
Solving the Semidefinite Relaxation of QUBOs in
Matrix Multiplication Time, and Faster with

a Quantum Computer

BRANDON AUGUSTINO1, GIACOMO NANNICINI2, TAMÁS TERLAKY1, AND LUIS
F. ZULUAGA1

1Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 18015
USA

2Department of Industrial and Systems Engineering, University of Southern California USA

ISE Technical Report 24T-021

ar
X

iv
:2

30
1.

04
23

7v
3

 [
qu

an
t-

ph
]

 1
1

M
ay

 2
02

3

Solving the semidefinite relaxation of QUBOs in matrix

multiplication time, and faster with a quantum computer

Brandon Augustino ∗†, Giacomo Nannicini ‡, Tamás Terlaky†, and Luis F. Zuluaga†

May 12, 2023

Abstract

Recent works on quantum algorithms for solving semidefinite optimization (SDO) problems have
leveraged a quantum-mechanical interpretation of positive semidefinite matrices to develop methods that
obtain quantum speedups with respect to the dimension n and number of constraints m. While their
dependence on other parameters suggests no overall speedup over classical methodologies, some quantum
SDO solvers provide speedups in the low-precision regime. We exploit this fact to our advantage, and
present an iterative refinement scheme for the Hamiltonian Updates algorithm of Brandão et al. (Quantum
6, 625 (2022)) to exponentially improve the dependence of their algorithm on the precision ǫ, defined as
the absolute gap between primal and dual solution. As a result, we obtain a classical algorithm to solve the
semidefinite relaxation of Quadratic Unconstrained Binary Optimization problems (QUBOs) in matrix
multiplication time. Provided access to a quantum read/classical write random access memory (QRAM),
a quantum implementation of our algorithm exhibits O

(
ns+ n1.5 · polylog

(
n, ‖C‖F , 1

ǫ

))
running time,

where C is the cost matrix, ‖C‖F is its Frobenius norm, and s is its sparsity parameter (maximum
number of nonzero elements per row).

1 Introduction

We consider optimization problems of the form:

max x⊤Cx

subject to x ∈ {−1, 1}n, (1)

where C ∈ Sn is the problem data and Sn is the space of symmetric matrices in Rn×n. Solving (1) can be
viewed as computing the∞→ 1 norm of the coefficient matrix C. This particular norm is intrinsically related
to the cut norm of a matrix, which plays a crucial role in developing efficient approximation algorithms for
dense graph and matrix problems [2, 22], with perhaps the most well-known application being the task
of finding the largest cut in a graph (MaxCut). These problems also play an important role in quantum
information sciences; the Ising model belongs to this class of problems [55], and quantum algorithms such as
the Quantum Approximate Optimization Algorithm (QAOA) [19] and quantum annealing [20] can address
its solution.

Computing the cut norm corresponds to replacing x ∈ {−1, 1}n with z ∈ {0, 1}n in (1), giving rise to
quadratic unconstrained binary optimization (QUBO) problems. A standard QUBO is of the form

max z⊤Cz

subject to z ∈ {0, 1}n. (2)

∗Corresponding Author: bra216@lehigh.edu
†Department of Industrial and Systems Engineering, Quantum Computing and Optimization Lab, Lehigh University
‡Department of Industrial and Systems Engineering, University of Southern California

1

Provided that we allow for linear terms (in both formulations), it is well known that solutions to (1) can
be used to compute a solution to (2) which differs only by a constant factor, and vice-versa, due to the
equivalence z = x+e

2 if z ∈ {0, 1}n and x ∈ {−1, 1}n, where e ∈ Rn is the all ones vector of dimension n.
Although (1) and (2) cover many applications of interest, they are intrinsically difficult to solve; computing

optimal solutions to either (1) or (2) is NP-Hard in general. Following the seminal work of Lovász [44] and the
theoretical and practical development of Interior Point Methods (IPMs) for solving semidefinite optimization
(SDO) problems [47, 50, 51, 52, 53, 59, 60], a prevailing approach has been to obtain approximate solutions
to (1) and (2) by relaxing integrality and lifting the problem from a vector space of dimension n, to the
space of n× n symmetric matrices. The quadratic form x⊤Cx can be equivalently expressed by tr (Cxx⊤),
where tr (U) denotes the sum of the diagonal elements (or, trace) of a matrix U ∈ Rn×n. To deal with the
bilinear term xx⊤, we introduce a matrix variable X ∈ Rn×n, and require that X satisfies the following:

diag(X) = e, X � 0, rank(X) = 1,

where the notation U � V means that the matrix U −V is a symmetric positive semidefinite matrix. Under
these requirements, X is guaranteed to be of the form X = xx⊤ for x ∈ {−1, 1}n. The rank constraint,
however, is not convex, and thus dropping it yields the following (convex) SDO relaxation of (1):

max tr (CX)

subject to diag (X) = e, X � 0.
(3)

Although the optimal solution X∗ to (3) is no longer guaranteed to satisfy X∗ = x∗x∗⊤
and may not be

integral in general, the approximation of x∗ provided by X∗ is of sufficient quality to justify its use. In
fact, SDO approximations cover some of the most celebrated results in optimization, such as the 0.878-
approximation guarantee of Goemans and Williamson for MaxCut [29] and the Lovász-ϑ number [44].

1.1 Literature Review

More generally, a (primal) SDO problem involving n× n matrices and m constraints is of the form

sup
X

tr (CX)

subject to tr (AiX) = bi for i ∈ [m],

X � 0,

where [m] = {1, . . . ,m} and A1, . . . , Am, C ∈ Sn, and b ∈ Rm are the (given) problem data. The dual SDO
problem associated with the primal is given by

inf
(u,S)

b⊤u

subject to S =

m∑

i=1

uiAi − C � 0.

where S is the dual slack matrix.1 The classical literature on algorithms for solving SDO problems is rich
and can be categorized into two classes; algorithms that depend poly-logarithimically on the inverse precision
to which we solve the problem and the size of the minimally inscribed ellipsoid, and algorithms that depend
polynomially on these quantities but exhibit an advantage with respect to n and m. For instances with
m ≤ √n, the cutting plane methods (CPMs) of [36, 43] are the best performing classical algorithms,2 and
can solve SDO problems in time

O
(
m(mns+m2 + nω) · polylog

(
m,n,R,

1

ǫ

))
,

1While the dual variable is typically denoted by y rather than u, it is also customary in the literature to use y to denote a
certain state preparation pair, and we do so later in this paper.

2We remark that the running time in [36] does however exhibit improved dependence with respect to poly-logarithmic factors
compared to the running time of [43].

2

where ω ∈ [2, 2.38] is the matrix multiplication exponent, R is an upper bound on the trace of a primal
optimal solution X (which can be exponentially large, see [56]), ǫ is the precision parameter, s denotes the
maximum number of nonzeros per row of the input matrices and hence, O(mns) is the total number of
nonzeros in the constraints of SDO problem. However, we typically have m ∈ [Ω(n),O(n2)], in which case
the CPMs given in [36, 43] are outperformed by the IPM for SDO from Jiang et al. [35]. Their IPM exhibits
a worst case running time of

O
(√

n(mns+mω + nω) · polylog
(
m,n,

1

ǫ

))
,

where the term mω + nω represents the per-iteration cost of inverting the Hessian and matrices of the
variables.

While quantum SDO solvers could also be categorized in a somewhat similar fashion, it is perhaps more
natural to do so according to how they attempt to obtain quantum speedups. In this case we also have two
classes; at a high level, all proposed quantum SDO solution methodologies quantize a classical algorithm by
either using quantum linear system algorithms (QLSAs) [13, 15, 32], or a quantum mechanical interpretation
of normalized positive semidefinite matrices. We now review these works in detail.

The former class is comprised of algorithms that quantize IPMs, giving rise to quantum IPMs (QIPMs).
QIPMs attempt to speedup the bottleneck of the classical IPM by substituting the classical solution of the
Newton linear system with the combined use of a QLSA and quantum state tomography (with some classical
computation between iterates). Augustino et al. [7] present a convergent QIPM for SDO, avoiding the
shortcomings prevalent in early works on QIPMs (see, e.g., [40]), by properly symmetrizing the Newton linear
system, and utilizing an orthogonal subspace representation of the search directions. This representation
guarantees that primal and dual feasibility are satisfied exactly by all the iterates generated by inexact
solutions of the Newton linear system obtained via quantum subroutines. The worst case complexity of their
algorithm is

Õn,κ, 1ǫ

(√
n

(
n3κ2

ǫ
+ n4

))
,

where κ is an upper bound on the condition numbers of the intermediate Newton linear system coefficient ma-
trices that arise over the course of the algorithm. Here, the notation Õa,b(f(x)) suppresses poly-logarithmic

factors in f(x), a and b that appear in the overall running time, i.e., Õa,b(f(x)) ≡ O(f(x)·polylog(a, b, f(x))).
While this QIPM achieves a speedup in n over the IPM from [35] when m = O(n2), its dependence on κ and
ǫ suggest no quantum advantage overall: the complexity of the classical IPM does not depend on κ and its
dependence on ǫ−1 is logarithmic. As the authors in [7] note, dependence on the condition number bound κ
is particularly problematic in the context of IPMs.

The second class of quantum SDO solvers are those that quantize algorithms based on matrix exponentials
and Gibbs states. The most prominent example is the Matrix Multiplicative Weights Update (MMWU)
Method of Arora and Kale [4], which can solve SDO problems in time

Õn,R, 1ǫ

(
nms

(
Rr

ǫ

)4

+ ns

(
Rr

ǫ

)7
)
,

where r is a known ℓ1-norm upper bound3 on a dual optimal solution u. Unlike IPMs, the MMWU framework
does not involve the solution of linear systems; rather, these algorithms alternate between candidate solutions
to the primal and dual SDO problems. IPMs and MMWUs also employ different definitions of optimality;
for IPMs, ǫ-optimality implies that the primal and dual feasible solutions exhibit a normalized duality gap
bounded by ǫ, i.e.:

tr (XS)

n
≤ ǫ,

whereas an ǫ-optimal solution obtained using an MMWU approximates the optimal objective value to addi-
tive error ǫ (via binary search). Finally, we point out a distinction between these algorithms with respect to

3It is also assumed that R, r ≥ 1.

3

output. While primal-dual IPMs return the primal-dual optimal solution (X,u, S), MMWUs report u, but
may avoid explicitly reporting X and S to maintain the speedups they offer with respect to n. Reporting
X under the MMWU framework necessitates the computation of matrix exponentials, which may impose a
considerable overhead because it generally resorts to matrix multiplication.

The MMWU framework has been specialized to solve SDO problems of the form in (3) (see, e.g., [5]),
and the current state of the art is attributed to Lee and Padmanabhan [42], who give an algorithm that can
solve (3) to additive error ‖C‖ℓ1ǫ with overall complexity

Õn, 1ǫ

(
nsǫ−3.5

)
,

where ‖C‖ℓ1 =
∑

i,j |Cij |. It is important to note however, that to achieve the stated complexity their

methodology does not explicitly report4 the solution X and the authors assume
∑

i,j |Cij | = n. To achieve
the same error scaling as the algorithms we present in this work, the algorithm in [42] would have overall

cost Õn, 1ǫ

(
‖C‖3.5ℓ1

nsǫ−3.5
)
, see Section 5.3.

Brandão and Svore [12] were the first to quantize the MMWU framework, utilizing a clever interpretation
of the primal variables: Gibbs states, which can be efficiently prepared on a quantum computer, naturally
correspond to trace-normalized positive definite matrices. The running time of these MMWU-based algo-
rithms was subsequently improved [10, 31, 64, 65], and the current state of the art running time of the
quantum MMWU (QMMWU) algorithm for SDO problems is:

Õn,s,R, 1ǫ

((√
m+

√
n
Rr

ǫ

)
s

(
Rr

ǫ

)4
)
.

Similar to the complexity of QIPMs, QMMWU algorithms are faster with respect to m and n when compared
to their classical counterparts, but these algorithms still exhibit a non-polynomial running time, due to their
polynomial dependence on the scale invariant parameter Rr

ǫ , whereas the natural input size depends on the
logarithm of this quantity.

Seeking to improve the performance of quantum SDO solvers, Brandão et al. [11] present an algorithm,
which they call Hamiltonian Updates (HU), for solving the SDO approximation (3) of (1). The HU method
is a primal-only algorithm closely related to the QMMWU framework, in that it leverages a Gibbs state
representation of the primal variable and progression towards the optimal solution is made via matrix-
exponentiated gradient updates. Specifically, the authors in [11] are interested in solving an SDO feasibility
problem that arises upon renormalizing and relaxing (3):

find X

subject to tr

(
C

‖C‖X
)
≥ γ − ǫ

∑

i∈[n]

∣∣∣∣〈i|X |i〉 −
1

n

∣∣∣∣ ≤ ǫ

tr (X) = 1, X � 0.

(4)

Here, γ is an upper bound on the absolute value of the optimal objective value of (3) when the cost matrix
C is normalized, obtained via binary search over [−1, 1], and |i〉 for i ∈ {1, . . . , n} are the computational
basis states. Since any log(n)-qubit Gibbs state is an element of the set {X ∈ Rn×n : tr(X) = 1, X � 0} by
definition, solutions to (4) can be naturally be expressed as a Gibbs state

ρ =
exp(−H)

tr(exp(−H))
,

where H is the Hamiltonian associated with ρ. The key observation in [11] is that upon using the Gibbs
state change of variables in (4), one can model the n constraints on the diagonal elements as single constraint

4Alternatively, they report a “gradient” G ∈ Sn such that X = W exp(G)W for a diagonal matrix W .

4

which requires that the distribution on the diagonal elements of a feasible solution ρ to (4) be at most ǫ in
total variation distance to the uniform distribution. In other words, the task of solving (4) reduces to finding
a log(n)-qubit mixed quantum state that upon measurement in the computational basis is approximately
indistinguishable from the maximally-mixed state, and whose trace inner product with the normalized cost
matrix C‖C‖−1 is at least γ − ǫ.

Using a quantum computer, the HU method of [11] solves (3) to additive error O (n‖C‖ǫ) in time

Õn, 1ǫ

(
n1.5√s1+o(1)

ǫ−28+o(1) exp
(
1.6
√
log(ǫ−1)

))
.

The authors in [11] also provide an analysis of essentially the same algorithm when using a classical computer,
and show that the classical algorithm has a complexity of

Õn

(
min{n2s, nω}ǫ−12

)
.

The quantum algorithm yields a speedup in n over classical algorithms, for a specific class of SDO problems.
However, as we have already seen with QIPMs and QMMWU algorithms, its dependence on other parameters
(in this case the inverse precision) is prohibitive unless a very low precision solution is acceptable. This
raises the question as to whether the poor scaling in the inverse precision can be mitigated without incurring
additional cost in n and s. We answer this question in the affirmative using iterative refinement techniques.

Iterative Refinement (IR) is a methodology for computing high-precision solutions to linear system of
equations [30], as well as linear [26, 27, 28] and mixed integer optimization problems [3, 18]. We summarize
the methodology at a high level as follows, and present a detailed discussion for the case of convex feasibility
problems later in the paper. Given an initial solution x(0) ∈ Rd, at each iteration k IR produces a refined
solution x(k+1) ← x(k) + u(k), where u(k) acts as a correction of the error r(k) associated with x(k), and
is determined by solving a refining problem induced by the current solution. These operations can all be
carried out using the same level of accuracy, called the fixed precision approach. Alternatively, one may
increase the accuracy with which the residuals r(k) are computed as compared to u(k), and this approach is
called a mixed precision approach [30, 66]. In this paper, we utilize the fixed precision approach.

1.2 Contributions

In this paper we develop an IR scheme for SDO approximations of QUBO problems that uses the HU
algorithm of [11] as a subroutine. We show that proceeding in this way allows one to exponentially improve
the dependence on the inverse precision for both the quantum and classical algorithms.

With the proposed IR scheme, the classical algorithm solves the SDO problem (3) up to absolute error
O(ǫ) with worst-case complexity

O
(
min{n2s, nω} · polylog

(
n, ‖C‖F ,

1

ǫ

))
.

This is a significant speedup compared to general-purpose SDO solvers, such as IPMs. This algorithm can
be quantized following a similar strategy to [11]. When provided access to quantum random access memory
(QRAM), the quantum algorithm takes

O
(
n1.5 · polylog

(
n, ‖C‖F ,

1

ǫ

))

accesses to the QRAM and additional quantum gates (this is the standard way of describing complexity in
the QRAM model of computation), plus O(ns) classical arithmetic operations — note that simply reading
the cost matrix C takes O(ns) time.

Summarizing, the combination of HU with IR described in this paper provides exponential speedups over
the methodology proposed in [11] with respect to the precision parameter ǫ. To the best of our knowledge,
our classical and quantum algorithms are the fastest known algorithms in their respective model of compu-
tation for this class of problems, and our quantum algorithm provides a genuine asymptotic speedup over

5

known classical solution methodologies, provided that we have access to QRAM. In the sparse-access input
model (without QRAM), the algorithm takes Õn,‖C‖F , 1ǫ

(
n1.5s0.5+o(1)

)
accesses to an oracle describing the

coefficient matrix C and Õn,‖C‖F , 1ǫ

(
n2.5s0.5+o(1)

)
additional gates, therefore yielding no quantum speedup

(the quantum gate complexity is asymptotically larger than the classical complexity).
The remainder of this paper is organized in the following manner. Section 2 introduces notation, as

well as the relevant input models and quantum subroutines. In Section 3 we introduce the Hamiltonian
Updates (HU) algorithm from [11], and our Iterative Refinement scheme for SDO approximations of QUBOs
is presented in Section 4. The running time analysis is performed in Section 5, and Section 6 concludes the
manuscript.

2 Preliminaries

We write [n] to represent the set of elements {1, . . . , n}. We denote the i-th element of a vector x ∈ Rn by
xi for i ∈ [n], and the ij-th element of a matrix A ∈ Rm×n by Aij for i ∈ [m] and j ∈ [n]. To refer to the
i-th row of a matrix A, we write Ai,· and write A·,j when referring to its j-th column. We distinguish the
quantity a to the k-th power and the value of a at iterate k using round brackets, writing ak and a(k) to
denote these quantities, respectively.

The smallest and largest singular values of a matrix A are denoted σmin(A), σmax(A), and the smallest
and largest eigenvalues are denoted λmin(A), λmax(A). We let Sn+ and Sn++ represent the cones of symmetric
positive semidefinite, and symmetric positive definite matrices, respectively. For A,B ∈ Sn, we write A � B
(A ≻ B) to indicate that the matrix A−B is symmetric positive semidefinite (symmetric positive definite),
i.e., A−B ∈ Sn+ (A−B ∈ Sn++). The matrix exponential exp(A), which is defined by the power series

exp(A) := I +A+
1

2!
A2 +

1

3!
A3 + · · · ,

maps symmetric matrices to the space of symmetric positive definite matrices. Given the spectral decompo-
sition A = V ΛV ⊤, then exp(A) = V exp(Λ)V ⊤, where exp(Λ) = diag(exp(Λ11), exp(Λ22) . . . , exp(Λnn)).

We let A ◦B denote the Hadamard (or element-wise) product of two matrices, and A⊗B denotes their
tensor product. Later in this work, we make use of the following facts regarding Hadamard products.

Lemma 1 (Lemma 5.1.4 in [34]). Let E, F and G be m× n matrices. Then, the i-th diagonal entry of the
matrix (E ◦ F)G⊤ coincides with the i-th diagonal entry of the matrix (E ◦G)F⊤. That is,

[(E ◦ F)G⊤)]ii = [(E ◦G)F⊤)]ii ∀i ∈ [m].

Lemma 2 (Theorem 5.3.4 in [34]). Let A and B be n×n Hermitian matrices. If A ∈ Sn+, then any eigenvalue
λ(A ◦B) of A ◦B satisfies

λmin(A) · λmin(B) ≤ min
i∈[n]

Aii · λmin(B) ≤ λ(A ◦B) ≤ max
i∈[n]

Aii · λmin(B) ≤ λmax(A) · λmax(B).

We write e to refer to the vector of all ones in Rn, and use the notation ei to refer to the i-th unit
vector in the standard orthonormal basis {e1, . . . , en} for Rn. Analogously, the computational basis states
are denoted by |i〉 for i ∈ [n]. Hence, for x ∈ Rn, we denote its amplitude encoding by |x〉, defined as

|x〉 = 1

‖x‖
∑

i∈[n]

xi |i〉 .

Observe that |x〉 is a log(n)-qubit state; for simplicity, we assume that the dimensions of all spaces are powers
of 2. All logarithms are base 2.

