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Abstract

Quantum computing has the potential to speed up some optimization methods. One can use
quantum computers to solve linear systems via Quantum Linear System Algorithms (QLSAs).
QLSAs can be used as a subroutine for algorithms that require solving linear systems, such as
the dual logarithmic barrier method (DLBM) for solving linear optimization (LO) problems. In
this paper, we use a QLSA to solve the linear systems arising in each iteration of the DLBM.
To use the QLSA in a hybrid setting, we read out quantum states via a tomography procedure
which introduces considerable error and noise. Thus, this paper first proposes an inexact-feasible
variant of DLBM for LO problems and then extends it to a quantum version. Our quantum
approach has quadratic convergence toward the central path with inexact directions and we
show that this method has the best-known O(

√
n log(nµ0/ζ)) iteration complexity, where n

is the number of variables, µ0 is the initial duality gap, and ζ is the desired accuracy. We
further use iterative refinement to improve the time complexity dependence on accuracy. For
LO problems with quadratically more constraints than variables, the quantum complexity of
our method has a sublinear dependence on dimension.

1 Introduction

Quantum Computing has drawn a significant amount of attention recently because of its promising
speedups compared to classical computing. Such examples include integer factorization Shor [1994]
and Quantum Linear System Algorithms (QLSAs) Childs et al. [2017], Harrow et al. [2009]. Due
to the wide applications of mathematical optimization, it is natural to design and develop quantum
optimization algorithms. There has been an increasing amount of research regarding develop-
ing quantum optimization algorithms for solving optimization problems. Such attempts include
Quantum Approximation Optimization Algorithms (QAOA) Farhi et al. [2014], Quantum Simplex
Algorithm Nannicini [2022], and Quantum Interior Point Methods (QIPMs) Augustino et al. [2021,
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2023], Casares and Martin-Delgado [2020], Kerenidis and Prakash [2020], Mohammadisiahroudi
et al. [2024a], Wu et al. [2023].

QIPMs are quantum versions of classical interior point methods (IPMs) that use QLSAs as an
oracle to solve the Newton system at each iteration. Given that the solution extraction process done
by quantum tomography introduces errors, inexact IPMs must be used in this context. There are
variants of interior point methods, i.e., primal, dual, and primal-dual. Previous works in the con-
text of QIPMs include Mohammadisiahroudi et al. [2023b] and Mohammadisiahroudi et al. [2024a],
which proposed an inexact infeasible QIPM (II-QIPM) and an inexact feasible QIPM (IF-QIPM),
respectively, for linear optimization (LO) problems. The algorithms proposed in these works are
primal-dual IPM algorithms. In Mohammadisiahroudi et al. [2024a], the authors developed an
II-QIPM that exploits QLSA to solve the normal equations system (NES) in each iteration. Their
algorithm has a total complexity of Õn,κA,ω(n

4L∥A∥4ω4κ2A), where n is the number of variables,
L is the bit length of the input data, κA is the condition number of matrix A, and ω is an upper
bound on the norm of optimal solution. Among the systems that we can solve to obtain the New-
ton direction, NES is the most desirable since the coefficient matrix is positive definite. However,
solving NES inexactly introduces primal infeasibility. To address this issue, Mohammadisiahroudi
et al. Mohammadisiahroudi et al. [2023b] proposed a novel system called the orthogonal sub-
space system (OSS) and also a modified Newton system, which runs in Õn,κA,ω(n

2.5L∥A∥2ω2κA)
time. In a subsequent work Mohammadisiahroudi et al. [2024b], they improved their complexity to
Õn,κÂ,∥Â∥,∥b̂∥,µ0(m

√
nLχ̄2ω2), where χ̄2 is an upper bound on the condition number of the Newton

system. Evidently, such modification comes at a computational cost. To avoid such preprocessing
and modifications, we aim to use the dual logarithmic barrier method. In our algorithm, we solve
NES inexactly while maintaining primal feasibility without any modifications.

There are two closely related works to ours in the context of dual logarithmic barrier methods,
one in classical and one in quantum settings. First, Bellavia et al. Bellavia et al. [2019] proposed a
dual logarithmic barrier method for solving semidefinite optimization (SDO) problems with sparse
variables. As LO is a special case of SDO, by putting the elements of variables along the diagonal of
the semidefinite variable, one can adopt their method for LO. Their method solves a normal equation
system at each iteration. They shift the inexactness into primal feasibility, making iterations primal
infeasible until optimality. Their method terminates after ⌈18

√
n log(nµ0

ζ )⌉ inexact Newton steps,
where µ0 is the initial duality gap, and ζ is the desired accuracy. They achieve this complexity
by a tight bound on the residual. In our analysis, we show that our method requires a less strict
bound on the residual.

Second, Apers and Gribling1 proposed a quantum algorithm based on an IPM for so-called
“tall” LO problems, in which n ≫ m, that runs in

√
npoly(m, log(n), log(1/ζ)), where n is the

number of constraints in their dual form problem Apers and Gribling [2023]. Their algorithm
avoids dependence on a condition number. Under some mild assumptions and access to QRAM
(a quantum-accessible data structure), their framework achieves a quantum speedup under the
assumption of n ≫ m. To approximate the Hessian and the gradient of the barrier function
in the Newton step, they proposed a quantum algorithm for the spectral approximation of the
matrix AAT . Further, they migrated the matrix-vector multiplication into a quantum setting using
an algorithm that combines spectral approximation with quantum multivariate mean estimation
algorithms. As mentioned earlier, their work focuses on tall LOs. To be more specific, they present

1In Apers and Gribling [2023] the authors use different notations. For consistent and unified presentation, the
results of Apers and Gribling [2023] are translated to notations used in this paper.
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their result to be competitive for cases where n ≥ γm10 for some constant γ. Although they refer
to some specific applications where such a setting exists, it appears that their result might not
show any speedup for general cases of LO problems where n and m are both large and of the same
order of magnitude. Moreover, they imposed an assumption on the size of the input data. Given
their assumption, the self-dual embedding model is not applicable to finding an initial solution
due to dimension restriction. Further, if one uses Khachiyan’s or big-M methods, there will be
a contradiction regarding the complexity. Furthermore, they did not clarify how their algorithm
maintains feasibility if the gradient is approximated with some error.

In addition, in the quantum setting, Augustino et al. Augustino et al. [2023] proposed the
first provably convergent quantum interior point for semidefinite optimization. If we apply this

framework to LOs, we get the query complexity of Õn,κ, 1
ζ

(
n2 κ

2

ζ

)
and Õn,κ, 1

ζ

(
n2.5

)
arithmetic

operations, where κ is the condition number of Newton linear system Augustino et al. [2023]. As
mentioned earlier, one can adopt such a framework for solving LOs by defining diagonal matrices
of input data. However, their complexity has a linear dependence on the inverse of the precision,
making it exponentially costly to acquire a precise solution. Later, that dependence was improved
using iterative refinement Mohammadisiahroudi et al. [2023a].

Further, among the classical works, there exist works Karmarkar [1984], Nesterov and Ne-
mirovskii [1994], Roos et al. [1997], Vaidya [1989] based on partial updating which calculates inexact
Newton’s direction using partial update of the inverse of NES. This idea gives the best complexity
of O(n3L) arithmetic operations for solving LO problems where L is the input data length Roos
et al. [1997]. Researchers have used this idea besides concepts of fast matrix multiplication, spec-
tral sparsification, inverse maintenance, and stochastic central path methods Cohen et al. [2021],
Lee and Sidford [2015]. These combined approaches lead to improving the complexity of IPMs
to O(nω0 log(nϵ )), where ω0 < 2.3729 is the matrix multiplication constant [van den Brand, 2020].
Further, van den Brand et al. [2020] proposed a robust primal-dual interior point method with
nearly linear time for tall dense LO problems based on some techniques for efficient implementa-
tion, without using fast matrix multiplication. However, similar to Apers and Gribling [2023] there
exists an assumption on the dimensions of the problem.

