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Abstract

We propose a novel quantum algorithm for solving linear optimization problems by quantum-
mechanical simulation of the central path. While interior point methods follow the central path
with an iterative algorithm that works with successive linearizations of the perturbed KKT
conditions, we perform a single simulation working directly with the nonlinear complementarity
equations. This approach yields an algorithm for solving linear optimization problems involving
m constraints and n variables to ε-optimality using O

(√
m+ n · R1

ε

)
queries to an oracle that

evaluates a potential function, where R1 is an ℓ1-norm upper bound on the size of the optimal
solution. In the standard gate model (i.e., without access to quantum RAM) our algorithm can
obtain highly-precise solutions to LO problems using at most

O
(√

m+ n · nnz(A)
R1

ε

)

elementary gates, where nnz(A) is the total number of non-zero elements found in the constraint
matrix.

∗Corresponding Author: baug@mit.edu
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1 Introduction

Given a matrix A ∈ Rm×n and vectors b ∈ Rm and c ∈ Rn, we are interested in solving the following
Linear Optimization (LO) problem:

min
x∈Rn

c⊤x

subject to Ax ≥ b,
x ≥ 0,

(P)

where x ∈ Rn is the primal variable. We assume ‖A1,·‖, . . . , ‖Am,·‖, ‖b‖, ‖c‖ ≤ 1 for normalization
purposes, where Ai,· denotes the i-th row of A. Normalization of the input data is a common
assumption in the literature. The primal problem (P) has an associated dual problem, given by

max
y∈Rm

b⊤y

subject to A⊤y ≤ c,
y ≥ 0,

(D)

where A⊤ ∈ Rn×m and y ∈ Rm is the dual variable. Whenever the canonical primal and dual
LO problems (P)-(D) are feasible, strong duality holds: there exists a primal-dual optimal solution
(x∗, y∗) to (P)-(D) with vanishing duality gap, i.e., c⊤x∗ − b⊤y∗ = 0.

Linear Optimization is routinely used to model and solve fundamental problems in economics,
finance, and engineering. LO was brought to the forefront of computer science and applied math-
ematics following the advent of digital computer along with Dantzig’s Simplex method [Dan48,
DOW+55]. The first polynomial time algorithm for LO was Kachiyan’s ellipsoid method [Kha80],
though it failed to elicit an efficient practical implementation. Shortly thereafter, Karmarkar in-
troduced his projective method for LO problems in the seminal work [Kar84], which improved the
complexity of the ellipsoid method. Although interior point algorithms had been studied since
at least the 1950’s [Dik67, Dik74, FM64, FM90, Fri54, Fri55, Fri56], Karmarkar’s algorithm was
the first to run in polynomial time, and the so-called Interior Point Method (IPM) revolution was
underway.

Enhancements over Karmarkar’s algorithm followed closely; Renegar [Ren88] improved the iter-
ation complexity, Vaidya [Vai87] and Gonzaga [Gon89] simultaneously reduced the overall complex-
ity, and Nesterov and Nemirovskii [NN88, NN94] introduced the paradigm of self-concordant barrier
functions. Today, the IPM literature constitutes a vast and celebrated line of research, making it
a fruitless endeavor to provide a comprehensive review here. Rather, we point the reader to the
excellent texts [Ren01, RTV05, Ter13, Wri97, Ye11] and the references therein. Many recent devel-
opments can be found in [vdB20, vdBLSS20, CLS21, JKL+20, JSWZ20, LS14, LS15, Vla23], and
the current state of the art running time results are obtained by the randomized IPM of Cohen, Lee
and Song [CLS21] and the deterministic IPM from van den Brand [vdB20]. These IPMs can solve
LO problems to precision ε ∈ (0, 1) in Õn

ε
((m + n)ω) time1, where ω ∈ [2, 2.38) is the exponent of

the running time for matrix multiplication (i.e., we can multiply two n×n matrices in time O(nω)),
1The authors in [vdB20, CLS21] solve the standard form LO problem which requires the assumption rank(A) = m

(and in particular, m ≤ n), so their complexity result is typically written as Õn
ε
(nω). We make the dependence on

m explicit because this assumption is unnecessary in the cannonical (or, symmetric) form we consider: introducing
m slack variables transforms the cannonical problem into standard form, and the augmented coefficient matrix is
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and the notation Õα,β(f(x)) suppresses polylogarithmic factors in f(x), α and β appearing in the
overall running time.

One can view IPMs as a homotopy approach for Newton’s method. IPMs are initialized to a
strictly feasible point x(0) ∈ {x ∈ Rn : Ax > b, x > 0}, and approximately track an analytic curve
known as the central path towards optimality. Specifically, letting µ > 0 and defining

φ : {x ∈ Rn : Ax > b, x > 0} 7→ R,

a generic path-following scheme solves a sequence of barrier problems of the form

x(µ) := argmin
{x∈Rn:Ax>b, x>0}

c⊤x+ µφ(x), (1)

using Newton’s method. The barrier function φ is chosen to be self-concordant : the value φ(x)
diverges to ∞ upon approaching the boundary of {x ∈ Rn : Ax > b, x > 0}, and at a high level,
the norms of higher-order derivatives of φ can be bounded in terms of its Hessian.2 The value of
µ is decreased in each iteration, and the optimal solution is reached upon tracing the central path
{x(µ) : µ > 0} as µ → 0. The use of the self-concordant barrier function φ in (1) ensures that we
are always in the region of rapid local convergence enjoyed by Newton’s method.

It is also standard in the literature to define the central path as the set of minimizers associated
with

x(t) := argmin
{x∈Rn:Ax>b, x>0}

tc⊤x+ φ(x). (2)

The value of t is increased in each iteration, and so tracing the central path {x(t) : t > 0}, we
approach an optimal solution to (P) as t → ∞. Note however, there is no meaningful difference
between (1) and (2). Indeed, taking µ = 1/t and applying Newton’s method to (1) yields the
same sequence of minimizers as one would obtain from applying Newton’s method to (2). Yet,
the perspective offered by (1) can be attractive for both theoretical and practical reasons; tracking
t→∞ in (2) would require computation involving huge numbers.