Where appropriate, our analysis makes use of the Schatten p-norm, defined for a bounded linear operator
A as

‖A‖p := [tr (|A|p)] 1p ,

6

where |A| = (A†A)
1
2 with A† denoting the conjugate transpose of A. Notice that the trace and operator

norms ‖ · ‖tr and ‖ · ‖ are the Schatten-1 and Schatten-∞ norms, respectively, and the Frobenius norm
‖ · ‖F corresponds to the Schatten-2 norm. Positive semidefinite matrices A ∈ Sn+ admit the useful identity
‖A‖tr = tr(A) =

∑
i∈[n] λi(A), where λi(A) is the i-th eigenvalue of A. The equivalence is due to the fact

that the trace norm ‖A‖tr = tr
(√

A†A
)
is defined as the sum of the singular values of A, and the singular

values of A are equivalent to the eigenvalues of A whenever A ∈ Sn+.
For a scalar x ∈ R define the sign function sign(x) as

sign(x) :=

−1 if x < 0

0 if x = 0

1 if x > 0.

When x ∈ Rn, sign(x) = (sign(x1), . . . , sign(xn))
⊤.

For any positive integer q, and binary strings j, k ∈ {0, 1}q, we denote by j ⊕ k the bitwise modulo 2
addition of q-digit strings, defined as

j ⊕ k := h

where h ∈ {0, 1}q is the bitstring whose elements hp are defined for p ∈ [q] as

hp :=

{
0 if jp = kp,

1 otherwise.

“Big-O” notation

We define O(·) as
f(x) = O(g(x)) ⇐⇒ ∃ℓ ∈ R, c ∈ R+, such that f(x) ≤ cg(x) ∀x > ℓ.

We write f(x) = Ω(g(x)) ⇐⇒ g(x) = O(f(x)). We also define Õ(f(x)) = O(f(x) ·polylog(f(x))) and when
the function depends poly-logarithmically on other variables we write

Õa,b (f(x)) = O(f(x) · polylog(a, b, f(x))).

2.1 Input models and subroutines

For our quantum algorithm, we provide analyses for two distinct models of input. One model considers
a quantum-read/classical-write RAM (QRAM), and the other is the sparse-access model, which we use to
bound the running time without access to QRAM.

2.1.1 Sparse-access model

In the sparse-access model, the input matrix C is assumed to be s-row sparse for some known bound s ∈ [n].
In other words, C has at most s nonzero entries per row. The sparse-access model is closely related to the
classical notion, in that we assume access to an oracle Osparse, which upon being queried with input (i, j)
returns the index of the j-th nonzero entry of the i-th row of C by calculating the index function:

index : [n]× [s]→ [n].

That is, for i ∈ [n] and j ∈ [s], Osparse computes the position in place:

Osparse |i, j〉 = |i, index(i, j)〉 .
We also assume access to an oracle that returns a bitstring representation of the individual entries of the
normalized cost matrix C‖C‖−1

F for every i, j ∈ [n]:

OC |i, j, z〉 =
∣∣i, j, z ⊕ (Cij‖C‖−1

F)
〉
.

7

2.1.2 Quantum random access memory

We consider a quantum-read/classical-write RAM (QRAM), which enables us to store classical data that our
quantum algorithms can make oracle calls to. This type of storage is the direct quantum analog of classical
RAM: it enables a quantum algorithm to access classical data in superposition. Accessing a QRAM of size
n takes O(n) gates [6, 25], but these gates can be arranged in parallel so that the circuit depth remains
O(polylog(n)). Therefore we make the assumption (standard in the literature on quantum algorithms) that
the cost of accessing a QRAM of size n is O(polylog(n)).

The next result from Chakraborty et al. [13], is adapted from an earlier result of Kerenidis and Prakash
[39] and summarizes the aspects of the data structure we utilize.

Theorem 1 (Theorem 1 in [13]). (Implementing quantum operators using an efficient data structure) Let
A ∈ Rm×n be a matrix. If w is the number of non-zero entries of A, then there exists a data structure
of size O

(
w log2(mn)

)
that, given the entries (i, j, Aij) in an arbitrary order, stores them such that time

taken to store each entry of A is O(log(mn)). Once this data structure has been initiated with all non-zero
entries of A, there exists a quantum algorithm that can perform the following maps with ξ-precision in time

O
(
polylog

(
mn
ξ

))
:

Ũ : |i〉 |0〉 7→ |i〉 1

‖Ai,·‖

n∑

j=1

Aij |j〉 = |i, Ai,·〉 ,

Ṽ : |0〉 |j〉 7→ 1

‖A‖F

m∑

i=1

‖Ai,·‖ |i〉 |j〉 =
∣∣∣Ã, j

〉
,

where |Ai,·〉 is the normalized quantum state corresponding to the i-th row of A and
∣∣∣Ã
〉

is a normalized

quantum state such that 〈i|Ã〉 = ‖Ai,·‖, i.e., the norm of the i-th row of A.

2.1.3 Working with block-encoded matrices

We now give a formal definition of a block-encoding from [13].

Definition 1 (Block-encoding). Let A ∈ C2w×2w be a w-qubit operator. Then, a (w + a)-qubit unitary U is

an (α, a, ξ)-block-encoding of A if U =

(
Ã ·
· ·

)
, with the property that

‖αÃ−A‖ ≤ ξ.

It was shown by Kerenidis and Prakash [39] and Chakraborty et al. [13] how to efficiently implement
block-encodings of matrices that are stored in a QRAM data structure, which is formalized in the next result.

Lemma 3 (Lemma 3.3.7 in [23]). Let A ∈ C2w×2w and ξ > 0.

(i) Fix q ∈ [0, 2] and define µq(A) =
√
nq(A)n(2−q)(A⊤) where nq(A) = maxi ‖Ai,·‖qq is the q-th power of

the maximum q-norm of the rows of A. Defining A{q} to be the matrix with elements A
{q}
ij =

√
Aq

ij , if

A{q} and (A{2−q})† are both stored in QRAM data structures, then there exist unitaries UR and UL that

can be implemented in time O(poly(w log 1
ξ)) and such that U †

RUL is a (µq(A), w+2, ξ)-block-encoding
of A.

(ii) If A is stored in a QRAM data structure, then there exist unitaries UR and UL that can be implemented

in time O(poly(w log 1
ξ)) and such that U †

RUL is an (‖A‖F , w + 2, ξ)-block-encoding of A.

Linear combinations of block-encodings can also be constructed at cost that is merely logarithmic in the
dimension.

8

Definition 2 (Definition 3.3.8 in [23]). (State preparation pair) Let y ∈ Cm and ‖y‖1 ≤ β. The pair

of unitaries (PL, PR) is called a (β, p, ξ)-state-preparation-pair if PL |0〉⊗p
=
∑2p−1

j=0 cj |j〉 and PR |0〉⊗p
=

∑2p−1
j=1 dj |j〉 such that

∑m−1
j=0 |β(c∗jdj)− yj| ≤ ξ and for all j ∈ m, . . . , 2p − 1 we have c∗jdj = 0.

Proposition 1 (Lemma 52 in [24]). (Linear combination of block-encoded matrices, with weights given

by a state preparation pair) Let A =
∑m−1

j=0 yjAj be a w-qubit operator, where Aj are matrices. Suppose

PL, PR is a (β, p, ξ1)-state-preparation pair for y, W =
∑m−1

j=0 |j〉 〈j| ⊗ Uj + ((I −∑m−1
j=0 |j〉 〈j|) ⊗ Ia ⊗ Is)

is an (w + a+ p)-qubit unitary with the property that Uj is an (α, a, ξ2)-block-encoding of Aj. Then we can

implement a (αβ, a+ p, αξ1 + αβξ2)-block-encoding of A with a single use of W,PR and P †
L.

It turns out that the sparse-access model reduces to the quantum operator model upon choosing α = s (if
row and column sparsity are the same). The next result from [24] describes how to implement block-encodings
using the sparse-access input model, and the associated costs.

Lemma 4 (Lemma 48 in [24]). Let A ∈ C2w×2w be a matrix that is sr-row-sparse and sc-column-sparse, and
each element of A has absolute value at most 1. Suppose that we have access to the following sparse-access
oracles acting on two (w + 1) qubit registers:

Or : |i〉 |k〉 7→ |i〉 |rik〉 ∀i ∈ [2w]− 1, k ∈ [sr], and

Oc : |ℓ〉 |j〉 7→ |cℓj〉 |j〉 ∀ℓ ∈ [sc], j ∈ [2w]− 1, where

rij is the index for the j-th non-zero entry of the i-th row of A, or if there are less than i non-zero entries,
then it is j+2w, and similarly cij is the index for the i-th non-zero entry of the j-th column of A, or if there
are less than j non-zero entries, then it is i+2w. Additionally, assume that we have access to an oracle OA

that returns the entries of A in a binary description:

OA : |i〉 |j〉 |0〉⊗p 7→ |i〉 |j〉 |aij〉 , ∀i, j ∈ [2w]− 1,

where aij is a p-bit binary description of the ij-matrix element of A. Then, we can implement a (
√
srsc, w+

3, ξ)-block-encoding of A with a single use of Or, Oc and two uses of OA, and additionally using O
(
w + log2.5

(
srsc
ξ

))

one and two qubit gates while using O
(
p+ log2.5

(
srsc
ξ

))
ancilla qubits.

The block-encoding framework will be useful in speeding up the overall running time found in [11], as it
allows us to perform matrix computations and Hamiltonian simulation efficiently.

Theorem 2 (Corollary 3.4.7 in [23]). (Optimal block-Hamiltonian simulation) Suppose that U is an (α, a, ξ/|2t|)-
block-encoding of the Hamiltonian H. Then, we can implement a ξ-precise Hamiltonian simulation unitary V

which is an (1, a+2, ξ)-block-encoding of eitH , with O
(
|αt|+ log(1/ξ)

log log(1/ξ)

)
uses of controlled-U or its inverse

and with O
(
a|αt|+ a log(1/ξ)

log log(1/ξ)

)
two-qubit gates.

Additionally, one can easily take the product of block-encodings.

Proposition 2 (Lemma 4 in [13]). (Product of block-encoded matrices) If UA is an (α1, a1, ξA)-block-encoding
of an s-qubit operator A, and UB is an (α2, a2, ξB)-block-encoding of an s-qubit operator B, then (Ia2 ⊗
UA)(Ia1 ⊗ UB) is an (α1α2, a1 + a2, α1ξB + α2ξA)-block-encoding of AB.

Relevant to our work in the quantum operator input model is the idea of block-encoding the Hadamard,
or element-wise product of two matrices. We will demonstrate how one can carry out the Hadamard product
of block-encodings of matrices A and B as a reduction of the Kronecker product of block-encodings, which
is straightforward to construct given block encodings of A and B.

Proposition 3. (Kronecker product of block-encoded matrices) Suppose that UA is an (α1, a1, ξA)-block-
encoding of A ∈ Rn×n, and UB is an (α2, a2, ξB)-block-encoding of B ∈ Rn×n. Then, taking the tensor
product of UA and UB, we obtain a (α1α2, a1 + a2, ξA + ξB)-block-encoding of A⊗B.

9

We do not give a formal proof here as the result directly follows from the definition of a block-encoding;
to obtain the tensor product of two block-encoded matrices, it suffices to take the tensor product of their
block-encodings while keeping the ancilla qubits separate.

Proposition 4. (Hadamard product of block-encoded matrices) Suppose that UA is an (α1, a1, ξA)-block-
encoding of A ∈ Rn×n, and UB is a (α2, a2, ξB)-block-encoding B ∈ Rn×n. Then, using UA and UB, we can
implement an (α1α2, a1 + a2+8 log(n)+ 12, 5(ξA+ ξB))-block-encoding of A ◦B using one application of UA

and UB, and Õn(1) additional gates.

Proof. First, note that
A ◦B = (A⊗B)[ιA, ιB],

where ιA = ιB = {1, n + 2, 2n + 3, . . . , n2} are index sets of cardinality n (see, e.g., Lemma 5.1.1 in [34]).
Our goal is to use the index sets ιA and ιB along with a block encoding of A ⊗ B to construct a unitary
which block-encodesM ∈ Rn2×n2

, a matrix which contains the elements of A◦B in its upper left-most n×n
block, while all other entries are 0:

Mij =

{
Aij · Bij for i, j = 1, . . . , n,

0 otherwise,

i.e.,

M =

(
A ◦B 0n×(n2−n)

0(n2−n)×n 0(n2−n)×(n2−n)

)
.

We will first show how one can use ιA and ιB to construct sparse matrices that map A⊗B toM, and then
subsequently analyze the cost of constructing the corresponding unitary block-encoding.

Consider the matrix Z ∈ Rn2×n2

, whose elements are defined as

Zij =

{
1 if i = j = (k − 1)n+ k, k = 1, . . . , n,

0 otherwise.

Multiplying A⊗B on the left by Z sets the rows of A⊗B which do not contain elements of A ◦B to zero,
and subsequently multiplying Z(A ⊗ B) on the right by Z will set the columns of Z(A ⊗ B) which do not
appear in A ◦B to zero. As a result, a block-encoding of Z(A⊗B)Z corresponds to block-encoding A⊗B,
and setting all terms not appearing in A ◦B to zero:

[Z(A⊗B)Z]ij =

{
[A⊗B]ij if i = (k − 1)n+ k and j = (ℓ − 1)n+ ℓ k, ℓ = 1, . . . , n,

0 otherwise.

Next, let G ∈ Rn2×n2

be a matrix whose elements are defined as follows:

Gij =

1 if i ∈ [n2] and i = j = (k − 1)n+ k, k = 1, . . . , n,

1 if i ∈ [n2] \ {1, n+ 2, 2n+ 3, . . . , n2} and j = (i− 1)n+ i,

0 otherwise.

We will now establish thatGZ(A⊗B)Z)G⊤ is precisely the matrix we seek to block-encode, by demonstrating
that G(Z(A⊗B)Z)G⊤ =M. First, observe that G is a (partial) permutation matrix: multiplying Z(A⊗B)Z
on the left by G performs the necessary row-exchanges, as the elements of G(Z(A⊗B)Z) are given by

[G (Z(A⊗B)Z)]ik =

{
Aij · Bij for k = (j − 1)n+ j, i, j = 1, . . . , n,

0 otherwise.

10

On the other hand, multiplying Z(A⊗B)Z) on the right by G⊤ performs this transformation with respect
to the columns such that

[(Z(A⊗B)Z)G]kj =

{
Aij · Bij for k = (i− 1)n+ i, i, j = 1, . . . , n,

0 otherwise.

Hence, multiplying G (Z(A⊗B)Z) on the right by G⊤ conducts the column exchanges to move A◦B to the
top left n-dimensional block of Z(A⊗B)Z, i.e.,

[G (Z(A⊗B)Z)G]ij =

{
Aij · Bij for i, j = 1, . . . , n,

0 otherwise.

Therefore, G(Z(A⊗B)Z)G⊤ =M as desired.
We now analyze the cost associated with block-encoding M. Under the stated hypothesis, we have

access to an (α1, a1, ξA)-block-encoding UA of A, and an (α2, a2, ξB)-block-encoding UB of B, and thus
applying Proposition 3 we can construct an (α1α2, a1 + a2, ξA + ξB)-block-encoding UA⊗B of A ⊗ B using
one application of UA and of UB, and no additional gates.

Using the description of Z, we can construct the sparse-access oracles Or and Oc as defined in Lemma 4
(which act on two (2 logn+ 1) qubit registers). Additionally, from the definition of Z, we can construct an
oracle OZ , which returns the entries of Z in a binary description:

OZ : |i〉 |j〉 |0〉⊗p 7→ |i〉 |j〉 |zij〉 , ∀i, j ∈ [22 logn]− 1,

where zij is a p-bit binary description of the ij-matrix element of Z. Note that the circuit for the position

and value of the nonzero elements of Z using Õn(1) gates because they admit an efficient description: their
value is 1 and we have a compact description of their position. By construction the matrix Z is 1-row sparse
and 1-column sparse, and hence an application of Lemma 4 with sr = sc = 1 asserts that one can construct a
(1, 2 log(n)+3, ξZ)-block-encoding UZ of Z. Given block-encodings UZ and UA⊗B, we can apply Proposition
2 with

ξZ =
ξA + ξB
α1α2

, ξA⊗B = ξA + ξB,

yielding an (α1α2, a1 + a2 + 2 log(n) + 3, 2(ξA + ξB))-block-encoding of Z(A ⊗ B). Applying Proposition 2
once more with

ξZ =
ξA + ξB
α1α2

, ξZ(A⊗B) = 2(ξA + ξB),

we obtain an (α1α2, a1 + a2 + 4 log(n) + 6, 3(ξA + ξB))-block-encoding of Z(A⊗B)Z.
Just as was the case with Z, we can use the description of G to construct the sparse-access oracles Or

and Oc as defined in Lemma 4 (which again, act on two (2 logn + 1) qubit registers), as well as an oracle

OG using Õn(1) gates, that returns the entries of G in a binary description:

OG : |i〉 |j〉 |0〉⊗p 7→ |i〉 |j〉 |gij〉 , ∀i, j ∈ [22 logn]− 1,

where gij is a p-bit binary description of Gij (the ij-matrix element of G). Noting that G is 1-row sparse
and 1-column sparse (and hence, so its transpose); applying Lemma 4 twice more allows us to construct
a (1, 2 log(n) + 3, ξG)-block-encoding UG of G, as well as a (1, 2 log(n) + 3, ξ⊤G)-block-encoding UG⊤ of the
transposeG⊤. We can then use UG and our (α1α2, a1+a2+4 log(n)+6, 3(ξA+ξB))-block-encoding UZ(A⊗B)Z

of Z(A ⊗ B)Z to construct an (α1α2, a1 + a2 + 6 log(n) + 9, 4(ξA + ξB))-block-encoding of G(Z(A ⊗ B)Z)
by applying Proposition 2 with

ξG =
ξA + ξB
α1α2

, ξZ(A⊗B)Z = 3(ξA + ξB).

11

Applying Proposition 2 a final time, with

ξG⊤ =
ξA + ξB
α1α2

, ξG(Z(A⊗B)Z) = 4(ξA + ξB),

produces an (α1α2, a1 + a2 + 8 log(n) + 12, 5(ξA + ξB))-block-encoding UM ofM = G(Z(A⊗B)Z)G⊤.
The stated complexity result follows upon noting that the steps required to construct the unitary

UM = UGUZUA⊗BUZUG⊤

requires one application of UA⊗B and one application of each of the other matrices. In turn, this amounts

to 1 application of UA and UB each, plus the Õn(1) gate cost of the remaining matrices UG, UZ and UG⊤ ,
and the proof is complete.

We remark that a similar result to Proposition 4 was independently derived and discussed in the recent
paper [14].

2.1.4 Gibbs Samplers and Trace Estimators

For clarity, we begin with a formal definition of a subnormalized density operators and their purifications.

Definition 3 (Definition 6.3.1 in [23]). (Subnormalized density operators & Purification) A subnormalized
density operator ρ is a positive semidefinite matrix of trace at most 1. A purification ̺ of a subnormalized
density operator ρ is a 3-register pure state such that tracing out the third register and projecting on the
subspace where the second register is |0〉 yields ρ.

The frameworks introduced later in this paper require that we implement a Gibbs sampler and a trace
estimator, which we define next.

Definition 4 (Definition 4.11 in [62]). (Gibbs Sampler) A θ-precise Gibbs-sampler for the input matrix H,
is a unitary that takes as input a data structure storing a Hamiltonian H and creates as output a purification
of a θ-approximation (in trace distance) of the Gibbs state

ρ =
exp(−H)

tr(exp(−H))
.

We will use these approximate Gibbs states in order to check the diagonal entries of our solutions, as well
as compute the trace inner products of matrices (or, expectation values), i.e., quantities of the form tr(Aρ).

Definition 5 (Definition 4.12 in [62]). (Trace Estimator) A θ-precise trace estimator is a unitary that as
input takes a state ρ and a matrix A. It outputs a sample from a random variable x ∈ R such that x is an
estimator for tr(Aρ) that is at most θ/4 biased.

These implementations require polynomial approximations of the exponential function, which can be
obtained using quantum singular value transformation techniques introduced in [23, 24].

Lemma 5 (Lemma 4.14 in [62]). Let ξ ∈ (0, 1/6] and β ≥ 1. There exists a polynomial P (x) such that

• For all x ∈ [−1, 0], we have |P (x) − exp(2βx)/4| ≤ ξ.

• For all x ∈ [−1, 1], we have |P (x)| ≤ 1/2.