Due to the high cost of solving the Newton linear system within IPMs for large-scale LO
problems, some papers have developed first-order methods (FOMs) for solving LO problems. FOMs
exploit first-order information, i.e. gradients, to update the solution in each iteration. The cost per
iteration of FOMs is significantly better than that of IPMs as they only require some of the matrix-
vector products. One of the well-known FOMs is the PDLP algorithm, built upon the primal-dual
hybrid gradient (PDHG) method. PDLP enhances PDHG by using presolving, preconditioning,
adaptive restart, adaptive choice of step size, and primal weight. FOMs do not converge fast and
perform well only when the input data matrix is well-conditioned and the problem has proper
sharpness. PDHG with restarts has O(κ log(1/ζ)) iteration compelexity Applegate et al. [2023].
In another direction, ADMM-based IPMs (ABIPs) have been developed by solving the nonlinear
log-barrier penalty function by the alternating direction method of multipliers (ADMM). ABIPs
have O(κ2/ζ log(1/ζ)) iteration complexity which is not polynomial for acquiring exact solutions Lu
[2024].

Motivated by Apers and Gribling [2023], Bellavia et al. [2019], we propose a quantum version of
the dual logarithmic barrier method, which is a dual IPM, for solving general LO problems. This
method starts with a feasible interior point, uses Newton’s method to explore the dual space, and
exploits QLSAs to solve Newton’s systems to obtain Newton’s directions. In our convergence anal-
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ysis, we prove quadratic convergence toward the central path despite having an inexact direction.
Furthermore, our method has the advantage over these two works of Apers and Gribling [2023],
Bellavia et al. [2019] in the sense that it requires a less strict condition on the norm of residual
and requires a sublinear number of queries with a much-relaxed condition on the dimension of the
problem. We ultimately apply the iterative refinement technique to mitigate the dependence on
precision.

The rest of this paper is organized as follows: Sections 2 covers the preliminaries needed through-
out the paper. Section 3 describes the analysis of our algorithm in detail and presents the complexity
results. Further, the application of iterative refinement is discussed at the end of this section to
improve the dependence on precision. Conclusions and future works are explained in Section 4.

2 Preliminaries

In this section, we start with some notation definitions and then briefly introduce LO problems,
the dual logarithmic barrier method, and QLSA.

2.1 Notations

Throughout this paper Rn denotes the the set of n-dimensional vectors of real numbers and Cn

for the set of n-dimensional vectors of complex numbers. For matrix M , ∥M∥ = ∥M∥2 is the
spectral norm, and ∥M∥F is the Frobenius norm of the matrix. σ1(M) is the largest singular value
of matrix M and σ0(M) is the least nonzero singular value. The condition number of M is defined
as κ(M) = σ1(M)/σ0(M). For vectors, we use e for the all-one vector. For two vectors v1 and
v2 with the same dimension, we use v1v2 for their entry-wise product, vp1 for the entry-wise power
of p for v1. The ℓ2 norm of v is denoted as ∥v∥2 or simply ∥v∥ and the ℓ1 norm is denoted as
∥v∥1. Given a positive semidefinite matrix M , we denote ∥v∥M =

√
vTMv. For complexity, we use

Õ which suppresses the poly-logarithmic factors in the “Big-O” notation. The quantities of the
poly-logarithmic factors are indicated in the subscripts of Õ.

2.2 Linear Optimization Problems

In this paper, we consider the standard form LO problem defined as follows.

Definition 1 (Linear Optimization Problem: Standard Form). For vectors b ∈ Rm, c ∈ Rn, and
matrix A ∈ Rm×n with rank(A) = m ≤ n, we define the primal LO problem as

min
x∈Rn

cTx s.t. Ax = b, x ≥ 0, (P)

and the dual LO problem as

max
y∈Rm, s∈Rn

bT y s.t. AT y + s = c, s ≥ 0. (D)

We define the set of primal, dual, and primal-dual feasible solutions as

P := {x ∈ Rn : Ax = b, x ≥ 0} ,
D :=

{
(y, s) ∈ Rm × Rn : AT y + s = c, s ≥ 0

}
,

PD :=
{
(x, y, s) ∈ Rn × Rm × Rn : Ax = b, AT y + s = c, (x, s) ≥ 0

}
,
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and the set of interior primal-dual feasible solutions as

PD◦ :=
{
(x, y, s) ∈ Rn × Rm × Rn : Ax = b, AT y + s = c, (x, s) > 0

}
.

Analogously, we can define the set of interior dual feasible solutions as

D◦ :=
{
(y, s) ∈ Rm × Rn : AT y + s = c, s > 0

}
.

We assume that the following interior point condition (IPC) holds.

Assumption 1. There exists a solution (x0, y0, s0) such that

Ax0 = b, AT y0 + s0 = c, and (x0, s0) > 0.

Note that feasible IPMs require that iterates stay in the interior of the feasible set. Thus,
Assumption 1 is necessary. However, if it happens to fail, one can embed the LO problem into
its self-dual embedding model, which is an LO problem equivalent to the original one and satisfies
Assumption 1. It is known that when Assumption 1 holds, the following system has unique solution
for any µ > 0,

Ax = b, x ≥ 0

AT y + s = c, s ≥ 0

XSe = µe,

where X = diag(x) and S = diag(s) Roos et al. [1997]. The solution (x(µ), y(µ), s(µ)) is called
µ-center. When we only consider the dual space, we also call the point (y(µ), s(µ)) by µ-center.

2.3 Dual Logarithmic Barrier Method

In this section, we proceed with describing the dual logarithmic barrier method. The dual logarith-
mic barrier method focuses on the dual problem (D). Note that any method for the dual problem
can also be used for solving the primal problem too, because of the symmetry between primal and
dual problems Roos et al. [1997].

The dual logarithmic barrier method applies Newton’s method to the following dual barrier
function of the dual problem (D),

L(y) = −bT y − µ
n∑

i=1

log
(
ci −

(
AT y

)
i

)
.

This is a continuous differentiable convex function and its minimum is obtained when

∇yL(y) = −b+ µA
(
c−AT y

)−1
= 0,

where
(
c−AT y

)−1
is the entry-wise inverse. Combine this with the dual equality constraint, we

have the following nonlinear system

−b+ µAS−1e = 0,

c−AT y − s = 0.
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Applying Newton’s method to solve the nonlinear system gives the following Newton linear system,[
0 −µAS−2

−AT −I

] [
∆y
∆s

]
= −

[
−b+ µAS−1e

0

]
.

Denote rp = b − µAS−1e. The Newton linear system can be simplified into the following normal
equation system (NES) as (

AS−2AT
)
∆y =

1

µ
rp. (NES)

It is easy to verify

∆y =
1

µ

(
AS−2AT

)−1
rp,

∆s = −AT∆y. (1)

The dual logarithmic barrier method starts with a strictly feasible dual solution (y0, s0) ∈ D◦ and
a µ0 > 0 such that (y0, s0) is close to the µ0-center in the sense of the proximity measure δ(s0, µ0),
which is defined as

δ(s, µ) :=
∥∥s−1∆s

∥∥
2
.

Then, the iterate moves along the Newton direction and finds a new iterate in the interior of D.
Define

x(s, µ) = argmin
x
{∥µe− sx∥ : Ax = b} .

According to Theorem II.28 of Roos et al. [1997], we have

δ(s, µ) =
1

µ
min
x
{∥µe− sx∥ : Ax = b} .

Algorithm 1 is a conceptual dual logarithmic barrier method. The following results from Roos et al.
[1997] lay the foundation for our analysis.

Lemma 2.1 (Lemma II.19 in Roos et al. [1997]). If the Newton step ∆s satisfies

−e ≤ s−1∆s ≤ e,

then x(s, µ) is primal feasible and s+ = s+∆s is dual feasible.

Lemma 2.2 (Theorem II.21 in Roos et al. [1997]). If δ(s, µ) ≤ 1, then x(s, µ) is primal feasible,
and s+ = s+∆s is dual feasible. Moreover,

δ(s+, µ) ≤ δ(s, µ)2.

Lemma 2.3 (Theorem II.23 of Roos et al. [1997]). Let δ := δ(s, µ) ≤ 1. Then, the duality gap for
the primal-dual pair (x(s, µ), s) satisfies

nµ(1− δ) ≤ sTx(s, µ) ≤ nµ(1 + δ).
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Lemma 2.4 (Theorem II.25 of Roos et al. [1997]). If τ = 1/
√
2 and θ = 1/(3

√
n), then the dual

logarithmic barrier algorithm with full Newton steps requires at most⌈
3
√
n log

(
nµ0

ϵ

)⌉
iterations. The output is a feasible primal-dual pair (x, s) such that xT s ≤ 2ϵ.