In every iteration of the classical IPM, one must obtain the solution to a linearized set of
perturbed Karush-Kuhn-Tucker (KKT) optimality conditions known as the Newton linear system.
The computation of this so-called Newton step is usually performed by solving dense linear systems
of equations on a very large scale. The IPMs that achieve the best complexity results [vdB20, CLS21]
perform this step exactly in the first iteration, and subsequently utilize sophisticated data structures
to maintain an approximation of the Hessian inverse, amortizing the cost of solving the linear
systems over the run of the algorithm. To the best of our knowledge, the improved theoretical
guarantees of the IPMs in [vdB20, CLS21] have not led to a practical implementation at the time
of writing. Additionally, while the previous decade saw improvements in the iteration complexity
for the specific applications of maximum flow [M1̨3, M1̨6, AKL+24], minimum cost flow [CMSV17],
matrix scaling [CMTV17], and ℓp-regression [BCLL18], whether the asymptotic iteration count of
O(√n log(1/ε)) (or, O(√m log(1/ε)) if m ≪ n) can be reduced in the general setting remains an
important open question in optimization. Quantum IPMs (QIPMs) currently found in the literature

of full row-rank. We also remark that the complexity of the algorithm in [CLS21] is more accurately expressed as
Õn

ε

(
nω + n2.5−α

2 + n2+ 1
6

)
, where α is the dual-exponent of ω. This simplifies to Õn

ε
(nω) for the current value

ω ≈ 2.38. Jiang et al. [JSWZ20] improved the n2+ 1
6 term to n2+ 1

18 .
2To put it another way, the second-order Taylor series approximation of (1) is highly accurate.
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seek to accelerate the solution of the Newton linear system via quantum subroutines, hence they
do not reduce the iteration count, and it is unclear whether or not this approach can provide an
overall speedup. We review these works in detail next.

1.1 Related work

QIPMs were first introduced by Kerenidis and Prakash [KP20], who proposed a quantum algorithm
for solving LO and Semidefinite Optimization (SDO) problems. The main idea of their approach
is to solve the Newton linear system at each iterate using a quantum linear systems algorithm
(QLSA) [HHL09, CW12, CGJ19], and obtain a classical estimate of the resulting quantum state via
quantum state tomography. This approach limits one to inexactly solving the Newton system at each
iterate, and therefore, additional safeguards need to be taken in order to guarantee convergence. To
reconcile the quantum noise introduced into the Newton steps, Augustino et al. [ANTZ23] proposed
two convergent QIPMs for SDO and LO. The first closely quantized the classical Inexact-Infeasible
IPM of [TK02]. The second framework is a novel Inexact-Feasible QIPM (IF-QIPM) that uses a
nullspace representation of the Newton system to ensure the sequence of iterates maintain primal-
dual feasibility, in spite of using an inexact linear system subroutine. These ideas were specialized
to LO by Mohammadisiahroudi et al. [MFT22, MFT24], who use the iterative refinement algorithm
for LO from Gleixner et al. [GSW12, GSW16, GS20] to exponentially improve the dependence on
ε−1, the inverse precision to which we seek to solve the primal and dual LO problems (P)-(D).

While quantizing IPMs in this manner has led to polynomial speedups in the problem dimension
n, the current approach has two major drawbacks: (i) existing QIPMs assume a strong input model
(i.e., the quantum RAM model) that is not always justified in a practical setting, and speedups are
heavily dependent on this model; (ii) the iterative uses of QLSAs rely on an expensive tomography
procedure, prohibiting a conclusive overall speedup. While it is possible that there is a gap between
the algorithm’s theoretical worst-case running time and its practical performance, the latter cannot
yet be studied: the data structures and computational primitives utilized by existing QIPMs are
beyond the capabilities of near-term quantum devices. A detailed resource analysis by Dalzell et
al. [DCS+23] for the specific application of portfolio optimization found that a QIPM based on
the combined used of QLSA and tomography would require a T -gate count of 1028 when n = 100.
Informally, this implies that it would take a quantum computer millions of years to solve a problem
that could be solved in seconds on a personal laptop. Thus, QIPMs based on the QLSA paradigm
do not provide a convincing end-to-end speedup over classical IPMs, and their estimated resource
cost is a negative result in relation to their viability even on large-scale devices.

A day before the first version of this paper appeared on the arXiv, Apers and Gribling [AG23]
gave a QIPM that does not make use of QLSAs, thereby avoiding dependence on condition number.
This framework leads to asymptotic speedups over classical IPMs for “tall” LO problems (i.e., for
LO problems with many redundant constraints), in which the number of constraints is much larger
than the number of variables, i.e., m≫ n. That said, there is no speedup over classical IPMs unless
m = Ω(n10), and the authors assume that each entry of the problem data of (A, b, c) is of the order
O(polylog(m,n)): we do not have this assumption. Like earlier QIPMs, their framework relies on
QRAM and block-encodings, and due to results from Clader et al. [CDS+22], the resources needed
to block-encode classical data are a key contributor to the resource estimates of QIPMs [DCS+23].

More generally, the use of quantum subroutines in QIPMs only serves as an attempt to accelerate
a single step of the classical IPM. An inherent drawback of this approach is that QIPMs produce a
sequence of iterates that exactly mimics the classical IPM trajectory, and therefore lack the potential
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to exploit quantum effects or improve on the worst-case iteration complexity bound. This raises the
question as to whether there exists a “more naturally quantum” algorithm that solves optimization
problems by tracking the central path.

In the recent work [LHLW23], Leng, Hickman, Li and Wu proposed a truly quantum ana-
logue to classical (accelerated) gradient descent named Quantum Hamiltonian Descent (QHD).
Their work can be viewed as a quantization of the Bregman-Lagrangian framework for analyz-
ing the continuous-time dynamics of gradient descent introduced by Wibisono, Wilson, and Jor-
dan [WWJ16]. The QHD framework admits an implementation on current quantum devices; this is
a (practical) advantage over existing QIPMs, for which the underlying quantum primitives are out
of reach for current quantum computers. The guiding principle of QHD is to first recast the task
of optimization as a dynamical system, and then quantize the resulting continuous-time dynamics.
This novel approach offers a new paradigm for the design of quantum algorithms for optimization,
which previously, amounted to using quantum subroutines to accelerate a single step of a classical
optimization algorithm. Interestingly, the study of dynamical systems arising from IPMs was an
active area of research following the introduction of Karmarkar’s algorithm in 1984. Many works
[Ans88, BL89a, BL89b, Fay91, Fay95, Meg89] studied the trajectories generated by the so-called
Newton barrier flow. Megiddo [Meg89] and Bayer and Lagarias [BL89a, BL89b] provided (classical)
Lagrangian and Hamiltonian dynamical systems for path-following methods that use a logarithmic
barrier function. Faybusovich [Fay95] later generalized these ideas to convex optimization. Yet, the
design and complexity analysis of an algorithm based on these ideas was not considered in these
works: although these papers precisely characterize the central path, these efforts did not translate
into new algorithms.