• deg(P) = Õ 1
ξ
(β).

12

Lemma 6 (Lemma 4.15 in [62]). Let θ ∈ (0, 1/3], β > 1, and let d be the degree of the polynomial from Lemma

5 when we let ξ = θ
128n . Let U be a (β, a, θ2β

10242d2n2)-block-encoding of a Hermitian operator H ∈ Rn×n, i.e,,

a (β, a, Õ(θ/βn2))-block-encoding. Then, we can create a purification of a state ρ̃ such that

∥∥∥∥ρ̃−
exp(H)

tr (exp(H))

∥∥∥∥
tr

≤ θ

using Õ 1
θ
(
√
nβ) applications of U and Õ 1

θ
(
√
nβa) elementary operations.

Provided access to a unitary that prepares a purification of a density operator, we can also construct a
block-encoding of it. This is formalized in the following lemma from [23], which was based on ideas found
in [46, Corollary 9].

Lemma 7 (Lemma 6.4.4 in [23]). (Block-encoding of a (subnormalized) density operator) Let G be a (w+a)
unitary which on the input state |0〉w |0〉a prepares a purification |̺〉 of the subnormalized w-qubit density
operator ρ. Then we can implement a (1, w+ a, 0)-block-encoding of ρ with a single use of G and its inverse
and with w + 1 two-qubit gates.

We are now in a position to define a trace estimator using the quantum operator input model.

Lemma 8 (Lemma 4.18 in [62]). Let ρ be an n-dimensional quantum state and U an (α, a, θ/2)-block-
encoding of a matrix A ∈ Rn×n with ‖A‖ ≤ 1. A trace estimator for tr (Aρ) with bias at most θ and

σ = O(1) can be implemented using Õ(α) uses of U and U † and Õ 1
θ
(α) elementary operations.

2.1.5 Computational complexity

When discussing the computational complexity of quantum algorithms we normally express the cost in terms
of the number of calls to some input oracle. Unless otherwise specified, the gate complexity is at most a poly-
logarithmic factor larger than the stated oracle complexity. The meaning of “input oracle access” depends
on the input model:

• For the sparse-oracle access model, it refers to a query to the oracle describing C/‖C‖F .

• For the QRAM model, it refers to the number of accesses to QRAM. A QRAM of size O
(
ns log2(n)

)

is sufficient for our algorithms, and in particular, we only need classical write access to the QRAM,
i.e., we do not write in superposition.

It is straightforward to translate each of these oracle costs into a running time in the standard gate model
without QRAM, by considering the cost of implementing each oracle.

3 Hamiltonian Updates

In this section, we present the algorithm from [11] and relevant results required to prove its convergence and
analyze its cost.

3.1 Convex Feasibility Problems

In order to avoid any normalization issues for the problems that arise over the course of our IR scheme,
we deviate slightly from [11] and renormalize the problem (3) using the Frobenius norm of the cost matrix

13

rather than use its operator norm:

find X

subject to tr

(
C

‖C‖F
X

)
≥ γ − ǫ

∑

i∈[n]

∣∣∣∣〈i|X |i〉 −
1

n

∣∣∣∣ ≤ ǫ

tr (X) = 1, X � 0.

(5)

The relaxed renormalized SDO problem (5) is a specific example of the convex optimization problem

max f(X)

subject to X ∈ P1 ∩ P2 ∩ · · · ∩ Pm,

tr(X) = 1, X � 0,

(6)

where P1, . . . ,Pm are convex sets.
In this context, the trace constraint enforces normalization, but also allows us to obtain a bound on

the optimal objective value. Letting C̃ = C‖C‖−1
F and invoking the tracial matrix Hölder inequality [9], it

follows that any X∗ that solves (6) satisfies the following relation:
∣∣∣tr(C̃X∗)

∣∣∣ ≤ ‖C̃‖‖X∗‖tr = ‖C̃‖.

It is well known in the optimization literature that performing binary search over the range of values

γ ∈
[
−‖C̃‖, ‖C̃‖

]
⊆ [−1, 1]

that the objective can take reduces the task of solving (6) to solving a sequence of feasibility problems of
the form:

find X ∈ Sn+ ∩ {X : tr(X) = 1}
subject to tr(C̃X) ≥ γ

X ∈ P1 ∩ P2 ∩ · · · ∩ Pm.

(7)

In particular, log(‖C̃‖ǫ−1) = O
(
log(ǫ−1)

)
queries to (7) are sufficient to estimate the optimal objective value

of of (6) up to additive error ǫ.

3.2 Solving Convex Feasibility Problems via Hamiltonian Updates

Hamiltonian Updates (HU) is a meta-algorithm for solving convex feasibility problems of the form (7),
adapted from the work of Tsdua, Rätsch and Warmuth [61] as well as [5, 10, 33, 43]. At a high level, HU
can be viewed as a mirror descent algorithm [48, 49] with the von Neumann entropy as the mirror map.5 In
each iteration, the method uses certain subroutines to test ǫ-closeness to convex sets P1,P2, . . . ,Pm, which
we formally define next.

Definition 6 (Definition 2.1 in [11]). Let P ⊂ {X ∈ Sn+ : tr(X) = 1} be a closed, convex subset of quantum

states, and P̃ ⊂ {X ∈ Cn×n : X = X†, ‖X‖ ≤ 1} be a closed, convex subset of observables of operator norm

at most 1. For ǫ > 0, an ǫ-separation oracle with respect to P̃ is a subroutine that either accepts a state ρ
(in the sense that observables from P̃ cannot distinguish ρ from the elements of P), or provides a normal

vector (in the matrix space) P of a hyperplane that separates ρ from the set P using a test from P̃:

OP,ǫ(ρ) =

{
accept ρ if minY ∈P maxP∈P̃ tr(P (ρ− Y)) ≤ ǫ,

output P ∈ P̃ s.t. tr(P (ρ− Y)) ≥ ǫ
2 for all Y ∈ P otherwise.

5Allen-Zhu and Orecchia show how MMWU algorithms can be derived from mirror descent in [1, Appendix A.2].

14

The authors in [11] point out that the above oracle construction is well defined, as we can always choose

some hyperplane P ∈ P̃ such that

tr (P (ρ− Y)) ≥ ǫ

2
,

holds for all Y ∈ P whenever
min
Y ∈P

max
P∈P̃

tr(P (ρ− Y)) > ǫ.

From Sion’s min-max theorem [58], it follows that

max
P∈P̃

min
Y ∈P

tr(P (ρ− Y)) = min
Y ∈P

max
P∈P̃

tr(P (ρ− Y)) > ǫ,

and hence there exists a hyperplane which separates ρ from P by ǫ. By relaxing the requirement to ǫ
2 -

separation, the algorithm is able to reconcile with the errors that result from approximating quantities
computed with ρ, or estimating its entries.

The Hamiltonian Updates (HU) algorithm of Brandão et al. [11] is provided in full detail in Algorithm
1. The algorithm takes as input the precision parameter ǫ, and m ǫ-separation oracles O1,ǫ, O2,ǫ, . . . , Om,ǫ.
In the initialization steps, the starting point is defined to be the maximally mixed state ρ← n−1I. This is
critical to ensuring the convergence of mirror descent-based approaches such as Algorithm 1 and the works
in [5, 10, 33, 43, 61]; initialization to the maximally mixed state ensures that the quantum relative entropy
between any feasible state and the initial state is bounded by log(n) (see, e.g., Theorem 11.8 pt. 2 [54]), and
is reduced at every iteration. Consequently, Algorithm 1 terminates in a finite number of iterations.

As noted in [11], how we define P̃ determines the number of closeness conditions that need to be tested.
By using the Gibbs state change of variables, we do not need to test if our candidate solution is trace
normalized or positive semidefinite; any Gibbs state

ρH =
exp(−H)

tr(exp(−H))

is an element of the set {X ∈ Sn+ : tr(X) = 1} by definition. Our task therefore reduces to finding a log(n)-
qubit mixed state ρ which is ǫ-close to the convex sets Pi that arise from any other constraints included
in the feasibility problem. At each iteration, ǫ-closeness is tested by querying ǫ-separation oracles which
are constructed using observables in P̃i. If each of our oracles accepts the candidate state, the algorithm
terminates and reports (ρ,H) as an ǫ-precise solution. Otherwise, upon detecting infeasibility the matrix
exponent is updated to penalize the infeasible directions using the rule

H ← H +
ǫ

16
P,

where P is a normal vector in the matrix space of a hyperplane that witnesses infeasibility.

Algorithm 1 Hamiltonian Updates for Convex Feasibility Problems

Input: Error tolerance ǫ ∈ (0, 1), query access to m ǫ-separation oracles O1,ǫ(·), . . . , Om,ǫ(·)
Initialize ρ← n−1I and H ← 0n×n

for t = 1, . . . , T do
for i = 1, . . . ,m do

if Oi,ǫ(ρ) = P then
H ← H + ǫ

16P

ρ← exp(−H)
tr(exp(−H))

break
end

end
return (ρ,H) and exit

end

The following result establishes the iteration complexity of Algorithm 1.

15

Theorem 3 (Theorem 2.1 in [11]). Algorithm 1 requires at most T = ⌈64 log(n)ǫ−2⌉+1 iterations to certify
that (7) is infeasible or output a state ρ satisfying

for all 1 ≤ i ≤ m : max
Pi∈P̃i

min
Yi∈Pi

tr(Pi(ρ− Yi)) ≤ ǫ.

Note that Theorem 3 applies to any convex feasibility problem (on density operators, i.e., trace-normalized
positive semidefinite matrices) for which we have separation oracles as outlined in Definition 6. This is crucial
for the development of an iterative refinement scheme.

There is an important distinction with respect to output across the models of computation we study.
A classical implementation of Algorithm 1 outputs an explicit description of an ǫ-precise solution ρ∗ to (5)
and its associated Hamiltonian H∗, whereas a quantum implementation reports a real valued vector y ∈ R2

along with a diagonal matrix D (with ‖D‖ ≤ 1) such that H∗ = y1C̃ + y2D. The vector y = (y1, y2)
⊤ is the

state preparation pair of ρ∗, in particular:

ρ∗ =
exp

(
−
(
y1C̃ + y2D

))

tr
[
exp

(
−
(
y1C̃ + y2D

))] ,

and we refer to this type of output as a state preparation pair description of ρ. This choice of output is
used in all quantum SDO solvers based on Gibbs sampling techniques (see, e.g., [10, 11, 12, 64, 65]), and is
motivated by the fact that it is difficult to develop quantum algorithms that are substantially faster than
classical algorithms if we still have to output each entry of the solution (an n× n matrix).

The Gibbs sampling approaches that we apply later exhibit a cost that depends on a norm bound for y.
Observe that we initialize y to the all zeros vector of appropriate dimension, and in every iteration, at most
one entry of y changes by a magnitude of ǫ

16 (specifically, an entry yi, where the oracle Oi,ǫ has detected
infeasibility). As a consequence, the vector y satisfies the inequality

∥∥∥y(t+1) − y(t)
∥∥∥ ≤ ǫ

16
(8)

for each iteration t. In view of the iteration bound for Algorithm 1 provided in Theorem 3, it is easy to see
that for any y obtained from Algorithm 1 we have

‖y‖1 ≤ ⌈64 log(n)ǫ−2⌉
∥∥∥y(t+1) − y(t)

∥∥∥ ≤ ⌈64 log(n)ǫ−2⌉ ǫ
16
≤ 4 log(n)ǫ−1. (9)

To instantiate the algorithm to solve problem (3) we need to choose the sets Pi, and provide separation
oracles for them. This is what we do in the following section.

3.2.1 Oracle Construction

The goal of Hamiltonian Updates is to solve, for fixed γ ∈ [−1, 1], the following feasibility problem:

find ρ ∈ {X ∈ Sn+ : tr(X) = 1} ∩ Cγ ∩ Dn

where Cγ =
{
X : tr

(
C̃X

)
≥ γ

}
,

Dn =

{
X : 〈i|X |i〉 = 1

n
, i ∈ [n]

}
.

(10)

One can observe that the set Cγ constitutes a halfspace, while Dn is an affine space of codimension n. The

sets of observables for Cγ and Dn are given by C̃γ and D̃n respectively, with

C̃γ = {−C̃}, and D̃n = {D ∈ Rn×n : ‖D‖ ≤ 1, D is diagonal}.

16

As noted in [11], it follows

max
P∈C̃γ

min
Y ∈Cγ

tr(P (ρ− Y)) ≤ ǫ ⇐⇒ − tr
(
C̃(ρ− Y)

)
≤ ǫ for some Y ∈ Cγ ,

which in turn implies tr (C̃ρ) ≥ γ − ǫ.
Given the structure of Cγ and Dn, the authors in [11] suggest the following two ǫ-separation oracles:

OCγ : compute an approximation c̃ of tr
(
C̃ρ
)

up to additive error
ǫ

4
. Check if c̃ ≥ γ − 3ǫ

4
and

output P = −C̃ if the inequality is violated.

ODn : compute an approximation p̃ ∈ Rn of pi = 〈i|ρ|i〉 satisfying
n∑

i=1

|pi − p̃i| ≤
ǫ

4
.

Check if

n∑

i=1

∣∣∣∣p̃i −
1

n

∣∣∣∣ ≤
3ǫ

4
and output P =

n∑

i=1

(
I
{
p̃i >

1

n

}
− I
{
p̃i <

1

n

})
|i〉 〈i|

if the inequality is violated.

For any given

ρH =
exp(−H)

tr(exp(−H))
,

the required separation oracles are straightforward to implement on a classical computer that has access to
ρH . Thus, classically we only need to prepare ρH once and store it to build the separation oracles. The next
result from [11] establishes that computing an O(log(n)ǫ−1)-degree Taylor series suffices to produce accurate
approximations.

Lemma 9 (Lemma 3.2 in [11]). Fix a Hermitian n×n matrix H, an accuracy ǫ, and let ℓ be the smallest even
number satisfying (ℓ+ 1)(log(ℓ+ 1)− 1) ≥ 2‖H‖+ log(n) + log

(
1
ǫ

)
. Then, the truncated matrix exponential

Tℓ =
∑ℓ

k=0
1
k! (−H)k satisfies ∥∥∥∥

exp(−H)

tr (exp(−H))
− Tℓ

tr(Tℓ)

∥∥∥∥
tr

≤ ǫ.

The task of implementing our separation oracles and testing feasibility on a quantum computer reduces to
preparing Gibbs states [11], which are used to test closeness to the sets Cγ andDn via quantum measurements.
While in Lemma 9 we bound the number of required Taylor series steps for computing ρ via a matrix
exponential, in the quantum case we bound the number of copies of ρ required to estimate its diagonal
entries and expectation values tr(Aρ).

Lemma 10. Fix ǫ ∈ (0, 1). Let ρ be a log(n)-qubit quantum state and U a (1, log(n) + 2, ǫ/(2n))-block-

encoding of C̃ = C‖C‖−1
F . Then, we can implement the oracle OCγ on a quantum computer given access

to O(ǫ−1) copies of a state that is an ǫ
8 -approximation of the input state ρ in trace distance and O(ǫ−1)

applications of U and U †. The oracle ODn can be implemented using O(nǫ−2) ǫ
8 -approximate copies of the

input, and the classical post-processing time needed to implement the oracle is O(nǫ−2).

Proof. First, note that we can obtain an estimate p̃ of the diagonal elements of ρ whose total variation
distance from p is no more than ǫ

8 using Õn

(
nǫ−2

)
copies of ρ to measure ρ in the computational basis.

Further, provided accesses to ρ and a (1, log(n) + 2, ǫ/(2n))-block-encoding U of C̃, by Lemma 8, a trace

estimator for tr
(
C̃ρ
)
with bias at most ǫ

n can be implemented using Õ(1) uses of U and U † and Õn
ǫ
(1)

elementary operations. From here, applying amplitude estimation using O(ǫ−1) quantum samples (i.e.,

state preparation unitaries) from the trace estimator to suffice to compute an approximation tr
(
C̃ρ
)
up to

additive ǫ
8 to implement OCγ . The rest of the proof exactly follows the proof of [11, Lemma 3.3].

17

We remark that multidimensional phase estimation techniques from [63] could improve the dependence on
ǫ−1 for estimating the diagonal elements of ρ to linear, which is a factor ǫ−1 better than a näive application
of computational basis measurements. However, in the context of the iterative refinement scheme we present
later, the improvement would only reduce the amount of constant overhead in the overall running time,
and multidimensional phase estimation has a larger gate complexity (which can be reduced with QRAM).
There are also numerous ways to prepare Gibbs states using a quantum computer [17, 21, 38, 57, 64, 65, 67].
Following [11], we utilize the Gibbs sampler from [57] when working with the sparse-access input model, and
for the QRAM input model we consider Gibbs sampling techniques introduced in [64].

3.3 Complexity

Having understood the cost of constructing the oracles in both the classical and quantum settings, we are
now in a position to analyze the complexity associated with using Algorithm 1 to obtain solutions to (5)
and approximations to (3). Relevant to this discussion is the following result, which imposes precision
requirements on solving (3) to an additive error of the order O (n‖C‖F ǫ) using Algorithm 1.

Proposition 5 (Proposition 3.1 in [11]). Let ρ be an ǫ4-accurate solution to the relaxed SDO problem (5)
with input matrix C. Let γǫ4 = tr (Cρ) be the value attained by ρ. Then, there is a quantum state ρ∗ at trace
distance O(ǫ) of ρ such that nρ∗ is a feasible point of SDO problem (3). In particular

|γǫ4n‖C‖F − tr (nρ∗C)| = O (n‖C‖F ǫ) .

Moreover, it is possible to construct ρ∗ in time O(n2) given the entries of ρ.

We do not provide a proof of this result here, as later we will provide an improved approximation
guarantee and a proof of the improved statement.

3.3.1 Classical running time

Using Lemma 9 in combination with Theorem 3, we can bound the running time required to solve (5) to
additive error ǫ using a classical implementation of Algorithm 1.

Proposition 6. Suppose that C has row sparsity s. Then, the classical cost of solving (5) up to additive
error ǫ using Algorithm 1 is O

(
min{n2s, nω} log2(n)ǫ−3

)
.

Proof. The result follows directly from the proof of Corollary 3.1 in [11], but we repeat the argument here
for completeness.

First, observe that over the course of the iterations t = 0, . . . , T , the operator norms ‖H(t)‖ do not
become prohibitively large. This follows from initializing H(0) = 0n×n, and that by (8), the inequality

∥∥∥H(t+1) −H(t)
∥∥∥ ≤ ǫ

16

∥∥∥P (t)
∥∥∥ ≤ ǫ

16

holds for all t. By Theorem 3, Algorithm 1 requires at most T = ⌈64 log(n)ǫ−2⌉ iterations, which implies
‖H(t)‖ ≤ 4 log(n)ǫ−1 for all t.

By Lemma 9, it suffices to compute O(log(n)ǫ−1) steps of the Taylor series corresponding to exp(−H(t))
in order to obtain a matrix ρ̃(t) that is at most a trace distance of ǫ

4 from ρ(t). Moreover, given that

H(t) is defined as a linear combination of C̃ with a diagonal matrix, matrix multiplication involving H(t)

can be carried out in O(min{n2s, nω}) arithmetic operations. Given classical access to ρ̃(t), the diagonal

constraints comprising Dn can be checked in time O(n), whereas computing tr
(
C̃ρ̃(t)

)
requires O(ns)

arithmetic operations. Thus, the dominant operation at each iteration is computing the matrix exponential
and the classical per-iteration cost of Algorithm 1 is given by

O
(
min{n2s, nω} log(n)ǫ−1

)
.

18

Taking into account the iteration bound O(log(n)ǫ−2) provided in Theorem 3, we arrive at an overall running
time of

O
(
min{n2s, nω} log2(n)ǫ−3

)
.

The proof is complete.

The next corollary from [11] follows from Proposition 5 in the context of the previous result, and provides
the overall running time of Algorithm 1 to solve (3) to additive error O (n‖C‖F ǫ) in the classical setting.

Corollary 1. Suppose that C has row-sparsity s. Then, the classical cost of solving (3) up to an additive
error O (n‖C‖F ǫ) using Algorithm 1 is O

(
min{n2s, nω} log2(n)ǫ−12

)
.