In Lemma 2.4, the complexity is also called IPM complexity because it tells how many IPM
iterations are needed for an IPM to converge to the target accuracy. In Algorithm 1, the IPM
complexity is the number of loops in the “while” loop. In each IPM iteration, one needs to construct
and solve Newton’s linear system and update iterates.

Algorithm 1 Dual Logarithmic Barrier Algorithm with full Newton steps Roos et al. [1997]

Input: τ = 1/
√
2, θ = 1/(3

√
n), ϵ > 0, (y0, s0) ∈ D◦, and µ0 > 0 such that δ(s0, µ0) ≤ τ .

begin
s := s0;µ := µ0;
while nµ ≥ (1− θ)ϵ do

s := s+∆s;
µ := (1− θ)µ;

end while
end
return (y, s)

2.4 Quantum Linear System Algorithm

In this section, we start with the introduction of linear system problems (LSPs) and quantum linear
system problems (QLSPs). Then, we introduce the QLSA and quantum tomography algorithm
(QTA) we use in this work and discuss how to use them to solve LSPs in the IPM setting. In this
work, we assume the access to QRAM.

2.4.1 LSP & QLSP

Definition 2 (Linear System Problem (LSP)). The problem of finding a vector z ∈ Rn such that it
satisfies Mz = v with the coefficient matrix M ∈ Rn×n and right-hand-side (RHS) vector v ∈ Rn.

LSPs could have zero, one, or infinitely many solutions. In practice especially in optimization
algorithms, LSPs have a unique solution. For general matrices, LSPs can be solved using Gaussian
elimination with O(n3) arithmetic operations. When the matrices are symmetric but indefinite,
LSPs can be solved exactly using Bunch–Parlett factorization with O

(
n3
)
arithmetic operations

Bunch and Parlett [1971]. When the matrices are symmetric and positive definite, LSPs can be
solved using methods including Cholesky factorization and the Conjugate Gradient method. Among
the classical methods for symmetric positive definite LSPs, the Conjugate Gradient method has
the best complexity with respect to n as O(nd

√
κ log(1/ϵ)), where d is the maximum number of

non-zero elements in any row or column of M , κ is the condition number of M , and ϵ is the error
allowed. The price for advantage with respect to dimension is unfavorable dependence on condition
number.
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To define LSPs in the quantum setting, we need to introduce some notations from the quantum
computing literature. The notation of ket (|·⟩) is used to denote quantum states. |i⟩ is the ith
computational basis quantum state, which corresponds to a classical column vector with the ith
entry being 1 and the rest zero. We define LSPs in the quantum setting as follows.

Definition 3 (Quantum Linear System Problem (QLSP)). Let M ∈ Cn×n be a Hermitian matrix
with ∥M∥2 = 1, v ∈ Cn, and z :=M−1v. We define quantum states

|v⟩ =
∑n

i=1 vi |i⟩
∥
∑n

i=1 vi |i⟩ ∥
, and |z⟩ =

∑n
i=1 zi |i⟩

∥
∑n

i=1 zi |i⟩ ∥
.

For target precision 0 < ϵQLSP , the goal is to find |z̃⟩ such that ∥ |z̃⟩ − |z⟩ ∥2 ≤ ϵQLSP , succeeding
with probability Ω(1).

As mentioned earlier, a QIPM is an IPM that uses QLSA to solve the Newton system. To
give a linear system as an input to QLSA, we need to transform the LSP into a QLSP. Moreover,
the output of QLSA is a quantum state, which is not directly translatable to the classical setting.
Thus, we have to use a QTA to extract the classical solution.

To transform an LSP into a QLSP, we need to determine how to encode the input data in the
quantum setting. There exist two major methods for this purpose: (1) sparse-access model, and
(2) quantum operator input model. In this paper, we choose the latter option which, according to
Chakraborty et al. [2018], is more efficient than the former when QRAM is available.

2.4.2 Quantum Operator Input Model

In this model, one has access to a unitary that stores the matrix M ,

U =

[
M/α .
. .

]
,

where α ≥ ∥M∥ is a normalization factor chosen to ensure the existence of unitary matrix U .
The following definition of block encoding is introduced in Chakraborty et al. [2018] with slight
restatement.

Definition 4 (Block encoding). Let M ∈ C2w×2w be a w-qubit operator. Then, a (w + a)-qubit

unitary U is an (α, a, ξ)-block encoding of M if U =

[
M̃ ·
· ·

]
, such that

∥αM̃ −M∥2 ≤ ξ.

An (α, a, ξ)-block encoding of M is said to be efficient if it can be implemented in time TU =
O
(
poly(w)

)
.

Note that Definition 4 is equivalent to the following property:

∥M − α(⟨0|⊗a ⊗ I2w)U(|0⟩⊗a ⊗ I2w)∥ ≤ ξ.

In other words, we refer unitary U as an (α, a, ξ)-block encoding of M , where a is the number of
extra qubits and ϵ is the error bound for the implementation of the block-encoding.

The following results are presented in the works of Gilyén et al. [2019] and [Chakraborty et al.,
2018].
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Lemma 2.5 (Lemma 50 in Gilyén et al. [2019]). Let M ∈ C2w×2w be a w-qubit operator. If M
is stored in a quantum-accessible data structure, then there exist unitaries UR and UL that can be
implemented in O(poly(w log(1/ξ))) time and U †

RUL is a (∥M∥F , w + 2, ξ)-block encoding of M .

Lemma 2.6 (Lemma 4 in Chakraborty et al. [2018]). (Product of block-encoded matrices) If U1 is
an (α1, a1, ξ1)-block-encoding of an w-qubit operator M1, and U2 is a (α2, a2, ξ2)-block-encoding of
an w-qubit operator M2, then (I2a2 ⊗U1)(I2a1 ⊗U2) is an (α1α2, a1+a2, α1ξ2+α2ξ1)-block-encoding
of M1M2.

The results referred to above require QRAM, which is studied in Kerenidis and Prakash [2016].
It allows efficient block encoding of matrices and state preparation of vectors. The physical im-
plementation of QRAM remains an open research topic Giovannetti et al. [2008]. In this work, we
assume the existence of QRAM. Exploiting QRAM, one can implement an ξ-approximate block-
encoding ofM with O(polylog(nξ )) complexity Kerenidis and Prakash [2016]. This merely generates
a polylogarithmic overhead for the total complexity. The accuracy ξ here is different from the tar-
get accuracy of our QIPM. It can be shown that the accuracy ξ here is a polynomial of the target
accuracy of our QIPM, making the time complexity of matrices block-encoding and vectors state
preparation negligible compared with the time complexity from QLSA/QTA.

2.4.3 QLSA & QTA

In our work, we use the quantum singular value transformation (QSVT) from Gilyén et al. [2019]
as our quantum linear system algorithm (QLSA), and QTA from van Apeldoorn et al. [2023] to
solve LSPs. When using QLSA to solve an LSP, one has to load the classical data into a quantum
computer and store them properly. In this work, we assume the existence of QRAM and choose
to use block encoding to preprocess the data. After properly storing the classical data in QRAM,
the QLSA will output a quantum state encoding the solution of the LSP. One has to use QTA to
extract a classical representation of the solution from the quantum state. The extracted classical
solution is a unit vector and it is inexact. There are algorithms that estimate the norm of the actual
LSP solution but these estimations are still inexact. In this work, we analyze the needed accuracy
for the QLSA and the QTA to ensure the expected convergence of the proposed algorithm, despite
the inexactness. We discuss the details in Section 3.2.

3 Inexact Feasible Dual Logarithmic Barrier Method

In this section, first, we prove the polynomial iteration complexity of the proposed inexact feasible
dual logarithmic barrier algorithm. Then, we analyze how the inexactness of the Newton steps
affects the complexity of the dual logarithmic barrier method.

3.1 Polynomial Complexity

In this section, we discuss how the inexactness of quantum algorithms affects the Newton step
and analyze the complexity of the inexact dual logarithmic barrier method. As mentioned in the
previous section, we use quantum algorithms to solve (NES), which introduces inexactness into
Newton’s directions. Let ∆ỹ be an inexact solution with inexactness EC∆y, where superscription C
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stands for classical since ∆ỹ is a classical approximation of ∆y. Let rNES be the residual of (NES),
then we have

∆ỹ = ∆y + EC∆y,

rNES =
(
AS−2AT

)
(∆y + EC∆y)−

1

µ
rp.

