Cartesian grid
factorizes into a rank-1 TT decomposition. In general, we can always let r0 = rd = 1. Other TT ranks can
be nontrivial. Nonetheless, there exist broad classes of smooth or weakly correlated functions that yield low
TT ranks, such as polylogarithmic in the approximation error [36, 38, 22].

Our main usage of the structure (3.2) is the fast computation of the quadrature (3.1). Indeed, we can
start with summing up just the last TT core,

E(d)
sd−1,sd

=
n∑

j=1

wj
dF

(d)
sd−1,j,sd

, sd−1 = 1, . . . , rd−1, sd = 1, . . . , rd.

8

Now assume we have a matrix E(k+1) ∈ Rrk×rd . To implement the sums over both ik and sk we sum the
kth TT core weighted with wk, and multiply the resulting matrix with E(k+1),

E(k)
sk−1,sd

=

rk∑

sk=1




n∑

j=1

wj
kF

(k)
sk−1,j,sk


E(k+1)

sk,sd
, sk−1 = 1, . . . , rk−1, sd = 1, . . . , rd.

Continuing recursively (and recalling that r0 = rd = 1), we obtain the approximate expectation

Ẽ [f] :=
n∑

j1=1

· · ·
n∑

jd=1

wj1
1 · · ·wjd

d F̃j1,...,jd = E(1).

Counting the summation sizes, we see that the complexity of the expectation computed this way is O(dnr2)
similarly to the number of unknowns in a TT decomposition.

However, we need to approximate vector functions of spatial discretization coefficients such as u(ξ),
or directly the tensor of fully discrete expansion coefficients (2.1), where j is replaced by j1, . . . , jd of the
Cartesian quadrature, ui,j = Ui,j1,...,jd . Since we want to keep the spatial discretization and solver black box,
we employ the so-called block TT decomposition [15], where instead of summing over s0 we let it enumerate
the spatial index i,

(3.3) Ui,j1,...,jd ≈ Ũi,j1,...,jd :=

r1,...,rd∑

s1,...,sd=1

Û
(1)
i,j1,s1

U
(2)
s1,j2,s2

· · ·U (d)
sd−1,jd,sd

.

In addition to computing expectations, the TT decomposition admits fast interpolation too. Interpo-
lating basis functions in space are assumed to be known from the finite element discretization. In ξ, we
introduce Lagrange interpolation polynomials ϕkjk(ξk) centered at the quadrature nodes ξjkk . Now, we just
need to sum the basis functions interpolated at each given x and ξ with only one TT core at a time,

û(1)s1 (x, ξ1) :=

n∑

j1=1

N∑

i=1

ψi(x)Û
(1)
i,j1,s1

ϕ1j1(ξ1), u(k)sk−1,sk
(ξk) :=

n∑

jk=1

U
(k)
sk−1,jk,sk

ϕkjk(ξk),

followed by the matrix multiplication

(3.4) uh(x, ξ) = û(1)(x, ξ1)u
(2)(ξ2) · · ·u(d)(ξd)

calculated by a recursion similar to that used to compute expectations with O(dnr2) complexity. The
expansion (3.4) generalizing the TT structure to continuous variables was called the Functional Tensor
Train decomposition [10, 20]. With a slight abuse of notations we can write r(uh) and rk(uh) for the
maximal/individual TT ranks of Ũ . Similarly, we can consider a semi-discrete TT decomposition

u(ξ) = u(1)(ξ1)u
(2)(ξ2) · · ·u(d)(ξd),

which is naturally extensible to the solution in Algorithm 2.1,

(3.5)



y(ξ)
u(ξ)
λ(ξ)


 =



y(1)(ξ1)
u(1)(ξ1)

λ(1)(ξ1)


u(2)(ξ2) · · ·u(d)(ξd).

3.2. TT-Cross for the approximate Newton solution. The family of TT Cross approximation
algorithms [35, 37, 13, 14] computes a TT decomposition from O(dnr2) evaluations of the function f(ξ) at
adaptively chosen points ξ. The first key ingredient is the Alternating iteration, similar to the methods of

9

Alternating Least Squares [24] and Density Matrix Renormalization Group [43, 39]. Instead of computing
the elements of all TT cores simultaneously, we fix all but one cores, and restrict the relevant problem (such
as Least Squares) to the elements of only one TT core at a time. In the next step, we freeze the TT core we
have just computed, and release the next one for the update, and so on. A motivation for this alternation over
the subsets of unknowns comes from the fact that the tensor F̃ represented by its TT decomposition (3.2)
is linear in the elements of one TT core at a time, and hence for example a convex optimization problem on
the elements of the whole tensor F̃ remains a convex optimization problem on the elements of one TT core
F (k). In contrast, the optimization of all TT cores collectively is usually non-convex even if the initial cost
function of F̃ was quadratic.

