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Introduction

This article studies quantum interior point meth-
ods (QIPMs) for solving conic linear optimiza-
tion (CLO) problems [3]. Let J ⊂ Rn be an
n-dimensional vector space over the real numbers
and K ⊂ J be a closed, pointed convex cone in
Rn with a non-empty interior. The dual cone of K
is denoted by K∗, which is given as

K∗ ≡ {
s ∈ Rn : 〈s, x〉 ≥K 0 for every x ∈ K

}
,

where 〈·, ·〉 is an inner product on J and the
notation x ≥K x̄ means x − x̄ ∈ K. Letting
int(K) denote the interior of K, x >K x̄ means
x − x̄ ∈ int(K).

Letting A ∈ Rm×n, c ∈ Rn, and b ∈ Rm be
given, the primal and dual pair of CLO problems
can be defined in standard form as follows:

zP = min
x

{〈c, x〉 : Ax = b, x ≥K 0} , (1)

zD = max
(y,s)

{
〈b, y〉 : A	y + s = c, s ≥K∗ 0

}
.

(2)

By appropriately choosing cone K, any convex
optimization problem can be formulated in the
form given in (1)–(2) [3]. Further, whenever there
exists a primal feasible x ∈ int(K) and a dual

© Springer Nature Switzerland AG 2024
P. M. Pardalos, O. A. Prokopyev (eds.), Encyclopedia of Optimization,
https://doi.org/10.1007/978-3-030-54621-2_852-1
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feasible point (y, s) with s ∈ int(K∗), then the
so-called interior point condition (IPC) is said to
hold. Under the IPC, strong duality holds and an
optimal solution (x, y, s) with zero duality gap
exists, i.e., the primal and dual optimal values
coincide, i.e., zP = zD .

A cone K is symmetric if it is self-dual, i.e.,
K = K∗, and homogeneous, i.e., for any (x, x̄) ∈
int(K), there exists a linear transformation M

such that M(x) = x̄ and M(K) = K. Symmetric
cones are well-studied in optimization and
include the nonnegative orthant Rn+, the Lorentz
or second-order cone Ln, as well as the cone of
n × n symmetric positive semidefinite matrices
Sn+. Accordingly, the primal and dual symmetric
conic optimization (SCO) problems (1)–(2)
include linear optimization (LO) problems
upon choosing K = Rn+; Second-order conic
optimization (SOCO) problems when K =
⊗r

i=1Lni , and when K = Sn+, the resulting
problem is a semidefinite optimization (SDO)
problem. Accordingly, SCO problems allow
one to model a wide variety of fundamental
optimization problems with applications in
finance [20] and control [6], as well as computing
approximations to NP-hard problems [13, 19],
just to give a few examples.

In the classical setting, due to their strong
theoretical guarantees and practical efficiency,
interior point methods (IPMs) are the prevailing
methodology for solving optimization problems
over symmetric cones [34]. The development
of Karmarkar’s IPM for LO was closely
followed by Nesterov and Nemirovskii [28],
who introduced the paradigm of self-concordant
barrier functions. This seminal work inspired
a great deal of interest in IPMs, which were
subsequently applied to broad classes of
optimization problems, such as SDO [10,22,25–
27, 38] and SOCO [35, 36].

Nesterov and Todd were the first to study
primal-dual IPMs for SCO [29, 30]. Implicitly,
the work of Faybusovich [12] and Tsuchiya
[35,36] was instrumental in the development and
analysis of IPMs applied to SCO. They showed
that the complexity analysis of Monteiro and
Zhang for SDO [27] can be extended to analyze
IPMs for SOCO using Jordan algebras. Shortly
thereafter, Schmieta and Alizadeh [32,33] further

generalized Monteiro’s analysis to SCO. Specif-
ically, upon demonstrating the symmetrization
that takes place in the context of SDO to a sim-
ilar scaling on associatively induced symmetric
cones, Monteiro’s proof extends to all symmetric
cones. Affine scaling algorithms for SCO have
also been proposed; see [21].

The bottleneck operation at every iteration of
IPMs is the solution of the linear approximation
of a perturbed set of Karush-Kuhn-Tucker (KKT)
optimality conditions known as the Newton lin-
ear system. Given that quantum linear systems
algorithms (QLSAs) [8, 9, 14] can prepare a
quantum state encoding the solution to a linear
equation system at cost that is polylogarithmic
in the dimension, researchers have investigated
whether substituting the classical solution of the
Newton system with a QLSA would provide a
faster interior point algorithm for solving convex
optimization problems. Kerenidis and Prakash
[16] were the first to propose a QIPM for solving
SDO and LO problems in this manner. However,
the errors resulting from the use of a QLSA
to solve the Newton system and quantum state
tomography to classically estimate the resulting
state encoding the solution are not properly han-
dled by their framework, and thus convergence is
not guaranteed.

Augustino et al. [4] overcame the issues
arising from quantum errors by presenting
two schemes. The first directly quantizes a
classical inexact-infeasible IPM [39], in which
residuals are added to the right-hand side of the
Newton linear system to capture infeasibility and
inexactness of the search directions. However,
the authors determined that the resulting II-
QIPM does not provide an advantage in any
parameter with respect to overall complexity
when compared to the best classical feasible
IPMs. The second scheme they present is a
novel framework which they call an inexact-
feasible QIPM (IF-QIPM). In the IF-QIPM, the
primal and dual search directions are defined as
linear combinations of the nullspace and row
space of the constraint matrices, resulting in
what is referred to as an orthogonal subspace
system formulation of the Newton system.
As a consequence, primal and dual feasibility
are guaranteed to be satisfied exactly, in spite



Quantum Interior Point Methods for Conic Linear Optimization 3

Q

of the errors from QLSA and quantum state
tomography. These ideas were also applied to
LO by Mohammadisiahroudi et al. [23]. Since
the analysis presented in [4] extends Monteiro’s
proof in [25] to account for inexactness in the
complementarity condition, convergence of an
IF-QIPM for SCO problems can be obtained by
generalizing their proof to symmetric cones in
the same way as Schmieta and Alizadeh [32]
proceeded with [25].

The rest of this chapter is structured as
follows: section “Preliminaries” reviews the
theory of Euclidean Jordan algebras, which
serves as the foundation for analysis of IPMs
applied to symmetric cones. Section “Classical
IPMs for Optimization over Symmetric Cones”
discusses the theory of the central path and
classical IPMs, as well as how to formulate
the Newton linearsystem for use in a QIPM.

Section “Technical Results” details technical
results which are necessary to prove convergence
of an inexact-feasible (Q)IPM for SCO, and
Section “A QIPM for Optimization over
Symmetric Cones” presents the IF-QIPM for
symmetric cones.

Preliminaries

In this section, several foundational components
of the analysis are summarized. The theory of
Euclidean Jordan algebras is reviewed at a high
level, providing only the necessary concepts for
this paper. For a detailed discussion, the reader is
referred to [11, 32].

“Big O” Notation
In what follows, O(·) is defined as

f (x) = O(g(x)) ⇐⇒ ∃� ∈ R, ϑ ∈ R+, such that f (x) ≤ ϑg(x) ∀x > �.

When the function depends polylogarithmically
on other quantities, e.g., κ and ρ, the following
notation is used:

Õκ,ρ (f (x)) = O(f (x) · polylog(κ, ρ, f (x))).