1.2 Contributions

We use a previously unexplored connection between the central path and the Schrödinger equation
to develop a new quantum algorithm for LO, that we call the Quantum Central Path Method
(QCPM). This is achieved by proposing a 1-parameter family of Hamiltonian operators over the
positive orthant that encodes the behavior of the central path. Specifically, we show that one
can approximately follow the central path by simulating a Schrödinger equation associated to a
certain Hamiltonian. The ground state of this Hamiltonian encodes a squeezed Gaussian distribution
centered at an ε-optimal solution to the primal dual LO pair (P)-(D). Our main result is informally
stated as follows:

Theorem 1 (Main result, informal). Let H(µ(t)) be a time-dependent quantum Hamiltonian with
potential function f(µ(t)). Suppose that for every value of µ(t), the ground state of H(µ(t)) encodes
a probability distribution centered on the central path of (P)-(D). For ε > 0 there is a quantum
algorithm that returns classical vectors x ∈ Rn and y ∈ Rm satisfying:

Ai,·x ≤ bi ∀i ∈ [m], x ≥ 0,
(
A⊤
)
i,·
y ≤ ci ∀i ∈ [n], y ≥ 0,

and
c⊤x− b⊤y ≤ ε.

The algorithm can be implemented using

O
(√

m+ n · R1

ε

)

6



queries to an evaluation oracle for f . If the problem data (A, b, c) is stored in binary, one can
implement an evaluation oracle for f in the standard gate model using O(nnz(A)) elementary gates.

The QCPM inherits many desirable properties from IPM theory (such as provable convergence
to strictly complementary solutions), while only computing zero order information on the poten-
tial of the Hamiltonian. We emphasize that the QCPM, unlike (Q)IPMs, is not an iterative al-
gorithm: the desired solution can be obtained in one shot by measuring the final state. This
could potentially provide a significant advantage over the state of the art (Q)IPMs, which re-
quire O

(
min {√m,√n} log

(
1
ε

))
iterations to reach an ε-optimal solution. Of course simulating the

Schrödinger equation does not come for free, and this determines the complexity of our algorithm.
For this simulation task we use a slightly improved version of a result in [CLL+22], tailored to
our specific setup: this provides a fast quantum algorithm that has near-optimal dependence (with
respect to the simulation task) on the dimension of the problem and the simulation error.

The idea for the QCPM is rooted in the early works on the Newton barrier flow discussed above,
with some significant differences: we use the self-dual embedding model [YTM94] to guarantee an
easy-to-prepare ground state for an initial Hamiltonian, and this is crucial to the eventual application
of the adiabatic theorem to show convergence to the optimal solution (i.e., ground state of the final
Hamiltonian). We also work directly with the nonlinear complementarity equations in the perturbed
KKT conditions that define the central path, rather than using a local linearization as is done in
IPMs. To the best of our knowledge, the QCPM is the first algorithm that takes this perspective.

Our contribution is a O
(√
m+ n · R1

ε

)
-query algorithm for solving linear optimization problems

involving m constraints and n variables to ε-optimality, where R1 is an ℓ1-norm upper bound on
the size of the optimal solution. An implementation of our algorithm in the standard gate model
(i.e., without access to QRAM) can identify an ε-optimal solution of an LO problem using at most

O
(√

m+ n · nnz(A)
R1

ε
polylog

(
m,n,

1

δ

))

elementary gates, where nnz(A) is the total number of non-zero entries found in A and 1 − δ is
the probability of success. We stress that our algorithm does not utilize QRAM, and the stated
complexity result only requires access to the binary representation of (A, b, c).

To contextualize our results, we provide a comparison of our algorithm to the current state of the
art algorithms for solving LO problems in both the classical and quantum models of computation
in Table 1. A more detailed discussion is given in Section 3.5; here we report a summary. For the
quantum algorithms, we report both query and gate complexities to highlight the impact of the
QRAM input model, wherein query and gate complexity often coincide.

The QCPM achieves polynomial speedups in m and n over the state of the art classical and
quantum IPMs whenever nnz(A) < (m + n)ω−

1
2 . Without further enhancements to our frame-

work, an end-to-end speedup over these algorithms is only possible in the low-precision regime,
and requires nnz(A)R1 < (m + n)ω−

1
2 · polylog(m,n). These regimes for speedup are not reliant

on access to a classical-write/quantum-read RAM (QRAM): our algorithm only requires access to
the natural binary description for the LO problem data (A, b, c). Like the QIPM from Apers and
Gribling [AG23], our algorithm avoids a condition number dependence. We also emphasize that the
QIPM found in [AG23] assumes access to QRAM.

Another approach to solve linear optimization problems, besides IPMs, is the Primal-Dual Hy-
brid Gradient (PDHG) algorithm with restarts [AHLL23]. The PDHG algorithm achieves polylog-
arithmic dependence on precision using restarts. The number of restarts depends on the Hoffman
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Table 1: Complexity to solve the primal-dual pair (P)-(D) to precision ε
Classical Algorithms Time complexity
IPM Õm,n, 1

ε
(
√
n
(
nnz(A) + n2)

)
[LS15]

IPM Õm,n, 1
ε
((m+ n)ω) [CLS21, vdB20]

PDHG Õm,n, 1
ε
(κ · nnz(A)) [AHLL23] (κ is the Hoffman constant, see discussion.)

Quantum Algorithms Query complexity Gate complexity QRAM
QMMWU Õ

(√
m+ nR2.5

1 ε−2.5 +R3
1ε

−3
)

[BGJ+23, GJLW24] Õ
(√
m+ nR2.5

1 ε−2.5 +R3
1ε

−3
)

[BGJ+23, GJLW24] ✓

QIPM Õm,n, 1
ε

(√
mn5

)
[AG23, Section 7] Õm,n, 1

ε

(√
mn

(
n6.5s2 + nω+2

))
[AG23, Theorem 1.1] ✓

QCPM (this work) Õm,n,α

(√
m+ nR1ε

−1
)

Theorem 5 Õm,n,α

(√
m+ nnnz(A)R1ε

−1
)

Corollary 1 ✗

constant3 κ of the KKT system associated to (P)-(D). This constant is notoriously difficult to
compute and rigorously bound [Peñ24]; for general problems, it is often left “as is” and not ex-
pressed as a function of the input size. Our algorithm’s performance matches that of PDHG when
κ = O(

√
m+nR1

ε ), but we are not aware of explicit bounds for κ in the general case so a direct
comparison with our algorithm is difficult.