Let ∆s̃ be the inexact solution computed from ∆ỹ using (1) and EC∆s be the corresponding inex-
actness, then

EC∆s = −AT
((
AS−2AT

)−1
rNES

)
= −ATEC∆y.

In the original dual logarithmic barrier method, the Newton step is accurate and thus the full
Newton step can guarantee the feasibility of the new iterate, as described in Lemma 2.2. In the
quantum case, we only have an inexact Newton step. However, the feasibility of the new iterate
after taking one full Newton step with proper conditions still can be proved. Moreover, local
quadratic convergence still holds.

Theorem 3.1. If δ(s, µ) ≤ 0.5, then x(s, µ) is primal feasible. Furthermore, if
∥∥s−1EC∆s

∥∥
2
≤

1
3δ(s, µ)

2, then s+ = s+∆s+ EC∆s is dual feasible. Moreover,

δ(s+, µ) ≤ 1.5δ(s, µ)2.

Proof. Following Lemma 2.2, x(s, µ) is primal feasible because δ(s, µ) ≤ 0.5 < 1. Then, we prove
s+ = s+∆s+ EC∆s is dual feasible. Notice that

s−1s+ = e+ s−1(∆s+ EC∆s).

For any i ∈ {1, . . . , n}, since δ(s, µ) ≤ 0.5, we have(
s−1∆s

)
i
≥ −δ(s, µ) ≥ −0.5.

Similarly, since
∥∥s−1EC∆s

∥∥
2
≤ 1

3δ(s, µ)
2, we have(

s−1EC∆s

)
i
≥ −1

3
δ(s, µ)2 ≥ −1

3
× (0.5)2.

It follows that

s−1s+ ≥ e− (0.5)e− 1

3
× (0.5)2e ≃ 0.417e > 0,

and thus s+ is dual feasible. Finally, we prove the local quadratic convergence of the iterative
sequence to the central path. Following the proof of Theorem II.20 in Roos et al. [1997], we have

δ(s+, µ) ≤ 1

µ

∥∥µe− s+x(s, µ)∥∥
2
,

and
µs−1∆s = µe− sx(s, µ).

Combining with the definition of s+, we have

µe− s+x(s, µ) = µe− (s+∆s+ EC∆s)x(s, µ)

= µ
(
s−1∆s

)2 − EC∆sx(s, µ)

= µ
(
s−1∆s

)2
+
(
µs−1∆s− µe

)
s−1EC∆s.
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By the definition of δ(s+, µ), we have

δ(s+, µ) ≤ 1

µ

∥∥µe− s+x(s, µ)∥∥
2

≤ δ(s, µ)2 +
∥∥(s−1∆s− e

)
s−1EC∆s

∥∥
2
,

where the second inequality follows the triangular inequality. For the second term, we further relax
it by ∥∥(s−1∆s− e

)
s−1EC∆s

∥∥
2
≤
∥∥(s−1∆s− e

)∥∥
∞
∥∥s−1EC∆s

∥∥
2
.

Since δ(s, µ) ≤ 1
2 , we have ∥∥(s−1∆s− e

)∥∥
∞ ≤ 1.5.

Thus,
δ(s+, µ) ≤ δ(s, µ)2 + 1.5

∥∥s−1EC∆s

∥∥
2
≤ 1.5δ(s, µ)2,

which completes the proof.

Lemma 3.2. If
∥∥s−1EC∆s

∥∥
2
≤ 0.1δ(s, µ), and δ(s, µ) ≤ 0.5, let s+ = s+∆s+EC∆s and µ

+ = (1−θ)µ.
Then we have

δ(s+, µ+)2 ≤ (1 + ρ2)δ(s, µ)4 + 0.06(1 + ρ2) + ρ2n,

where ρ = θ
1−θ .

Proof. Following the proof of Lemma II.26 of Roos et al. [1997], we have

δ(s+, µ+)2 ≤ ∥h∥2 − 2ρhT (e− h) + ρ2∥e− h∥2,

where

h =
(
s−1∆s

)2
+
(
s−1∆s− e

)
s−1EC∆s.

Since
∥∥s−1EC∆s

∥∥
2
≤ δ(s, µ) ≤ 0.5, we have

h ≤ 0.52e+ (−0.5− 1)(−0.5)e = e.

For

hT (e− h) =
(
e−

(
s−1∆s

)2 − (s−1∆s− e
)
s−1EC∆s

)T ((
s−1∆s

)2
+
(
s−1∆s− e

)
s−1EC∆s

)
,

notice that (
e−

(
s−1∆s

)2 − (s−1∆s− e
)
s−1EC∆s

)T (
s−1∆s

)2
≥
(
1− (0.5)2 − (−0.5− 1)(−0.1× 0.5)

)
eT (0.5)2 e

≥0.16875n.

(2)

Also, if
((
s−1∆s− e

)
s−1EC∆s

)
i
≥ 0, then we have(

e−
(
s−1∆s

)2 − (s−1∆s− e
)
s−1EC∆s

)
i

((
s−1∆s− e

)
s−1EC∆s

)
i

≥
(
1− 0.52 − (−0.5− 1) (−0.1× 0.5)

) ((
s−1∆s− e

)
s−1EC∆s

)
i

≥ 0.
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If
((
s−1∆s− e

)
s−1EC∆s

)
i
< 0, then we have(

e−
(
s−1∆s

)2 − (s−1∆s− e
)
s−1EC∆s

)
i

((
s−1∆s− e

)
s−1EC∆s

)
i

≥ (1− 0− (−0.5− 1)× (0.1× 0.5))(−0.5− 1)(0.1× 0.5)

≥− 0.080625,

which gives (
e−

(
s−1∆s

)2 − (s−1∆s− e
)
s−1EC∆s

)T ((
s−1∆s− e

)
s−1EC∆s

)
≥ −0.080625n.

It follows that

hT (e− h) ≥ 0.

Moreover, we have

∥h∥2 =
∥∥(s−1∆s

)∥∥4 + ∥∥∥2 (s−1∆s
)2 (

s−1∆s− e
)
s−1EC∆s +

(
s−1∆s− e

)2
s−2(EC∆s)

2
∥∥∥

≤
∥∥(s−1∆s

)∥∥4 + ∥∥∥2 (s−1∆s
)2 (

s−1∆s− e
)
s−1EC∆s +

(
s−1∆s− e

)2
s−2(EC∆s)

2
∥∥∥
1

≤
∥∥(s−1∆s

)∥∥4 + ∥∥∥2 (s−1∆s
)2

+
(
s−1∆s− e

)
s−1EC∆s

∥∥∥∥∥(s−1∆s− e
)
s−1EC∆s

∥∥ ,
where the second inequality follows the Hölder’s inequality. Given that∥∥(s−1∆s− e

)
s−1EC∆s

∥∥ ≤∥∥s−1∆ss−1EC∆s

∥∥+ ∥∥es−1EC∆s

∥∥
≤
∥∥s−1∆s

∥∥
∞
∥∥s−1EC∆s

∥∥+ ∥e∥∞ ∥∥s−1EC∆s

∥∥
≤2
∥∥s−1EC∆s

∥∥ ,
and ∥∥∥2 (s−1∆s

)2
+
(
s−1∆s− e

)
s−1EC∆s

∥∥∥ ≤∥∥∥2 (s−1∆s
)2∥∥∥+ ∥∥(s−1∆s− e

)
s−1EC∆s

∥∥
≤
∥∥∥2 (s−1∆s

)2∥∥∥+ 2
∥∥s−1EC∆s

∥∥
≤2
∥∥(s−1∆s

)∥∥2 + 2
∥∥s−1EC∆s

∥∥ ,
we have

∥h∥2 ≤
∥∥(s−1∆s

)∥∥4 + (2 ∥∥(s−1∆s
)∥∥2 + 2

∥∥s−1EC∆s

∥∥) 2 ∥∥s−1EC∆s

∥∥
≤ δ(s, µ)4 + 0.06.