Basic Definitions
Suppose that A is an n-dimensional vector space
endowed with a bilinear mapping (x, s) �→ xs.
Whenever x(uv) = (xu)v for any x, u, v ∈ A
(i.e., this multiplication is associative for all x, u,
and v), then A is an associative algebra. An
element e ∈ A is the identity element of A if
xe = ex = x for every x. An element x′ is
the adjoint of x if there is a (linear) one-to-one
conjugation “′" on A such that (x′)′ = x and
(xs)′ = s′x′. Hence, x is self-adjoint whenever
x = x′, and the set of self-adjoint elements of A
form a subspace of A.

Euclidean Jordan Algebras
Suppose that J is an n-dimensional vector space
endowed with a bilinear mapping ◦ : (x, s) �→
x ◦ s. It is said that (J, ◦) is a Jordan algebra if

x ◦ s = s ◦ x, (3a)

x ◦ (x2 ◦ s) = x2 ◦ (x ◦ s), (3b)

with x2 = x ◦ x. A Jordan algebra J is Euclidean
whenever 〈x, x〉 > 0 for all x �= 0, where 〈·, ·〉 is
an inner product defined over J.

Observe that while Jordan algebras are com-
mutative, they are not associative in general. Yet,
Euclidean Jordan algebras are power associative;
any x ∈ J satisfies xp+q := xp ◦ xq . These
algebras lend naturally to many properties of
symmetric matrices, such as the concept of pos-
itive semidefiniteness and possessing real eigen-
values and orthogonal eigenvectors. The degree
of x ∈ J to be the smallest integer r such that
{e, x, x2, . . . , xr } is linearly dependent, where e

is the unit element satisfying x ◦ e = e ◦ x = x,
writing deg(x) = r . The rank of J is defined
as the maximum degree across all elements of
J, i.e., rank(J ) = maxx∈J deg(x), and it is
assumed that max deg(x) is finite. Whenever the
degree of an element x ∈ J equals the rank of
the algebra, it is said that x is regular. Moving
forward, it is also assumed that rank(J) = r .
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For all x, s ∈ J, there exists a symmetric
matrix L(x) which characterizes the bilinear map
◦ : (x, s) �→ x ◦ s:

L(x)s = x ◦ s.

Observe that L(x)e = x and L(x)x = x2. It
can also be observed that due to (3b) L(x) and
L(x2) commute. The quadratic representation of
x is defined as

Qx = 2L2(x) − L(x2). (4)

Recall that an idempotent is a nonzero element
v ∈ J such that v2 = v and a primitive is an
idempotent that cannot be defined as the sum of
two other idempotents. A Jordan frame is defined
as a complete set of primitive idempotents, i.e., a
set {v1, . . . , vr } satisfying

vi ◦ vj = 0 ∀i �= j, and
r∑

i=1

vi = e.

Theorem 1 (Theorem III.1.2 in [11]) Let
(J, ◦) be a rank r Euclidean Jordan algebra.
Then, every x ∈ J can be represented as

x = λ1v1 + · · · + λrvr , (5)

where {v1, . . . , vr } denotes a Jordan frame and
λ1, . . . , λr are the eigenvalues of x, such that (5)
is the spectral decomposition of x.

Using the eigenvalues of elements of Jordan
algebras, these definitions extend to any real-
valued function f (·). That is, f (x) ≡ f (λ1)v1 +
· · · + f (λr)vr . This work will make use of both
the square root and inverse, respectively, defined
to be

x1/2 ≡ λ
1/2
1 v1 + · · · + λ

1/2
r vr ,

and
x−1 ≡ λ−1

1 v1 + · · · + λ−1
r vr .

The square root x1/2 is defined whenever λi ≥ 0
for all i = 1, . . . , r , and undefined otherwise. The
inverse x−1 is defined whenever λi �= 0 for all
i = 1, . . . , r , and undefined otherwise. Whenever
each of the eigenvalues λi of x is nonnegative
(positive), x is said to be positive semidefinite
(positive definite), writing x � 0 (x � 0) to
indicate when this is the case.

Norms and inner products on J can also be
defined as functions of the eigenvalues of x.
Namely,

tr(x) =
r∑

i=1

λi, 〈x, s〉 = tr(x ◦ s), ‖x‖F ≡
(

r∑

i=1

λ2
i

)1/2

=
√

tr(x2), ‖x‖2 = max
i

|λi | .

It should be clear from these definitions that
tr(e) = r and ‖e‖F = √

r . It also follows
from the associativity of the trace that L(x) is
a symmetric operator with respect to the inner
product that our space is equipped with.

Lemma 1 (Lemma 1 in [32]) Let x ∈ J with
spectral decomposition

x = λ1v1 + · · · + λrvr .

Then, the eigenvalues of the symmetric linear
operator L(x) are all of the form

λi + λj

2
, i, j = 1, . . . , r.

The following definition motivates our use of
Euclidean Jordan algebras in SCO.

Definition 1 (Definition 2 in [32]) If J is a
Euclidean Jordan algebra, then its cone of squares
is the set

K(J ) ≡ {x2 : x ∈ J}.

It follows that K(J ) is a closed, pointed, convex
cone with a non-empty interior.

The following theorem from [32] establishes the
role of Euclidean Jordan algebras in the context
of optimization over symmetric cones.
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Theorem 2 (Theorem 2 in [32]) A cone is sym-
metric if and only if it is the cone of squares of
some Euclidean Jordan algebra.

This section concludes with the definition of
simple elements and an important result for our
analysis that uses such elements.

Definition 2 (Definition 5 in [32]) Let A be an
associative algebra. An element x ∈ A is simple
if xx′ ∈ J.

Lemma 2 (Lemma 5 in [32]) Let x, y, u, v ∈ J
with u, v invertible, a be a simple element of
an associative algebra A and α ∈ R. Then,
xy, xa, u−1xyu, uv + αu−1v−1 and xy + u are
also simple.

Solving the Newton Linear System with a
Quantum Computer
A detailed discussion on how quantum computers
can be used to solve linear systems of equations
is provided in the chapter on quantum linear
algebra. These concepts are only summarized at
a high level here, assuming a basic familiarity
with the framework of block-encoded matrices
and quantum random access memory (QRAM).

Let U be an (α, a, δ)-block-encoding of a
matrix M ∈ Rn×n that can be implemented
in time TU , and suppose that M has condition
number κM . Then, U can be used to implement
a block-encoding V of the inverse of M:

V =
(

M−1

2κM
·

· ·

)

and amplitude amplification is subsequently
applied to

V |u〉 |0〉⊗a = 1

2κM

M−1 |u〉 |0〉⊗a + |·〉 .

This idea is formalized in the next result from [8].

Theorem 3 (Theorem 30 in [8]) (Solution of
linear system) Let ζ ∈ (0, 1), κ ≥ 2 and
H be a Hermitian matrix such that its nonzero

eigenvalues lie in [−1,−1/κ]∪[1/κ, 1]. Suppose
that

δ = o

⎛

⎝ ζ

κ2 log3 κ2

ζ

⎞

⎠

and U is an (α, a, δ)-block-encoding of H that
can be implemented in time TU . Suppose further
that a state |v〉 that is in the image of H can
be prepared in time Tv . Then, for any ζ , we can
output a state that is ζ -close to H−1 |v〉 /‖H−1v‖
in time

O
(

κ

(
α(a + TU) log2

(
κ

ζ

)
+ Tv

)
log κ

)
.

In the context of QIPMs, QLSAs prepare a
quantum state encoding the solution to the New-
ton linear system, and no classical information
on this state can be accessed directly. Therefore,
a procedure for preparing a classical estimate
of the solution is required. At the time of writ-
ing, it is not clear how to prepare the Newton
system for the subsequent iteration without a
classical description of the solution. For this task,
the quantum state tomography algorithm of van
Apeldoorn et al. [37] is employed.