To compute TT cores we can use interpolation rather than optimization:

(3.6) F̃j1,...,jd = Fj1,...,jd ∀(j1, . . . , jd) ∈ Jk := {(jt1, . . . , jtd) ∈ Rd : t = 1, . . . , rk−1nrk},

Jk is a set of rk−1nrk tensor indices. Note that F (k) contains the same number of unknowns. In fact, (3.6)
is a linear equation on the elements of F (k). Indeed, let

F<k
t,sk−1

=

r0,...,rk−2∑

s0,...,sk−2=1

F
(1)

s0,jt1,s1
· · ·F (k−1)

sk−2,jtk−1,sk−1
,(3.7)

F>k
t,sk

=

rk+1,...,rd∑

sk+1,...,sd=1

F
(k+1)

sk,jtk+1,sk+1
· · ·F (d)

sd−1,jtd,sd
,(3.8)

F ̸=k
t,sk−1jksk

= F<k
t,sk−1

· δjk,jtk · F>k
t,sk

,(3.9)

where δi,j = 1 when i = j and 0 otherwise. Once can check the linear relation

(3.10) F̃jt1,...,j
t
d
=

∑

sk−1,jk,sk

F ̸=k
t,sk−1jksk

F
(k)
sk−1,jk,sk

,

or, stretching F̃ and F (k) into vectors, vec(F̃ (Jk)) = F ̸=kvec(F (k)).
For efficient computation of (3.7) and (3.8) and index selection in the course of iterations over k =

1, . . . , d, we restrict the structure of Jk to a Cartesian form

(3.11) Jk = J<k × [n]× J>k,

where
[n] = {1, . . . , n}, J<k = {(jt1, . . . , jtk−1)}

rk−1

t=1 , J>k = {(jtk+1, . . . , j
t
d)}rkt=1.

Now F<k ∈ Rrk−1×rk−1 and F>k ∈ Rrk×rk can be constructed only from J<k and J>k, respectively. More-
over, we can construct the next sets

(3.12) J<k+1 ⊂ J<k × [n], J>k−1 ⊂ [n]× J>k

for the next iteration for F (k+1) or F (k−1) by selecting optimal rows from small matrices F
≤k ∈ Rrk−1n×rk

and F
≥k ∈ Rnrk×rk−1 with elements

F
≤k

sk−1jk,sk
=

rk−1∑

tk−1=1

F<k
sk−1,tk−1

F
(k)
tk−1,jk,sk

and(3.13)

F
≥k

jksk,sk−1
=

rk∑

tk=1

F
(k)
sk−1,jk,tk

F>k
tk,sk

.(3.14)

10

The set P ⊂ {1, . . . , rk−1n} of indices of rows extracted from F
≤k

, or P ⊂ {1, . . . , nrk} for F
≥k

, is chosen to

reduce the condition number of the corresponding submatrix F<k+1 = F
≤k

P,: or F
>k−1 = (F

≥k

P,:)
⊤, and hence

the condition number of (3.9). We use the Maximum Volume (maxvol) algorithm [19] for this. Similarly to
the submatrices F<k+1 and F>k−1, the next sets of tensor indices are constructed by taking pth tuples from
(3.12) for p ∈ P ,

(3.15) J<k+1 = (J<k × [n])P , J>k−1 = ([n]× J>k)P .

The basic TT-Cross algorithm described above generalizes elegantly [13] to the block TT decomposition
(3.3) and the Newton iterate in Line 4 of Algorithm 2.1. The block TT decomposition can contain the special
index i in any TT core,

Ũi,j1,...,jd =

r0,...,rd∑

s0,...,sd=1

U
(1)
s0,j1,s1

· · ·U (k−1)
sk−2,jk−1,sk−1

· U (k)
sk−1,i,jk,sk

(3.16)

· U (k+1)
sk,jk+1,sk+1

· · ·U (d)
sd−1,jd,sd

.

Note that all TT cores but Û (k) have the same shapes as generic TT cores in (3.2), and hence we can perform
the majority of the TT-Cross computations (3.7)–(3.9), (3.11) and (3.15) for U (k) instead of F (k) verbatim.
The linear equation (3.10) looks different but consistent:

(3.17) Ui,jt1,...,j
t
d
=

∑

sk−1,jk,sk

U ̸=k
t,sk−1jksk

Û
(k)
sk−1,i,jk,sk

,

and solving it for all values of i gives all the elements of the block TT core Û (k). Now we can use the
Principal Component Analysis to reduce Û (k) to a 3-dimensional TT core:

Û
(k)
sk−1,i,jk,sk

≈ U
(k)
sk−1,jk,s̃k

Ws̃k,ski for iterating k → k + 1,(3.18)

Û
(k)
sk−1,i,jk,sk

≈Wsk−1i,s̃k−1
U

(k)
s̃k−1,jk,sk

for iterating k → k − 1.(3.19)

The remaining TT-Cross operations (3.13)–(3.14) can be applied consistently with thus obtained U (k). As a
by-product, we can update the TT ranks rk and rk−1 up to a desired truncation threshold in (3.18)–(3.19).