Proof. By Proposition 6, Algorithm 1 requires time

O
(
min{n2s, nω} log2(n)ǫ̃−3

)
,

to solve (5) up to additive error ǫ̃. In order to satisfy the approximation guarantee for (3) given in Proposition
5, it suffices to solve (5) to error ǫ̃ = ǫ4. Plugging in this value for the precision parameter, the total cost
required to solve (3) up to an additive error O (n‖C‖F ǫ) using Algorithm 1 is

O
(
min{n2s, nω} log2(n)ǫ̃−3

)
= O

(
min{n2s, nω} log2(n)(ǫ4)−3

)
= O

(
min{n2s, nω} log2(n)ǫ−12

)
.

3.3.2 Quantum running time

Combining the sampling requirements provided in Lemma 10 with the cost of preparing a single Gibbs state
and the iteration bound from Theorem 3 gives the complexity of Algorithm 1 when run on a quantum com-
puter. However, Gibbs samplers based on the block-encoding framework depend only poly-logarithmically
on the inverse precision, therefore they are exponentially faster (in the parameter ǫ−1) compared to the
Gibbs sampling algorithm from [57] utilized in [11]. It thus makes sense to analyze the running time in the
more efficient model. This will require an efficient data structure for storing y so that we can efficiently
prepare linear combinations of block-encodings.

Lemma 11 (Lemma 15 in [64]). There is a data structure that can store an m-dimensional χ-sparse vector

y with θ-precision using a QRAM of size Õm
θ
(χ). Furthermore:

• Given a classical O(1)-sparse vector, adding it to the stored vector has classical cost Õm
θ
(1).

• Given that β ≥ ‖y‖1, we can implement a (symmetric) (β, Õm
θ
(1), θ)-state preparation pair for y with

Õm
θ
(1) queries to the QRAM.

Corollary 2 (Corollary 16 in [64]). Suppose A1, . . . , Am are Hermitian matrices with operator norm at most
1, and that y ∈ Rm satisfies ‖y‖1 ≤ β. Having access to the above data structure for y, we can prepare one
copy of the Gibbs state

ρ =
exp (−∑m

i=1 yiAi)

tr (exp (−∑m
i=1 yiAi))

using Õθ(
√
nαβ) accesses to the data structure for y and block-encodings of A1, . . . , Am.

We can now use Corollary 2 in combination with results from Sections 2.1.3 and 2.1.4 to establish the
running time of Algorithm 1 in the QRAM input model.

Proposition 7. Let C̃ = C‖C‖−1
F ∈ Sn be stored in QRAM. Then, the complexity of solving (5) up to

additive error ǫ with Algorithm 1 using the QRAM input model is

Õn
ǫ

(
n1.5ǫ−5

)
.

Here, the complexity corresponds to the number of accesses to the QRAM.

19

Proof. Given that C̃ is stored in QRAM, Lemma 3(ii) asserts that when constructing a block-encoding of

C̃, one can set the subnormalization factor to be αC =
∥∥∥C̃
∥∥∥
F
= 1. Hence, one can construct a (1, log(n) +

2, ǫ/(2n))-block-encoding of C̃ in time Õn
ǫ
(1).

Next, recall that in iteration t ∈ [T] of Algorithm 1, our Hamiltonian is defined as

H(t) = y
(t)
1 C̃ + y

(t)
2 D(t),

where D(t) is a diagonal matrix with the diagonal entries taking value −1, 0 or 1. The diagonal elements of
D change in each iteration, and therefore, a new D must be block-encoded in each iteration. For this, we
use the QRAM model described in Section 2.1.2, which allows for insertions to be made in time Õn(1) to
keep the cost of this step negligible. Provided a classical description of D, we can store D in the QRAM in
time O(n log(n)). Applying Lemma 4, a (1, log(n) + 3, ǫ)-block-encoding of D(t) can be constructed in time

Õn
ǫ
(1).

In an earlier discussion we saw that any y obtained from a call to Algorithm 1 will satisfy ‖y‖1 = Õn(ǫ
−1)

if we call Algorithm 1 using precision ǫ (see, e.g., equation (9)). Hence, an application of Corollary 2 with

β = Õn(ǫ
−1) implies that we can prepare one copy of our Gibbs state using

Õn
ǫ

(√
nαǫ−1

)

accesses to the data structure for y and the block-encodings of C̃ and D, where α is defined as the maximum
over the subnormalization factors used to block-encode C̃ and D. Since α = max{αC , αD} = 1, it follows

Õn
ǫ

(√
nαǫ−1

)
= Õn

ǫ

(√
nǫ−1

)
.

Now, one can see from Lemma 10 that the cost of constructing ODn dominates that of constructing OCγ .
Noting that ODn can be implemented using O(nǫ−2) copies of a state that is an ǫ

8 -approximation of the
input state ρ in trace distance and its inverse, the per-iteration cost of Algorithm 1 in the QRAM input
model is given by

Õn
ǫ

(
n1.5ǫ−3

)
.

Factoring in the iteration bound of Õn(ǫ
−2) from Theorem 3, it follows that when provided access to QRAM,

Algorithm 1 solves (5) up to additive error ǫ using

T quantum
HU = Õn

ǫ

(
n1.5ǫ−5

)

accesses to the QRAM. The proof is complete.

Corollary 3. Let C̃ ∈ Sn be stored in QRAM. Then, the complexity of solving (3) up to additive error
O(n‖C‖F ǫ) with Algorithm 1 using the QRAM input model is

Õn
ǫ

(
n1.5ǫ−20

)
.

Here, the complexity corresponds to the number of accesses to the QRAM.

Proof. By Proposition 7, Algorithm 1 requires

Õn
ǫ̃

(
n1.5ǫ̃−5

)
,

accesses to the QRAM to solve (5) up to additive error ǫ̃. In order to satisfy the approximation guarantee
for (3) given in Proposition 5, it suffices to solve (5) to error ǫ̃ = ǫ4. Plugging in this value for the precision
parameter, the total cost required to solve (3) up to an additive error O (n‖C‖F ǫ) using Algorithm 1 is

Õn
ǫ̃

(
n1.5ǫ̃−5

)
= Õn

ǫ

(
n1.5(ǫ4)−5

)
= Õn

ǫ

(
n1.5ǫ−20

)
.

The proof is complete.

20

Corollary 3 establishes that utilizing Gibbs samplers and trace estimators based on the block-encoding
framework for our oracle construction in Algorithm 1 leads to an

O
(√

s
1+o(1)

ǫ−8+o(1) exp
(
1.6
√
log(ǫ−4)

))

speedup over the running time result provided in [11, Corollary 3.2] when applied to solving (3). Yet, the
costly accuracy requirements for the rounding procedure (see, e.g., Proposition 5) lead to a prohibitive scaling
in the inverse precision for the overall running time. Given the advantageous dependence on the dimension,
as compared to classical algorithms, we study how to improve the dependence on the precision parameter.
This is discussed next.

4 Iterative Refinement for SDO approximations of QUBOs

In this section, we introduce an iterative refinement method for obtaining accurate solutions to the renor-
malized relaxed SDO problem (5), that at a high level can be viewed as solving a series of problems related
to the feasibility problem (10) associated with (5). We then discuss how to test ǫ-closeness to the convex sets
which comprise the feasible regions of the intermediate refining problems before presenting our algorithm in
full detail. We conclude the section by proving our algorithm’s correctness and iteration complexity, and use
these results to provide an improved approximation guarantee.

4.1 The refining problem

To develop an iterative refinement scheme for (5), we need to design a problem whose solution can be used
to improve the quality of solutions to (5). Suppose we run Algorithm 1 and obtain an ǫ-precise solution ρ̃

to (5). Letting γ̃ = tr
(
C̃ρ̃
)
, ρ̃ must satisfy

tr
(
C̃ρ̃
)
= γ̃ ≥ γ − ǫ,

n∑

i=1

∣∣∣∣〈i|ρ̃|i〉 −
1

n

∣∣∣∣ ≤ ǫ.

In refining our solution to (5), we should aim to reduce the total variation distance from the distribution
along the diagonal elements of our solution to the uniform distribution, while also improving the precision
to which the optimal objective value is approximated. Thus, an improved solution ρ′ should obey

tr
(
C̃ρ′
)
≥ γ − ǫ′,

n∑

i=1

∣∣∣∣〈i|ρ′|i〉 −
1

n

∣∣∣∣ ≤ ǫ′,

with ǫ′ < ǫ. The basic idea behind constructing the refining problem is to use our current solution ρ̃ to first
shift the renormalized relaxed SDO problem (5) to the origin, and then scale the shifted problem back to
the domain of the original problem. In particular, we solve a series of problems related to the feasibility
problem (10).

Let ε ∈ Rn be a vector whose elements are the residuals along the diagonal εi = ρ̃ii − 1
n for i ∈ [n], and

η ≥ 1 to be a scalar defined as

η =
1

max
{
γ − tr

(
C̃ρ̃
)
,
∑n

i=1 |εi|
} =

1

max
{
γ − tr

(
C̃ρ̃
)
,
∥∥∥
∑

i∈[n] 〈i| ρ̃ |i〉|i〉〈i| − n−1I
∥∥∥
tr

} .

21

Using these quantities, the refining problem is given by:

find ρr ∈ {X ∈ Sn+ : tr(X) = 1} ∩ Cη(γ−γ̃) ∩Dηε

where Cη(γ−γ̃) =
{
X : tr

(
C̃ (Q ◦X)

)
≥ η(γ − γ̃)

}
,

Dηε = {X : 〈i|X |i〉 = η|εi|, ∀i ∈ [n]} ,
(11)

where Q ∈ Sn is a matrix whose diagonal elements are chosen such that for any X ∈ Dηε, we have

(Q ◦X)ii = sign(−εi)η|εi|

for i ∈ [n]. Further details and requirements on the structure of Q are specified later in this section. We
refer to solutions ρr to (11) as refining solutions, which we use to update our current solution ρ̃ to (5).

The set Dηε is comprised of the diagonal constraints

〈i|X |i〉 = η|εi|, ∀i ∈ [n],

and similar to Dn, is an affine space with codimension n. Our use of the absolute value function of the
residuals and scaling by η ensures the viability of applying Gibbs sampling techniques to solve the refining
problem (11); the diagonal terms of any density matrix must be nonnegative and sum to 1. Whenever

n∑

i=1

|εi| > γ − tr
(
C̃ρ̃
)
,

then η‖ε‖1 = 1, and the parameter η therefore scales the shifted problem back to the space of the log(n)-qubit
mixed states, ensuring that any solution ρr to (11) is indeed a (trace normalized) Gibbs state.

On the other hand, should it be the case that

n∑

i=1

|εi| ≤ γ − tr
(
C̃ρ̃
)
,

then for any X ∈ Dηε we have tr(X) ≤ 1, rather than tr(X) = 1. Our primal SDO oracle in Algorithm 1
solves feasibility problems in which the trace upper bound is tight, i.e., tr(X) = 1. The authors in [64] note
that this can be dealt with adding one extra variable w such that

ρ̄r :=

[
ρr 0
0 w

]
.

Then, tr (ρ̄r) = 1 and ρ̄r � 0 imply that tr(ρr) ≤ 1, and as a result we obtain an SDO problem that is
equivalent to (11). Since we know exactly the amount of subnormalization, we can also get rid of the extra
variable in subsequent calculations and re-scale the trace back to 1 when necessary (e.g., when combining
solutions from multiple iterative refinement iterations for trace estimations). Crucially, using the input
models described in Section 2.1, these modifications do not introduce more than constant overhead in the
overall complexity, as the problem data in this case is simply given by

C =

[
C̃ 0
0 0

]
, Q =

[
Q 0
0 0

]
,

with (C,Q) ∈ Sn+1 × Sn+1.
The Hadamard product Q ◦ ρr that appears in the definition of Cη(γ−γ̃) is required for similar reasons;

properly setting Q allows us to drive the total variation distance from the distribution along the diagonal
elements of our solution to the uniform distribution to zero using the solutions to the refining problem. Later,
in Section 4.3 we demonstrate that this can be achieved by generating a sequence of iterates ρ̃, ρ̂, where we
obtain ρ̂ from ρ̃ using the rule

ρ̂ = ρ̃+
1

η
Q ◦ ρr, (12)

22

with a suitable choice for Q being

Q = (ee⊤ − I) + diag (sign(−ε)) =

sign(−ε1) 1 . . . 1

1 sign(−ε2)
. . .

...
...

. . .
. . . 1

1 . . . 1 sign(−εn)

. (13)

Choosing Q in this manner also implies that the Hadamard product Q ◦ A can be carried out classically
using O(n) arithmetic operations for any A ∈ Rn×n, as the element-wise products QijAij = Aij for i 6= j.
Similarly, updating Q at each iterate only requires updating its diagonal elements, an O(n) operation.

It is important to note that the update we propose in (12) does not preserve positive semidefiniteness
in general. However, later in our analysis, we demonstrate that the eigenvalues of the updated solution
ρ̂ are only slightly negative in the worst case, i.e., λmin(ρ̂) ≥ −δ for a value δ > 0 that gets progressively
smaller over the course of the algorithm; one can restore positive semidefiniteness by adding δ to the diagonal
elements of the final solution, and we renormalize the trace by (1 + nδ). We show that these modifications
required to restore positive semidefiniteness have only a mild (in fact, constant) impact on feasibility. To
this end, we will bound the eigenvalues of Q. We first state a special instance of Weyl’s inequality.

Lemma 12. Suppose that A ∈ Rn×n and B ∈ Rn×n are Hermitian matrices. Then

λmin(A+B) ≥ λmin(A) + λmin(B).

Using the preceding lemma, the following result bounds the minimum eigenvalue of Q.

Lemma 13. Suppose that Q ∈ Sn is defined according to Equation (13). Then, λmin(Q) ≥ −2.
Proof. Let A = (ee⊤ − I) and B = diag (sign(−ε)), such that Q = A + B. Now, it can be easily seen
from the definition of A that A + I is an all-ones matrix of dimension n. Upon performing row-reduction
(via, e.g., Guassian elimination) on A, it is trivial to observe that the resulting row-echelon form will have
n − 1 zero rows, and as a consequence, A has the eigenvalue −1, repeated (at least) n − 1 times. Further,
since tr (A) = 0, the other eigenvalue is n − 1. Therefore, we have λmin(A) ≥ −1. On the other hand, B
is a diagonal matrix whose diagonal elements can take value −1, 0, or 1, from which λmin(B) ≥ −1 readily
follows.

Applying Lemma 12, we obtain

λmin(Q) = λmin(A+B) ≥ λmin(A) + λmin(B) ≥ −2.
The proof is complete.

4.2 Oracle construction for the refining problem

In order to construct separation oracles for testing closeness to Cη(γ−γ̃), we rely on the following result.

Lemma 14. Let E, F and G ∈ Sn. We have

tr (G(E ◦ F)) = tr ((E ◦G)F).

Proof. Applying Lemma 1 with m = n, we have

[(E ◦ F)G]ii = [(E ◦G)F]ii ∀i ∈ [n].

Note that we have dropped the transpose terms, as E, F and G are symmetric matrices, and hence, so are
E ◦ F and E ◦G. It follows

tr (G(E ◦ F)) = tr ((E ◦ F)G) =
∑

i∈[n]

[(E ◦ F)G]ii =
∑

i∈[n]

[(E ◦G)F]ii = tr ((E ◦G)F).

23

In addition to Q ∈ Sn, we also require maxi,j∈[n]{|Qij |} ≤ 1 to avoid any normalization issues with

respect to Q ◦ C̃. Note that defining of Q according to equation (13) satisfies both of these properties
trivially, as each of the diagonal elements are 1, 0, or −1, while the off-diagonal elements are all set to 1.
This idea is formalized next.

Lemma 15. Let A ∈ Rn×n and Q ∈ Sn be matrices satisfying maxi,j∈[n]{|Qij |} ≤ 1 and ‖A‖F ≤ 1. Then,

‖Q ◦A‖ ≤ ‖Q ◦A‖F ≤ 1.

Proof. Under the stated conditions for Q, it follows

‖Q ◦A‖2F =
∑

i∈[n]

∑

j∈[n]

(
[Q ◦A]ij

)2
=
∑

i∈[n]

∑

j∈[n]

(Qij · Aij)
2
=
∑

i∈[n]

∑

j∈[n]

(Qij)
2
(Aij)

2

≤
∑

i∈[n]

∑

j∈[n]

(Aij)
2
= ‖A‖2F ,

and applying the square root throughout the above we obtain ‖Q ◦A‖F ≤ ‖A‖F . From here, the result
follows upon noting ‖A‖F ≤ 1 and ‖A‖ ≤ ‖A‖F is true for any A ∈ Rn×n.

Although the sets Cγ and Dn differ from their refining counterparts Cη(γ−γ̃) and Dηε, their dissimilarity
merely affects the right hand side of the inequality defining the sets, and are thus no more difficult to
construct. Just as in the case of (10), the task of obtaining separation oracles for the refining problem (11)
in the quantum regime reduces to preparing many copies of Gibbs states. Likewise, these oracles can also
be implemented on a classical computer, given access to ρr.

The similarities between (10) and (11) become transparent when we demonstrate that they are specific
instances of the same problem. In particular, it is easy to see that solving (10) corresponds to solving

find ρ ∈ {X ∈ Sn+ : tr(X) = 1} ∩ Cη(γ−γ̃) ∩ Dηε

where Cη(γ−γ̃) =
{
X : tr

(
C̃Q ◦X

)
≥ η(γ − γ̃)

}
,

Dηε = {X : 〈i|X |i〉 = η|εi|, ∀i ∈ [n]} ,
(14)

with εi =
1
n , η = 1, Q = ee⊤, and γ̃ = 0. In view of this relationship, we can unify the oracle construction

for (10) and (11) as follows:

OCη(γ−γ̃)
: Compute an approximation c̃ of tr

(
Q ◦ C̃ρ

)
up to additive error

ǫ

4
.

Check if c̃ ≥ η(γ − γ̃) +
3ǫ

4
and output P = −Q ◦ C̃ if the inequality is violated.

ODηε : Compute an approximation p̃ ∈ Rn of pi = 〈i|ρ|i〉 satisfying
∑

i∈[n]

|pi − p̃i| ≤
ǫ

4
.

Check if
∑

i∈[n]

|p̃i − η|εi|| ≤
3ǫ

4
and output P =

∑

i∈[n]

(I{p̃i > η|εi|} − I{p̃i < η|εi|}) |i〉 〈i|

if the inequality is violated.

Again, the sets of observables for Cη(γ−γ̃) and Dηε are given by

C̃η(γ−γ̃) = {−Q ◦ C̃}, and D̃ηε = {D ∈ Rn×n : ‖D‖ ≤ 1, D is diagonal}.

Although these observations are straightforward, they justify our use of Algorithm 1 as a semidefinite opti-
mization oracle that solves a convex feasibility problem at hand in every iteration for different values of Q.
In particular, these facts, along with Lemmas 14 and 15 ensure that the complexity results in Propositions
6 and 7 hold when applying Algorithm 1 to solve (14).

24

Proposition 8. Let Q ◦ C̃ ∈ Sn be stored in QRAM. Algorithm 1 solves (14) up to additive error ǫ using

Õn
ǫ

(
n1.5ǫ−5

)

accesses to the QRAM.

Proof. Given that Q ◦ C̃ is stored in QRAM, Lemma 3(ii) asserts that when constructing a block-encoding

of Q◦ C̃, one can set the subnormalization factor to be αC =
∥∥∥Q ◦ C̃

∥∥∥
F
. In particular, one can always choose

αC = 1, as it can be seen from the proof of Lemma 15 that the inequality

∥∥∥Q ◦ C̃
∥∥∥
F
≤
∥∥∥C̃
∥∥∥
F
= 1

always holds for any Q defined according to equation (13). Collecting these facts, one can construct a

(1,O(log(n)), ǫ/(2n))-block-encoding ofQ◦C̃ in time Õn
ǫ
(1). Note that the quantityQ◦C̃ remains unchanged

for the duration of Algorithm 1. From here, the rest of the proof follows exactly that of Proposition 7 upon
replacing C̃, OCγ and ODn with Q ◦ C̃, OCη(γ−γ̃)

and ODηε , respectively, in what remains.

Before proceeding further, we establish that the eigenvalues of the updated solution will never fall signif-
icantly below zero by deriving a lower bound on the minimum eigenvalue of the terms 1

ηQ ◦ ρ that are used

to update the overall solution in each iteration of our refinement scheme according to (12).

Proposition 9. Let ρ be a solution to (14) obtained from running Algorithm 1 using precision ǫ ∈ (0, 1).
Then,

1

η
Q ◦ ρ � −2 ·

(
‖ε‖1 +

ǫ

η

)
n−1I.