Like the QCPM, quantum algorithms for zero-sum games [vAG19, BGJ+23, GJLW23] also
achieve sublinear running times inm and n, and depend polynomially inR1 and the inverse precision.
There are notable differences in the query and input models used by both algorithms. The queries
made by the QCPM are evaluation queries for a potential function, whereas algorithms for zero-sum
games make queries to block-encodings of the problem data. As for the input model, the algorithms
found in [vAG19, BGJ+23, GJLW23] rely on QRAM, while the QCPM does not. Algorithms for
zero-sum games employ different definitions of optimality than (Q)IPMs and our QCPM, and see
Section 3.5 for details. With these differences in mind, our algorithm achieves super-linear savings
in R1

ε over the current state of the art [BGJ+23, GJLW23].
The QCPM proposed in this paper provides (for the first time, as far as we are aware) convincing

evidence that an end-to-end quantum speedup for LO is possible even in the circuit model without
QRAM. While this would require further enhancements, we view our framework as promising since
it has no direct classical analogue. We view the main contribution of our paper as conceptual, rather
than technical: the technical ingredients for our algorithm and its analysis were largely present in
the literature, but we believe that the QCPM idea could provide a new, potentially interesting
avenue for constrained convex optimization on quantum computers. It may be useful to perform a
detailed resource analysis of the QCPM framework, in the same spirit as the analysis of Dalzell et
al. [DCS+23] for QIPMs; we leave this for future work.

Next, we provide a more detailed summary of the technical overview of the paper’s main results.

1.3 Technical summary and roadmap

Hamiltonian simulation is a fundamental task in quantum computation as it separates the compu-
tational power between quantum and classical [Osb12]. For a given time-dependent Hamiltonian
operator H(t) and an initial state |ψ0〉, the Hamiltonian simulation task is to simulate the dynamics
governed by the Schrödinger equation :

i
d
dt
|ψ(t)〉 = H(t) |ψ(t)〉 , subject to |ψ(0)〉 = |ψ0〉 ,

where i denotes the imaginary unit. In this paper, we propose a Quantum Central Path Method
(QCPM) relying on the efficient simulation of Schrödinger dynamics on quantum computers (see

3This is not the same constant as the condition number used in IPMs.
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Theorem 4). Specifically, we design a quantum Hamiltonian (known as the central-path Hamilto-
nian) that encodes the behavior of the central path in its ground state. By preparing an initial state
centered at a point on the central path and simulating the associated Schrödinger equation for a
sufficiently long evolution time T , the quantum adiabatic theorem (Theorem 3) guarantees that the
quantum register remains in the instantaneous ground state of the central-path Hamiltonian. At the
end of the Hamiltonian simulation, we obtain an (approximate) optimal solution to the primal-dual
LO pair (P)-(D) by simply measuring the final state.

Our QCPM shares some features with Quantum Hamiltonian Descent (QHD) [LHLW23] in that
(i) both can be regarded as quantizations of classical dynamical processes (path-following in QCPM,
accelerated gradient descent in QHD), (ii) both are formulated as quantum dynamics governed by
Schrödinger equations, and (iii) in both cases the ground state of the Hamiltonian operator encodes
the solution to an optimization problem. The central-path Hamiltonian can be interpreted as a global
linearization of the central path: this is essentially different from any existing QIPMs, where each
Newton step represents a local linearization of the central path. Consequently, our algorithm can
be more efficient because there is no need for iterative uses of QLSA and state tomography.

The adiabatic theorem is predicated on the assumption that we start in a ground state of the
initial Hamiltonian H(0). In general, this ground state is hard to prepare because it would require
the exact location of the starting point on the central path for any LO problem, a problem known
as hard as the linear optimization itself. We overcome this challenge by casting the primal-dual
pair (P)-(D) as a slightly larger problem (of dimension m+n+2) known as the self-dual embedding
model (first proposed by Ye, Todd and Mizuno [YTM94]), a standard approach employed by classical
IPMs both in theory and in practice. This allows us to make a step towards providing a practical
algorithm because the self-dual embedding model always admits the all-ones vector as an interior-
feasible solution. By using the self-dual embedding model as a foundation for the design of our
central-path Hamiltonian, we ensure that the ground state of the initial Hamiltonian is trivial to
prepare. A review of the self-dual embedding model and some important lemmas are provided in
Section 2.1.2.

Under the self-dual embedding framework, the central path is (uniquely) characterized by
element-wise complementarity and positivity constraints on the variable z and its associated slack
s(z):

C := {z(µ) : µ ∈ (0, 1]} =
{
z ∈ Rm+n+2 : zi · s(z)i = µ, zi, s(z)i > 0, ∀i ∈ {1, . . . ,m+ n+ 2}

}
.

Classical IPMs track the central path by iteratively applying Newton’s method, which requires
locally linearizing the nonlinear complementarity equation

zi · s(z)i = µ ∀i ∈ {1, . . . ,m+ n+ 2},

and successively decreasing µ by a constant factor after each Newton step. We propose a different
approach: a time-dependent Schrödinger operator on the positive orthant that directly incorporates
the nonlinear complementarity equation as a potential field,

H(µ(t)) := −h(t)
2
∇2 + ‖z ⊙ s(z)− µ(t)e‖2 ,

where for a fixed t > 0, the global minimum of the potential function ‖z ⊙ s(z)− µ(t)e‖2 corresponds
to a point on the central path. Here, h(t) and µ(t) are monotonically decreasing functions in t, e is

9



the all-ones vector of dimension m+n+2 and ⊙ denotes the Hadamard (or, element-wise) product.
The central-path Hamiltonian H(µ(t)) is inspired by the canonical time-independent Hamiltonian
in quantum mechanics:

H := −∇2 + V,

where ∇2 denotes the Laplacian operator in Rn, accounting for kinetic energy, and V : Rn 7→ R is
a potential function, accounting for potential energy. In our time-dependent Hamiltonian H(µ(t)),
the role of h(t) is to control the variance of the probability distribution encoded in the ground
state of the central-path Hamiltonian. In the usual setting, a (small) fixed value ~ known as
Planck’s constant is used, but this choice is insufficient to guarantee convergence in our setting: by
decreasing h(t) over the course of the time evolution, we ensure that we concentrate on a probability
mass centered at the optimal solution. The detailed construction of the central-path Hamiltonian
is provided in Section 3.1. Properly designing h(t) is a crucial technical insight of our approach,
and µ(t) is constructed using ideas introduced in [AL22].