4. Numerical examples.

4.1. Elliptic PDE. In the first test we consider the following benchmark example, an adaptation of
that in [23, 17]. We solve (1.2), where:

J(y, ξ) :=
1

2
∥y(x, ξ)− yd(x)∥2L2(D),(4.1)

S(u) :=
α

2
∥u(x, ξ)∥2L2(D),(4.2)

s.t. ν(ξ)∆y(x, ξ) = g(x, ξ) + u(x, ξ), (x, ξ) ∈ D ⊗ [−1, 1]d,(4.3)

ν(ξ) = 10ξ1(ω)−2, g(x, ξ) =
ξ2(ω)

100
,(4.4)

and boundary conditions depending on two options for the physical domain D:
• D = (0, 1), in which case d = 4, with

y|x=0 = −1− ξ3(ω)

1000
, y|x=1 = −2 + ξ4(ω)

1000
11

• D = (0, 1)
2
, in which case d = 6, and

y|x1=0 = b1(ξ)(1− x2) + b2(ξ)x2, y|x2=1 = b2(ξ)(1− x1) + b3(ξ)x1

y|x1=1 = b4(ξ)(1− x2) + b3(ξ)x2, y|x2=0 = b1(ξ)(1− x1) + b4(ξ)x1,

b1(ξ) = −1− ξ3(ω)

1000
, b2(ξ) = −2 + ξ4(ω)

1000
,

b3(ξ) = −1− ξ5(ω)

1000
, b4(ξ) = −2 + ξ6(ω)

1000
,

the random vector ξ(ω) = (ξ1(ω), . . . , ξd(ω)) ∼ U(−1, 1)d is uniformly distributed (so ρ(ξ) = 2−d), and the
desired state yd(x) = − sin(50x/π).

We start with the one-dimensional physical domain, D = (0, 1). The physical variable x is discretized
with a uniform grid with step size h = 1/1024, and each of the random variables ξk is discretized with
nξ = 17 Gauss-Legendre grid points. The first regularization parameter α = 10−2 is fixed to the value
in the original benchmark. However, the shared sparsity regularization parameter β is varied to study its
effect on the control. Firstly, we fix ε = 10−5 and the TT approximation threshold 10−5. The control for
different β is shown in Figure 1. As we expected, larger β increase the fraction of the domain where both
the mean and the variance of the solution are (nearly) zero, i.e. the sparsity is shared. The measure of the
set where the absolute mean control is below 10−4, the number of iterations of Algorithm 2.1 required to
drive the relative increment between the consecutive iterations of the solution below 10−5, and the misfit of
the state are shown in Table 1. Clearly, larger β make the Hessian approximation less accurate, and require

Table 1
Elliptic example (1D), measure of sparsity, number of Newton iterations to stopping tolerance 10−5, and state misfit for

different β.

β
∫ 1

0
1[|E[uh]| < 10−4]dx #iterations E

[
∥yh − yd∥2L2(D)

]

0 0.000 2 0.0645
10−2 0.108 75 0.0798
10−1 0.575 341 0.1763
1 0.890 1370 0.4246

more iterations of the (inexact) Newton method. Unsurprisingly, β = 0 corresponding to the linear problem
requires only one essential Newton iteration (the second iteration is just checking the convergence). The
TT ranks during the TT-Cross algorithm remain between 4 and 6 for all iterations and β in the considered
range. The TT ranks also stay in the same range as the TT truncation tolerance is varied between 10−3 and
10−8. It is possible to rigorously establish these numerical observations.

Proposition 4.1. The solution
[
y⊤,u⊤,λ⊤

]⊤
of this 1D elliptic PDE in the final iteration of TT cross

admits an exact TT decomposition of TT ranks not greater than 7.

Proof. The proof is given in Appendix A.

Note that the elementwise square u2i,j within Rε,h(u) can be computed exactly in the TT format,

followed by taking the square root of deterministic coefficients only. In contrast, computing the exact L1

norm would require to approximate the elementwise modulus u+ = [|ui,j |] in the TT format first, followed by
the quadrature. However, since the modulus is non-smooth, the TT ranks of u+ reach 59 in this experiment,
in contrast to at most 6 for u.

Now we vary the smoothness parameter ε. We fix β = 0.1 and compute the optimal control uε for ε in
the range between 10−6 and 10−1, and the TT approximation tolerance of 10−8. In Figure 2 (left), we show
the difference between the full control, its mean and variance computed at the given ε compared to those

12

0 0.2 0.4 0.6 0.8 1

−5

−4

−3

−2

−1

0

1

2

3

4

5 β = 0

x
0 0.2 0.4 0.6 0.8 1

−5

−4

−3

−2

−1

0

1

2

3

4

5 β = 10−2

x

0 0.2 0.4 0.6 0.8 1

−5

−4

−3

−2

−1

0

1

2

3

4

5 β = 10−1

x
0 0.2 0.4 0.6 0.8 1

−5

−4

−3

−2

−1

0

1

2

3

4

5 β = 1

x

Fig. 1. Elliptic PDE (1D), mean (solid lines) ± one standard deviation (shaded areas) of the optimal control uh(x, ξ) for
different β.

computed at ε = 10−6, as well as a similar difference in the total cost (1.2). We see that the convergence is
linear in ε for all outputs of the solution. The effect of a high ε is shown in Figure 2 (right). Essentially, ε
guides the threshold below which the solution should be seen as zero.