Theorem 4 ( [37]) Let �(v) denote the real part
of v. Let |ψ〉 = ∑d−1

j=0 vj |j 〉 be a quantum state,

v ∈ Cd the vector with elements vj , and U |0〉 =
|ψ〉. There is a quantum algorithm that, with
probability at least 1 − δ, outputs ṽ ∈ Rd such
that ‖�(v) − ṽ‖2 ≤ ε using O( d

ε
log d

δ
) appli-

cations of U , Õ
d, 1

δ
, 1
ε
( d

ε
) indexed-SWAP gates

acting on d qubits, and Õ
d, 1

δ
, 1
ε
( d

ε
) additional

gates. With access to a classical-write, quantum-
read QRAM of size Õ

d, 1
δ
, 1
ε
(2d/ε), the indexed-

SWAP gates are not required.

To summarize, the tomography subroutine can
obtain a classical description in time that is linear
in the dimension and inverse precision, which is
an O(1/ε) improvement over all other tomog-
raphy algorithms in the literature. Note that the
tomography algorithm in [37] applies to any
state preparation unitary. Mohammadisiahroudi
et al. [24] showed that for the special case in
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which the state preparation unitary is a QLSA,
the dependence on precision can be exponentially
improved by employing an iterative refinement
scheme. At a high level, their idea reduces to
solving a polylogarithmic number of linear sys-
tems rather than a single one and using the
sequence of solutions obtained by the refinement
scheme to construct a highly precise solution to
the original system of interest.

Theorem 5 (Theorem 7 in [24]) Assume clas-
sical access to an s-sparse matrix M ∈ Rd×d

and a vector z ∈ Rd . Let ζ ∈ (0, 1). Then,
a quantum computer with access to a classical-
write, quantum-read QRAM outputs a ζ -precise
solution (in the �2-norm) to the linear system
Mx = z using at most

O
(

dκM · polylog

(
d, κM,

1

ζ

))
,

accesses to the QRAM, and O
(
ds · polylog

(
d, κM, 1

ζ

))
arithmetic operations.

Classical IPMs for Optimization over
Symmetric Cones

This section reviews the theory of IPMs as it is
applied to SCO. It is then shown how to formu-
late the Newton linear system to ensure primal
and dual feasibility exactly holds while using an
inexact linear system subroutine such as a QLSA.

The Central Path in SCO
Suppose that J ⊂ Rn is a Euclidean Jordan
algebra with rank r , and let K be the cone of
squares of J. Let c, a1, . . . , am ∈ J and b ∈ Rm.
Defining

Ax =
⎛

⎜
⎝

〈a1, x〉
...

〈am, x〉

⎞

⎟
⎠ ,

where Ax is assumed to be a linear surjective
map, the primal-dual pair (1)-(2) can be com-
pactly written as follows:

zP = min
x

{〈c, x〉 : Ax = b, x ∈ K} (P)

zD = max
(y,s)

{
b	y : A	y + s = c, s ∈ K

}
. (D)

The set of interior feasible solutions of (P) and
(D) are defined to be

P0 = {x ∈ int(K) : Ax = b}
D0 =

{
(y, s) ∈ Rm × int(K) : A	y + s = c

}
.

When P0 and D0 are nonempty, the IPC is satis-
fied, then the primal and dual optimal sets

P∗ = {x ∈ K : Ax = b, 〈c, x〉 = zP }
D∗ =

{
(y, s) ∈ Rm × K : A	y + s = c,

b	y = zD

}

are non-empty and bounded, and strong duality
holds with zP = zD .

Whenever the IPC holds, determining an opti-
mal solution to (P)–(D) is equivalent to solving
the system

Ax = b,

A	y + s = c,

x ◦ s = 0,

x, s ∈ K.

In the framework of primal-dual IPMs, the com-
plementarity condition x ◦ s = 0 is perturbed
to x ◦ s = μe, where e is the identity element.
Proceeding in this way gives rise to the central
path equation system

Ax = b,

A	y + s = c,

x ◦ s = μe,

x, s ∈ K,

where μ is the central path parameter. Clearly the
limit of the central path exists if μ → 0, and the
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limit point provides an optimal solution to (P)–
(D). Having x, s ∈ int(K), let us define μ = 〈x,s〉

r

and reduce μ to σμ for σ ∈ (0, 1). Applying
Newton’s method to the resulting system yields
the following system of equations:

A�x = 0,

A	�y + �s = 0,

�x ◦ s + x ◦ �s = σμe − x ◦ s,

(6)

where (�x,�y,�s) ∈ J × Rm × J denotes the
Newton step.

However, the system (6) is not solvable; x

and s may not operator commute as L(x)L(s) �=
L(s)L(x) in general. When applying primal-dual
IPMs to symmetric cones, a scaling is therefore
necessary to ensure convergence of our algo-
rithm. This is discussed next.

Similarity Scaling
This section details a group of scaling auto-
morphisms that map the cone K onto itself. A
detailed discussion here describes how scaling
gives rise to different search directions and, as
a consequence, solutions to our primal and dual
CLO problems which possess attractive features
such as maximal complementarity.

In what follows, suppose that x, s ∈ int(K)

and p >K 0 (hence, p is invertible). Consider a
bilinear operator on x and s

Hp(x, s) ≡ (Qpx) ◦ (Qp−1s),

where Qp is defined according to (4), and for any
u ∈ int(K), define

ũ = Qpu, ˜u = Qp−1 u.

It follows (see, e.g., Section 3.2 in [32]) that ·̃
and ·̃ are inverses of each other, due to the fact
that QpQp−1 = I , where I is the identity matrix.
Further, whenever u is positive semidefinite, so
are ũ and ˜u. Observe that the cone K of squares
of J remains invariant under the transformations
·̃ and ·̃. Consequently, a solution (x, y, s) is feasi-
ble for (P)–(D) if and only if (x̃, y, ˜s) is feasible
for the scaled primal-dual pair:

zP = min
x̃

{〈˜c, x̃〉 : 〈˜ai, x̃〉 = bi ∀i ∈ [m], x̃ ∈ K}

(P̃)

zD = max
(y,s)

{

b	y :
m∑

i=1

yi ˜ai + ˜s = ˜c, ˜s ∈ K
}

.

(D̃)

The following two crucial lemmas from [32]
establish the intrinsic relationship between (P)–
(D) and the scaled problems (P̃)–(D̃).

Lemma 3 (Lemma 17 in [32]) It follows

1. 〈x, s〉 = 〈x̃, ˜s〉;2. Au = 0 ⇐⇒ ˜Aũ = 0 and A	v + w =
0 ⇐⇒ ˜A

	v + ˜w = 0;
3. Hp(x, s) = He(x̃, ˜s) = x̃ ◦ ˜s;
4. d(x, s) = d(x̃, ˜s).

Lemma 4 (Lemma 18 in [32]) (�̃x,�y,�s
˜

) is
a solution to the system

˜A�̃x = b − ˜Ax̃,

˜A
	�y + �s

˜
= ˜c − ˜A

	y − ˜s,
�̃x ◦ ˜s + x̃ ◦ �s

˜
= σμe − x̃ ◦ ˜s,

if an only if (�x,�y,�s) is a solution to the
system

A�x = b − Ax,

A	�y + �s = c − s − A	y,

Hp(�x, s) + Hp(x,�s) = σμe − Hp(x, s).