Proof. In what follows, we assume without loss of generality that Q has at least one negative eigenvalue
(otherwise, Q ◦ ρ � 0 trivially holds), so applying Lemma 13 we can let λmin (Q) ≥ −2. Applying Lemma 2,
we can lower bound the minimum eigenvalue of the Hadamard product Q ◦ ρ as follows

λmin (Q ◦ ρ) ≥ min
i∈[n]

ρii · λmin (Q) ≥ −2 min
i∈[n]

ρii.

Therefore, in order to derive a worst case lower bound on λmin (Q ◦ ρ), it suffices to determine

max
ρ∈Dηε

min
i∈[n]

ρii.

The definition of Dηε asserts that when ODηε is queried with precision ǫ, the diagonal elements of ρ are
nonnegative and must satisfy the following:

∑

i∈[n]

|ρii − η|εi|| ≤ ǫ,
∑

i∈[n]

ρii ≤ η‖ε‖1 + ǫ.

Hence, maxρ∈Dηε mini∈[n] ρii ≤ η‖ε‖1+ǫ
n , and the proof is complete.

4.3 Iterative Refinement using Hamiltonian Updates

We are now in a position to provide our iterative refinement method for SDO approximations of QUBOs
presented in full detail in Algorithm 2.

The algorithm takes three parameters as input; (i) ξ, the fixed (constant) precision used to test closeness
to the sets Cη(γ−γ̃) and Dηε in every iteration, (ii) ζ, the precision to which the final solves (5), and (iii) ǫ,
the additive error to which we seek to solve (3). In our initialization steps we set the values of Q, ε and η
such that the call to Algorithm 1 corresponds to solving the original feasibility problem (10).

25

Algorithm 2 Iterative Refinement for SDO Approximations of QUBOs

Input: Error tolerances ǫ ∈ (0, 1) and ζ =
(

ǫ
n‖C‖F

)4
, upper bound on objective value γ ∈ [−1, 1]

Output: A matrix ρ̃ ∈
{
X ∈ Sn+ : tr(X) ≤ 1 + ζ

}
satisfying

max

γ − tr

(
C̃ρ̃
)
,

∥∥∥∥∥∥
∑

i∈[n]

〈i| ρ̃ |i〉|i〉〈i| − n−1I

∥∥∥∥∥∥
tr

 ≤ ζ

Initialize: ρ̃, ρ̂← 0n×n, Q← ee⊤, εi = 1
n for i ∈ [n], γ̃, γ̂ ← 0, η(0) ← 1, k ← 1

ρ̃(0) ← solve (14) to precision ξ2

16 using Algorithm 1 with oracles OCη(γ−γ̃)
and ODηε

γ̃(0) ← tr
(
C̃ρ̃(0)

)

ε
(0)
i ← ρ̃

(0)
ii − 1

n for i ∈ [n]

Qii ← sign(−ε(0)i) for i ∈ [n]
η(1) ← 1

max{γ−γ̃(0),‖ε(0)‖1}
δ(1) ← 2

n

(
‖ε(0)‖1 + (ξ/4)2

η(1)

)

while max
{
γ − tr

(
C̃ρ̃
)
, ‖ε‖1

}
> ζ do

1. Store refining problem data
(
Q ◦ C̃, η(k)ε(k−1), η(k)γ̃(k−1)

)

2. Solve (14) to precision ξ2

16 for ρ(k) using Algorithm 1 with oracles OCη(γ−γ̃)
and ODηε

3. Update solution

ρ̂(k) ← ρ̃(k−1) +
1

η(k)
Q ◦ ρ(k)

4. Apply spectrum shift to ρ̂(k) to obtain a positive semidefinite matrix

ρ̃(k) ← 1

1 + nδ(k)

(
ρ̂(k) + δ(k)I

)

5. Update objective value and compute element-wise deviations from the maximally mixed state:

γ̃(k) ← tr
(
C̃ρ̃(k)

)
, ε

(k)
i ← ρ̃

(k)
ii −

1

n
for i ∈ [n]

6. Update refining problem parameters:

Qii ← sign
(
−ε(k)i

)
for i ∈ [n], η(k+1) ← 1

max
{
γ − γ̃(k),

∥∥ε(k)
∥∥
1

}

7. Update spectrum shift parameter:

δ(k+1) ← 2

n

(∥∥∥ε(k)
∥∥∥
1
+

(ξ/4)2

η(k+1)

)

8. k ← k + 1

end

26

In each iteration k, Algorithm 2 calls Algorithm 1 with separation oracles OCη(γ−γ̃)
and ODηε using fixed

precision ξ2 such that every call to Algorithm 1 produces a ξ2-precise solution ρ(k) to (14). Using ρ(k) to
update our solution according to (12) may cause us to obtain matrices ρ̂(k) with eigenvalues that are, in the
worst case, slightly negative. A shift of the spectrum defined via the bound on the minimum eigenvalue of
the update term 1

η(k)Q ◦ ρ(k) provided in Proposition 9 suffices to obtain a positive semidefinite matrix ρ̃(k),

and we will demonstrate that it does not change the constraint violation or the objective function value by
a large amount.

If ρ̃ is indistinguishable up to precision ζ from the maximally mixed state n−1I upon measurement in

the computational basis, and satisfies tr
(
C̃ρ̃
)
≥ γ − ζ, the algorithm terminates and reports ρ̃. Otherwise,

we shift the spectrum as described above, we construct the refining problem associated with our current
solution, and proceed to the next iteration. To define the parameters for the next refining problem, we first
calculate the deviation of the diagonal elements from 1

n , and the violation with respect to satisfying our
objective value. Then, we define our scaling factor to be the reciprocal of the maximum over the ℓ1-norm of
the diagonal deviations, and the objective violation. We stress that ξ is a (chosen) constant, and does not
change throughout the algorithm.

We now state a series of results in order to bound the iteration complexity of Algorithm 2, and use our
findings to improve the approximation guarantee given in Proposition 5. We begin by proving establishing
that the iterates generated by Algorithm 2 are increasingly accurate solutions to (5).

Theorem 4. Fix a constant ξ ∈
(
0, 12
)
and define ξ̃ = ξ

4 . Let ρ(k) be a solution to (14) obtained from

running Algorithm 1 using fixed precision ξ̃2 in iteration k of Algorithm 2. Then, the following hold:

(a) For k ≥ 0, η(k) ≥ 1
2ξk

.

(b) For k ≥ 1, ρ̂(k) = ρ̃(k−1) + 1
η(k)Q ◦ ρ(k) satisfies

max

γ − tr

(
C̃ρ̂(k)

)
,

∥∥∥∥∥∥
∑

i∈[n]

〈i| ρ̂(k) |i〉|i〉〈i| − n−1I

∥∥∥∥∥∥
tr

 ≤ ξk+2, λmin

(
ρ̂(k)

)
≥ −ξk+1

n
.

(c) For k ≥ 0, ρ̃(k) satisfies

max

γ − tr

(
C̃ρ̃(k)

)
,

∥∥∥∥∥∥
∑

i∈[n]

〈i| ρ̃(k) |i〉|i〉〈i| − n−1I

∥∥∥∥∥∥
tr

 ≤ 2ξk+1, λmin

(
ρ̃(k)

)
≥ 0.

That is, ρ̃(k) is an 2ξk+1-precise solution to (5).

Proof. First, observe that that we initialize εi =
1
n for i ∈ [n], γ̃ = 0, η(0) = 1 and Q = ee⊤. Under these

conditions, one can observe that if ρ̃(0) is obtained from solving (14) to precision ξ̃2 using the oracles OCη(γ−γ̃)

and ODηε , we must have
n∑

i=1

∣∣∣∣
〈
i
∣∣∣ρ̃(0)

∣∣∣ i
〉
− 1

n

∣∣∣∣ ≤
ξ̃2

η(0)
= ξ̃2. (15)

In other words, ρ̃(0) satisfies ∥∥∥∥∥∥
∑

i∈[n]

〈i| ρ̃(0) |i〉|i〉〈i| − n−1I

∥∥∥∥∥∥
tr

≤ ξ̃2,

and by the definition of OCη(γ−γ̃)
we also have

tr
(
C̃ρ̃(0)

)
≥ γ − ξ̃2

η(0)
= γ − ξ̃2. (16)

27

Since ρ̃(0) � 0 by construction, clearly ρ̃(0) is a ξ2-precise solution to (5).
Next, we proceed by induction to establish that for k ≥ 1, the matrix ρ̂(k) satisfies

max

γ − tr

(
C̃ρ̂(k)

)
,

∥∥∥∥∥∥
∑

i∈[n]

〈i| ρ̂(k) |i〉|i〉〈i| − n−1I

∥∥∥∥∥∥
tr

 ≤

ξ̃2

η(k)
, λmin

(
ρ̂(k)

)
≥ − 2

n

(
ξ̃2

η(k−1)
+

ξ̃2

η(k)

)
. (17)

For all k ≥ 1, we have ε
(k−1)
i = ρ̃

(k−1)
ii − 1

n for i ∈ [n] and Q = (ee⊤ − I) + diag
(
sign

(
−ε(k−1)

))
. For

this choice of parameters, the general feasibility problem (14) reduces to the refining problem (11) and the
solution ρ(k) obtained via Algorithm 1 using the oracles OCη(γ−γ̃)

and ODηε must satisfy

tr
(
C̃Q ◦ ρ(k)

)
≥ η(k)

(
γ − γ̃(k−1)

)
− ξ̃2 (18a)

n∑

i=1

∣∣∣
〈
i
∣∣∣ρ(k)

∣∣∣ i
〉
− η(k)|εi|

∣∣∣ ≤ ξ̃2. (18b)

Accordingly, for k ≥ 1, setting ρ̂(k) = ρ̃(k−1)+ 1
η(k)Q◦ρ(k) we can bound the total infeasibility of the diagonal

constraints as follows
n∑

i=1

∣∣∣∣
〈
i
∣∣∣ρ̂(k)

∣∣∣ i
〉
− 1

n

∣∣∣∣ =
n∑

i=1

∣∣∣∣
〈
i

∣∣∣∣ρ̃(k−1) +
1

η(k)
Q ◦ ρ(k)

∣∣∣∣ i
〉
− 1

n

∣∣∣∣

=

n∑

i=1

∣∣∣∣
(
ρ̃
(k−1)
ii +

1

η(k)

(
sign

(
−ε(k−1)

i

)
· ρ(k)ii

))
− 1

n

∣∣∣∣

=

n∑

i=1

∣∣∣∣
(
ρ̃
(k−1)
ii − 1

n

)
+

1

η(k)
sign

(
−ε(k−1)

i

)
ρ
(k)
ii

∣∣∣∣

=
n∑

i=1

∣∣∣∣ε
(k−1)
i +

1

η(k)
sign

(
−ε(k−1)

i

)
ρ
(k)
ii

∣∣∣∣

=
1

η(k)

n∑

i=1

∣∣∣η(k)ε(k−1)
i + sign

(
−ε(k−1)

i

)
ρ
(k)
ii

∣∣∣ ≤ ξ̃2

η(k)
,

where the final inequality follows from (18b). Consequently, we can conclude that at iteration k ≥ 1 we have
∥∥∥∥∥∥
∑

i∈[n]

〈i| ρ̂(k) |i〉|i〉〈i| − n−1I

∥∥∥∥∥∥
tr

≤ ξ̃2

η(k)
. (19)

Next, letting c̃(k) = tr
(
C̃Q ◦ ρ(k)

)
, one can observe

tr
(
C̃ρ̂(k)

)
= tr

(
C̃

(
ρ̃(k−1) +

1

η(k)
Q ◦ ρ(k)

))
= tr

(
C̃ρ̃(k−1)

)
+

1

η(k)
tr
(
C̃Q ◦ ρ(k)

)
= γ̃(k−1) +

c̃(k)

η(k)
.

Since c̃(k) ≥ η(k)
(
γ − γ̃(k−1)

)
− ξ2 due to (18a), it follows:

tr
(
C̃ρ̂(k)

)
= γ̃(k−1) +

c̃(k)

η(k)
≥ γ̃(k−1) +

1

η(k)

[
η(k)

(
γ − γ̃(k−1)

)
− ξ̃2

]
= γ − ξ̃2

η(k)
. (20)

To prove the eigenvalue bound on ρ̂(k), we first establish that ρ̃(k) � 0 holds for all k ≥ 0 using induction.
When k = 0, this is trivially true because ρ̃(0) ≻ 0 by construction (it is a Gibbs state). Now assume that
ρ̃(ℓ) � 0 holds for all ℓ = 1, . . . , k − 1. At the k-th iterate, we have

ρ̃(k) :=
1

1 + nδ(k)

(
ρ̂(k) + δ(k)I

)
=

1

1 + nδ(k)

[
ρ̃(k−1) +

1

η(k)
Q ◦ ρ(k) + δ(k)I

]
.

28

Since we define δ(k) = 2
n

(∥∥ε(k−1)
∥∥
1
+ ξ̃2

η(k)

)
, Proposition 9 asserts that 1

η(k)Q ◦ ρ(k) + δ(k)I � 0. Combining

this fact with ρ̃(k−1) � 0, we have ρ̃(k) � 0 because it is defined as the sum of two symmetric positive
semidefinite matrices, thus completing the induction argument.

Having shown ρ̃(k) � 0 holds for all k ≥ 0, it follows that ρ̂(k) is defined as the sum of a positive
semidefinite matrix, and a symmetric matrix satisfying 1

η(k)Q ◦ ρ(k) � −δ(k)I. To see this, first observe that

the residuals along the diagonal ε are always computed with respect to ρ̃, and in particular for k ≥ 1

∥∥∥ε(k)
∥∥∥
1
=

∥∥∥∥∥∥
∑

i∈[n]

〈i| ρ̃(k) |i〉|i〉〈i| − n−1I

∥∥∥∥∥∥
tr

=
∑

i∈[n]

∣∣∣∣
1

1 + nδ(k)

(
ρ̂
(k)
ii + δ(k)

)
− n−1

∣∣∣∣

=
1

1 + nδ(k)

∑

i∈[n]

∣∣∣ρ̂(k)ii + δ(k) − n−1
(
1 + nδ(k)

)∣∣∣

=
1

1 + nδ(k)

∑

i∈[n]

∣∣∣ρ̂(k)ii + δ(k) − n−1 − δ(k)
∣∣∣

≤ 1

1 + nδ(k)

∑

i∈[n]

∣∣∣ρ̂(k)ii − n−1
∣∣∣

≤ 1

1 + nδ(k)
· ξ̃2

η(k)
, (21)

where the final inequality follows from (19). Thus, applying Lemma 12 along with the definition of δ(k) and
noting (15), (21) we obtain

δ(k) =
2

n

(∥∥∥ε(k−1)
∥∥∥
1
+

ξ̃2

η(k)

)
≤ 2

n

(
ξ̃2

η(k−1)
+

ξ̃2

η(k)

)
=⇒ ρ̂(k) � −2

(
ξ̃2

η(k−1)
+

ξ̃2

η(k)

)
n−1I, (22)

for all k ≥ 1. Hence, from (19), (20) and (22), the matrix ρ̂(k) = ρ̃(k−1) + 1
η(k)Q ◦ ρ(k) satisfies (17) for all

k ≥ 0.
Next, note that the spectrum shift used to restore positive semidefiniteness is mild. Indeed for all k ≥ 1

∥∥∥ρ̂(k) − ρ̃(k)
∥∥∥
tr
=

∥∥∥∥ρ̂(k) −
1

1 + nδ(k)

(
ρ̂(k) + δ(k)I

)∥∥∥∥
tr

=

∥∥∥∥
1 + nδ(k) − 1

1 + nδ(k)
ρ̂(k) − 1

1 + nδ(k)
δ(k)I

∥∥∥∥
tr

≤ nδ(k)

1 + nδ(k)

∥∥∥ρ̂(k) − n−1I
∥∥∥
tr

=
nδ(k)

1 + nδ(k)

∥∥∥ρ̂(k) − n−1I + (δ(k)I − δ(k)I)
∥∥∥
tr

≤ nδ(k)

1 + nδ(k)

[∥∥∥ρ̂(k) + δ(k)I
∥∥∥
tr
+
∥∥n−1I

∥∥
tr
+
∥∥∥δ(k)I

∥∥∥
tr

]

≤ nδ(k)

1 + nδ(k)

[
1 +

ξ̃2

η(k)
+ nδ(k) + 1 + nδ(k)

]

=

(
2 +

ξ̃2

η(k)
+ 2nδ(k)

)
nδ(k)

1 + nδ(k)
,

where the second to last inequality follows from the fact that ρ̂(k) + δ(k)I, n−1I and δ(k)I are all positive
semidefinite matrices.

29

Using the definition of δ(k), we can continue the chain of inequalities:

(
2 +

ξ̃2

η(k)
+ 2nδ(k)

)
nδ(k)

1 + nδ(k)
<

(
2 +

ξ̃2

η(k)
+ 2nδ(k)

)
nδ(k)

≤ 2

(
2 + 3

ξ̃2

η(k)
+ 2

∥∥∥ε(k−1)
∥∥∥
1

)(∥∥∥ε(k−1)
∥∥∥
1
+

ξ̃2

η(k)

)

= 4

[∥∥∥ε(k−1)
∥∥∥
1
+

5

2

ξ̃2

η(k)

∥∥∥ε(k−1)
∥∥∥
1
+

3

2

ξ̃4
(
η(k)

)2 +
∥∥∥ε(k−1)

∥∥∥
2

1

]

≤ 4

[
ξ̃2

η(k−1)
+

5

2

ξ̃2

η(k−1)

ξ̃2

η(k)
+

3

2

ξ̃4
(
η(k)

)2 +
ξ̃4

(
η(k−1)

)2

]
,

where the final inequality follows upon noting (15) and (21). For ease of notation, for all k ≥ 1 define

Φ
(
η(k−1), η(k), ξ̃

)
:= 4

[
ξ̃2

η(k−1)
+

5

2

ξ̃2

η(k−1)

ξ̃2

η(k)
+

3

2

ξ̃4
(
η(k)

)2 +
ξ̃4

(
η(k−1)

)2

]
.

Applying a matrix Hölder inequality, one can observe that for all k ≥ 1:

∣∣∣tr
(
C̃ρ̂(k)

)
− tr

(
C̃ρ̃(k)

)∣∣∣ ≤
∥∥∥C̃
∥∥∥
∥∥∥ρ̂(k) − ρ̃(k)

∥∥∥
tr
≤
∥∥∥ρ̂(k) − ρ̃(k)

∥∥∥
tr
< Φ

(
η(k−1), η(k), ξ̃

)
,

from which we can conclude

γ − tr
(
C̃ρ̃(k)

)
= γ − tr

(
C̃ρ̃(k)

)
+
[
tr
(
C̃ρ̂(k)

)
− tr

(
C̃ρ̂(k)

)]

= γ − tr
(
C̃ρ̂(k)

)
+
[
tr
(
C̃ρ̂(k)

)
− tr

(
C̃ρ̃(k)

)]
≤ ξ̃2

η(k)
+Φ

(
η(k−1), η(k), ξ̃

)
, (23)

holds for all k ≥ 1, as γ − tr
(
C̃ρ̂(k)

)
≤ ξ̃2

η(k) . We can now use this fact to establish the lower bound on η(k),

which we prove by induction.
For k = 0, we have η(0) = 1 and η(1) = 1

ξ̃2
when k = 1 due to (15) and (16). for which η(k) ≥ 1

2·ξk

trivially holds. By the induction hypothesis, it assumed that η(ℓ) ≥ 1
2ξℓ is true for ℓ = 2, . . . , k. From here,

one can observe that

Φ
(
η(k−1), η(k), ξ̃

)
= 4

[
ξ̃2

η(k−1)
+

5

2

ξ̃2

η(k−1)

ξ̃2

η(k)
+

3

2

ξ̃4
(
η(k)

)2 +
ξ̃4

(
η(k−1)

)2

]

≤ 4

[
2ξ̃2ξk−1 +

5

2
ξ̃4ξk−1ξk + 6ξ̃4ξ2k + 4ξ̃4ξ2[k−1]

]

= 8ξ̃2ξk−1 + 10ξ̃4ξk−1ξk + 24ξ̃4ξ2k + 16ξ̃4ξ2[k−1]

≤ 8

16
ξk+1 +

10

256
ξ2k+3 +

24

256
ξ2k+4 +

16

256
ξ2k+2

<
178

256
ξk+1.