Next, for ∥e− h∥22, we have
∥e− h∥22 ≤ ∥e∥22 + ∥h∥22

≤ n+ ∥h∥22.
Finally, for the proximity measure, we obtain

δ(s+, µ+)2 ≤ ∥h∥2 − 2ρhT (e− h) + ρ2∥e− h∥2

≤ (1 + ρ2)∥h∥2 + ρ2n

≤ (1 + ρ2)[0.06 + δ(s, µ)4] + ρ2n,

which shows the claimed bound.
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Theorem 3.3. If δ(s, µ) ≤ 0.5,
∥∥s−1EC∆s

∥∥
2
≤ 0.1δ(s, µ), and θ = 1/(4

√
n), then the inexact dual

logarithmic barrier algorithm with full Newton steps requires at most⌈
4
√
n log

(
nµ0

ϵ

)⌉
iterations. The output is a primal-dual pair (x, s) such that xT s ≤ 2ϵ.

Proof. Let θ = 1
4
√
n
, then we have

ρ =
θ

1− θ
≤ 1/4

1− 1/4

1√
n
=

1

3
√
n
.

With δ(s, µ) ≤ 0.5, we have
0.06 + δ(s, µ)4 ≤ 0.1225,

which gives
δ(s+, µ+)2 ≤ 0.1225 + ρ2(0.1225 + n)

≤ 0.1225 +
0.1225 + n

9n
≤ 0.25.

Hence, after each iteration of the proposed inexact feasible dual logarithmic barrier algorithm,
the property δ(s, µ) ≤ 0.5 holds. Let nµ0(1 − θ)K ≥ (1 − θ)ϵ, one gets the iteration bound
K ≤

⌈
4
√
n log

(
nµ0/ϵ

)⌉
. Finally, following Lemma 2.3, we obtain

sTx(s, µ) ≤ nµ(1 + δ(s, µ)) ≤ 2nµ ≤ 2ϵ.

Now, we need to determine what accuracy is required to satisfy the aforementioned condi-
tions. Since we assume that we start with the two conditions, i.e., δ(s, µ) ≤ 0.5 and

∥∥s−1EC∆s

∥∥
2
≤

0.1δ(s, µ), satisfied, the condition δ(s, µ) ≤ 0.5 automatically holds in the next iteration as proved
in the proof of Theorem 3.3. The remaining question is how to maintain

∥∥s−1EC∆s

∥∥
2
≤ 0.1δ(s, µ).

In the next section, we answer this question and analyze the per-iteration complexity.

3.2 Per-iteration Complexity

In this section, we analyze the cost of each IPM iteration. Specifically, we analyze the number
of queries to QRAM and the number of classical arithmetic operations. We start by analyzing
the rescaling factor for the normalized solution from QLSA+QTA and then analyze the quantum
accuracy needed for QLSA+QTA. The analysis in this section holds for any iteration. For simplicity
of notation, we omit the superscripts for iteration number. Recall that the convergence conditions
in Theorem 3.3 require ∥s−1EC∆s∥2 be bounded, so we try to find the proper rescaling factor to
minimize the term. By the definition of EC∆s, the term can be represented as

∥s−1EC∆s∥2 = ∥S−1AT (∆y −∆ỹ)∥2 = ∥S−1AT (∆y − λ∆ȳ/∥∆ȳ∥2)∥2,
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where λ is the rescaling factor and ∆ȳ is a unit vector obtained from the quantum subroutine.
Recall that ∆y is the exact solution (not necessarily a unit vector) and ∆ỹ is an approximate
solution rescaled from ∆ȳ with factor, we have the following relationships

∆ỹ = λ∗∆ȳ,

∆y = (∆ȳ − EQ∆y)∥∆y∥2,

∆ȳ = ∆y/∥∆y∥2 + EQ∆y,

where λ∗ is the factor we use to rescale ∆ȳ from the quantum subroutine and is defined as the
minimizer of ∥s−1EC∆s∥2 as a function of λ. It is obvious that

λ∗ =
(S−1AT∆y)T (S−1AT∆ȳ)

(S−1AT∆ȳ)TS−1AT∆ȳ
=

(AS−2AT∆y)T∆ȳ

∥S−1AT∆ȳ∥22
=

rTp ∆ȳ

µ∥S−1AT∆ȳ∥22
. (3)

Notice that

∥s−1EC∆s∥2 = ∥S−1AT∆y − (S−1AT∆y)T (S−1AT∆ȳ)

(S−1AT∆ȳ)TS−1AT∆ȳ
S−1AT∆ȳ∥2

= ∥S−1AT∆y∥2
∥∥∥∥ S−1AT∆y

∥S−1AT∆y∥2
− (S−1AT∆y)TS−1AT∆ȳ

∥S−1AT∆y∥2∥S−1AT∆ȳ∥2
S−1AT∆ȳ

∥S−1AT∆ȳ∥2

∥∥∥∥
2

= δ(s, µ) sin < S−1AT∆y, S−1AT∆ȳ >,

the convergence condition ∥s−1EC∆s∥2 ≤ 0.1δ(s, µ) can be guaranteed by

sin⟨S−1AT∆y, S−1AT∆ȳ⟩ ≤ 0.1.

We propose the following proposition, and we use the rest of the section to prove it.

Proposition 3.4. If ∥EQ∆y∥2 ≤
0.005
1.995

1√
κ(AS−2AT )

, then sin⟨S−1AT∆y, S−1AT∆ȳ⟩ ≤ 0.1.

We start the proof with the following lemma.

Lemma 3.5. Let u and v be unit vectors in Rn and M ∈ Rn×n be positive definite. Let 0 ≤ γ1 ≤
γ2/
√
κ(M) with γ2 ∈ [0, 1]. Then

uTM(γ1v) + uTMu ≥ 0.

Proof. As matrixM is positive definite we factorize it asM =MT
LML. Let ũ =MLu and ṽ =MLv.

Then uTM(γ1v) + uTMu = ũT ṽγ1 + ũT ũ. Notice that

∥ṽγ1∥2 = ∥ṽ∥2γ1 ≤
√
σ1(M)γ1,

where σ1(M) is the maximum singular value of M . It is obvious that

ũT ṽγ1 ≥ ũT (
−ũ
∥ũ∥2

)
√
σ1(M)γ1.

It follows that
uTM(γ1v) + uTMu ≥ −∥ũ∥2

√
σ1(M)γ1 + ∥ũ∥22

= (∥ũ∥2 −
√
σ1(M)γ1

2
)2 − σ1(M)γ21

4
.
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Notice that

∥ũ∥2 −
√
σ1(M)γ1

2
≥ ∥ũ∥2 −

√
σ1(M)γ2

2
√
κ(M)

= ∥ũ∥2 −
√
σ0(M)γ2

2

≥
√
σ0(M)−

√
σ0(M)γ2

2

= (1− γ2
2
)
√
σ0(M)

≥ 0,

where σ0(M) is the minimum singular value of M . So we have

uTM(γ1v) + uTMu ≥ (1− γ2
2
)2σ0(M)− σ1(M)γ21/4

≥ (1− γ2
2
)2σ0(M)− γ22

4
σ0(M)

= (1− γ2)σ0(M)

≥ 0.

The proof is complete.

Denote the angle between S−1AT∆y and S−1AT∆ȳ by ψ. By the definition of cosine, we have

cosψ =
∆yTAS−2AT∆ȳ

∥S−1AT∆y∥2∥S−1AT∆ȳ∥2

=
∆yTAS−2AT (∆y + ∥∆y∥2EQ∆y))

∥S−1AT∆y∥2∥S−1AT (∆y + ∥∆y∥2EQ∆y)∥2

=
∥∆y∥2∆yTAS−2ATEQ∆y +∆yTAS−2AT∆y

∥∆y∥2∥S−1AT∆y∥2∥S−1ATEQ∆y∥2 +∆yTAS−2AT∆y
.

The following inequality holds because ∥EQ∆y∥2 ≤
0.005
1.995

1√
κ(AS−2AT )

and Lemma 3.5,

∥∆y∥2∆yTAS−2ATEQ∆y +∆yTAS−2AT∆y = ∥∆y∥22
(

∆yT

∥∆y∥2
AS−2ATEQ∆y +

∆yT

∥∆y∥2
AS−2AT ∆y

∥∆y∥2

)
≥ 0.