(7)

There are many possible choices for p, and
our results extend to all of these directions, the
simplest being the Alizadeh-Haeberly-Overton
(AHO) direction [2] with p = e. Upon set-
ting p = s1/2, the so-called HKM direction is
obtained, which was independently discovered in
[15, 18, 25]. The Nesterov-Todd [30] direction
corresponds to choosing p = w−1/2 where

w = Qx1/2

(
Qx1/2s

)−1/2 = Qs−1/2

(
Qs1/2x

)1/2
.
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While more computationally demanding to com-
pute than the AHO and HKM directions, the
Nesterov-Todd direction guarantees the optimal
solution is maximally complementary.

For any (x, s) ∈ int(K)× int(K), the centrality
measure is defined to be

d(x, s) = ∥∥Qx1/2s − μe
∥∥

F
=

∥∥∥x1/2sx1/2 − μe

∥∥∥
F

=
√√√√1

k

n∑

i=1

(λi(xs) − μ)2, (8)

where Qx1/2 denotes the quadratic representation
at x1/2; see section “Euclidean Jordan Algebras.”
This work considers a small neighborhood of the
central path, which for a constant γ ∈ (0, 1) is
defined to be

NF (γ ) =
{
(x, y, s) ∈ P0 × D0 : d(x, s) ≤ γμ

}
.

(9)

The next result from [32] establishes that the
system (7) has a unique solution whenever the
point (x, y, s) is close to the central path.

Lemma 5 If (x, y, s) ∈ int(K) × Rm × int(K)

such that

d(x, s) := ∥∥Qx1/2s − μe
∥∥

F
≤ μ

2
,

then system (7) has a unique solution.

The Classical IPM for SCO
A classical IPM for SCO is outlined in Algo-
rithm 1. That algorithm commences from an inte-
rior feasible solution (x(0), y(0), s(0)) ∈ NF (γ )

with duality gap μ(0) = 〈x(0), s(0)〉/r . At every
iteration, the Newton linear system (7) is solved
to obtain (�x,�y,�s), which is used to update
the solution for the following iterate using the
rule (x, y, s) := (x + �x, y + �y, s + �s), and
subsequently calculate the value of the central
path parameter μ = 〈x, s〉/r at this solution. If
μ ≤ ε, the algorithm terminates as an ε-optimal
solution to the primal-dual SCO pair (P)-(D) has
been reached; otherwise the algorithm proceeds
to the next iteration.

Algorithm 1 Classical interior point method for
SCO problems
Choose constants γ ∈ (0, 1/3), ε ∈ (0, 1) and δ ∈ (0, 1);
Set σ = 1 − δ/

√
r;

Choose initial point (x(0), y(0), s(0)) ∈ NF (γ )

Set μ = 〈x(0), s(0)〉/r

while μ > ε:

1. Solve the Newton linear system (7) to obtain
(�x,�y,�x)

2. Update solution

x ← x + �x s ← s + �s y ← y + �y

3. μ = 〈x, s〉/r

end

In order ensure convergence in the quantum
setting, additional precautions need to be taken
with regard to how quantum noise impacts to the
solution to the Newton system.

The Newton Linear System and Quantum
Noise
Observe that, from the definition of primal and
dual feasibility, any exact solution (�x,�y,�s)

to (7) must satisfy 〈�x,�s〉 = 0. However,
by directly applying a QLSA to solve (7), and
subsequently apply a quantum state tomography
to obtain a classical estimate of the state obtained
by our QLSA, the noise introduced by these sub-
routines means the classical representation only
satisfies
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A�x = ξp,

A	�y + �s = ξd,

Hp(�x, s)+Hp(x,�s) = σμe − Hp(x, s)+ ξc,

(10)

where ξp, ξd , and ξc are nonzero error terms.
As a consequence, the primal and dual search

directions are not primal-dual feasible, and
accordingly no longer guaranteed to be members
of orthogonal subspaces. One possible way to
reconcile this issue would be to quantize an
inexact-infeasible IPM, but this approach has
been shown to exhibit worse overall complexity
in all parameters compared to the best performing
classical feasible IPMs (see, e.g., [4,23]). Rather,
it is preferred to design QIPMs that can maintain
feasibility.

In order to guarantee that primal and dual
feasibility are satisfied exactly, the approach in
[4] is adopted here. Let Null(A) and R(A) denote
the nullspace and rangespace of A, respectively.
Letting BNull(A) be a basis for Null(A) and BR
be a basis for R(A), the primal and dual search
directions can be defined as linear combinations
of these basis elements, respectively. Note that for
the rangespace, it suffices to choose BR = A	
and, hence, define

�x = BNull(A)�z (11a)

�s = −A	�y. (11b)

If the input data is sparse, sparse matrix
multiplication [31] can be used to compute
BNull(A) efficiently. Moreover, if the primal-
dual pair was provided in canonical form,
the nullspace can be obtained directly from
the coefficient matrix. While the nullspace
representation of the search directions is novel
in its application to IPMs, choosing a basis is
in general a common pre-processing step used
by many optimization solvers in theory and in
practice. The next result is a direct consequence
of definition of the search directions in (11).

Lemma 6 For any �x and �s defined according
to (11), it follows

〈�x,�s〉 = 0. (12)

Proof The result directly follows from the fact
that �x and �s are defined to be the linear
combinations of basis elements of subspaces that
are orthogonal to one another. ��

Define �x and �s according to (11), and
substitute these expressions in the third equation
of (7). Defining the quantities

E = L(Qp−1s)Qp,

F = L(Qpx)Qp−1 ,

the complementarity equation that arises in (7)
can be equivalently expressed as

E�x + F�s = σμe − Hp(x, s).

Hence, substituting the orthogonal subspace def-
initions of the primal and dual search directions
in (11), the quantum Newton linear system is
given by

[
EBNull(A) −FA

] ∣∣∣(�z,�y)	
〉

= ∣∣σμe − Hp(x, s)
〉
. (13)

Lemma 5 asserts that system (13) has a unique
solution, provided that the solution (x, y, s) is
sufficiently close to the central path.

Additionally, even for inexact solutions �z
and �y to (13), primal and dual feasibility will
be satisfied exactly regardless of quantum noise.
To see this, suppose that a quantum computer is
used to prepare a state |(�z,�y)〉 encoding the
solution to the linear system. Letting (�z, �y)	
be a classical estimate of

∣∣(�z,�y)	
〉

obtained
by quantum state tomography, it follows

�z = �z + ξ z, �y = �y + ξy,
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where ξ z and ξy are terms that characterize the
noise present in our classical estimate. However,
for �x = BNull(A)�z and �s = −A	�y, note
that for any (x, y, s) ∈ P × D, it follows A�x =
0 and A	�y + �s = 0. Thus primal and dual
feasibility is preserved as long as x+�x ∈ int(K)

and s + �s ∈ int(K).
On the other hand, the symmetrized central

path equation will only be satisfied inexactly.
Indeed,

�x ◦ s + x ◦ �s = σμe − Hp(x, s) + ξ

where ξ ∈ Rn is a residual term coming from
our use of QLSAs and quantum state tomography.
Note that in this context ξ is equivalent to the
complementarity error term ξc that appears in
(10); the subscript c has been dropped because
using the nullspace representation of the search
directions will ensure that the primal and dual
residuals ξp and ξd are always zero. In other
words, the only nontrivial error term is with
respect to complementarity.