Equipped with the Hamiltonian H(µ(t)) defined above, the remaining challenge is two-fold: we
need to (i) verify that simulating the Schrödinger equation associated to our central-path Hamil-
tonian does in fact solve our optimization problem; and (ii) rigorously analyze the cost of doing
so. We establish the correctness of our approach through a combination of results already found
in the literature and new results of our own. In Section 3.1, we apply the harmonic approximation
theory of Schrödinger operators in order to certify that, for fixed µ ∈ (0, 1], the ground state of
the central-path Hamiltonian gives rise to a Gaussian distribution centered at the corresponding
point on the central path z(µ). This suggests another interesting connection to classical IPM the-
ory: the harmonic approximation of the low-energy spectrum is obtained via a second-order Taylor
series approximation of H(µ) at z(µ), which is precisely how one applies Newton’s method to bar-
rier problems of the form (1) in the classical IPM framework. We also provide a lower bound on
the minimum spectral gap: this is an important component of the complexity of simulating our
Schrödinger equation, and we derive the lower bound by again interpreting the system governed
by H(µ(t)) as a quantum harmonic oscillator, whose spectral gap is well understood. In Section
3.2, we demonstrate that properly defining h(t) and µ(t) allows one to solve (P)-(D) via a single
simulation of our Schrödinger equation: the final output is a classical description of an ε-optimal
solution, and no intermediate measurements are required. This is in contrast with existing quantum
algorithms for LO [vAG19, ANTZ23, BGJ+23, KP20, MFT24], which require either O

(√
n log 1

ε

)

or O
(
log(n)
ε2

)
calls to a Hamiltonian simulation subroutine (to either solve quantum linear systems

or prepare Gibbs states).
We analyze the complexity of the QCPM in Section 3.3. To achieve our complexity result, we

combine the requirements for our convergence guarantees with the cost of the simulation algorithm
from [CLL+22]. We prove that the QCPM returns a classical description of an ε-precise solution to
(P)-(D) using at most

Õm,n, 1
δ

(√
m+ n · nnz(A)

R1

ε

)

elementary gates. The overall complexity suggests that in the low-precision regime, the size of a
potential quantum speedup is largely determined by the problem sparsity and solution size. We
stress that the speedups achieved here are independent of QRAM. We also believe our techniques
should readily generalize to other classes of constrained convex optimization problems.

The rest of this paper is organized in the following manner. In Section 2 we define some
notation and review the theory of classical interior point methods applied to solving LO problems,
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before providing results on the adiabatic theorem for unbounded Hamiltonians and algorithms for
simulating Schrödinger equations. Section 3 concerns the design and analysis of the Quantum
Central Path Method, and compares our overall complexity result to the current state-of-the-art.
Section 4 concludes the paper.

2 Preliminaries

We distinguish the quantity a to the k-th power and the value of a at iterate k using round brackets,
writing ak and a(k) to denote these quantities, respectively. We write [n] to represent the set of
elements {1, . . . , n}.

We denote the i-th element of a vector x ∈ Rn by xi for i ∈ [n], and the ij-th element of a matrix
A ∈ Rm×n by Aij for i ∈ [m] and j ∈ [n]. To refer to the i-th row of a matrix A, we write Ai,· and
write A·,j when referring to its j-th column. For a vector x ∈ Rn, the matrix diag(x) ∈ Rn×n takes
the values of x along its diagonal and zero elsewhere. For vectors u, v ∈ Rn, u ⊙ v denotes their
Hadamard (or, entry-wise) product:

u⊙ v =



u1 · v1

...
un · vn


 .

We write 0n ∈ Rn when referring to an all-zeros vector of length n, and 0m×n ∈ Rm×n denotes the
m× n all-zeros matrix.

The smallest and largest singular values of a matrix A are denoted σmin(A), σmax(A), and the
smallest and largest eigenvalues are denoted λmin(A), λmax(A). The operator norm of A is defined
as ‖A‖ := σmax(A).

We let Sn+ and Sn++ represent the spaces of symmetric positive semidefinite, and symmetric
positive definite matrices in Rn×n, respectively. For U, V ∈ Sn, we write U � V (U ≻ V ) to
indicate that the matrix U−V is symmetric positive semidefinite (symmetric positive definite), i.e.,
U − V ∈ Sn+ (U − V ∈ Sn++).

Order estimates

We define O(·) as

f(x) = O(g(x)) ⇐⇒ ∃ℓ ∈ R, α ∈ R+, such that f(x) ≤ αg(x) ∀x > ℓ.

We write f(x) = Ω(g(x)) ⇐⇒ g(x) = O(f(x)). If there exists positive constants α1 and α2 such
that

α1g(x) ≤ f(x) ≤ α2g(x) ∀x > 0,

then we write f(x) = Θ(g(x)).
We also define Õ(f(x)) = O(f(x)·polylog(f(x))) and when the function depends poly-logarithmically

on other variables we write

Õα,β (f(x)) = O(f(x) · polylog(α, β, f(x))).

11



2.1 Interior Point Methods for Linear Optimization

In this section we outline the classical IPM theory applied to solving linear optimization problems.

2.1.1 Primal and dual LO problems

Recall that we are interested in the primal LO problem and its dual

min
x∈P

c⊤x, max
y∈D

b⊤y,

where P and D are the primal and dual feasible sets, defined as

P := {x ∈ Rn : Ax ≥ b, x ≥ 0} , D :=
{
y ∈ Rm : A⊤y ≤ c, y ≥ 0

}
.

Likewise, the sets of interior feasible solutions of (P) and (D) are given by

int (P) := {x ∈ Rn : Ax > b, x > 0} , int (D) :=
{
y ∈ Rm : A⊤y < c, y > 0

}
.

The well known property of weak duality always holds, and asserts that any primal feasible x ∈ P
provides an upper bound c⊤x on the value b⊤y, and conversely, any dual feasible y ∈ D provides a
lower bound b⊤y on the value c⊤x. The nonnegative quantity

c⊤x− b⊤y

is referred to as the duality gap associated to the pair (x, y) ∈ P ×D.
Whenever (x∗, y∗) ∈ P × D exhibit vanishing duality gap, i.e., c⊤x∗ − b⊤y∗ = 0, then x∗ is an

optimal solution to (P), and y∗ is an optimal solution to (D). Hence, we define the optimal set of
(P)-(D) to be

PD∗ :=
{
(x, y) ∈ P ×D : c⊤x = b⊤y

}
.