30

Noting Φ
(
η(k−1), η(k), ξ̃

)
< 86

64ξ
k+1 and applying (17) yields

η(k+1) =
1

max
{
γ − tr

(
C̃ρ̃(k)

)
,
∥∥∥
∑

i∈[n] 〈i| ρ̃(k) |i〉|i〉〈i| − n−1I
∥∥∥
tr

} ≥ 1

ξ̃2

η(k) +Φ
(
η(k−1), η(k), ξ̃

)

≥ 1
ξ̃2

η(k) +
178
256ξ

k+1

≥ 1

2ξ̃2ξk + 178
256 ξ

k+1
>

1

2ξk+1
,

which completes the proof of (a).
Having demonstrated that (a) holds, to prove (b), we can simply combine inequality (17) with the lower

bound η(k) ≥ 1
2ξk

, which together imply

max

γ − tr

(
C̃ρ̂(k)

)
,

∥∥∥∥∥∥
∑

i∈[n]

〈i| ρ̂(k) |i〉|i〉〈i| − n−1I

∥∥∥∥∥∥
tr

 ≤

ξ̃2

η(k)
≤ ξk+2, λmin

(
ρ̂(k)

)
≥ −ξk+1

n
.

Upon noting (21), (23) and that ρ̃(k) � 0 always holds, the result in (c) follows from a similar argument.

The next result establishes polynomial convergence of Algorithm 2.

Corollary 4. Let 0 < ζ ≪ ξ < 1, and η(0) = 1. Then, Algorithm 2 terminates in at most

K = O
(
log

(
1

ζ

))

iterations.

Proof. The result follows from Theorem 4(c).

It is important at this point for us to remark that fixing ξ ∈ (0, 1) does not limit us with respect to how
accurately we can solve (3). We can always make the final precision parameter arbitrarily small using only

Õ 1
ζ
(1) iterations, as the overall running time depends only poly-logarithmically on ζ−1. Accordingly, we

take advantage of this fact and revisit the approximation guarantee provided in Proposition 5.

Proposition 10. Let ρ̃ be a ζ-accurate solution to the renormalized and relaxed SDO problem (5) with input

matrix C and ζ =
(

ǫ
n‖C‖F

)4
. Let γζ = tr (Cρ̃) be the value attained by ρ̃. Then, there is a quantum state

ρ∗ at trace distance O
(

ǫ
n‖C‖F

)
of ρ̃ such that nρ∗ is a feasible point of SDO problem (3). In particular

|γζn‖C‖F − tr (nρ∗C)| = O (ǫ) .

Moreover, it is possible to construct ρ∗ in time O(n2) given the entries of ρ̃.

Proof. The proof almost exactly follows the proof of Proposition 3.1 in [11], regardless, we present the
adjusted proof for completeness. Our aim is to show that a ζ-precise solution ρ̃ to (5) obtained using
Algorithm 2 can be used to construct ρ∗ such that nρ∗ is an exactly feasible solution to (3).

We begin by examining the diagonal elements of ρ̃ and check whether modifications need to be made
to ensure that our solution is an exactly feasible point to the renormalized SDO problem (5). Namely, if

|〈i|ρ̃|i〉 − 1
n | >

√
ζ

n for i ∈ [n], we replace ρ̃ii with
1
n and set all elements in the i-th row and the i-th column

to 0, and denote the resulting matrix by ρ′. From here we introduce another matrix W which we obtain

31

by replacing each diagonal entry of ρ′ with 1
n . In general we may not have W � 0, so the authors in [11]

suggest using the convex combination:

ρ∗ =
1

1 +
√
ζ

(
W +

√
ζ

n
I

)
.

Then, ρ∗ � 0 and by construction 〈i|ρ∗|i〉 = 1
n for all i ∈ [n]. Hence, ρ∗ is a feasible solution to the

renormalized SDO problem (5).
What remains is to show that the above reformulations yield the desired approximation. Denote by

B = {i : |n〈i|ρ̃|i〉 − 1| > √ζ} ⊂ [n] the set of diagonal entries that deviate substantially from 1
n . Without

loss of generality, it suffices to assume that such elements are found in the first |B| rows of ρ̃, in which case

‖ρ′ − ρ̃‖tr =
∥∥∥∥
(
n−1IB 0

0 ρ̃22

)
−
(
ρ̃11 ρ̃12
ρ̃21 ρ̃22

)∥∥∥∥
tr

=

∥∥∥∥
(
n−1IB − ρ̃11 −ρ̃12
−ρ̃21 0

)∥∥∥∥
tr

≤ ‖ρ̃11‖tr + 2‖ρ̃12‖tr + ‖n−1IB‖tr. (24)

Since ρ̃ is a ζ-precise solution to (5), ρ̃ obeys

n∑

i=1

∣∣∣∣〈i|ρ̃|i〉 −
1

n

∣∣∣∣ ≤ ζ.

Therefore, we must have

|B|
√
ζ

n
≤ ζ,

which equates to |B| ≤ n
√
ζ. Now, by the definition of B, it follows

‖ρ̃22‖tr ≥ (n− |B|)1−
√
ζ

n
≥ (n− n

√
ζ)

1−√ζ
n

= (1−
√
ζ)2.

Following [11], we invoke a result from [41], which states

∥∥∥∥
[
‖ρ̃11‖tr ‖ρ̃12‖tr
‖ρ̃⊤12‖tr ‖ρ̃22‖tr

]∥∥∥∥
tr

≤
∥∥∥∥
[
ρ̃11 ρ̃12
ρ̃⊤12 ρ̃22

]∥∥∥∥
tr

= ‖ρ̃‖tr = tr (ρ̃) = 1.

Using the fact that ‖ · ‖tr ≥ ‖ · ‖2, where ‖ · ‖2 is the Frobenius, or Schatten-2 norm, the above implies

‖ρ̃11‖2tr + 2‖ρ̃12‖2tr + ‖ρ̃22‖2tr ≤ 1.

As ‖ρ̃22‖tr ≥ (1−√ζ)2, it can be seen trivially that ‖ρ̃22‖2tr ≥ (1−√ζ)4, and thus

‖ρ̃11‖2tr + 2‖ρ̃12‖2tr ≤ 1− (1−
√
ζ)4 = O(

√
ζ).

Consequently ‖ρ̃11‖tr + 2‖ρ̃12‖tr = O
(
ζ

1
4

)
, and plugging this into equation (24) asserts

‖ρ′ − ρ̃‖tr = O
(
ζ

1
4

)
. (25)

Let R be a diagonal matrix whose elements are Rii ∈
[
−

√
ζ

n ,
√
ζ

n

]
for i ∈ [n], such that

W = ρ′ +R,

and note that R+
√
ζn−1I � 0. Upon normalizing the trace, one can observe

ρ∗ =
1

1 +
√
ζ

(
ρ′ +R+

√
ζn−1I

)
� 0,

32

with ρ∗ii =
1
nn for all i ∈ [n]. Thus, nρ∗ is a feasible solution to the SDO problem (3). Further, by a triangle

inequality we have

‖ρ′ − ρ∗‖tr =
1

1 +
√
ζ

∥∥∥
√
ζρ′ +R+

√
ζn−1I

∥∥∥
tr
= O(

√
ζ). (26)

Combining equations (25) and (26) and noting ζ =
(

ǫ
n‖C‖F

)4
, applying another triangle inequality yields

‖ρ̃− ρ∗‖tr = O
(
ζ

1
4

)
= O

[(

ǫ

n‖C‖F

)4
] 1

4

 = O

(
ǫ

n‖C‖F

)
.

Then, the result follows from a matrix Hölder inequality:

|tr (nCρ)− tr (nCρ∗)| ≤ n‖C‖‖ρ− ρ∗‖tr = O
(
n‖C‖F ζ

1
4

)
= O

(
n‖C‖F

[
ǫ

n‖C‖F

])
= O (ǫ) .

5 Complexity

We now analyze the worst case overall running time of our Iterative Refinement Method given in Algorithm
2 in both the classical and quantum settings.

5.1 Classical running time

As we saw in Section 3, the complexity of using Algorithm 1 to solve the SDO problem (3) scales poorly in
the inverse precision, with the classical algorithm exhibiting an O(ǫ−12) dependence. In both the classical
and quantum cases, our iterative refinement scheme reconciles the poor scaling in ǫ because it possesses
the following two properties. First, we can obtain an arbitrarily precise solution to (5) in at most Õ 1

ζ
(1)

iterations. Second, it suffices to treat ξ as fixed for the oracle calls that occur in each iteration, as the
precision of the final solution is a byproduct of how we use these solution of the refining problems to produce
a solution to (5).

The next result formalizes the above argument, and establishes the complexity of Algorithm 2 for the
classical case.

Theorem 5. Let C ∈ Sn with row sparsity s and ǫ ∈ (0, 1). Then, fixing ξ ∈ (0, 1) with 0 < ǫ≪ ξ < 1, and

setting ζ =
(

ǫ
n‖C‖F

)4
, a classical implementation of Algorithm 2 solves (3) up to additive error O(ǫ) in

time

O
(
min{n2s, nω} · polylog

(
n, ‖C‖F ,

1

ǫ

))
.

The output of the algorithm is a classical description of a matrix ρ̃ ∈ Sn+ that is a ζ-precise solution to

(5). The entries of ρ̃ can be modified to construct a matrix ρ∗ at trace distance O
(

ǫ
n‖C‖F

)
of ρ̃ in time

O(n2), such that nρ∗ is a feasible point of the SDO problem (3).

Proof. Given that C is an s-sparse matrix, we can load C in O(ns) time, and from here we must compute
‖C‖F , which requires O(ns) arithmetic operations. In every iteration of Algorithm 2, we make a call to our
subroutine in Algorithm 1, before updating the solution and preparing the next refining problem. Updating
the solution involves matrix addition between two n × n matrices and requires O(n2) arithmetic opera-
tions, whereas updating Q and ε for the next refining problem can be accomplished using O(n) arithmetic
operations, as only the diagonal entries of Q need to be stored and maintained.

33

In view of Proposition 6, the dominant operation at each iteration is the use of Algorithm 1 to solve the
SDO problem at hand. By Proposition 6, Algorithm 1 can be used to solve (14) to additive error ξ in time

T classical
HU = O

(
min{n2s, nω} log2(n)ξ−3

)
.

If every call to Algorithm 1 is made using precision ξ2, then by Corollary 4, Algorithm 2 converges in at
most O

(
log(ζ−1)

)
iterations, and we can thus express the overall running time of Algorithm 2 as

O
((
min{n2s, nω} log2(n)ξ−6

)
log(ζ−1)

)
.

In the context of Algorithm 2, it suffices to carry out each of the calls to the SDO subroutine (calls to
Algorithm 1) using fixed (i.e., constant) precision ξ to obtain a ζ-precise solution to (5). The above complexity
thus reduces to

O
(
min{n2s, nω} log2(n) log(ζ−1)

)
.

For our choice of ζ =
(

ǫ
n‖C‖F

)4
, one can observe

O
(
min{n2s, nω} log2(n) log(ζ−1)

)
= O

(
min{n2s, nω} · polylog

(
n, ‖C‖F ,

1

ǫ

))
.

Proposition 10 certifies that the above running time suffices to obtain a ρ from which we can construct ρ∗

in time O(n2), such that nρ∗ is a feasible point of the SDO problem (3) satisfying

|γζn‖C‖F − tr (nρ∗C)| = O(ǫ),
and the proof is complete.

5.2 Quantum running time

Just as in the classical case, we show that a quantum implementation of Algorithm 2 mitigates the poor
scaling in the running time with respect to the inverse precision.

Our quantum implementation of Algorithm 2 is provided in Algorithm 3. The relevant error parameters
are the same as those appearing in Algorithm 2: (i) ξ, the fixed precision used to test closeness to the sets
Cη(γ−γ̃) and Dηε in every iteration, (ii) ζ, the precision to which the final solution solves (5), and (iii) ǫ,
the additive error to which we seek to solve (3). In our initialization steps we set the values of Q, ε and η
such that the first call to Algorithm 1 solves the original feasibility problem (10). We also create a vector
p = 0n×1 that will be used to maintain a classical description of the diagonal elements of our solution over
the course of the algorithm.

At every iteration k, a call is made to Algorithm 1 with separation oracles OCη(γ−γ̃)
and ODηε to solve

(14) using fixed precision ξ. If the oracles accept the candidate state, then Algorithm 1 returns a real-valued
vector y(k) ∈ R2 along with a diagonal matrix D(k) such that the Hamiltonian associated with the Gibbs
state that solves the refining problem is

H(k) = y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 D(k),

with ‖y(k)‖1 ≤ 4 log(n)ξ−2 and ‖D(k)‖ ≤ 1 for every k ≥ 0. This allows us to efficiently describe the solution
to each refining problem, and once the algorithm has terminated, it facilitates an efficient way to describe
the final solution as well.6 First, observe that the matrices Q(k) and D(k) can be completely described by
their diagonal elements; letting q(k) ∈ Rn and d(k) ∈ Rn be the vectors that store the diagonal elements of
Q(k) and D(k), respectively, we have

Q(k) = (ee⊤ − I) + diag
(
q(k)

)
,

D(k) = diag
(
d(k)

)
.

6Requiring an explicit classical description of the solution would in fact lead to a worse running time overall when compared
to the classical implementation we studied in Section 5.1.

34

Therefore, we store the solution to the refining problem at iteration k as the tuple

(η(k), y(k), q(k), d(k), δ(k)),

and the final solution to (5) is defined as

ρ̃ =

K∑

k=0

1

η(k)(1 + nδ(k))

Q(k) ◦

exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])) + δ(k)I

 . (27)

We point out that this marks a key difference between the output of our algorithm and other quantum SDO
solvers based on Gibbs sampling [10, 11, 12, 64, 65], which need only return a single state preparation pair.
This however does not increase the cost of the method; the iteration bound in Corollary 4 ensures that there
are only at most Õ 1

ζ
(1) (i.e., a poly-logarithmic number) of these tuples to be stored over the course of the

algorithm. Using the QRAM input model, one can use the stored tuples to construct a block-encoding of
the final solution up to error θ using Õn,‖C‖F , 1ǫ ,

1
θ
(
√
n) queries to the QRAM and Õn,‖C‖F , 1ǫ

(n) classical
operations. This construction, and the associated time complexity are analyzed later in Proposition 11. We
further demonstrate that provided classical access to an s-sparse matrix A ∈ Rn×n (with subnormalization

factor 1) and access to QRAM, one can estimate tr(Aρ̃) to additive error θ using Õn,‖C‖F , 1ǫ

(√
n
θ

)
queries

to the QRAM and Õn,‖C‖F , 1ǫ
(ns) classical operations. If A has a subnormalization factor αA > 1, then θ

must be scaled down by αA, increasing the cost.
Additionally, we require Algorithm 1 to return the estimates p̃(k) ∈ Rn (a classical estimate of the diagonal

elements of the solution to the refining problem) and c̃(k) ∈ R (a classical estimate of the objective value
attained by the solution of the refining problem) that are used to test ξ-closeness for the accepted state. In this
fashion, we can (classically) prepare the refining problem data for the next iteration without increasing the
cost of the algorithm with respect to n; the objective value can be updated using O(1) arithmetic operations
using c̃(k), while updating the residuals along the diagonal of ρ requires O(n) arithmetic operations provided
classical access to p̃(k).

If the current solution is indistinguishable up to precision ζ from the maximally mixed state n−1I, and
provides an objective value of at least γ − ζ, the algorithm terminates and reports the current solution.
Otherwise, we construct the refining problem associated with our current solution and proceed to the next
iteration.

The next result gives the overall running time required to solve (3) to additive error O(ǫ) using the
QRAM input model.

Theorem 6. Let C ∈ Sn, ǫ ∈ (0, 1), and set ζ =
(

ǫ
n‖C‖F

)4
. Assume we have classical access to C. Then,

in the QRAM input model, Algorithm 3 solves (3) up to additive error O(ǫ) using

O
(
n1.5 · polylog

(
n, ‖C‖F ,

1

ǫ

))

accesses to the QRAM and O(ns) classical arithmetic operations.
The output of the algorithm is a collection of tuples {(η(k), y(k), q(k), d(k), δ(k))}Kk=0 such that

ρ̃ =

K∑

k=0

1

η(k)
(
1 + nδ(k)

)

Q(k) ◦ C̃

exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])) + δ(k)I

 � 0,

is a ζ-precise solution to (5). The entries of ρ̃ can be modified to construct a matrix ρ∗ at trace distance

O
(

ǫ
n‖C‖F

)
of ρ̃ in time O(n2), such that nρ∗ is a feasible point of the SDO problem (3).

35

Algorithm 3 Iterative Refinement for SDO Approximations of QUBOs using a quantum computer

Input: Error tolerances ǫ ∈ (0, 1) and ζ =
(

ǫ
n‖C‖F

)4
, upper bound on objective value γ ∈ [−1, 1]

Output: Tuples
{(

η(k), y(k), q(k), d(k), δ(k)
)}K

k=0
that define a ζ-precise solution ρ̃ to (5) using Equation (27)

Initialize: p̃, p̂← 0n, Q← ee⊤, εi = 1
n for i ∈ [n], γ̃, γ̂ ← 0, η(0) ← 1, δ(0) ← 0, k ← 1

(y(0), D(0), p̃(0), c̃(0))← solve (14) to precision ξ2

16 using Algorithm 1 with oracles OCη(γ−γ̃)
and ODηε

γ̃(0) ← c(0)

ε
(0)
i ← p̃

(0)
i − 1

n for i ∈ [n]

Qii ← sign(−ε(0)i) for i ∈ [n]
η(1) ← 1

max{γ−γ̃(0),‖ε(0)‖1}
δ(1) ← 2

n

(
‖ε(0)‖1 + (ξ/4)2

η(1)

)

while max {γ − γ̃, ‖ε‖1} > ζ do

1. Store refining problem data
(
Q ◦ C̃, η(k)ε(k−1), η(k)γ̃(k−1)

)

2. (y(k), D(k), p(k), c̃(k))← Solve (14) to precision ξ2

16 using Algorithm 1

3. Update estimate of diagonal entries

p̂
(k)
i ← p̃

(k−1)
i +

Qii

η(k)
p
(k)
i for i ∈ [n]

4. Apply spectrum shift to estimate of diagonal entries and update objective value

p̃
(k)
i ← 1

1 + nδ(k)

(
p̂
(k)
i + δ(k)

)
for i ∈ [n], γ̃(k) ← γ̃(k−1) +

1

η(k)

[
1

1 + nδ(k)

(
c̃(k) + δ(k) tr(C̃)

)]

5. Store diagonal elements of Q and D(k) as the vectors
(
q(k), d(k)

)
∈ Rn × Rn

6. Store description of solution to the refining problem (η(k), y(k), q(k), d(k), δ(k))

7. Compute element-wise deviations from the maximally mixed state:

ε
(k)
i ← p̃

(k)
i −

1

n
for i ∈ [n]

8. Classically update refining problem parameters:

Qii ← sign
(
−ε(k)i

)
for i ∈ [n], η(k+1) ← 1

max
{
γ − γ̃(k), ‖ε(k)‖1

}

9. Classically update spectrum shift parameter:

δ(k+1) ← 2

n

(∥∥∥ε(k)
∥∥∥
1
+

(ξ/4)2

η(k+1)

)

10. k ← k + 1

end

36

Proof. Given that C is an s-sparse matrix, we can classically load C in O(ns) time. Similarly, for normaliza-
tion purposes we classically compute ‖C‖F , which requires O(ns) arithmetic operations. In each iteration
we use Algorithm 1 to solve (14), and use classical estimates of the diagonal elements of the refining solution,
and a classical estimate of the objective value attained by the refining solution to update the solution and
data for the refining problem we need to solve in the next iteration.

Let T quantum
HU denote the cost of using Algorithm 1 as an approximate SDO subroutine at each iterate of

Algorithm 3. By Proposition 8, Algorithm 1 solves (14) to additive error ξ using at most

Õn
ξ

(
n1.5ξ−5

)

accesses to the QRAM. In the context of Algorithm 3, ξ is a fixed constant (and hence, so is ξ2), so each
ξ2-precse oracle call to Algorithm 1 has an associated cost of

T quantum
HU = Õn

(
n1.5

)

accesses to the QRAM.
Classically updating the objective value requires O(1) arithmetic operations while updating the vector p

which stores a classical description of the diagonal elements of our solution requires O(n) classical arithmetic
operations. Similarly, accounting for the spectrum shift requires O(n) arithmetic operations; again this

step is limited to operations on n-dimensional vectors and computing the trace of C̃ (which can be stored
once at the start of the algorithm). Likewise, ε and Q can each be updated using O(n) classical arithmetic
operations, as we only need to store the diagonal elements of Q. This also implies that we can update
Q ◦ C̃ using Õn(n) operations, for only the diagonal elements need to be updated. When compared to
loading and normalizing the coefficient matrix C, or our use of Algorithm 1 as a subroutine for solving (14),
these intermediate computation steps are negligible and do not factor into the overall running time using O
notation.