In order to guarantee convergence of our algo-
rithm, ξ is required to be chosen such that

‖ξ‖F ≤ β‖σμe − x
1
2 sx

1
2 ‖F (AR1)

for a properly chosen β ∈ (0, 1). This is a stan-
dard assumption for inexact IPMs and ensures
that residuals are driven toward 0 as the optimal
solution is approached; the norm present in the
right-hand side is our distance metric d(x, s). It
is also assumed that this relationship holds upon
multiplying by x−1/2 from the left and x1/2 from
the right:

‖x−1/2ξx1/2‖F ≤ β
∥∥∥x−1/2

[
σμe − x

1
2 sx

1
2

]
x1/2

∥∥∥
F

. (AR2)

Technical Results

In this section, the work of Schmieta and
Alizadeh [32] is extended to the inexact setting.
The IF-QIPM is presented in section “A QIPM
for Optimization over Symmetric Cones.” The
analysis in [32] can be viewed as a generalization
of the results of Monteiro [25], using the
framework of Euclidean Jordan algebras.
Conveniently, in proving convergence of their
IF-QIPM for SDO, Augustino et al. [4] extended
the analysis in [25] to account for inexactness
of the solution/Newton step with respect to the
linearized complementarity condition. Thus, the
results here can be viewed as a generalization of
those found in [4].

Although the notation ·̃ and ·̃ is dropped for
ease of presentation, the reader should note that
the analysis performed in this section is with
respect to the scaled problems (P̃)–(D̃) and the
associated system

˜A�̃x = b − ˜Ax̃,

˜A
	�y + �s

˜
= ˜c − ˜A

	y − ˜s,
�̃x ◦ ˜s + x̃ ◦ �s

˜
= σμe − x̃ ◦ ˜s,

having dropped the accents ·̃ and ·̃.
What remains will make use of the following

quantities:

x(α) = x + α�x, s(α) = s + α�s, y(α) = y + α�y,

(14a)

wx = x−1/2 [�xs + x�s + xs − σνe − ξ ] x1/2, (14b)

μ = 〈x, s〉
r

, μ(α) = 〈x(α), s(α)〉
r

, (14c)

Φθ(u, v) = v1/2u1/2 − θ
〈u, v〉

r
v−1/2u−1/2, φθ (u, v) = ‖Φθ(u, v)‖F , (14d)

�x = x−1/2�xs1/2, δx = ‖�x‖F , �s = s−1/2�sx1/2, δs = ‖�s‖F .

(14e)
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The main goal of this section is to establish a
bound on the quantity

∥∥∥x−1/2 [�xs + x�s + xs − σνe − ξ ] x1/2
∥∥∥

F
,

which majorizes the centrality measure d(x(α),

s(α)). The following result comes from [32] and
originally appeared in its application to SDO in
[25]. It establishes a useful feature of the distance
to the central path known as scale invariance.

Lemma 7 (Lemma 9 in [32]) Suppose that
(x, s) ∈ int(K) × int(K) and p is invertible.
Then,

(a) d(pxp, p−1sp−1) = d(x, s),

(b) d(x, s) ≤
∥∥∥ 1

2 (pxsp−1 + p−1sxp) − μe

∥∥∥
F

,

with equality holding if pxsp−1 ∈ J.

The next lemma can be viewed as the inexact
analogue of Lemma 11 in [32] and a generaliza-
tion of Lemma 7 in [4].

Lemma 8 It follows

μ(α) = (1 − α − σα)μ + α
〈e, ξ 〉

r
, (15a)

x−1/2 [x(α)s(α) − μ(α)e] x1/2 = (1 − α)
(
x1/2sx1/2 − μe

)
+ αwx + α2�x�s + αx−1/2

[
ξ − 〈e, ξ 〉

r

]
x1/2. (15b)

Proof The proof directly follows the proof of
Lemma 7 in [4], upon accountingfor 〈e, e〉 = r.

First note that 〈�x,�s〉 = 0 by Lemma 6, and
hence

〈x(α), s(α)〉 = 〈x + α�x, s + α�s〉 = 〈x, s〉 + α (〈x,�s〉 + 〈s,�x〉) + α2〈�x,�s〉
= (1 − α)〈x, s〉 + α〈x ◦ �s + s ◦ �x + x ◦ s + ξ, e〉
= (1 − α)〈x, s〉 + α〈σμe, e〉 + α〈ξ, e〉
= r [(1 − α)μ + ασμ] + α〈ξ, e〉.

Dividing through by r , the result in (15a) is
obtained.

Next, observe that

x(α)s(α) = (x + α�x)(s + α�s) = xs + α(x�s + �xs) + α2�x�s.

Therefore, it follows from (15a) that
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x(α)s(α) − μ(α)e = (x + α�x)(s + α�s) − μ(α)e

= xs + α(x�s + �xs) + α2�x�s − μ(α)e

= (1 − α)xs + α(x�s + �xs + xs) + α2�x�s −
[
(1 − α − σα)μ + α

〈e, ξ 〉
r

]

e + α (ξ − ξ)
︸ ︷︷ ︸

=0

= (1 − α)(xs − μe) + α(x�s + �xs + xs − σμe − ξ) + α2�x�s

+ α

[
ξ − 〈e, ξ 〉

r

]
.

The result in (15b) follows from multiplying by
x−1/2 from the left and from the right by x1/2.
The proof is complete. ��

The next result from [32] plays an important
role in the analysis, which generalizes Lemma 3.5
of [25] to representable symmetric elements.

Lemma 9 (Lemma 12 in [32]) Let w ∈ J be
such that qwq−1 + (qwq−1)′ = 0 for some
invertible q ∈ J. Then

∥∥∥∥
w + w′

2

∥∥∥∥
F

≤ 1

2

∥∥w − w′∥∥
F

, (16a)

‖w‖F ≤
√

2

2

∥∥w − w′∥∥
F

. (16b)

In particular, if w = u1 + u2 for some u1 ∈ J,
and arbitrary u2 ∈ A, then

‖w‖F ≤ √
2‖u2‖F . (17)

The following result extends Lemma 13 in
[32] to account for inexactness in the comple-
mentarity equation.

Lemma 10 For every θ ∈ R, it follows

‖w‖F ≤ √
2
(
δxφθ (x, s) + ‖x−1/2ξx1/2‖F

)
,

(18)
and

∥∥∥x−1/2 [x(α)s(α) − μ(α)e] x1/2
∥∥∥

F
≤ (1 − α)d(x, s) + α2δxδs + α

√
2δxφθ (x, s)

+α

∥∥∥∥x−1/2
[
ξ − 〈e, ξ 〉

r

]
x1/2

∥∥∥∥
F

(19)

for all α ∈ R.

Proof Our proof combines the proof of Lemma
13 in [32], with the proof of Lemma 9 in [4]
(both of which follow from the proof of Lemma
3.6 in [25]).

Note that upon choosing q = x1/2, w satisfies
the conditions of Lemma 9. Defining

u1 = x1/2�sx1/2 + θμx−1/2�xx−1/2

+ x1/2sx1/2 − σμe, (20a)

u2 = x−1/2�xs1/2Φθ(x, s) − x−1/2ξx1/2,

(20b)

and noting that w = u1 + u2, with u1 ∈ J
and u2 being simple, a combined application of
Lemmas 2 and 9 yields
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‖wx‖F ≤ √
2‖u2‖F ≤ √

2
(
δxφθ (x, s) + ‖x−1/2ξx1/2‖F

)
.

In other words, (18) holds.