It is obvious that cos⟨S−1AT∆y, S−1AT∆ȳ⟩ ≥ 0.995 implies sin⟨S−1AT∆y, S−1AT∆ȳ⟩ ≤ 0.1. To
get cos⟨S−1AT∆y, S−1AT∆ȳ⟩ ≥ 0.995, we enforce

0.005∥∆y∥2AS−2AT ≥ 1.995∥∆y∥2∥S−1AT∆y∥2∥S−1ATEQ∆y∥2,

which gives

cosψ =
∥∆y∥2∆yTAS−2ATEQ∆y + ∥∆y∥2AS−2AT

∥∆y∥2∥S−1AT∆y∥2∥S−1ATEQ∆y∥2 + ∥∆y∥2AS−2AT

≥
−∥∆y∥2∥S−1AT∆y∥2∥S−1ATEQ∆y∥2 + ∥∆y∥2AS−2AT

∥∆y∥2∥S−1AT∆y∥2∥S−1ATEQ∆y∥2 + ∥∆y∥2AS−2AT

≥ 0.995.
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Notice that ∥∆y∥AS−2AT = 0 happens only when rp = 0, in which case ∆y = 0 and there is no
need to use a linear system solver. Thus we only need to analyze the case where ∥∆y∥AS−2AT > 0.
Then we only need to enforce

0.005∥∆y∥AS−2AT ≥ 1.995∥∆y∥2∥S−1ATEQ∆y∥2,

which can be guaranteed if

∥EQ∆y∥2 ≤
0.005

1.995

∥S−1AT∆y∥2
∥S−1AT ∥2∥∆y∥2

=
0.005

1.995

√
∆yTAS−1S−1AT∆y

∥AS−2AT ∥2∥∆y∥22
.

By the definition of condition number, we have

0.005

1.995

1√
κ(AS−2AT ))

≤ 0.005

1.995

√
∆yTAS−1S−1AT∆y

∥AS−2AT ∥2∥∆y∥22
.

So, the following condition guarantees the convergence condition ∥s−1EC∆s∥2 ≤ 0.1δ(s, µ) in Theo-
rem 3.3:

∥EQ∆y∥2 ≤
0.005

1.995

1√
κ(AS−2AT )

.

From the quantum accuracy, we are ready to discuss the complexity of solving Newton system using
QLSA+QTA. Finally, to derive the main result, we also need the following lemma, which can be
proved using singular value decomposition.

Lemma 3.6. For any full row rank matrix Q ∈ Rm×n and any symmetric positive definite matrix
Ψ ∈ Rn×n, their condition number satisfies

κ(QΨQT ) = O(κ(Ψ)κ2Q).

To apply Lemma 3.6 to AS−2AT , it is easy to see that Q = A, recalling the assumption that A
is full row rank. Further, Ψ = S−2, is a symmetric positive definite matrix. Hence,

κ(AS−2AT ) = O(κ(S−2)κ2A).

Further, let ω = maxk ∥s(k)∥∞, where s(k) is the dual slack variable in the kth iteration. According
to Roos et al. [1997], we have κ(S−2) = O(ω4/µ2), which gives∥∥∥EQ∆y

∥∥∥
2
= O

(
µ

κAω2

)
.

Theorem 3.7. Given the linear system (NES), using the QSVT from Gilyén [2019] and the QTA

from van Apeldoorn et al. [2023], an ϵ-approximate solution ∆̃y can be obtained in at most

Õn,∥AS−1∥F ,κ(AS−1), 1
ϵ
(mκ2(AS−1))

queries to QRAM.
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Proof. According to Mohammadisiahroudi [2024], since the normal equation can be rewritten as

(AS−1)(AS−1)T∆y = (AS−1)
1

µ
(Sx0 − µe) ,

the normal equation systems can be solved using quantum singular value transformation (QSVT) Gilyén
[2019], Gilyén et al. [2019] with the complexity of Õn,κ(AS−1), 1

ϵ
(κ(AS−1)∥AS−1∥F ). Furthermore,

iterative refinement can mitigate the linear dependence on ∥AS−1∥F into polylogarithmic depen-
dence Mohammadisiahroudi [2024]. It is worth mentioning that the iterative refinement algo-
rithm in Mohammadisiahroudi [2024] does not necessarily output a normalized solution. But
we can use the method of Mohammadisiahroudi [2024] to compute a solution with accuracy
poly(ϵ, 1/∥AS−1∥F , 1/κ(AS−1)) and normalize it, which only contributes polylog(∥AS−1∥F , κ(AS−1))
overhead and gives an ϵ-accurate normalized solution. Next, to extract the classical solution, we use
the quantum tomography algorithm (QTA) of van Apeldoorn et al. [2023] with accuracy ϵQ∆y, where

ϵQ∆y =
∥∥∥EQ∆y

∥∥∥
2
. Thus, solving the (NES) with QSVT and QTA to the desired accuracy requires

Õn,∥AS−1∥F ,κ(AS−1), 1

ϵ
Q
∆y

(
mκ(AS−1)

ϵQ∆y

)

queries to QRAM. Given that ϵQ∆y =
∥∥∥EQ∆y

∥∥∥
2
= 1/

√
κ(AS−2AT ) = κ−1(AS−1), our quantum

complexity requires
Õn,∥AS−1∥F ,κ(AS−1), 1

ϵ
Q
∆y

(
mκ2(AS−1)

)
queries to QRAM. The proof is complete.

Now, we present the pseudocode of our inexact feasible quantum dual logarithmic barrier
method in Algorithm 2, and provide the main theorem about the total complexity of Algorithm 2.

Algorithm 2 IF-DQLBM

Initialize: Choose ζ > 0, θ = 1
4
√
n
, τ ≤ 0.5, (y0, s0) ∈ D◦, and µ0 > 0 such that δ(s0, µ0) ≤ τ .

k ← 0
while nµ > ζ do

(Mk, vk)← Build system Mk = AS−2AT , vk = 1
µk r

k
p

∆ȳk ← Solve the (Mk, vk) using QSVT and QTA
∆s̄k = −AT∆yk

(yk+1, sk+1)← (yk, sk) + λ∗k(∆ȳk,∆s̄k) according to Eq. (3)
µ← (1− θ)µ
k ← k + 1

end while
return (yk, sk)

Theorem 3.8. Given ζ > 0, θ = 1
4
√
n
, proximity parameter τ ≤ 0.5, initial solution (y0, s0) ∈ D◦,

and µ0 > 0 such that δ(s0, µ0) ≤ τ , Algorithm 2 finds a ζ-approximate solution using

Õn,∥AS−1∥F ,κ(AS−1),µ0, 1
ζ

(
m
√
nκ2(AS−1)

)
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queries to QRAM and

O
(
mn1.5 log

(
nµ0

ζ

))
classical arithmetic operations.

Proof. We proved in Theorem 3.3 that our algorithm enjoys a O
(√

n log
(
nµ0

ϵ

))
iteration complex-

ity. In each iteration, our subroutine solves the (NES) system with complexity Õn,∥AS−1∥F ,κ(AS−1), 1

ϵ
Q
∆y

(
mκ2(AS−1)

)
,

due to Theorem 3.7. On the classical side, each iteration incurs a cost of O(mn) classical arithmetic
operations.

3.3 Application of Iterative Refinement

So far, we have developed and analyzed the inexact feasible dual logarithmic barrier algorithm that
provides the solution (y, s). Based on Theorem 3.8, we have a polynomial dependence on κ(AS−1),
which is inherently dependent on κ(A), ω, 1ζ . The dependence of κ(AS

−1) on the inverse of precision
translates into having exponential time complexity. To get an exact optimum, we need to get to
precision ζ = 2−O(L), where L is the binary length of input data defined as

L = m+ n+mn+
∑
i,j

⌈log(|aij |+ 1)⌉+
∑
i

⌈log(|ci|+ 1)⌉+
∑
j

⌈log(|bj |+ 1)⌉,

and apply the rounding procedure.
To mitigate this dependence on precision, following the work of Mohammadisiahroudi et al.

[2023b], we adopt the iterative refinement (IR) scheme. In Mohammadisiahroudi et al. [2023b],
both primal and dual information are needed to run the iterative refinement scheme. Here, we
propose an iterative refinement scheme that requires only dual information. It is worth mentioning
that the idea of iterative refinement was first adopted for LO problems in the classical setting by
Gleixner et al. [2016]. Also, similar approaches are also developed for semidefinite optimization
Mohammadisiahroudi et al. [2023a].

For a feasible dual solution (y, s) and a scaling factor ∇ ≥ 1, we define the refining problem, at
iteration k, as

max
ŷ,ŝ
∇(k)bT ŷ

s.t. AT ŷ+ŝ = ∇(k)s(k),

ŝ ≥ 0.