Clearly, PD∗ is nonempty if and only if the inequality system

Ax ≥ b, x ≥ 0,

−A⊤y ≥ −c, y ≥ 0,

b⊤y − c⊤x ≥ 0,

(3)

is solvable. Introducing a homogenizing variable β, system (3) is equivalent to the homogeneous
system 


0m×m A −b
−A⊤ 0n×n c
b⊤ −c⊤ 0





y
x
β


 ≥



0m
0n
0


 , x ≥ 0, y ≥ 0, β ≥ 0, (4)

when β = 1. Indeed, one can verify that any (x, y, β) which solves (4) with β > 0 gives rise to a
solution

(
x
β ,

y
β , 1
)

to (3). More concisely, letting

M :=



0m×m A −b
−A⊤ 0n×n c
b⊤ −c⊤ 0


 , z :=



y
x
β


 ,
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solving (P) and (D) to optimality is equivalent [RTV05, see, Theorem I.3] to obtaining a feasible
solution to the system

Mz ≥ 0, z ≥ 0, β > 0. (5)

Next, we discuss the condition under which (5) is solvable, which is intimately related to the practical
concern of starting from an interior feasible solution.

2.1.2 The self-dual embedding model

We begin with a formal definition of the interior point condition (IPC) from [RTV05].

Definition 1 (Definition I.4 in [RTV05]). We say that any system of (linear) equalities and (linear)
inequalities satisfies the interior-point condition (IPC) if there exists a solution that satisfies all
inequality constraints in the system.

The IPC ensures that the primal-dual pair (P) and (D) has an optimal solution (x∗, y∗) ∈ PD∗
whenever there exists a strictly feasible solution (x, y) ∈ int(P) × int(D). Being able to easily
determine an interior point (x, y) ∈ int(P)× int(D) is also a practical concern: (feasible) IPMs are
initialized to a strictly feasible starting point, and naïvely determining a strictly feasible solution
to (P) and (D) is as challenging as solving these problems to optimality. Here we discuss a way to
embed the problems (P) and (D) into a slightly larger one that always has a trivial strictly feasible
solution, and can be readily solved with an IPM, following a strategy first introduced by Ye, Todd
and Mizuno [YTM94].

While system (5) does not satisfy the IPC, this can be reconciled upon introducing another
auxiliary variable ϑ ≥ 0, and adding one additional row and column to M as follows:

M :=

[
M r
−r⊤ 0

]
=






0m×m A −b
−A⊤ 0n×n c
b⊤ −c⊤ 0


 r

−r⊤ 0


 , z :=

[
z
ϑ

]
=




y
x
β
ϑ


 ,

where
r = ē−Mē,

and ē is the all-ones vector of length m + n + 1. Note that M is a skew-symmetric matrix of
dimension n := n+m+ 2, i.e., M⊤ = −M . Defining q ∈ Rn to be the vector

q =

[
0n−1

n

]
,

one can also see that the system
Mz ≥ −q, z ≥ 0, (6)

admits the all-ones vector of length n as a strictly feasible solution, which we denote by e. If z
solves (6) with ϑ = 0, i.e., we have z = (z, 0), then z must be a solution to (5). Hence, solving (P)
and (D) can be reduced to finding a solution to (6) with ϑ = 0 and β > 0.

The self-dual embedding of (P) and (D) is defined as

min
{
q⊤z :Mz ≥ −q, z ≥ 0

}
. (SP)
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This problem is called “self-dual” because its dual problem

max
{
−q⊤u :M⊤u ≤ q, u ≥ 0

}
,

can be recognized as equivalent to (SP), upon recalling that M is a skew-symmetric matrix with
M⊤ = −M . Like system (6), the self-dual embedding problem (SP) also admits the strictly feasible
solution e, and thus trivially satisfies the IPC.

Moving forward, we will write SP when referring to the set of feasible solutions to (SP). We
denote the sets of interior feasible, and optimal solutions by int(SP) and SP∗, respectively.

The next result from [RTV05] asserts that we obtain optimal solutions to (P) and (D) by solving
(SP).

Theorem 2 (Theorem I.6 in [RTV05]). The system (6) has a solution with ϑ = 0 and β > 0 if and
only if the problem (SP) has an optimal solution with β = zn−1 > 0.

2.1.3 The central path and its neighborhood

For any vector z ∈ Rn, we define its slack vector4

s(z) :=Mz + q.

It follows that
z is a feasible solution to (SP) ⇐⇒ z ≥ 0 and s(z) ≥ 0.

Recalling that e denotes the all-one vector of length n, note that s(e) = e and e⊙ s(e) = e. Hence,
µ = 1 for the point (z, s(z)) = (e, e) ∈ int(SP).

For every positive µ there exists a unique non-negative vector z such that

z ⊙ s(z) = µe, z ≥ 0, s(z) ≥ 0, (CP)

see, [RTV05, Lemma I.13]. We denote the unique non-negative solution to the quadratic system
(CP) as z(µ), which we refer to as the µ-center. Using this notation, we may write z(1) = e. The
set of µ-centers C = {z(µ) : µ > 0} is the central path of the problem (SP), and an optimal solution
of (SP) is the limiting point of the central path as µ→ 0+. The central path constitutes an analytic
curve ξ(µ) : (0,∞) 7→ Rn, and its graph (µ, ξ(µ)) satisfies

z ⊙ s(z) = µe, z > 0, s(z) > 0. (7)

Since IPC is satisfied, the central path is guaranteed to exist and is uniquely determined from the
starting point (z(1), s(z(1))) = (e, e). Put another way, (e, e) is the point on the central path
corresponding to µ = 1.

The standard IPM can be interpreted as an algorithm that approximately follows the central
path by locally linearizing the quadratic system (CP). The solution of each locally linearized system
is the so-called Newton step. To see this, suppose that z is a positive solution to (SP) such that its
slack vector s(z) is also positive, i.e., z and s(z) satisfy (7). To find the displacement ∆z such that
z+ := z +∆z is the µ-center, we want to solve the equation:

(z +∆z)⊙ s(z +∆z) = µe.

4As we have defined it here, s really is a surplus variable.
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Defining s = s(z) and ∆s = M∆z, we obtain a nonlinear equation with quadratic term ∆z ⊙∆s,
namely,

Zs+ Z∆s+ S∆z + diag (∆z)∆s = µe, (8)

where Z := diag(z) and S := diag(s). If we further assume z+ is in a small neighborhood of z,
i.e., ∆z is small (and hence, so is ∆s = M∆z), the quadratic term in (8) can be omitted, and the
nonlinear equation reduces to a linear system in the unknowns ∆z and ∆s.