Next, observe that (15b) and a triangle
inequality to obtain

∥∥∥x−1/2 [x(α)s(α) − μ(α)e] x1/2
∥∥∥

F

=
∥∥∥∥(1 − α)

(
x1/2sx1/2 − μe

)
+ αwx + α2�x�s + αx−1/2

[
ξ − 〈e, ξ 〉

r

]
x1/2

∥∥∥∥
F

≤ (1 − α)d(x, s) + α2δxδs + α
√

2δxφθ (x, s) + α

∥∥∥∥x−1/2
[
ξ − 〈e, ξ 〉

r

]
x1/2

∥∥∥∥
F

.

That is, (10) holds and the proof is complete. ��

This section concludes with four more results,
each of which is a generalization of a result
from [4]. For brevity, proofs of these results are
omitted here as each argument exactly follows its
counterpart in [4], upon replacing n with r . The
next two results provide upper bounds on norms
that appear in (18). The first is adapted from
Lemma 11 in [4] and provides bounds on norms
involving the residual term, while the second
comes from [32] (which itself was adapted from
Lemma 3.7 in [25]).

Lemma 11 Suppose that the error tolerances
are chosen such that the assumptions (AR1) and
(AR2) hold. For β ∈ (0, 1) it follows

‖ξ‖F ≤ βγ σμ, (21a)
∥∥∥x−1/2ξx1/2

∥∥∥
F

≤ βγ σμ, (21b)
∥∥∥∥x−1/2

[
ξ − 〈ξ, e〉

r
I

]
x1/2

∥∥∥∥
F

≤ 2βγ σμ.

(21c)

Lemma 12 (Lemma 14 in [32]) If d(x, s) ≤
γμ for some γ ∈ (0, 1), then

∥∥∥x−1/2s−1/2
∥∥∥

2

2
≤ 1

(1 − γ )μ
, (22a)

φθ (x, s)2 ≤ γ + (1 − θ)2r

1 − γ
. (22b)

The next result can be viewed as an extension
of Lemma 12 in [4] from SDO to SCO.

Lemma 13 If (x, y, s) ∈ NF (γ ) for some γ > 0
satisfying

2
√

2
γ

1 − γ
, (23)

and β ∈ (0, 1) such that

βσ ≤
√

γ 2 + (1 − σ)2r

1 − γ
,

then

max{δx, δs} ≤ 2
⎛

⎝φσ (x, s) +
√

γ 2 + (1 − σ)2r

1 − γ
μ

⎞

⎠ .

The final lemma of this section follows from
the above lemmas and is the direct extension of
Lemma 13 in [4].

Lemma 14 If (x, y, s) ∈ NF (γ ) for some γ >

0 satisfying (23), then, for every α ∈ [0, 1] and
β ∈ (0, 1), it follows
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∥∥∥x−1/2 [x(α)s(α) − μ(α)e] x1/2
∥∥∥

F

≤
(

(1 − α)γ + 4
√

2α
γ

[
γ 2 + (1 − σ)2r

]1/2

1 − γ
+ 16α2 γ 2 + (1 − σ)2r

1 − γ
+ α(2 + √

2)βσγ

)

μ.

A QIPM for Optimization over
Symmetric Cones

An IF-QIPM for SCO is outlined in Algorithm 2.
That algorithm commences from an interior fea-
sible solution (x(0), y(0), s(0)) ∈ NF (γ ) which
is stored in QRAM and exhibits a duality gap
of μ(0) = 〈x(0), s(0)〉/r . In every iteration, the
combined use of a QLSA with quantum state
tomography is employed to solve the orthogonal
subspace system to obtain (�z,�y), which is
used to update the solution for the following
iterate using the rule (see, e.g., (11)):

(x, y, s) = (x +BNull(A)�z, y +�y, s −A	�y).

From here, the updated solution is stored in
QRAM, and compute the value of the central path
parameter at this point μ = 〈x, s〉/r . If μ ≤ ε,
the algorithm terminates, reporting the current
solution as ε-optimal for the primal-dual SCO
pair (P)-(D); otherwise the algorithm proceeds to
the next iteration.

Algorithm 2 Inexact-feasible quantum interior
point method for SCO problems
Choose constants γ ∈ (0, 1/3) and δ ∈ [0,

√
r); set

optimality gap to ε ∈ (0, 1)

Set σ = 1 − δ/
√

r;
Choose initial point (x(0), y(0), s(0)) ∈ NF (γ ), store in
QRAM
Set μ(0) = 〈x(0), s(0)〉/r

while μ > ε:

1. Prepare and solve the Newton linear system (13) to
obtain the quantum state |(�z,�y)〉

2. Perform quantum state tomography to estimate
(�z,�y)

3. Classically update solution

x ← x + BNull(A)�z s ← s − A	�y y ← y + �y

4. Store (x, y, s) in QRAM

5. μ = 〈x, s〉
r

Convergence
Our use of inexact quantum subroutines requires
us to appropriately choose the tolerated amount
of error for each of these steps. Recalling
Assumption (AR1), bounds for the error must
be set for the tomography step at iteration k such
that it satisfies

ζ (k) ≤ β

�
‖μe − Hp(x, s)‖,

where � is the upper bound on norm of the
solution to the Newton linear system and β ∈
(0, 1). This is necessary as the tomography error
bound is relative, assuming the vector that will
be estimated is a unit vector. Noting that ε-
optimality implies

‖μe − Hp(x, s)‖ ≤ ε,

and so the precision of the tomography step is set
according to

ζ (k) = β

�
· max

{
‖ξ (k)‖F ,

1

25
ε

}
. (24)

The main result of this section analyzes one
iteration of an inexact-feasible (Q)IPM applied to
SCO.

Theorem 6 Let γ , β ∈ (0, 1) and δ ∈ [0,
√

r)

be constants satisfying

2
√

2γ

1 − γ
≤ 1, βσ ≤

√
γ 2 + (1 − σ)2r

1 − γ
,

β ≤ 1 − γ√
r

− 21.7(γ 2 + δ2)

(2 + √
2)

(
1 − δ√

r

)
γ (1 − γ )

.

(25)

Suppose that (x, y, s) ∈ NF (γ ) and let
(�x,�y,�s) denote the solution obtained from
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solving system (13), where σ = 1 − δ/
√

r ,
μ = 〈x, s〉/r . Then,

(a) (x̂, ŷ, ŝ) = (x + �x, y + �y, s + �s) ∈
NF (γ );

(b) 〈x̂, ŝ〉 =
(

1 − δ√
r

)
〈x, s〉.

Proof The proof is exactly the same as the proof
of Lemma 13 given in [4], and the result follows
upon applying Lemma 10 with θ = 1, in combi-
nation with Lemmas 12–14. ��

Corollary 1 Let γ , β ∈ (0, 1) and δ ∈ [0,
√

r)

be constants satisfying

2
√

2γ

1 − γ
≤ 1, βσ ≤

√
γ 2 + (1 − σ)2r

1 − γ
,

β ≤ 1 − γ√
r

− 21.7(γ 2 + δ2)

(2 + √
2)

(
1 − δ√

r

)
γ (1 − γ )

.

Then, the IF-QIPM in Algorithm 2 converges to
an ε-optimal solution to the SCO primal-dual
pair (P)-(D) in at most O(

√
r log(r/ε)) itera-

tions.

Recall that Lemmas 3 and 4 assert that the
analysis performed for the unscaled problem
applies directly to the scaled problem as well.
More specifically, the analysis of one iteration of
our IPM applies to all directions obtained from
replacing x ◦ s = μe with Hp(x, s) = μe. The
following lemma establishes the validity of such
a replacement.

Lemma 15 (Lemma 19 in [32]) If (x, s) ∈
int(K) × int(K), then

x ◦ s = μe ⇐⇒ x̃ ◦ ˜s = μe.