From the left plot of Figure 2 we can also notice that the number of iterations grows asymptotically
logarithmically with ε. In Figure 3 (left) we study this further. For each ε, we take the final mean control
computed with the TT approximation and stopping tolerance of 10−8 as a reference solution E∗[uε], and
use it to estimate the solution error at previous iterations. We see that eventually the method recovers the
linear convergence, although the pre-asymptotic regime may take quite a few iterations for small ε.

In addition, in Figure 3 (right) we compare the TT approach with the Monte Carlo method in terms
of the computational complexity, measured in the number of deterministic PDE solves. The Monte Carlo
method uses the same approximate Newton iteration, but the expectations are approximated by a Monte
Carlo quadrature instead of the TT approximation with a Gaussian quadrature. The TT method adapts
the TT ranks (and hence the number of PDE solves needed during the TT-Cross algorithm) towards the
stopping tolerance, so we just need to vary the latter. However, for the Monte Carlo method, the stopping

13

10−6 10−5 10−4 10−3 10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

ε

error

u

E[u]
V[u]
J

1

2

3

4

5

#iterations (×1000)

0 0.2 0.4 0.6 0.8 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

x

Fig. 2. Elliptic PDE (1D). Left: errors in the full control ∥uε−u10−6∥L2
ρ(Ξ;L2(D)), mean control ∥E[uε]−E[u10−6]∥L2(D),

variance of the control ∥Var[uε]−Var[u10−6]∥L2(D), and the total cost Jε −J10−6 , as well as the number of iterations till the

stopping tolerance 10−8. Right: mean (solid line) ± one standard deviation (shaded area) of the optimal control for ε = 10−1

(right).

200 400 600 800

10−5

10−4

10−3

10−2

10−1

#iterations

ε = 10−5

ε = 10−3

ε = 10−2

105 106

10−5

10−4

10−3

10−2

10−1

10−4

10−5

10−6

NPDE

MC 10−5

MC 10−4

MC 10−3

TT

N
−1/2
PDE

Fig. 3. Elliptic PDE (1D), left: mean control error ∥Ẽ[uε] − E∗[uε]∥L2(D) in the TT method with Newton iterations

for different smoothing parameters ε. Right: ∥Ẽ[uε] − E∗[uε]∥L2(D) in the Monte Carlo and TT methods with respect to the

number of deterministic PDE solutions for ε = 10−2. Numbers below points in the TT plot and in the legend of MC plots
show the stopping tolerance. The reference solution E∗[uε] is computed with the TT method and tolerance 10−8.

tolerance and the number of Monte Carlo samples are independent parameters, so we vary them both. We
see that the Monte Carlo method exhibits the usual 1/

√
N rate of convergence, much slower than the linear

convergence of the TT method.
Figure 4 shows the results for the case when D = (0, 1)2, i.e., a 2-dimensional physical domain. A similar

14

behavior as in the 1-dimensional setting is observed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-3

-2

-1

0

1

2

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-3

-2

-1

0

1

2

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 4. Elliptic PDE (2D) with h = 1/64. Left: E[yh]. Middle: E[uh]. Right: Std[uh]. Top: β = 0.1 and ε = 10−5,

E
[
∥yh − yd∥2L2(D)

]
= 0.1843,

∫
1[|E[uh]| < 10−4]dx = 0.681. Bottom: β = 0, E

[
∥yh − yd∥2L2(D)

]
= 0.0925,

∫
1[|E[uh]| <

10−4]dx = 0.

4.2. Topology optimization. In this section we consider the topology optimization problem under
uncertain Young’s modulus. This problem aims to find an optimal distribution of the material of given
relative volume V̄ over the given domain D, which minimizes the compliance of the structure. The material
distribution is encoded by the function of volume fraction u(x, ξ) : D×Ξ → [0, 1], where 0 corresponds to the
absence of the material, and 1 corresponds to the presence of the material (fractional values aid optimization
and may also be seen as a reduced thickness of the material). After discretization of the physical domain D,
the compliance optimization problem can be written as

min
u

E[C(u; ξ)], C(u; ξ) := f⊤y(ξ),(4.5)

s.t. K(u; ξ)y(ξ) = f ,∫

D

uh(x, ξ)dx = V̄ · |D|, a.s.(4.6)

0 ≤ uh(x, ξ) ≤ 1, a.s.(4.7)

where u ∈ RN̂N is the vector of nodal values of the material volume fraction u(x, ξ), K(u; ξ) ∈ RN̂×N̂ is the
stiffness matrix of the linear elasticity model

−∇ · (E(u;x, ξ)∇y(x, ξ)) = f(x)

subject to appropriate boundary conditions, f ∈ RN̂ is the force vector, y(ξ) ∈ RN̂ is the displacement
vector, and C(u; ξ) ∈ R is the compliance. The net Young’s modulus E(u;x, ξ) depends on the material