(DIR)

One can easily check that the dual of (DIR) is as follows:

min
x̂
∇(k)s(k)

T
x̂,

s.t. Ax̂ = ∇(k)b,

x̂ ≥ 0.

(PIR)

The associated proximity measure is defined as

δ
(k)
IR (ŝ, µ) =

1

µ
min
x̂
{∥µe− ŝx̂∥2 : Ax̂ = ∇(k)b}.
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For the IR problem (DIR), we iteratively solve it using Algorithm 2 with precision ζ̂ = 10−2 until
the complementarity gap reaches a desired accuracy ζ. Once we solve the refining problem to
precision ζ̂ at iteration k to acquire ŷ, we update the current solution as

y(k+1) = y(k) +
1

∇(k)
ŷ,

s(k+1) = c−AT (y(k) +
1

∇(k)
ŷ) = c−AT y(k+1).

We continue updating low-precision solutions until we reach a high-precision solution. The pseu-
docode of these steps is presented in Algorithm 3.

Algorithm 3 IR-IF-DQLBM

Initialize: Choose 0 < ζ ≪ ζ̂, (y(0), s(0)) ∈ D◦, τ ≤ 0.5, µ(0) > 0 such that δ(s(0), µ(0)) ≤ τ , and
k = 1.
(y(1), s(1))← Solve dual problem with ζ̂
∇(0) ← 1
while ∇(k−1) < 1

ζ do

∇(k) ← ∇(k−1) × 1
ζ̂

Construct the IR problem (DIR)
(ŷ, ŝ)← Solve (DIR) using Algorithm 2 to precision ζ̂
y(k+1) ← y(k) + 1

∇(k) ŷ

s(k+1) ← c−AT y(k+1)

k ← k + 1
end while
return (y(k), s(k))

Like any feasible IPM, as we solve the refining problem with a quantum interior point algorithm,
we need a feasible initial solution for the refining problem in each iteration. The following lemma
provides a feasible initial point for the refining problem at iteration k.

Lemma 3.9. Given (y(0), s(0)) an interior feasible solution for (D) and (y(k), s(k)) the solution for
(D) generated by the (k − 1)th iteration of Algorithm 3. If (y(k), s(k)) is interior feasible for (D),
then (∇(k)(y(0) − y(k)),∇(k)s(0)) is an interior feasible solution for the refining problem (DIR).

Proof. First, we check the dual feasibility condition as follows.

AT (∇(k)(y(0) − y(k))) +∇(k)s(0) = ∇(k)(AT (y(0) − y(k)) + s(0)) = ∇(k)(c−AT y(k)) = ∇(k)s(k).

Furthermore, it is clear that ∇(k)s(0) > 0, hence, the solution is interior feasible for (DIR).

The next lemma proves that the initial solution we choose for (DIR) is close enough to its central
path as required by Algorithm 2.

Lemma 3.10. In the kth iteration of Algorithm 3, let

• (∇(k)(y(0) − y(k)),∇(k)s(0)) be the initial solution for (DIR), and
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• (∇(k))2µ(0) be the initial duality gap.

Then, we have δ
(k)
IR (∇(k)s(0), (∇(k))2µ(0)) ≤ 0.5.

Proof. According to Algorithm 3, we have δ(s(0), µ(0)) ≤ 0.5. Following Theorem 3.1, x(s(0), µ(0))
is primal feasible and thus Ax(s(0), µ(0)) = b with x(s(0), µ(0)) ≥ 0. Furthermore, it is easy to see
that

argmin
x̂
{∥(∇(k))2µ(0)e− (∇(k)s(0))x̂∥2 : Ax̂ = ∇(k)b} = argmin

x̂
{∥µ(0)e− s(0)x̂/(∇(k))∥2 : Ax̂/(∇(k)) = b}

= (∇(k)) argmin
x
{∥µ(0)e− s(0)x∥2 : Ax = b}

= (∇(k))x(s(0), µ(0)).

By the definition of δ
(k)
IR (∇(k)s(0), (∇(k))2µ(0)), we have

δ
(k)
IR (∇(k)s(0), (∇(k))2µ(0)) =

1

µ(0)
∥µ(0)e− s(0)x(s(0), µ(0))∥2

= δ(s(0), µ(0)) ≤ 0.5.

Moreover, we prove that in each iteration of Algorithm 3 there exists a primal solution associated
with the computed dual solution such that the duality gap is bounded. The result is as follows.

Lemma 3.11. In the kth iteration of Algorithm 3, the solution (y(k+1), s(k+1)) is dual feasible, and
the proximity measure of the solution satisfies

δ(s(k), (ζ̂)2k−1) ≤ 0.5.

Proof. We prove this lemma by induction.

• First, in the 1st iteration, we have a ζ̂-approximate interior feasible solution (y(1), s(1)) for (D)
and a ζ̂-approximate interior feasible solution (ŷ(1), ŝ(1)) for (DIR). According to the proof of

Theorem 3.3, we have δ
(1)
IR (ŝ(1), ζ̂) ≤ 0.5. Thus, there exists a feasible solution x̂(1)(ŝ(1), ζ̂) for

(PIR), i.e., Ax̂(1)(ŝ(1), ζ̂) = b/ζ̂, because of Theorem 3.1. By the end of the 1st iteration, we
have

y(2) = y(1) + ζ̂ ŷ(1)

s(2) = c−AT y(2) = s(1) − ζ̂AT ŷ(1) = ζ̂ ŝ(1) > 0,

which is strictly dual feasible for (D). Then, we have

δ(s(2), (ζ̂)3) =
1

(ζ̂)3
min
x
{∥(ζ̂)3e− s(2)x∥2 : Ax = b}

≤ 1

(ζ̂)3
∥(ζ̂)3e− s(2)ζ̂x̂(1)(ŝ(1), ζ̂)∥2

=
1

(ζ̂)3
∥(ζ̂)3e− (ζ̂)2ŝ(1)x̂(1)(ŝ(1), ζ̂)∥2

= δ
(1)
IR (ŝ(1), ζ̂) ≤ 0.5.
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• Second, by the end of the (k−1)th iteration, let us assume that we have a strictly dual feasible
solution (y(k), s(k)) for (D) and δ(s(k), (ζ̂)2k−1) ≤ 0.5.

• Then, in the kth iteration, if Algorithm 3 does not terminate, then we solve (DIR) and obtain

a ζ̂-approximate strictly feasible solution (ŷ(k), ŝ(k)) with δ
(k)
IR (ŝ(k), ζ̂) ≤ 0.5. According to

Theorem 3.1, there exists a feasible solution x̂(k)(ŝ(k), ζ̂) for (PIR). Then, we construct the
solution

y(k+1) = y(k) + (ζ̂)kŷ(k)

s(k+1) = c−AT y(k+1) = s(k) − (ζ̂)kAT ŷ(k) = (ζ̂)kŝ(k) > 0,

which is a strictly dual feasible solution for (D). It follows that

δ(s(k+1), (ζ̂)2k+1) =
1

(ζ̂)2k+1
min
x
{∥(ζ̂)2k+1e− s(k+1)x∥2 : Ax = b}

≤ 1

(ζ̂)2k+1
∥(ζ̂)2k+1e− s(k+1)(ζ̂)kx̂(k)(ŝ(k), ζ̂)∥2

=
1

(ζ̂)2k+1
∥(ζ̂)2k+1e− (ζ̂)kŝ(k)(ζ̂)kx̂(k)(ŝ(k), ζ̂)∥2

= δ
(k)
IR (ŝ(k), ζ̂) ≤ 0.5,

which completes the proof.

Given that in the context of iterative refinement, we terminate the subroutine early, i.e. µ ≤
ζ̂ = 10−2, the condition number of the system in that iteration remains bounded by a constant.
In other words, the condition number of the system is bounded by a constant times the initial
condition number, i.e.

κ(A(S(k))−2AT ) = O
(
κ0

µ(k)

)
= O(κ0).

Thus, we can conclude that all NES systems in iterations of Algorithm 3 have the O(κ0) uniform
condition number bound Mohammadisiahroudi et al. [2023a]. Thus, it remains to discuss the bound
on κ0. According to Lemma 3.6 and the discussion thereafter, κ0 depends on ω0 = ∥s0∥∞, µ0, and
κA. Further, note that κ0 = κ2

(A(S(0))−1)
, by construction.

The following lemma bounds the number of iterations required to solve the problem to the
desired precision ζ.