By Corollary 4, Algorithm 3 terminates in at most Õ 1
ζ
(1) iterations. Therefore, the worst case complexity

of Algorithm 3 can be bounded by

O
(
n1.5 · polylog

(
n, ‖C‖F ,

1

ǫ

))

accesses to the QRAM, and O (ns) classical arithmetic operations. Just as in the proof of Theorem 5,

applying Proposition 10 with our choice of ζ =
(

ǫ
n‖C‖F

)4
implies that the above running time is sufficient

to obtain a solution that can be used to solve (3) up to additive error O(ǫ), and the proof is complete.

We analyze the cost of Algorithm 3 without access to QRAM in Appendix A. Using the sparse-access
input model, one can show that the resulting scheme exhibits an oracle complexity of

O
(
n1.5s0.5+o(1) · polylog

(
n, ‖C‖F ,

1

ǫ

))
,

and requires O
(
n2.5s0.5+o(1) · polylog

(
n, ‖C‖F , 1ǫ

))
additional gates. To summarize, in the absence of

QRAM, the number of oracle accesses is a factor
√
s larger due to the Hamiltonian simulation, and the

gate complexity increases by a factor n due to the cost of constructing OD without QRAM.
We conclude this section by establishing the costs of preparing a block-encoding of the final solution, and

estimating trace inner products of the form tr(Aρ̃) for a given matrix A.

Proposition 11. Suppose that Algorithm 3 is run with ζ =
(

ǫ
n‖C‖F

)4
for some ǫ ∈ (0, 1), and termi-

nates after K iterations, classically outputting the tuples
{(

η(k), y(k), q(k), d(k), δ(k)
)}K

k=0
. Then, letting

37

C̃ = C‖C‖−1
F be stored in QRAM, and denoting the refining problem at iteration k by ρ(k), one can use

{(η(k), y(k), q(k), d(k), δ(k))}Kk=0 to implement an (n,O(log(n), θ)-block-encoding of

ρ̃ =

K∑

k=0

1

η(k)
(
1 + nδ(k)

)

Q(k) ◦

exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])) + δ(k)I

 ,

with at most Õn,‖C‖F , 1ǫ ,
1
θ
(
√
n) queries to the QRAM and Õn,‖C‖F , 1ǫ ,

1
θ
(n) classical operations.

Proof. First, note that

exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])) = n−1I

whenever y = (0, 0)⊤. Thus, by choosing

∆ :=

K∑

k=1

δ(k)

η(k)
(
1 + nδ(k)

) ,

and setting y(K+1) = (0, 0)⊤, δ(K+1) = 1
n , η

(K+1) = 1
n∆ , and Q(K+1) = ee⊤ we can simplify the expression

of the final solution to

ρ̃ =
K+1∑

k=0

1

η(k)
(
1 + nδ(k)

)Q(k) ◦
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])) .

To ensure that the stated complexity holds, for each k ∈ [K + 1], we block-encode

A(k) = Q(k) ◦ C̃ +D(k).

First, note that with classical access to C and q(k), one can store Q(k)◦C̃ in the QRAM by properly updating
C̃ in the QRAM. This step requires O(n) classical operations, as the only non-trivial computation that is

performed is limited to the diagonal elements of the involved matrices. Then, with Q(k)◦C̃ stored in QRAM,

noting that
∥∥∥Q(k) ◦ C̃

∥∥∥
F
≤ 1 holds for every k ∈ [K+1], we apply Lemma 3 to construct a (1, log(n)+2, θ1)-

block-encoding of Q(k) ◦ C̃ in time O
(
polylog

(
n
θ1

))
. Similarly, as we saw in the proof of Proposition 7,

classical access to d(k) and access to QRAM implies one can implement a (1, log(n) + 3, θ1)-block-encoding

of D(k) can be constructed in time Õ n
θ1
(1).

Again following the proof of Proposition 7, applying Corollary 2 with y(k) satisfying ‖y(k)‖1 = Õn(ξ
−1)

implies that we can construct a unitary which prepares a copy of the Gibbs state ρ(k) encoding the solution
to the refining problem at iteration k with at most

Õn
ξ

(√
nαξ−1

)
= Õn

(√
n
)
,

accesses to the QRAM, as α = 1 and ξ is a fixed constant. Therefore, by Lemma 7, preparing a (1, log(n) +

a, θ1) block-encoding of a purification of ρ(k) thus requires Õ n
θ1
(
√
n) queries to the QRAM.

Next, provided classical access to the vector q(k) that store the diagonal elements of Q(k), access to
QRAM implies that we can efficiently implement an oracle OQ(k) that returns the entries of Q(k) in a binary
description:

OQ(k) : |i〉 |j〉 |0〉⊗p 7→ |i〉 |j〉
∣∣∣q(k)ij

〉
, ∀i, j ∈ [2logn]− 1,

38

where q
(k)
ij is a p-bit binary description of the ij-matrix element of Q(k) for k = 0, . . . ,K+1. By construction

each matrix Q(k) may be fully dense, and hence an application of Lemma 4 with sr = sc = n asserts that in
the presence of QRAM, one can construct a (n, log(n) + 3, θ2)-block-encoding of Q(k) in time Õ n

θ2
(1).

From here, we can utilize Proposition 4 with θ1 = θ2 = θ̃
10 to construct an (n, a+4 log(n2)+12, θ̃)-block-

encoding of Q(k) ◦ ρ(k) in time Õn

θ̃
(1). Repeating the above steps for k = 0, . . . ,K + 1, it follows that we

can block-encode each of the terms Q(k) ◦ ρ(k) using at most

Õn, 1
θ̃

(
K
√
n
)
= Õn,‖C‖F , 1ǫ ,

1
θ̃

(√
n
)

queries to the QRAM and Õn,‖C‖F , 1ǫ ,
1
θ̃
(n) classical operations, asK = O

(
polylog

(
n, ‖C‖F , 1

ǫ

))
by Corollary

4.
Finally, what remains is to take the linear combination of these terms. To do so, we choose our weights

to be wk = 1
2(1+nδ(k))η(k) , which indeed satisfies ‖w‖1 ≤ 1. Then, we can construct a (K + 2, log(K + 2), 0)-

state-preparation pair PL, PR for w, which can be constructed by taking a log(K + 2)-fold tensor product
of the Hadamard gate, i.e.,

PL = PR =
1√
2

(
1 1
1 −1

)⊗ log(K+2)

.

We are now in a position to apply Proposition 1, and choosing θ̃ = θ
n , we can obtain W upon adding a

control qubit to the circuits used to construct the block-encoding of each Q(k) ◦ ρ(k). As a result, we obtain
an (n,O(log(n), θ)-block-encoding of ρ̃ with a single use of W,PR and P †

L. Summing the cost of each step in
the construction we arrive at total cost of

Õn,‖C‖F , 1ǫ ,
1
θ

(√
n
)

queries to the QRAM and Õn,‖C‖F , 1ǫ ,
1
θ
(n) classical operations, and proof is complete.

Proposition 12. Suppose that Algorithm 3 is run with ζ =
(

ǫ
n‖C‖F

)4
for some ǫ ∈ (0, 1), and termi-

nates after K iterations, classically outputting the tuples
{(

η(k), y(k), q(k), d(k), δ(k)
)}K

k=0
. Let A ∈ Rn×n

be a matrix with ‖A‖F ≤ 1 and assume classical access to A and C/‖C‖F . Then, with access to QRAM,

one can compute a θ-precise estimate of tr(Aρ̃) using at most Õn,‖C‖F , 1ǫ

(√
n
θ

)
queries to the QRAM and

Õn,‖C‖F , 1ǫ
(n) classical operations.

Proof. See the proof of Theorem 8 in Appendix B.

A QRAM-free version of Proposition 12 is also analyzed in Appendix B, and the cost is summarized
in Corollary 5. Without access to QRAM, the cost increases with respect to n because computing the
Hadamard product of block-encodings introduces n as a subnormalization factor. This is compounded in
the running time, upon noting that we then have to scale down the error for the amplitude estimation steps
by n, and constructing sparse-access oracles for the intermediate block-encodings of Q and D that arise in
the trace estimation procedure requires Õn(n) gates.

5.3 Comparison to existing SDO algorithms

Table 1 presents a comparison of the running time results for the algorithms we have proposed with the
running times of the best performing methods from both the classical and quantum literature when applied
to solving (3).

Note that when directly solving (3), m = n, and any feasible solution X to (3) satisfies tr (X) = n,
implying R = n for the algorithms based on the (Q)MMWU framework. We also point out that the running
times in Table 1 take into account the role of sparsity in context of the algorithms, which is measured as the

39

References Method Runtime Error Scaling

[35] IPM Õn, 1ǫ

(
nω+0.5

)
ǫ

[7] QIPM Õn,κ, 1ǫ

(√
n(n3κǫ−1 + n4)

)
ǫ

[42] MMWU Õn, 1ǫ

(
nsǫ−3.5

)
‖C‖ℓ1ǫ

[64] QMMWU Õn, 1ǫ

(
n5.5sǫ−4

)
n‖C‖ǫ

[11] (Classical) HU Õn,‖C‖
(
min{n2s, nω}ǫ−12

)
n‖C‖ǫ

[11] (Quantum) HU Õn,‖C‖, 1ǫ

(
n2.5s0.5+o(1)ǫ−28+o(1) exp

(
1.6
√
log(ǫ−1)

))
n‖C‖ǫ

[11] (Quantum) HU-QRAM Õn,‖C‖, 1ǫ

(
n1.5s0.5+o(1)ǫ−28+o(1) exp

(
1.6
√
log(ǫ−1)

))
n‖C‖ǫ

This work (Classical) IR-HU Õn,‖C‖F , 1ǫ

(
min{n2s, nω}

)
ǫ

This work (Quantum) IR-HU Õn,‖C‖F , 1ǫ

(
n2.5s0.5+o(1)

)
ǫ

This work (Quantum) IR-HU-QRAM Õn,‖C‖F , 1ǫ
(n1.5) + ns ǫ

Table 1: Total running times for classical and quantum algorithms to solve (3).

maximum number of nonzero entries per row of the constraint matrices A1, . . . , An. When using either an
IPM or CPM to solve (3), the n constraint matrices are Ai = eie

⊤
i (with row sparsity one) enforcing Xii = 1

for each diagonal element. On the other hand, algorithms based on the (Q)MMWU or HU frameworks solve
(3) by reducing the problem to a feasibility problem; C enters into the resulting formulation as another
constraint matrix, and as a result, the relevant sparsity parameter is the maximum number of non-zeroes
per row of C, which we denote by s in Table 1.

There are additional considerations that need to be taken into account when making comparisons across
methodologies listed in Table 1. Broadly speaking, both (Q)MMWUs and HU require normalizing the
problem by an upper bound on the trace of a primal solution, and in the case of (3), we have the natural
bound tr(X) = n. Moreover, (Q)MMWUs and HU additionally normalize the cost matrix so that it exhibits
unit norm with respect to some norm. While these modifications amount to scaling the optimal objective
value of (3) by a fixed quantity, without employing any safeguards such as IR, these modifications impact
the scaling of the error as reflected in the fourth column of Table 1. On the contrary, (Q)IPMs do not
require the SDO problem to be normalized in any way. Finally there is a distinction with regard to output;
(Q)IPMs explicitly report a classical description of the solution X , whereas only the classical HU algorithm
of [11] and our own classical IR-HU method do so; the primal QMMWU of [64] reports a state-preparation
pair y, and the MMWU algorithm found in [42] reports a “gradient” G ∈ Sn such that X = W exp(G)W
for a diagonal matrix W . As we noted earlier, (Q)IPMs and (Q)MMWUs also utilize different definitions of
optimality.

It can be easily seen that both the classical and quantum implementations of our proposed methodology
outperform all existing algorithms that exhibit poly-logarithmic dependence on the precision ǫ. Our classical
algorithm is only outperformed with respect to dimension by our own quantum algorithms, and the algorithm
from [42], which has an exponentially worse dependence on the inverse prevision. Moreover, to achieve the

same error scaling as our algorithms, the algorithm from [42] would require time Õn, 1ǫ

(
‖C‖3.5ℓ1

nsǫ−3.5
)
. Up

to poly-logarithmic factors, our quantum algorithms outperform each of the classical and quantum solvers
in every parameter, suggesting the first evidence of quantum advantage for solving a special class of SDO
problems. Moreover, our implementation with access to QRAM dominates all other algorithms. We therefore
conclude that our proposed algorithms are respectively, the fastest both in the classical and quantum regimes.

6 Conclusion

In this work we devised an iterative refinement scheme for a particular class of semidefinite optimization
problems. The key to our idea behind our speedup is to solve a sequence of related SDO problems in fixed

40

low precision, rather than solve one SDO problem using high accuracy requirements. Moreover, our solutions
satisfy a far stronger approximation guarantee over previous quantum solution methodologies for this class of
problem. We show that, provided access to QRAM, a quantum implementation of our algorithm can produce
accurate solutions to SDO approximations of QUBO problems in time O

(
ns+ n1.5 · polylog

(
n, ‖C‖F , 1

ǫ

))

in the worst case. In the absence of QRAM, one can bound the running time of the quantum algorithm
using using the sparse-access input model, in which case the algorithm exhibits an oracle complexity of
O
(
n2.5s0.5+o(1) · polylog

(
n, ‖C‖F , 1

ǫ

))
. A classical implementation of the algorithm exhibits worst case

running time of O
(
min{n2s, nω} · polylog

(
n, ‖C‖F , 1

ǫ

))
, which is at least a

√
n factor better than classical

IPMs.
When compared to the best performing algorithms in the literature, our algorithms are the fastest in

both the quantum and classical regimes, respectively. This work indicates that there could be a genuine
quantum advantage (in the QRAM model) for this specific class of SDO problems; to establish such an
advantage, one would have to show that no classical algorithm can beat the quantum running time. At the
moment, we can only make the weaker claim that our quantum algorithm is faster than any currently known
classical algorithm. We believe one can improve the theoretical performance of our classical algorithm by not
explicitly computing the density operator in our subroutines. In particular, it may be possible to construct
the separation oracles as we do in the quantum setting using techniques to classically estimate trace inner
products of the form tr(Aρ) (see, e.g., Appendix A in [65]), and applying ideas developed in [4, 42] to estimate
the diagonal elements of matrix exponentials via randomized projection [37]. It remains an open question as
to whether our techniques can be applied to general SDO problems using the matrix-multiplicative weights
update framework as a subroutine.

Acknowledgements

The authors are grateful to David Gross and Richard Kueng, who pointed out an error in an earlier version
of this paper. This project has been carried out thanks to funding by the Defense Advanced Research
Projects Agency (DARPA), ONISQ grant W911NF2010022, titled The Quantum Computing Revolution
and Optimization: Challenges and Opportunities.

A Running time of Algorithm 3 without QRAM

The following result from [11] gives the sample complexity of implementing the oracles in the sparse-access
model.

Lemma 16 (see, proof of Lemma 3.3 in [11]). We can implement the oracle OCγ on a quantum computer
given access to O(ǫ−2) copies of a state that is an ǫ

8 -approximation of the input state ρ in trace distance.
The oracle ODn can be implemented using O(nǫ−2) ǫ

8 -approximate copies of the input, and the classical
post-processing time needed to implement the oracle is O(nǫ−2).

Next, we bound the overall complexity of Algorithm 1 without access to QRAM.

Proposition 13. Suppose that C ∈ Sn has row sparsity s and ξ ∈ (0, 1). Then, in the sparse-access input
model, the complexity of solving (5) up to additive error ξ using Algorithm 1 on a quantum computer requires

Õn

(
n1.5√s1+o(1)

ξ−7+o(1) exp
(
1.6
√
log(ξ−1)

))

queries to the input oracle OC and Õn

(
n2.5√s1+o(1)

ξ−7+o(1) exp
(
1.6
√
log(ξ−1)

))
additional gates.

Proof. Our proof can be viewed as the QRAM-free analogue of the discussion found in [11, Section 3.4], and
we repeat it here for completeness. In order to derive an appropriate bound on the per-iteration cost, we
need to evaluate the cost of constructing our separation oracles. By Lemma 16, we can conclude that the

41

time to construct the oracle ODn for the diagonal elements dominates that of constructing the oracle OCγ to
test the objective value.

We now turn our attention to the cost of simulating our Hamiltonian H . From the results in [57,

Appendix] it follows that we can produce a state that is ξ
8 close to ρ using Õ(√nξ−3) invocations of a

controlled U which satisfies ∥∥U − eit0H
∥∥ ≤ O

(
ξ3
)
,

with t0 = π
4‖H‖ . Further, the authors in [11] note that each of the Hamiltonians we seek to simulate are

of the form H = y1C‖C‖−1
F + y2D where y1, y2 = O(log(n)ξ−1) and D is a diagonal matrix which satisfies

‖D‖ ≤ 1. Invoking [16, Theorem 1], we can simulate H for time t up to error ξ3 using

Õ
(
t(a+ b) exp

(
1.6
√
log (log(n)tξ−3)

))

separate simulations of y1C‖C‖F and y2D.
As noted in [11], access to the oracles Osparse and OC we described in Section 2.1.1 allows us to sim-

ulate exp(itC̃) in time O
(
(t
√
s)1+o(1)ξo(1)

)
if we utilize the algorithm in [45]. Similarly, we follow [11] in

constructing an oracle OD acting on C ⊗ (C2)⊗a, where a is a sufficiently large constant such that we can
represent the diagonal elements of D as

OD |i, z〉 7→ |i, z ⊕Dii〉

to the desired level of precision in binary. Accordingly, we can simulate eiDt for t = Õ(ξ−1) using Õn(1)

queries to OD and Õn(1) elementary operations [8], and we can implement OD using Õn(n) gates.

To summarize, the Gibbs sampler from [57] requires Õ(√nξ−3) Hamiltonian simulation steps, each of
which requires time

Õ
(√

s
1+o(1)

ξo(1) exp
(
1.6
√
log(ξ−1)

))
.

Hence, each iteration of Algorithm 1 requires a total of

Õn

(
n1.5√s1+o(1)

ξ−5+o(1) exp
(
1.6
√
log(ξ−1)

))

sparse-access oracle queries. Combining the above per-iteration cost with the iteration bound O(log(n)ξ−2)
provided in Theorem 3, it follows that Algorithm 1 solves (5) up to additive error ξ with at most

Õn

(
n1.5√s1+o(1)

ξ−7+o(1) exp
(
1.6
√
log(ξ−1)

))

queries to the input oracle OC and Õn

(
n2.5
√
s
1+o(1)

ξ−7+o(1) exp
(
1.6
√
log(ξ−1)

))
additional gates.

Theorem 7 formalizes the complexity of of Algorithm 3 in the quantum setting without access to QRAM.
In our analysis, we employ the same Hamiltonian simulation subroutines and Gibbs sampler used in [11] to
construct our separation oracles.

Theorem 7. Let C ∈ Sn with row sparsity s and ǫ ∈ (0, 1). Then, setting ζ =
(

ǫ
n‖C‖F

)4
and fixing

ξ = 10−2, a quantum implementation of Algorithm 3 using the sparse-access input model solves (3) up to
additive error O(ǫ) using

O
(
n1.5s0.5+o(1) · polylog

(
n, ‖C‖F ,

1

ǫ

))

queries to the input oracle OC and O
(
n2.5s0.5+o(1) · polylog

(
n, ‖C‖F , 1

ǫ

))
additional gates.

The output of the algorithm is a collection of tuples {(η(k), y(k), q(k), d(k), δ(k))}Kk=0 such that

ρ̃ =

K∑

k=0

1

η(k)(1 + nδ(k))

Q(k) ◦

exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])) + δ(k)I

 � 0,

42

is a ζ-precise solution to (5). The entries of ρ̃ can be modified to construct a matrix ρ∗ at trace distance

O
(

ǫ
n‖C‖F

)
of ρ̃ in time O(n2), such that nρ∗ is a feasible point of the SDO problem (3).

Proof. Given that C is an s-sparse matrix, we can load C in O(ns) time. Similarly, for normalization
purposes we classically compute ‖C‖F , which requires O(ns) arithmetic operations. In each iteration we use
Algorithm 1 to solve (14), and use classical estimates of the diagonal elements of the refining solution, and
a classical estimate of the objective value attained by the refining solution to update the solution and data
for the refining problem we need to solve in the next iteration.