15

distribution, and a random Young’s modulus of the pure material [26],

E(u;x, ξ) = Emin + ũ3

(
E0 − Emin + 0.02

d∑

k=1

√
λkϕk(x)ξk

)
,

where E0 is the mean Young’s modulus of the pure material, perturbed by a truncated Karhunen-Loeve
expansion (KLE) of a random field with uniformly distributed ξk ∼ U(−1, 1) and a Gaussian covariance
function with the correlation length equal to the smaller side of the domain D, with eigenvalues λk sorted
descending and corresponding eigenfunctions ϕk(x). Specifically, truncating the KLE at the total variance
error of 1%, we obtain d = 8 random variables. Emin = 10−9 is the Young’s modulus of the void (taken
nonzero to avoid the singularity of the stiffness matrix), and

ũ = (I − δ∆)−1u

is the filtered material distribution, with ∆ being the Laplace operator with natural boundary conditions,
and δ > 0 is a small parameter. We use δ = 0.1 throughout the experiments. Similarly to [26, 41], we consider
the MBB beam optimization problem where D = [0, nx]×[0, ny] with nx/ny = 4, such that N̂ = nxny = 4n2y,
whereas the mesh size is fixed to 1.

Optimization of (4.5) can be carried out with a projected gradient descent for each ξ ∈ Ξ. However,
this would result in different optimal material distributions, which are difficult to implement in practice. To
make the material distribution more stable with respect to random perturbations, we consider two penalties.
Firstly, as in [41], we penalize the standard deviation of the compliance, Std[C(u; ξ)]. Secondly, we consider
the smoothed L1-norm of the material distribution, Rε,h(u), enforcing the sparsity (that is, absence) of the
material shared across the random realizations. The smoothing parameter is fixed to ε = 10−3. We introduce
two regularization parameters κ ≥ 0 and β ≥ 0, controlling the weight of each penalty, so instead of (4.5)
we consider the following problem

(4.8) min
u

E[C(u; ξ)] + κ · Std[C(u; ξ)] +Rε,h(u) .

The implementation is based on the top88 Matlab code [3]. Specifically, we seek a TT approximation of
the discretization coefficients of the filtered solution ũ. Since the structure of the problem (4.5)–(4.7) is
challenging for Newton’s method, we resort to the simpler projected gradient descent method with a fixed
step size τ > 0. In its i-th iteration we use the block TT-Cross outlined in Section 3.2 to approximate
directly the next iterate,

u(i) = (I − δ∆h)ũ
(i),

ũ(i+1)=(I − δ∆h)
−1P

(
u(i) − τ∇u

[
E[C(u(i); ξ)] + κ · Std[C(u(i); ξ)] +Rε,h(u

(i))
])
,

where ∆h is the finite element discretization of the Laplace operator in the filter, and P is the projection onto
the constraints (4.6)–(4.7). In each gradient descent iteration, we carry out 1 TT-Cross iteration initialized
with the previous gradient descent iterate, truncating singular values of the block TT cores to the relative
error threshold 10−2. To ensure convergence we also do continuation in κ, increasing it gradually, by starting
with κ = 0, and incrementing κ by 2 · 10−3 each iteration until it reaches the desired value.

Numerical tests. For faster computations, we consider first a coarser grid of size 100× 25. For this grid,
we choose the gradient step size τ = 3 · 10−3, which is about a good balance between speed and stability,
and carry out 5000 iterations. For performance metrics, we consider the mean TT rank over iterations and
cores,

⟨r⟩ = 1

5000

5000∑

i=1

1

d− 1

d−1∑

k=1

rk(ũ
(i)),

16

and the standard deviation of the thresholded material distribution uh(x, ξ) > 1/2 and its spatial average,

S :=

∫

D

Std[Iuh(x,ξ)>1/2]dx.

In Figures 5 and 6 we compare all four combinations of penalties, composed from two options for the
standard deviation penalty (κ = 0 or κ = 3) and the shared sparsity penalty (β = 0 or β = 1). We see that
the standard deviation penalty leads actually to a more complicated structure. In Figure 7 we show the
evolution of TT ranks of the solution ũ as the iteration progresses. All penalties reduce the TT ranks due
to reduced uncertainty, and the best performing methods are those with β = 1.

Fig. 5. Mean optimized topology with different penalties. Left top: β = κ = 0 (no penalty). Right top: β = 1, κ = 0. Left
bottom: β = 0, κ = 3. Right bottom: β = 1, κ = 3.

⟨r⟩ = 7.88 C = 86.652± 0.655 ⟨r⟩ = 1.39 C = 87.044± 0.700

⟨r⟩ = 2.03 C = 87.110± 1.776 ⟨r⟩ = 2.33 C = 87.080± 1.059

Fig. 6. Standard deviation of the material distribution above 1/2 with different penalties. Left top: β = κ = 0 (no
penalty). Right top: β = 1, κ = 0. Left bottom: β = 0, κ = 3. Right bottom: β = 1, κ = 3.