The foundation for IPM theory is that performing the local linearization we just described at
each iterate, and solving the resulting equation system for ∆z and ∆s allows us to make sufficient
progress towards the optimal solution (and remain in int(SP)), provided that the current iterate
(z, s(z)) is in some sense close to the central path. To quantify a notion of closeness, one defines a
proximity measure that gives rise to a neighborhood of the central path. In this paper, we consider
the distance metric

d2(z, s;µ) := ‖z ⊙ s(z)− µe‖2 ,
which for fixed γ ∈ (0, 1) gives rise to a narrow neighborhood of the central path:

N2(γ) := {(z, s(z)) ∈ int(SP) : d2(z, s;µ) ≤ γµ} .

One can observe that for every γ ∈ (0, 1), the following set of inclusions hold:

C ⊂ N2(γ) ⊂ int(SP).

2.2 Quantum adiabatic theorem for unbounded Hamiltonians

Given a quantum HamiltonianH(t), t ∈ [0, 1], we consider the dynamics described by the Schrödinger
equation:

iη
d
dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (9)

where i denotes the imaginary unit and η is a positive real number. We suppose that U(t) is the
propagator of the dynamics, such that the solution to (9) at time t is given by

|ψ(t)〉 = U(t) |ψ(0)〉 .

If |ψ(0)〉 is a nondegenerate ground state of H(0), then the quantum adiabatic theorem [Mes58]
asserts that in the limit T → ∞, the state |ψ(T )〉 obtained from (9), will be close to the ground
state of H(T ).

We assume H(t) has a non-degenerate ground state for all t ∈ [0, 1], and we define P (t) as a
rank-1 projector onto the ground-energy subspace of H(t).

Theorem 3 (Exponential estimate). Define H(k)(t) := dk
dtkH(t). Let H(t) be a quantum Hamiltonian

for t ∈ [0, 1] such that the following conditions hold:

(a) H(t) admits an analytic continuation to some strip on C containing [0, 1].

(b) For t ∈ [0, 1], the spectral gap of H(t) is greater than a constant ∆0 > 0.

(c) For any k = 1, 2, . . . , we have that H(k)(0) = H(k)(1) = 0.
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Then, there exists a constant C such that

‖ψ(1) − φ∗‖ ≤ Ce−1/η,

where ψ(1) is the solution to (9) at t = 1 and φ∗ is a ground state of H(1), i.e., P (1)φ∗ = φ∗.

Proof. Combining the main theorem in [HJ02] and the vanishing derivative condition at t = 0, 1.

2.3 Quantum algorithms for Schrödinger equations

The primary subroutine of our algorithm is simulating the Schrödinger equation, otherwise known
as quantum simulation. Our work here will consider the Schrödinger equation over the time interval
[t0, t1] for a given time-dependent potential V (t, x),

i
∂

∂t
|Ψ(x, t)〉 =

[
−1

2
∇2 + V (x, t)

]
|Ψ(x, t)〉 , (10)

where we specify Ω = [−R,R]d for a sufficiently large R and V (x, t) : Ω × [t0, t1] 7→ R is a time-
dependent potential function. Accordingly, Ψ(x, t) : Ω× [t0, t1] 7→ C is the wave function subject to
certain initial data Ψ(x, t0) = Ψ0(x) and the periodic boundary condition.

We utilize the quantum simulation algorithm of Childs, Leng, Li, Liu, and Zhang [CLL+22],
which exhibits near-optimal dependence in the dimension d, and precision ǫ to which the simulation
is carried out. However, the gate complexity of that quantum simulation algorithm also involves
a parameter g′ that depends on the higher-order derivatives of the wave function. An accurate
upper bound of g′ relies on a refined a priori estimate of the wave function. By leveraging the fact
that the initial condition is always analytic in our setting, we eschew the regularity parameter g′ in
[CLL+22, Theorem 8], resulting in an enhanced complexity result.

Theorem 4 (Improved version of Theorem 8 in [CLL+22]). Suppose the potential field V (x, t) is
bounded, smooth in x and t, and periodic in x. Define the ‖ · ‖∞,1-norm of V (x, t) as

‖V ‖∞,1 :=

∫ t1

t0

‖V (·, t)‖∞ dt.

We assume that we have access to the zeroth-order oracle of V , which is a unitary map OV on
Ω⊗ [t0, t1] 7→ R such that for any |x〉 ∈ Ω and |s〉 ∈ [t0, t1],

OV (|x〉 ⊗ |s〉 ⊗ |0〉) = |x〉 ⊗ |s〉 ⊗ |V (x, s)〉 .
Moreover, we assume the initial data Ψ0(x) is analytic on Ω and V is G-Lipschitz in t. Then, the
Schrödinger equation (10) can be simulated for time t ∈ [t0, t1] up to accuracy ǫ with the following
cost:

1. Queries to OV : O
(
‖V ‖∞,1

log(‖V ‖∞,1/ǫ)
log log(‖V ‖∞,1/ǫ)

)
,

2. 1- and 2-qubit gates:

O
(
‖V ‖∞,1

(
poly(z) + log2.5 (G‖V ‖∞,1/ǫ) + d log log(1/ǫ)

) log(‖V ‖∞,1/ǫ)

log log(‖V ‖∞,1/ǫ)

)
.

Note that the simulation accuracy ǫ referred to in Theorem 4 corresponds to the ℓ2-distance
between the actual final state and the state returned by the quantum simulation algorithm. This
theorem is an improved version of the original Theorem 8 in [CLL+22]. We provide the proof of this
theorem in Appendix C. We also refer the readers to [LZW23, Section 2.4] for a detailed discussion.
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3 A quantum algorithm that traces the central path

In this section, we propose a Hamiltonian formalism for the central path of linear optimization prob-
lems. We show how one can solve LO problems by simulating the Schrödinger equation associated
with our Hamiltonian, and provide a rigorous complexity analysis of the resulting scheme.

3.1 Quantum representation of the central path

In this subsection, we construct a family of quantum Hamiltonian operators H(µ), where µ ∈ (0, 1]
is a positive parameter. We will show that, for each 0 < µ ≤ 1, the ground state of the operator
H(µ) gives rise to a Gaussian distribution centered at the µ-center z(µ). Therefore, by measuring
the ground state of H(µ), we can approximate the µ-center.

Recall that we define F (z) := z ⊙ s(z) ∈ Rn, where s(z) = Mz + q. For any 0 < µ ≤ 1, we
define the function

fµ(z) :=
1

2
(F (z)− µe)⊤ (F (z)− µe) = 1

2
‖F (z)− µe‖2 . (11)

Definition 2 (Central-path Hamiltonian). For 0 < µ ≤ 1 and h > 0, we define a 1-parameter
family of elliptic operators over the positive orthant Rn

++,

H(µ) = −h
2

2
∇2 + fµ(z), (12)

where ∇2 =
∑n

j=1
∂2

∂z2j
is the Laplacian operator.