Having demonstrated convergence, the cost of
preparing and solving the Newton linear system
(13) using a quantum computer is analyzed next.

Implementing the Orthogonal Subspace
System
In order to fully leverage the benefits of the
block-encoding framework, the scaling matrix
Qp and its inverse Qp−1 are classically computed
and subsequently stored in QRAM. This step
requires O(nω) arithmetic operations, where ω ∈
[2, 2.38) is the matrix multiplication constant.
Then, a factorization of the Newton system is
utilized to construct the entire system in time that
is polylogarithmic in the dimension n.

The following two results establish the factors
for the quantum Newton linear system (13).

Proposition 1 Let E and BNull(A) be stored in
QRAM, and define

M1 = [
EBNull(A) 0

]
.

Then, a (‖M1‖F ,O(log n), ζM1
)-block-encoding

of M1 can be constructed using Õ
n,κ, 1

ζ
(1)

accesses to the QRAM.

Proof Noting that E is stored in QRAM, a
(‖E‖F ,O(log n), ζE)-block-encoding of E using
Õ

n,κ, 1
ζE

(1) can be constructed using accesses to

the QRAM. Likewise a (‖BNull(A)‖F ,O(log n),

ζBNull(A)
)-block-encoding of BNull(A) is imple-

mented using Õ
n,κ, 1

ζBNull(A)

(1) accesses to the

QRAM. Taking the product of our block-
encodings, and choosing

ζE = ζM1

2‖BNull(A)‖F

and ξBNull(A)
= ζM1

2‖E‖F

,

yields a (‖M1‖F ,O(log n), ζM1
)-block-encoding

of M1 which can be constructed with at most
Õ

n,κ, 1
ζ
(1) accesses to the QRAM, as desired. ��

Proposition 2 Let F and A be stored in QRAM,
and define

M2 = [
0 −FA	]

.
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Then, a (‖M2‖F ,O(log n), ζM2
)-block-encoding

of M2 can be constructed using at most Õ
n,κ, 1

ζ
(1)

accesses to the QRAM.

Proof The proof follows the exact same steps as
the proof of Proposition 1, repeating the argument
with F and A	. ��

Proposition 3 Let E,F, A, and BNull(A) be
stored in QRAM, and consider the quantum
Newton linear system coefficient matrix in (13) as

MNT = [
EBNull(A) −FA

]
. (26)

Then, a (‖MNT‖F ,O(log n), ζ/(κ2 log2 κ
ζ
))-

block-encoding of MNT can be constructed using
at most Õ

n,κ, 1
ζ
(1) accesses to the QRAM.

Proof Carrying out the calculations shows that
(26) corresponds to the Newton linear system.
Next, the two following block-encodings are con-
structed:

M1 = [
EBNull(A) 0

]
M2 = [

0 −FA	]
,

using Propositions 1–2, choosing precision of this
step in order to obtain

(‖M1‖F ,O(log n), ζ/(‖M1‖F κ2 log2 κ

ζ
))

and (‖M2‖F ,O(log n), ζ/(‖M2‖F κ2 log2 κ
ζ
))-

block-encodings, respectively, where κ refers to
the condition number of (26), here and below.
Upon adding these two block-encodings, a

(max{‖M1‖F , ‖M2‖F },O(log n), ζ/(κ2 log2 κ

ζ
))

-block-encoding of (26) is obtained, having used
Õ

n,κ, 1
ζ
(1) accesses to the QRAM. ��

The following theorem is an immediate conse-
quence of the preceding results.

Theorem 7 There is a quantum algorithm that,
given ∣∣σμe − Hp(x, s)

〉

and access to QRAM data structures encoding
E,F, A, and BNull(A), outputs a state ζ -close
to

∣∣(�z,�y)	
〉

in time Õ
d,κ, 1

ξ
(κ), using the

Nesterov-Todd direction.

Proof The result follows from Proposition 3 and
Theorem 3. ��

Running Time Analysis
The following result summarizes the overall com-
plexity of the IF-QIPM applied to SCO problems.

Theorem 8 Let the desired duality gap be ε ∈
(0, 1). Each iteration k of the IF-QIPM in Algo-
rithm 2 requires

O
(

(m + n)κ · polylog

(
m, n, κ,

1

ε

))

accesses to a QRAM data structure and O(mn +
(m + n)ω) classical arithmetic operations. Here,
κ is an upper bound for the condition number
of the Newton linear systems that arise over the
course of the algorithm, and ω ∈ [2, 2.38) is the
matrix multiplication exponent.

Proof In every iteration, the NT Newton linear
system (13) is prepared and solved, before obtain-
ing classical estimate of the quantum state encod-
ing its solution via a state tomography algorithm.
Applying Theorem 5 with precision ζ (k) chosen
according to (24), a classical solution to the (13)
can be obtained using

TNT = Õ
m,n,κ, 1

ε
((m + n)κ)

accesses to the QRAM and Õ
m,n,κ, 1

ε
(mn) arith-

metic operations.
The primal and dual search directions �x and

�s are classically from the nullspace representa-
tion and used to update the solution (x, y, s) to
the SCO to prepare the next iteration. The scaling
element p and its inverse are also computed
classically. Computing �x and �s classically
can be accomplished via O(mn + n2) arithmetic
operations. Likewise, updating the solution is
element-wise addition, which requires O(m + n)
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arithmetic operations. Lastly, classically comput-
ing p can be accomplished using O((m + n)ω)

arithmetic operations. In total, this implies

O(mn + n2 + (m + n)ω) = O(mn + (m + n)ω),

classical arithmetic operations take place in each
of the iterates.

Summarizing, each iteration uses Õ
m,n,κ, 1

ε

((m + n)κ) accesses to the QRAM and O(mn +
(m + n)ω) classical arithmetic operations, which
yields the stated per-iteration cost. The proof is
complete. ��

Corollary 2 The IF-QIPM for SCO problems
provided in Algorithm 2 requires

O
(√

r(m + n)κ · polylog

(
n, κ,

1

ε

))

accesses to a QRAM data structure and

O
(√

r (mn + (m + n)ω) · polylog
(
n, κ, 1

ε

))

classical operations. Here, κ is an upper
bound for the condition number of the Newton
linear systems that arise over the course of
the algorithm, and ω ∈ [2, 2.38) is the matrix
multiplication exponent.

Proof The result follows directly from combin-
ing Corollary 1 and Theorem 8. ��

Conclusion

This chapter studied and analyzed an inexact-
feasible quantum interior point method for SCO.
The resulting overall complexity depends on a
condition number bound for the Newton linear
systems that arise during the algorithm. It is well-
known, however, that the condition number of the
Newton system coefficient matrices tends toward
infinity as optimality is reached, and thus it is of
interest to determine approaches that mitigate this
dependence for QIPMs.

Alternatively, it may be worthwhile to develop
QIPMs that eschew the use of QLSAs entirely.
Recent works [1,5] have drawn on an equivalence
between simulated annealing [17] and IPMs that

make use of the entropic barrier function. Under
this framework, the key mechanism is the use
of a Markov chain Monte Carlo random walk
known as hit-and-run sampling to approximate
the gradient and Hessian of the barrier function in
every iteration. Simulated annealing and hit-and-
run walks have been quantized in application to
estimate the volume of convex bodies [7], and the
quantum hit-and-run walk achieves a superlinear
speedup in n over its classical counterpart.

See Also

�Quantum Annealing
�Quantum IPMs for Linear Optimization
�Quantum Linear Algebra
�The Quantum Approximate Optimization

Algorithm (QAOA) and Quantum Walks.