S =1.0276e-02 S =0

S =1.6618e-02 S =2.0142e-03

Finally, we carry out the topology optimization experiment on a fine spatial grid of size 400 × 100.
We increase the gradient step size to τ = 5 · 10−2 to achieve the solution increments similar to those in
the previous coarse-grid experiment, which provides a well-converged solution after the same number of
iterations of 5000. Since κ > 0 did not improve sparsity or performance, we test only κ = 0 here. For β = 0
(no penalty) the solution could not be completed due to the TT ranks exceeding 40 after 893 iterations, and
the Matlab process crashing due to running out of 64Gb of memory. For β = 1 (enforcing shared sparsity),
we managed to carry out 5000 iterations, reaching the compliance 80.295±0.643 at the end of iterations and
maximal TT rank 6 in the first few iterations, as shown in Figure 8 (right). The mean material distribution

17

Fig. 7. Maximal TT ranks as a function of the iteration number

101 102 103
0

2

4

6

8

10

iteration (i)

maxk rk(ũ
(i))

β = 0, κ = 0
β = 1, κ = 0
β = 0, κ = 3
β = 1, κ = 3

is shown in Figure 8 (left). The standard deviation of the thresholded solution averages to 3.5165e-05, which
would give again an almost blank figure similarly to Fig. 6 (top right). Again the penalty makes the material
distribution more reproducible with respect to randomness.

Fig. 8. Optimized topology on a fine 400× 100 grid. Left: E[ũ(ξ)] with β = 1. Right: maximal TT rank as a function of
the iteration number (dashed: β = 0, solid: β = 1).

⟨r⟩ = 1.01, C = 80.295± 0.643, S =3.5165e-05 101 102 103
0

5

10

15

iteration (i)

maxk rk(ũ
(i))

5. Conclusion. We have developed both first and approximate second order methods for the PDE-
constrained optimization with a smoothed shared sparsity penalty. For a nonzero smoothing parameter
we obtain a linear convergence. The error depends linearly on the smoothing parameter as well. Smooth
function approximations also converge sub-exponentially in the number of quadrature points in random
parameters and TT ranks (exponentially if the function is analytic, and faster than any algebraic degree
if the function is infinitely differentiable). This makes the overall rate of convergence sub-exponential in
the total computational cost. This can be much faster than the algebraic rate of convergence of low-order
and Monte Carlo methods, as we demonstrated in the benchmark elliptic PDE example. Moreover, a more
structured solution with shared sparsity may actually exhibit lower TT ranks compared to the unconstrained
solution. This opens the way for the shared sparsity optimization in real-life applications, such as topology.

At the moment, we observe a linear convergence in ε, which is faster than the theoretically predicted

18

rate of ε−1/2. It remains to a future research to obtain a sharp estimate of the convergence rate.

Appendix A. TT decomposition of the solution of the 1D elliptic PDE. We are looking for
the solution in the block TT format (3.5),



y(ξ)
u(ξ)
λ(ξ)


 =



y(1)(ξ1)
u(1)(ξ1)

λ(1)(ξ1)


u(2)(ξ2)u(3)(ξ3)u(4)(ξ4),

as it is returned from the block TT cross. The Gauss-Newton system corresponding to the elliptic PDE
reads




My 0 A(ξ1)
0 Mu −B⊤

A(ξ1) −B 0





y(ξ)
u(ξ)
λ(ξ)


 =




Myyd

0
−g(ξ2)− b3(ξ3)− b4(ξ4)


 ,(A.1)

where My is the mass matrix in state, independent of ξ, A(ξ1) is the symmetric stiffness matrix of ν(ξ1)∆
which depends only on ξ1, Mu is the control part of the approximate Hessian of the Lagrangian (independent
of ξ), B is the actuator matrix independent of ξ, so is the desired state yd, and b3(ξ3) and b4(ξ4) are the
right hand sides accommodating left and right boundary conditions, respectively, each of which depends on
either ξ3 or ξ4. We split the state into 4 components: y(ξ) = yu(ξ) + yg(ξ) + y3(ξ) + y4(ξ), which satisfy
the following equations:

A(ξ1)yu(ξ) = Bu(ξ), A(ξ1)yg(ξ) = −g(ξ2)(A.2)

A(ξ1)y3(ξ) = −b3(ξ3), A(ξ1)y4(ξ) = −b4(ξ4).(A.3)

Since A(ξ1)
−1 acts linearly on a function independent of ξ1, we obtain rank-1 TT decompositions

yg(ξ) = y(1)
g (ξ1)y

(2)
g (ξ2), y3(ξ) = y

(1)
3 (ξ1)y

(3)
3 (ξ3), y4(ξ) = y

(1)
4 (ξ1)y

(4)
4 (ξ4).

From the first equation of (A.1) and (A.2) we get

λ(ξ) = A(ξ1)
−1
(
Myyd −MyA(ξ1)

−1Bu(ξ)−Myyg(ξ)−Myy3(ξ)−Myy4(ξ)
)
,

whereas from the second equation

u(ξ) = M−1
u B⊤λ(ξ),

which gives us the Schur complement depending only on ξ1,

(
I+A(ξ1)

−1MyA(ξ1)
−1BM−1

u B⊤)
︸ ︷︷ ︸

S(ξ1)

λ(ξ) = A(ξ1)
−1My (yd − yg(ξ)− y3(ξ)− y4(ξ))

λ(ξ) = Q(ξ1) (yd − yg(ξ)− y3(ξ)− y4(ξ)) ,

Q(ξ1) = S(ξ1)
−1A(ξ1)

−1My.