Lemma 3.12. Algorithm 3 produces a ζ-optimal solution with at most O( log(ζ)
log(ζ̂)

) inquiries to Algo-

rithm 2 with precision ζ̂.

Proof. According to Algorithm 3, ∇(K) = (ζ̂)−K . If Algorithm 3 terminates after K iterations,
then

(ζ̂)−K ≥ (ζ)−1 ⇒ K ≥ log(ζ)

log(ζ̂)
.

Finally, by using iterative refinement, we obtain the complexity of Algorithm 3 as follows.
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Theorem 3.13. Algorithm 3 finds a ζ-optimal solution using at most

Õn,∥AS−1∥F ,κ(AS−1),µ0, 1
ζ

(
m
√
nκ0

)
queries to QRAM and

O
(
mn1.5 log

(
nµ0

ζ

))
classical arithmetic operations.

Our work can be compared to the work of Apers and Gribling Apers and Gribling [2023] as we
both present quantum interior point methods to solve linear optimization problems in dual form,
assuming having access to QRAM. As shown in Table 1, in Apers and Gribling [2023], the proposed
algorithm makes Õm,n, 1

ζ
(mn), Õm,n, 1

ζ
(m5/4n3/4), Õm,n, 1

ζ
(m5√n) queries to the data depending on

which of the logarithmic, volumetric, or Lewis weight barrier is used, respectively. It is worth
mentioning that their algorithm is tailored to specific types of problems. These sorts of problems
appear in different applications such as linear relaxation of discrete optimization problems, machine
learning problems, Chebyshev approximation, and linear separability problems. However, to get
a sublinear number of queries the structure of the coefficient matrix should be a tall-and-skinny
sparse matrix, i.e., n ≥ γm10, where γ is some constant. In contrast, our algorithm does not require
such a special structure and can provide a sublinear number of queries for problems with coefficient
matrix having n ≥ ϑm2, for some constant ϑ. Therefore, in worst-case complexity analysis, the
algorithm of Apers and Gribling [2023] has a O(n7.5) complexity which is worse than ours and
other works.

Further, we can compare our work with primal-dual IPMs (PD-IPMs). If we assume n ≥ ϑm2

to get a sublinear number of queries, we subsequently get O(n2) number of classical arithmetic op-
erations, which is better than that of PD-IPMs (O(n2.5)). Further, PD-IPMs require preprocessing
or modification of the Newton system to ensure that the iterates remain feasible Mohammadisi-
ahroudi et al. [2023b]. Our framework does not need any preprocessing or modification of the
system. Further, the quantum complexity of the majority of quantum PD-IPMs depends on the
norm of the optimal solution (ω) Mohammadisiahroudi et al. [2024a, 2023b, 2024b]. This term can
be extremely large leading to a high quantum complexity in those works. To mitigate this depen-
dence, preconditioning is needed which is used in the work of Mohammadisiahroudi et al. [2024b].
In contrast, our algorithm does not need any preconditioning as our complexity is not dependent
on the norm of the optimal solution. Instead, as stated earlier, our algorithm complexity depends
on the condition number of the initial Newton system. The initial system condition number de-
pends on the condition number of the input data and the norm of the initial solution which can
be bounded moderately. These are some of the advantages that using a dual-only framework can
yield. A comparison of our work with existing works is presented in Table 1.
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Algorithm Linear System Solver Quantum Complexity Classical Complexity

Dual logarithmic barrier method Roos et al. [1997] Cholesky Õ 1
ζ
(m2n1.5)

PD IPM with Partial Updates Roos et al. [1997] Low rank updates Õ 1
ζ
(n3)

PD Feasible IPM Roos et al. [1997] Cholesky Õ 1
ζ
(n3.5)

Robust IPM van den Brand et al. [2020] Spectral Approximation Õ 1
ζ
(nω0)

PD II-IPM Monteiro and O’Neal [2003] PCGM Õ 1
ζ
(n5χ̄2)

PD II-QIPM Mohammadisiahroudi et al. [2024a] QLSA+QTA Õn,κA,ω, 1
ζ
(n4κ4Aω

19∥A∥) Õω, 1
ζ
(n4)

PD IF-QIPM Mohammadisiahroudi et al. [2023b] QLSA+QTA Õn,κA,ω, 1
ζ
(n2κ2Aω

5∥A∥) Õµ0, 1
ζ
(n2.5)

PD IR-IF-IPM Mohammadisiahroudi et al. [2024b] PCGM Õµ0, 1
ζ
(n3.5χ̄2)

PD IR-IF-QIPM Mohammadisiahroudi et al. [2024b] QLSA+QTA Õn,κÂ,∥Â∥,∥b̂∥,µ0, 1
ζ
(m
√
nχ̄2ω2) Õµ0, 1

ζ
(n2.5)

IPM with approximate Newton steps Apers and Gribling [2023] Q-spectral Approx. Õm,n, 1
ζ
(m5√n) Õ 1

ζ
(n1.5)

This work QLSA+QTA Õn,∥AS−1∥F ,κ(AS−1),µ0, 1
ζ

(
m
√
nκ0

)
Õ 1

ζ
(mn1.5)

Table 1: Complexity of different IPMs for LO (Quantum complexity is expressed in the form of query
complexity. Here, ω is the upper bound on the norm of the optimal solution, and χ̄2 is an upper bound on the
condition number of the Newton system). PD stands for Primal-Dual, and PCGM stands for Preconditioned
Conjugate Gradient Method.

To give a better comparison of our work, if we compare the complexity of our algorithm under
the condition where it yields a sublinear number of queries, i.e. n ≥ O(m2), we have the following
complexities among the existing classical and quantum algorithms as shown in Table 2.

Algorithm Linear System Solver Quantum Complexity Classical Complexity

Dual logarithmic barrier method Roos et al. [1997] Cholesky Õ 1
ζ
(n2.5)

IPM with Partial Updates Roos et al. [1997] Low rank updates Õ 1
ζ
(n3)

PD Feasible IPM Roos et al. [1997] Cholesky Õ 1
ζ
(n3.5)

Robust IPM van den Brand et al. [2020] Spectral Approximation Õ 1
ζ
(nω0)

PD IR-IF-QIPM Mohammadisiahroudi et al. [2024b] QLSA+QTA Õn,κÂ,∥Â∥,∥b̂∥,µ0, 1
ζ
(nχ̄2ω2) Õµ0, 1

ζ
(n2.5)

IPM with approximate Newton steps Apers and Gribling [2023] Q-spectral Approx. Õm,n, 1
ζ
(n3) Õ 1

ζ
(n1.5)

This work QLSA+QTA Õn,∥AS−1∥F ,κ(AS−1),µ0, 1
ζ

(
nκ0

)
Õ 1

ζ

(
n2
)

Table 2: Complexity of different IPMs for LO considering n ≥ O(m2)

4 Conclusion

This paper proposes an algorithm for solving linear optimization problems using the dual loga-
rithmic barrier function. In the convergence analysis, we showed that our algorithm has quadratic
convergence toward the central path despite the inexact directions. Moreover, our algorithm enjoys
an O(

√
n) IPM iteration complexity. Further, due to the promising speed-up that quantum linear

system solvers provide for IPMs, we use this type of algorithm to speed up the most expensive part
of the algorithm, solving the Newton system to acquire the search directions. We exploited QSVT
of Gilyén et al. [2019] and QTA of van Apeldoorn et al. [2023] as a subroutine for solving the normal
equation system in each iteration. By applying iterative refinement, we achieve a complexity of
Õ(m

√
nκ0) number of queries to QRAM and Õ(mn1.5L) number of classical arithmetic operations.
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In comparison to the existing works, our work requires milder conditions to achieve a sublinear
number of queries to that of the recent similar work of Apers and Gribling [2023]. Further, in
comparison to primal-dual IPMs, our work has a better dependence with respect to the condi-
tion number and can yield a cheaper classical arithmetic cost under the assumption of n ≥ ϑm2

on the dimension of the problem. We highlight the fact that iterative refinement plays a major
role in mitigating the impact of the condition number, by eliminating the precision dependence.
Nevertheless, our complexity still has a dependence on the condition number of the initial Newton
system which is dependent on the norm of the initial solution and the condition number of the
input data. Efforts to initialize the algorithm by a solution with a moderately bounded norm in
addition to preconditioning the input data matrix create an avenue of research to further improve
the complexity of our algorithm.
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