Letting T sparse
HU be the cost of using Algorithm 1 as an approximate SDO subroutine, we saw in Proposition

13, Algorithm 1 solves (14) to additive error ξ using

T sparse
HU = Õn

(
n1.5
√
s
1+o(1)

ξ−7+o(1) exp
(
1.6
√
log(ξ−1)

))

queries to the oracle describing the problem data and Õn

(
n2.5
√
s
1+o(1)

ξ−7+o(1) exp
(
1.6
√
log(ξ−1)

))
addi-

tional gates. In the context of Algorithm 3, ξ is a fixed constant, so the cost of our oracle call to Algorithm
1 simplifies to

T sparse
HU = Õn

(
n1.5√s1+o(1)

)

queries to the oracle describing the problem data and Õn

(
n2.5√s1+o(1)

)
additional gates.

Classically updating the objective value requires O(1) arithmetic operations while updating the vector p
which stores a classical description of the diagonal elements of our solution as

pi ← pi +
Qii

η(k)
p̃
(k)
i

requires O(n) arithmetic operations. Again, ε and Q can each be updated using O(n) arithmetic operations,

as we only need to store the diagonal elements of Q. This also implies that we can also calculate Q ◦ C̃ in
time O(n), for only the element-wise products along the diagonal are non-trivial. When compared to loading
and normalizing the data or our use of Algorithm 1 as a subroutine for solving (14), these intermediate
computation steps are negligible and do not factor into the overall running time using O notation.

Factoring in the O
(
polylog

(
1
ζ

))
= O

(
polylog

(
n, ‖C‖F , 1

ǫ

))
from Corollary 4, it follows that a quantum

implementation of Algorithm 3 requires at most

O
(
n1.5s0.5+o(1) · polylog

(
n, ‖C‖F ,

1

ǫ

))

queries to the input oracle OC and O
(
n2.5s0.5+o(1) · polylog

(
n, ‖C‖F , 1

ǫ

))
additional gates. Just as in the

proof of Theorem 5, applying Proposition 10 with our choice of ζ =
(

ǫ
n‖C‖F

)4
implies that the above running

time is sufficient to obtain a solution that can be used to solve (3) up to additive error O(ǫ), and the proof
is complete.

B Estimating trace inner products with the final solution

Given that we do not explicitly report a classical description of the final solution ρ̃ defined in equation (27),
it may be of interest to understand how, for a user specified matrix A, one can compute the trace inner
product tr(Aρ̃). We outline a procedure for doing so using the state preparation pair description of solution
{(η(k), y(k), q(k), d(k), δ(k))}Kk=0 in Algorithm 4, and subsequently analyze the complexity of doing so.

Theorem 8. Let A ∈ Rn×n, and C̃ ∈ Sn be stored in QRAM, θ ∈ (0, 1), and {(η(k), y(k), q(k), d(k), δ(k))}Kk=0

be a state preparation pair description of the solution obtained from running Algorithm 3 to final precision

43

Algorithm 4 Trace estimation procedure for the final solution

Input: Access to an s-sparse matrix A ∈ Rn×n with ‖A‖F ≤ 1, state preparation pair description of solution

{(η(k), y(k), q(k), d(k), δ(k))}Kk=0, precision θ ∈ (0, 1), ζ =
(

ǫ
n‖C‖F

)4

Output: A θ-precise classical estimate of tr(Aρ̃)

Initialize: a← 0, k ← 0, y(K+1) ← (0, 0)⊤, δ(K+1) = 0, η(K+1) =
∑

k∈[K] η
(k)(1+nδ(k))

n
∑

k∈[K] δ
(k) , Q(K+1) ← ee⊤

for k = 0, . . . ,K + 1 do

1. Implement an (α, a, ζ/2(K + 2))-block-encoding of Q(k) ◦A

2. Use block-encoding of Q(k) ◦A to implement a trace estimator for

a(k) = tr

(
Q(k) ◦A

)

exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)]))

3. Use O
(
K
θ

)
samples from the trace estimator to produce θ

K+2 -precise estimate ã(k) of a(k)

4. Update solution:

a← a+
1

η(k)(1 + nδ(k))
ã(k)

5. k ← k + 1

end

ζ =
(

ǫ
n‖C‖F

)4
. Suppose A is an s-sparse matrix with ‖A‖F ≤ 1, and assume classical access to A and

C̃ ∈ Sn. Then, Algorithm 4 outputs a θ-precise estimate of tr(Aρ̃) using at most

Õn,‖C‖F , 1ǫ

(√
n

θ

)

queries to the QRAM and Õn,‖C‖F , 1ǫ
(ns) classical operations.

Proof. We begin by establishing the correctness of Algorithm 4. First, note that following the proof of
Proposition 11, we can simplify the expression of the final solution to

ρ̃ =

K+1∑

k=0

1

η(k)(1 + nδ(k))
Q(k) ◦

exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)]))

 .

by setting y(K+1) = (0, 0)⊤, δ(K+1) = 0, η(K+1) = 1
n

∑
k∈[K]

η(k)(1+nδ(k))
δ(k) , and Q(K+1) = ee⊤. Then, by

44

linearity of the trace and Lemma 1, one has:

tr(Aρ̃) = tr

A

K+1∑

k=0

1

η(k)(1 + nδ(k))
Q(k) ◦

exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)]))

=

K+1∑

k=0

1

η(k)(1 + nδ(k))
tr

A

Q(k) ◦

exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)]))

=

K+1∑

k=0

1

η(k)(1 + nδ(k))
tr

(
Q(k) ◦A

) exp
(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)]))

 .

In other words, the output of Algorithm 4 is indeed an estimate of tr(Aρ̃).
Next, we analyze the complexity of the procedure. If A is classically known, one can store Q(k) ◦A in the

QRAM using O(ns) classical operations, as A is s-sparse. With Q ◦ A stored in a QRAM data structure,

one can apply Lemma 3 to implement an (1, log(n)+ 2, ζ/2(K+2))-block-encoding of Q ◦A in time ÕnK
ζ
(1)

(as ‖Q ◦ A‖F ≤ ‖A‖F ≤ 1 for any Q defined according to (13)). As we saw in the proof of Proposition 11,

with C̃ stored in QRAM, one can implement the state

ρ(k) =
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)])

tr
(
exp

(
−
[
y
(k)
1 Q(k) ◦ C̃ + y

(k)
2 diag

(
d(k)

)]))

using at most
Õn

(√
n
)
,

accesses to the QRAM and O(n) classical operations.
Having prepared the state ρ(k) and a (1, log(n) + 2, ζ/2(K + 2))-block-encoding Uk of Q(k) ◦ A, Lemma

8 asserts that one can implement a trace estimator for

tr
[(

Q(k) ◦A
)
ρ(k)

]

with bias at most ζ
K+2 using Õ(1) applications of Uk and U †

k . Applying amplitude estimation using O
(
K
θ

)
=

Õn,‖C‖F , 1ǫ

(
1
θ

)
samples from the estimator, we obtain a θ

K+2 -precise classical estimate ã(k) of a(k), as K =

O
(
polylog

(
n, ‖C‖F , 1ǫ

))
.

From here, we classically update a using O(1) arithmetic operations. Therefore, each iteration of Algo-
rithm 4 requires at most

Õn,Kζ

(√
n

θ

)

accesses to the QRAM and O(ns) classical operations. Summing over K + 2 iterations implies a total of

Õn,Kζ

(
K

(√
n

θ

))
= Õn,‖C‖F , 1ǫ

(√
n

θ

)

accesses to the QRAM and
O (Kns) = Õn,‖C‖F , 1ǫ

(ns)

classical operations. The proof is complete.

Note that if ‖A‖F > 1, because of the subnormalization to block-encode A we need to increase precision
of the estimation procedure: the cost increases by a factor proportional to ‖A‖F .

45

Corollary 5. Let A ∈ Rn×n, θ ∈ (0, 1), and {(η(k), y(k), q(k), d(k), δ(k))}Kk=0 be a state preparation pair

description of the solution obtained from running Algorithm 3 to final precision ζ =
(

ǫ
n‖C‖F

)4
. Suppose A

is an s-sparse matrix with ‖A‖F ≤ 1, and assume sparse oracle access to A and C̃ ∈ Sn. Then, Algorithm
4 outputs a θ-precise estimate of tr(Aρ̃) using at most

Õn,‖C‖F , 1ǫ

(
n2.5s2

θ

)

queries to OA, OC , and Õn,‖C‖F , 1ǫ

(
n3.5s2

θ

)
additional gates.

Proof. Provided classical access to A, we use Lemma 4 with sr = sc to construct an (s, log(n) + 3, θ/n)-
block-encoding of A with two uses of OA (an oracle describing the elements of A in binary), and additionally

using Õn (1) one and two qubit gates.

Likewise, with access to the oracle OC describing the elements of C̃, one can construct an (s, log(n) +

3, θ/n)-block-encoding of C̃ with two uses of OC , and additionally using Õn (1) one and two qubit gates.
Note that without access to QRAM, we must compute the Hadamard products by taking the Hadamard
products of block-encodings, which causes the subnormalization factor for the Hadamard product Q(k) ◦ C̃
to be ns, as Q(k) may be fully dense and C is s-sparse. It follows that preparing one copy of each Gibbs
state requires

Õn

(√
n(ns)

)
= Õn

(
n1.5s

)

accesses to block-encodings of Q(k) ◦ C̃ and D, which each require an additional Õn(n) gates (to construct
sparse-access oracles for Q(k) and D).

Similarly, the subnormalization factor for a block-encoding Uk of Q(k) ◦ A will be ns. Having prepared
the state ρ(k) and a block-encoding Q(k) ◦A, Lemma 8 asserts that one can implement a trace estimator for

tr
[(

Q(k) ◦A
)
ρ(k)

]

with bias at most ζ
K+2 using Õ(ns) applications of Uk and U †

k . Applying amplitude estimation using

O
(
K
θ

)
= Õn,‖C‖F , 1ǫ

(
1
θ

)
samples from the estimator to obtain a θ

K+2 -precise classical estimate ã(k) of a(k),

as K = O
(
polylog

(
n, ‖C‖F , 1

ǫ

))
.

Just as in the QRAM setting, classically updating a requires O(1) arithmetic operations. Therefore,
without access to QRAM, each iteration of Algorithm 4 requires at most

Õn,Kζ

(
n2.5s2

θ

)
= Õn,‖C‖F , 1ǫ

(
n2.5s2

θ

)

applications of block-encodings for Q(k) ◦ C̃, D(k) and Q(k) ◦ A and Õn,‖C‖F , 1ǫ

(
n3.5s2

θ

)
additional gates.

This corresponds to Õn,‖C‖F , 1ǫ

(
n2.5s2

θ

)
queries to OA and OC in each iteration, and Õn,‖C‖F , 1ǫ

(
n3.5s2

θ

)

additional gates. Summing over the K + 2 = Õn,‖C‖F , 1ǫ
(1) iterations yields the stated complexity.

References

[1] Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient and
mirror descent. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science
Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[2] Noga Alon, W. Fernandez De La Vega, Ravi Kannan, and Marek Karpinski. Random sampling and
approximation of MAX-CSP Problems. Journal of Computer and System Sciences, 67(2):212–243, 2003.

46

[3] David L. Applegate, William Cook, Sanjeeb Dash, and Daniel G. Espinoza. Exact solutions to linear
programming problems. Operations Research Letters, 35(6):693–699, 2007.

[4] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights method: a meta-algorithm
and its applications. Theory of Computing, 8(6) 121-164, 2012.

[5] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite programs.
Journal of the ACM (JACM), 63(2):1–35, 2016.

[6] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O’Connor, Michele Mosca, and Priyaa Varshi-
nee Srinivasan. On the robustness of bucket brigade quantum RAM. New Journal of Physics,
17(12):123010, 2015.

[7] Brandon Augustino, Giacomo Nannicini, Tamás Terlaky, and Luis F. Zuluaga. Quantum interior point
methods for semidefinite optimization. arXiv preprint arXiv:2112.06025, 2021.

[8] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. Efficient quantum algorithms
for simulating sparse Hamiltonians. Communications in Mathematical Physics, 270(2):359–371, 2007.

[9] Rajendra Bhatia. Matrix Analysis, volume 169. Springer Science & Business Media, 2013.

[10] Fernando G.S.L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and Xiaodi
Wu. Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132, pages
27:1–27:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[11] Fernando G.S.L. Brandão, Richard Kueng, and Daniel Stilck França. Faster quantum and classical SDP
approximations for quadratic binary optimization. Quantum, 6:625, 2022.

[12] Fernando G.S.L. Brandão and Krysta M. Svore. Quantum speed-ups for solving semidefinite programs.
In Rafail Ostrovsky and Chris Umans, editors, 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 415–426. IEEE, 2017.

[13] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The power of block-encoded matrix powers:
improved regression techniques via faster Hamiltonian simulation. In Christel Baier, Ioannis Chatzi-
giannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132, pages 33:1–33:14, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[14] Chen-Fu Chiang, Anirban Chowdhury, and Pawel Wocjan. Space-efficient quantization method for
reversible markov chains. arXiv preprint arXiv:2206.06886, 2022.

[15] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quantum algorithm for systems of lin-
ear equations with exponentially improved dependence on precision. SIAM Journal on Computing,
46(6):1920–1950, 2017.

[16] Andrew M. Childs and Nathan Wiebe. Hamiltonian Simulation using linear combinations of unitary
operations. Quantum Information and Computation, 12(11–12):901–924, Nov 2012.

[17] Anirban Narayan Chowdhury and Rolando D. Somma. Quantum algorithms for Gibbs sampling and
Hitting-Time estimation. Quantum Information & Computing, 17(1–2):41–64, Feb 2017.

[18] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. An exact rational mixed-integer
programming solver. In Oktay Günlük and Gerhard J. Woeginger, editors, International Conference on
Integer Programming and Combinatorial Optimization, pages 104–116. Springer, 2011.

47

[19] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm.
arXiv preprint arXiv:1411.4028, 2014.

[20] Aleta Berk Finnila, Maria A. Gomez, C. Sebenik, Catherine Stenson, and Jimmie D. Doll. Quantum
annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters, 219(5-
6):343–348, 1994.

[21] Daniel Stilck França. Perfect sampling for quantum Gibbs states. Quantum Information and Compu-
tation, 18:361–388, 2018.

[22] Alan Frieze and Ravi Kannan. Quick approximation to matrices and applications. Combinatorica,
19(2):175–220, 1999.

[23] András Gilyén. Quantum singular value transformation & its algorithmic applications. PhD thesis,
University of Amsterdam, 2019.

[24] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation
and beyond: exponential improvements for quantum matrix arithmetics. In Moses Charikar and Edith
Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 193–204, 2019.

[25] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory. Physical
Review Letters, 100(16):160501, 2008.

[26] Ambros M. Gleixner and Daniel E. Steffy. Linear programming using limited-precision oracles. Mathe-
matical Programming, 183(1):525–554, 2020.

[27] Ambros M. Gleixner, Daniel E. Steffy, and Kati Wolter. Improving the accuracy of linear programming
solvers with iterative refinement. In Joris van der Hoeven and Mark van Hoeij, editors, Proceedings of
the 37th International Symposium on Symbolic and Algebraic Computation, pages 187–194, 2012.

[28] Ambros M. Gleixner, Daniel E. Steffy, and Kati Wolter. Iterative refinement for linear programming.
INFORMS Journal on Computing, 28(3):449–464, 2016.

[29] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115–1145,
1995.

[30] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, 2013.

[31] Sander Gribling. Applications of optimization to factorization ranks and quantum information theory.
PhD thesis, Tilburg University, 2019.

[32] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
equations. Physical Review Letters, 103(15):150502, 2009.

[33] Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization,
2(3-4):157–325, 2016.

[34] Roger Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press Cambridge,
UK, 1994.

[35] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In Sandy Irani, Lisa O’Conner, and Patrick Kellenberger,
editors, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 910–
918. IEEE, 2020.

48

[36] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane method
for convex optimization, convex-concave games, and its applications. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, pages 944–953, 2020.

[37] William B. Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of Lipschitz mappings
into a Hilbert space. Contemporary Mathematics, 26:189–206, 1984.

[38] Michael J. Kastoryano and Fernando G.S.L. Brandao. Quantum Gibbs samplers: The commuting case.
Communications in Mathematical Physics, 344(3):915–957, 2016.

[39] Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear systems and least squares.
Physical Review A, 101(2):022316, 2020.

[40] Iordanis Kerenidis and Anupam Prakash. A quantum interior point method for LPs and SDPs. ACM
Transactions on Quantum Computing, 1(1):1–32, 2020.

[41] Christopher King. Inequalities for trace norms of 2× 2 block matrices. Communications in Mathematical
Physics, 242(3):531–545, 2003.

[42] Yin Tat Lee and Swati Padmanabhan. An Õ(m/ε3.5)-cost algorithm for semidefinite programs with
diagonal constraints. In Jacob Abernethy and Shivani Agarwal, editors, Conference on Learning Theory,
pages 3069–3119. PMLR, 2020.

[43] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its implications
for combinatorial and convex optimization. In Rafail Ostrovsky and Venkatesan Guruswami, editors,
2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages 1049–1065.
IEEE, 2015.

[44] László Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information Theory,
25(1):1–7, 1979.

[45] Guang Hao Low. Hamiltonian simulation with nearly optimal dependence on spectral norm. In Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 491–502, 2019.

[46] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization. Quantum, 3:163, 2019.

[47] Renato D.C. Monteiro. Polynomial convergence of primal-dual algorithms for semidefinite programming
based on the Monteiro and Zhang family of directions. SIAM Journal on Optimization, 8(3):797–812,
1998.

[48] Arkadi Nemirovskii. Efficient methods for large-scale convex optimization problems. Ekonomika i
Matematicheskie Metody, 15(1), 1979.

[49] Arkadi Nemirovskii and David B. Yudin. Problem complexity and method efficiency in optimization.
1983.

[50] Yurii E. Nesterov and Arkadi Nemirovskii. A general approach to polynomial-time algorithms design
for convex programming. Report, Central Economical and Mathematical Institute, USSR Academy of
Sciences, Moscow, 1988.

[51] Yurii E. Nesterov and Arkadi Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming, volume 13. SIAM, 1995.

[52] Yurii E. Nesterov and Michael J. Todd. Self-scaled barriers and interior-point methods for convex
programming. Mathematics of Operations Research, 22(1):1–42, 1997.

49

[53] Yurii E. Nesterov and Michael J. Todd. Primal-dual interior-point methods for self-scaled cones. SIAM
Journal on Optimization, 8(2):324–364, 1998.

[54] Michael A. Nielsen and Isaac Chuang. Quantum Computation and Quantum Information. American
Association of Physics Teachers, 2002.

[55] Foad Mahdavi Pajouh, Balabhaskar Balasundaram, and Oleg A. Prokopyev. On characterization of
maximal independent sets via quadratic optimization. Journal of Heuristics, 19(4):629–644, 2013.

[56] Gábor Pataki and Aleksandr Touzov. How do exponential size solutions arise in semidefinite program-
ming? arXiv preprint arXiv:2103.00041, 2021.

[57] David Poulin and Pawel Wocjan. Sampling from the thermal quantum Gibbs state and evaluating
partition functions with a quantum computer. Physical Review Letters, 103(22):220502, 2009.

[58] Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958.

[59] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Opti-
mization Methods and Software, 11(1-4):625–653, 1999.

[60] Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. SDPT3—a MATLAB software package for
semidefinite programming, version 1.3. Optimization Methods and Software, 11(1-4):545–581, 1999.

[61] Koji Tsuda, Gunnar Rätsch, and Manfred K. Warmuth. Matrix exponentiated gradient updates for
on-line learning and Bregman projection. Journal of Machine Learning Research, 6(Jun):995–1018,
2005.

[62] Joran van Apeldoorn. A quantum view on convex optimization. PhD thesis, University of Amsterdam,
February 2020.

[63] Joran van Apeldoorn. Quantum probability oracles & multidimensional amplitude estimation. In Min-
Hsiu Hsieh, editor, 16th Conference on the Theory of Quantum Computation, Communication and
Cryptography (TQC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[64] Joran van Apeldoorn and András Gilyén. Improvements in Quantum SDP-Solving with Applications.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 99:1–99:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[65] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum SDP-solvers:
Better upper and lower bounds. Quantum, 4:230, 2020.

[66] James Hardy Wilkinson. Rounding Errors in Algebraic Processes. Courier Corporation, 1994.

[67] Man-Hong Yung and Alán Aspuru-Guzik. A quantum–quantum Metropolis algorithm. Proceedings of
the National Academy of Sciences, 109(3):754–759, 2012.

50