Acknowledgments This project has been carried
out thanks to the funding by the Defense Advanced
Research Projects Agency (DARPA), ONISQ grant
W911NF2010022, titled The Quantum Computing Revo-
lution and Optimization: Challenges and Opportunities.

References

1. Abernethy J, Hazan E (2016) Faster convex optimiza-
tion: simulated annealing with an efficient universal
barrier. In: International Conference on Machine
Learning. PMLR, pp 2520–2528

2. Alizadeh F, Haeberly J-PA, Overton ML (1998)
Primal-dual interior-point methods for semidefi-
nite programming: convergence rates, stability and
numerical results. SIAM J Optim 8(3):746–768

3. Anjos MF, Lasserre JB (2012) Handbook on semidef-
inite, conic and polynomial optimization, vol 166. In:
ISOR. Springer Science & Business Media, Springer
New York, NY

4. Augustino B, Nannicini G, Terlaky T, Zuluaga LF
(2023) Quantum interior point methods for semidef-
inite optimization 7:1110, Verein zur Förderung
des Open Access Publizierens in den Quantenwis-
senschaften arXiv preprint arXiv:2112.06025

5. Badenbroek R, de Klerk E (2022) Simulated anneal-
ing for convex optimization: rigorous complexity
analysis and practical perspectives. J Optim Theory
Appl 194(2):465–491

6. Boyd S, El Ghaoui L, Feron E, Balakrishnan V
(1994) linear matrix inequalities in system and
control theory. SIAM, Society for Industrial and
Applied Mathematics, Philadelphia, PA



18 Quantum Interior Point Methods for Conic Linear Optimization

7. Chakrabarti S, Childs AM, Hung S-H, Li T, Wang
C, Wu X (2023) Quantum algorithm for estimating
volumes of convex bodies. ACM Transactions on
Quantum Computing 4(3):1–60, ACM New York,
NY arXiv preprint arXiv:1908.03903

8. Chakraborty S, Gilyén A, Jeffery S (2019) The
power of block-encoded matrix powers: improved
regression techniques via faster Hamiltonian simu-
lation. In: Baier C, Chatzigiannakis I, Flocchini
P, Leonardi S (eds) 46th International Colloquium
on Automata, Languages, and Programming (ICALP
2019), vol 132. Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, pp 33:1–
33:14

9. Childs AM, Wiebe N (2012) Hamiltonian simula-
tion using linear combinations of unitary operations.
Quantum Inf Comput 12(11–12):901–924

10. De Klerk E (2006) Aspects of semidefinite program-
ming: interior point algorithms and selected applica-
tions, vol 65. Springer Science & Business Media,
Springer New York, NY

11. Faraut J, Koranyi A (1994) Analysis on symmetric
cones. Oxford University Press, Clarendon Press

12. Faybusovich L (1997) Linear systems in Jordan
algebras and primal-dual interior-point algorithms. J
Comput Appl Math 86(1):149–175

13. Goemans MX, Williamson DP (1995) Improved
approximation algorithms for maximum cut and sat-
isfiability problems using semidefinite programming.
J ACM (JACM) 42(6):1115–1145

14. Harrow AW, Hassidim A, Lloyd S (2009) Quantum
algorithm for linear systems of equations. Phys Rev
Lett 103(15):150502

15. Helmberg C, Rendl F, Vanderbei RJ, Wolkowicz H
(19996) An interior-point method for semidefinite
programming. SIAM J Optim 6(2):342–361

16. Kerenidis I, Prakash A (2020) A quantum interior
point method for LPs and SDPs. ACM Trans Quant
Comput 1(1):1–32

17. Kirkpatrick S, Gelatt CD, Vecchi MP (1983)
Optimization by simulated annealing. Science
220(4598):671–680

18. Kojima M, Shindoh S, Hara S (1997) Interior-point
methods for the monotone semidefinite linear com-
plementarity problem in symmetric matrices. SIAM
J Optim 7(1):86–125

19. Lovász L (1979) On the Shannon capacity of a graph.
IEEE Trans Inf Theory 25(1):1–7

20. Markowitz H (1952) Portfolio selection. J Finance
7(1):77–91

21. Mohammad-Nezhad A, Terlaky T (2017) A polyno-
mial primal-dual affine scaling algorithm for symmet-
ric conic optimization. Comput Optim Appl 66:577–
600

22. Mohammad-Nezhad A, Terlaky T (2019) On the
identification of the optimal partition for semidefinite
optimization. INFOR: Inf Syst Oper Res 58(2):1–39

23. Mohammadisiahroudi M, Fakhimi R, Terlaky T
(2022) Efficient use of quantum linear system algo-

rithms in interior point methods for linear optimiza-
tion. arXiv preprint arXiv:2205.01220

24. Mohammadisiaroudi M, Augustino B, Fakhimi R,
Nannicini G, Terlaky T (2023) Exponentially more
precise tomography for quantum linear system solu-
tions via iterative refinement. Technical report, 23T-
007

25. Monteiro RDC (1998) Polynomial convergence of
primal-dual algorithms for semidefinite programming
based on the Monteiro and Zhang family of direc-
tions. SIAM J Optim 8(3):797–812

26. Monteiro RDC, Tsuchiya T (1999) Polynomial
convergence of a new family of primal-dual algo-
rithms for semidefinite programming. SIAM J Optim
9(3):551–577

27. Monteiro RDC, Zhang Y (1998) A unified analysis
for a class of long-step primal-dual path-following
interior-point algorithms for semidefinite program-
ming. Math Program 81(3):281–299

28. Nesterov YE, Nemirovskii A (1994) Interior-
point polynomial algorithms in convex programming,
vol 13. SIAM, Society for Industrial and Applied
Mathematics, Philadelphia, PA

29. Nesterov YE, Todd MJ (1997) Self-scaled barriers
and interior-point methods for convex programming.
Math Oper Res 22(1):1–42

30. Nesterov YE, Todd MJ (1998) Primal-dual interior-
point methods for self-scaled cones. SIAM J Optim
8(2):324–364

31. Peng R, Vempala S (2021) Solving sparse linear
systems faster than matrix multiplication. In: Pro-
ceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, pp 504–521

32. Schmieta SH, Alizadeh F (2001) Associative and
Jordan algebras, and polynomial time interior-point
algorithms for symmetric cones. Math Oper Res
26(3):543–564

33. Schmieta SH, Alizadeh F (2003) Extension of primal-
dual interior point algorithms to symmetric cones.
Math Program 96(3):409–438

34. Sturm JF (1999) Using SeDuMi 1.02, a MAT-
LAB toolbox for optimization over symmetric cones.
Optim Methods Softw 11(1–4):625–653

35. Tsuchiya T (1997) A polynomial primal-dual
path-following algorithm for second-order cone pro-
gramming. The Institue of Statistical Mathematics
Research Memorandum, vol 649

36. Tsuchiya T (1999) A convergence analysis of the
scaling-invariant primal-dual path-following algo-
rithms for second-order cone programming. Optim
Methods Softw 11(1–4):141–182

37. van Apeldoorn J, Cornelissen A, Gilyén A, Nan-
nicini G (2023) Quantum tomography using state-
preparation unitaries. Technical report

38. Zhang Y (1998) On extending some primal–dual
interior-point algorithms from linear programming to
semidefinite programming. SIAM J Optim 8(2):365–
386

39. Zhou G, Toh K-C (2004) Polynomiality of an inexact
infeasible interior point algorithm for semidefinite
programming. Math Program 99(2):261–282