Each summand in the right hand side of λ(ξ) is a rank-1 TT decomposition, so λ(ξ) is a TT decomposition
of ranks not greater than 4,

λ(ξ) = λ(1)(ξ1)λ
(2)(ξ2)λ

(3)(ξ3)λ
(4)(ξ4).

So are u(ξ) and yu(ξ), which moreover differ from λ(ξ) only in the first TT cores. Finally, adding rank-1

19

yg(ξ), y3(ξ) and y4(ξ), we obtain that y(ξ) is a TT decomposition of ranks not greater than 7. Specifically,



y(ξ)
u(ξ)
λ(ξ)


 =



A(ξ1)

−1BM−1
u B⊤λ(1)(ξ1)

M−1
u B⊤λ(1)(ξ1)

λ(1)(ξ1)


λ(2)(ξ2)λ(3)(ξ3)λ(4)(ξ4)

+



y
(1)
g (ξ1)
0
0


 y(2)g (ξ2) +



y
(1)
3 (ξ1)
0
0


 y(3)3 (ξ3) +



y
(1)
4 (ξ1)
0
0


 y(4)4 (ξ4).

REFERENCES

[1] F. Airaudo, H. Antil, R. Löhner, and U. Rakhimov. On the use of risk measures in digital twins to identify weaknesses in
structures. In AIAA SCITECH 2024 Forum, page 2622, 2024.

[2] A. Ali A, E. Ullmann, and M. Hinze. Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random
coefficients. SIAM/ASA Journal on Uncertainty Quantification, 5(1):466–492, 2017.

[3] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund. Efficient topology optimization in matlab
using 88 lines of code. Structural and Multidisciplinary Optimization, 43(1):1–16, 2011.

[4] H. Antil. Mathematical opportunities in digital twins (MATH-DT). arXiv preprint arXiv:2402.10326, 2024.
[5] H. Antil, S. Dolgov, and A. Onwunta. Smoothed Moreau-Yosida Tensor Train approximation of state-constrained opti-

mization problems under uncertainty. arXiv:2301.08684, 2023.
[6] H. Antil, S. Dolgov, and A. Onwunta. TTRISK: tensor train decomposition algorithm for risk averse optimization.

Numerical Linear Algebra with Applications, 30(3):Paper No. e2481, 29, 2023.
[7] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle filters for online

nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal processing, 50(2):174–188, 2002.
[8] C. Audouze, A. Klein, A. Butscher, N. Morris, P. Nair, and M. Yano. Robust level-set-based topology optimization under

uncertainties using anchored ANOVA Petrov–Galerkin method. SIAM/ASA Journal on Uncertainty Quantification,
11(3):877–905, 2023.

[9] P. Benner, A. Onwunta, and M. Stoll. Block-diagonal preconditioning for optimal control problems constrained by PDEs
with uncertain inputs. SIAM Journal on Matrix Analysis and Applications, 37(2):491–518, 2016.

[10] D. Bigoni, A. P. Engsig-Karup, and Y. M. Marzouk. Spectral tensor-train decomposition. SIAM J. Sci. Comput.,
38(4):A2405–A2439, 2016.

[11] P. Chen, M. R. Haberman, and O. Ghattas. Optimal design of acoustic metamaterial cloaks under uncertainty. Journal
of Computational Physics, 431:Paper No. 110114, 23, 2021.

[12] P. Chen and A. Quarteroni. Weighted reduced basis method for stochastic optimal control problems with elliptic PDE
constraint. SIAM/ASA Journal on Uncertainty Quantification, 2(1):364–396, 2014.

[13] S. Dolgov, B. N. Khoromskij, A. Litvinenko, and H. G. Matthies. Polynomial Chaos Expansion of random coefficients
and the solution of stochastic partial differential equations in the Tensor Train format. SIAM J. Uncertainty Quan-
tification, 3(1):1109–1135, 2015.

[14] S. Dolgov and D. Savostyanov. Parallel cross interpolation for high–precision calculation of high–dimensional integrals.
Comput. Phys. Commun., 246:106869, 2020.

[15] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V. Savostyanov. Computation of extreme eigenvalues in higher
dimensions using block tensor train format. Comput. Phys. Commun., 185(4):1207–1216, 2014.

[16] T. Duswald, B. Keith, B. Lazarov, S. Petrides, and B. Wohlmuth. Finite elements for matérn-type random fields:
Uncertainty in computational mechanics and design optimization. Computer Methods in Applied Mechanics and
Engineering, 429:117146, 2024.

[17] D.B. Gahururu, M. Hintermüller, and T.M. Surowiec. Risk-neutral pde-constrained generalized nash equilibrium problems.
Mathematical Programming, 2022.

[18] S. Garreis and M. Ulbrich. Constrained optimization with low-rank tensors and applications to parametric problems with
PDEs. SIAM Journal on Scientific Computing, 39(1):A25–A54, 2017.

[19] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. How to find a good
submatrix. In V. Olshevsky and E. Tyrtyshnikov, editors, Matrix Methods: Theory, Algorithms, Applications, pages
247–256. World Scientific, Hackensack, NY, 2010.

[20] A. Gorodetsky, S. Karaman, and Y. Marzouk. A continuous analogue of the tensor-train decomposition. Comput. Methods
Appl. Mech. Engrg., 347:59–84, 2019.

[21] W. Hackbusch. Tensor Spaces And Numerical Tensor Calculus. Springer–Verlag, Berlin, 2012.
[22] W. Hackbusch and B. N. Khoromskij. Low-rank Kronecker-product approximation to multi-dimensional nonlocal opera-

tors. I. Separable approximation of multi-variate functions. Computing, 76(3-4):177–202, 2006.
[23] M. Hoffhues, W. Römisch, and T. M. Surowiec. On quantitative stability in infinite-dimensional optimization under

uncertainty. Optimization Letters, 15(8):2733–2756, 2021.

20

[24] S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme for tensor optimization in the tensor train
format. SIAM J. Sci. Comput., 34(2):A683–A713, 2012.

[25] A. H. Jazwinski. Stochastic processes and filtering theory. Dover Publications Inc., NY, 2007.
[26] V. Keshavarzzadeh, R. M. Kirby, and A. Narayan. Robust topology optimization with low rank approximation using

artificial neural networks. Computational Mechanics, 68(6):1297–1323, 2021.
[27] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders. A trust-region algorithm with adaptive

stochastic collocation for PDE optimization under uncertainty. SIAM Journal on Scientific Computing, 35(4):A1847
– A1879, 2013.

[28] D. P. Kouri and A. Shaprio. Optimization of PDEs with uncertain inputs. In H. Antil, D. P. Kouri, M.-D. Lacasse,
and D. Ridzal, editors, Frontiers in PDE-Constrained Optimization, volume 163, pages 41 – 81, Berlin, Heidelberg,
New-York, 2018. Springer Verlag.

[29] D. P. Kouri and T. M. Surowiec. Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J.
Optim., 26(1):365–396, 2016.

[30] C. Li and G. Stadler. Sparse solutions in optimal control of PDEs with uncertain parameters: the linear case. SIAM
Journal on Control and Optimization, 57(1):633–658, 2019.

[31] M. Martin and F. Nobile. PDE-constrained optimal control problems with uncertain parameters using SAGA. SIAM/ASA
Journal on Uncertainty Quantification, 9(3):979–1012, 2021.

[32] J. Milz. Reliable error estimates for optimal control of linear elliptic PDEs with random inputs. SIAM/ASA Journal on
Uncertainty Quantification, 11(4):1139–1163, 2023.

[33] F. Negri, G. Rozza, A. Manzoni, and A. Quarteroni. Reduced basis method for parametrized elliptic optimal control
problems. SIAM Journal on Scientific Computing, 35(5):A2316–A2340, 2013.

[34] I. V. Oseledets. Tensor train decomposition. SIAM J. Sci. Comp., 33(5):2295 – 2317, 2011.
[35] I. V. Oseledets and E. E. Tyrtyshnikov. TT-cross approximation for multidimensional arrays. Linear Algebra Appl.,

432(1):70–88, 2010.
[36] P. B. Rohrbach, S. Dolgov, L. Grasedyck, and R. Scheichl. Rank bounds for approximating Gaussian densities in the

Tensor-Train format. SIAM/ASA Journal on Uncertainty Quantification, 10(3):1191–1224, 2022.
[37] D. V. Savostyanov and I. V. Oseledets. Fast adaptive interpolation of multi-dimensional arrays in tensor train format. In

Proceedings of 7th International Workshop on Multidimensional Systems (nDS). IEEE, 2011.
[38] R. Schneider and A. Uschmajew. Approximation rates for the hierarchical tensor format in periodic Sobolev spaces. J.

Complexity, 2013.
[39] U. Schollwöck. The density matrix renormalization group. Rev. Mod. Phys., 77(1):259–315, 2005.
[40] H. Tiesler, R. M. Kirby, D. Xiu, and T. Preusser. Stochastic collocation for optimal control problems with stochastic PDE

constraints. SIAM Journal on Control and Optimization, 50(5):2659–2682, 2012.
[41] A. P. Torres, J. E. Warner, M. A. Aguiló, and J. K. Guest. Robust topology optimization under loading uncertainties via

stochastic reduced order models. International Journal for Numerical Methods in Engineering, 122(20):5718–5743,
2021.

[42] C. R. Vogel. Computational Methods for Inverse Problems. Society for Industrial and Applied Mathematics, 2002.
[43] S. R. White. Density matrix algorithms for quantum renormalization groups. Phys. Rev. B, 48(14):10345–10356, 1993.

21