As defined in (11), the function fµ(z) is non-negative. The µ-center z(µ) is the unique zero
of fµ(z) in the positive orthant z > 0. When the parameter h is sufficiently small, the harmonic
approximation theory of Schrödinger operators [HS12, Section 11] allows us to approximate the
low-energy spectrum of H(µ) by that of the following operator,

H̃(µ) = −h
2

2
∇2 +

1

2
[z − z(µ)]⊤H(µ) [z − z(µ)] , (13)

where H(µ) is the Hessian of fµ(z) at z = z(µ). A quick calculation yields that

H(µ) = J (z(µ))⊤J (z(µ)) ≻ 0, (14)

where J (z) := ∂F (z)
∂z = ZM + S, see, Lemma 4 in Appendix A.

In the following lemma, we summarize some important properties of the Hessian matrix H(µ).

Lemma 1. Let 0 < µ ≤ 1. Letting R∞ > 0 be an ℓ∞-upper bound on the z and s(z), we have

λ0(H(µ)) ≥
(

µ

R∞

)2

.

Proof. From the proof of Lemma 5 in Appendix A, the smallest eigenvalue of H(µ) satisfies

λmin (H(µ)) = λmin

(
J (z(µ))⊤ J (z(µ))

)
≥
(

µ

R∞

)2

.
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The Hamiltonian operator H̃(µ) describes a quantum harmonic oscillator. The eigenvalues and
eigenstates of a quantum harmonic oscillator are well understood [GS18]. Let 0 < λ0(µ) ≤ λ1(µ) ≤
· · · ≤ λn−1(µ) be the eigenvalues of the Hessian matrix H(µ). The spectral gap (i.e., the difference
between the first two eigenvalues) of the operator H̃(µ) is

∆ = hλ
1/2
0 (µ). (15)

Moreover, let Φ0(µ) be the ground state of the operator H̃(µ). It turns out that |Φ0(µ)|2 is the
probability density function of the multivariate normal distribution

|Φ0(µ)|2 ∼ N

(
z(µ),

h

2
(H(µ))−1/2

)
. (16)

Proposition 1. Fix δ > 0. For any µ ∈ (0, 1], choose

h :=
µ2√

2(m+ n)R1

, (17)

where R1 is an ℓ1-norm upper bound on the size of the solution to (SP). Then,

Pr
x∼|Φ0(µ)|2

[x 6∈ N2(γ)] ≤ δ.

The proof of Proposition 1 is available in Appendix B.

3.2 Quantum simulation of the central path

The key idea of our quantum algorithm is to simulate a quantum evolution for some t ∈ [0, 1] in
which the quantum state |Ψ(t)〉 is (approximately) the ground state of H(µ(t)). Here, the function
µ(t) is a monotonically decreasing function such that

µ(0) = 1, µ(1) = µf ≪ 1.

In this way, the quantum state |Ψ(t)〉 follows the central path as µ(t) decreases. At t = 1, if we
measure the final state |Ψ(1)〉, Proposition 1 guarantees that we will obtain an approximate solution
that is in the neighborhood of z(µf ) with high probability.

First, we introduce a function g : [0, 1] 7→ [0, 1] such that (i) g is analytic in (0, 1), and (ii) for
any k = 1, 2, . . . , we have g(k)(0) = g(k)(1) = 0, where g(k)(t) := dk

dtk g(t). The construction of this
function g(t) follows [AL22, Equation 8]. Namely, we choose

g(t) = c−1
e

∫ t

0
exp

(
− 1

τ(1− τ)

)
dτ, (18)

where ce =
∫ 1
0 exp

(
− 1

τ(1−τ)

)
dτ is a normalization constant such that g(1) = 1. Then, given a

fixed µf ∈ (0, 1), we define the function µ(t),

µ(t) = 1− (1− µf )g(t). (19)

Clearly, µ(t) is a monotonically decreasing function such that µ(0) = 1, µ(1) = µf , and we have
µ(k)(0) = µ(k)(1) = 0 for any positive integer k.
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Lemma 2. Let µ(t) be the same as in (19) and define H(k)(t) := dk
dtkH(t). Then, the Hamiltonian

H(t) := H(µ(t)) is analytic in t ∈ (0, 1). Moreover, for any k = 1, 2, . . . , we have H(k)(0) =
H(k)(1) = 0.

Proof. The analyticity immediately follows from our definition of H (see (12)) because fµ is a
quadratic function in µ. By the chain rule, we have

dH(t)
dt

= −2µ̇ (F (z)− µe)⊤ e.

Since µ̇(0) = µ̇(1) = 0, we have H′(0) = H′(1) = 0. Similarly, using an induction argument, we can
prove H(k)(0) = H(k)(1) = 0 for any k ≥ 1.

Proposition 2. Let H(t) := H(µ(t)), where µ(t) is defined in (19). For sufficiently small h, we
consider the following Schrödinger equation,

iη
∂

∂t
Ψη(t) =

1

hµ(t)
H(t)Ψη(t), (20)

where the initial state Ψ(0) is the ground state of H(0). Then, there exists a constant C such that

‖Ψη(1) −Φ0(µf )‖ ≤ Ce−1/η, (21)

where Φ0(µf ) is a ground state of the final Hamiltonian H(1).

Proof. This is a direct consequence of Theorem 3. In Lemma 2, we proved that H(t) is analytic in
t ∈ (0, 1) and and H(k)(0) = H(k)(1) = 0 for any positive integer k. It remains to show that the
spectral gap of H(t) has a lower bound ∆0. For sufficiently small h, the spectral gap of H(t) is
approximately the same as its harmonic approximation H̃(µ(t)) (see (13)). The operator H̃(µ(t))
describes a quantum harmonic oscillator and its spectral gap is precisely ∆(t) = hλ

1/2
0 (µ(t)), see

Equation (15). It follows from Lemma 1 that

∆(t) ≥ h
√(

µ(t)

R∞

)2

= h
µ(t)

R∞
.

Therefore, the spectral gap of the Hamiltonian operator in (20) has a lower bound ∆0 =
1

R∞ .

3.3 Quantum central path algorithm

We present the quantum central path method for linear optimization in full detail in Algorithm 1.
The algorithm takes as input: (i) the self-dual embedding formulation (SP) of the LO problem
data (A, b, c); (ii) the optimality tolerance ε ∈ (0, 1) to which we seek to solve (P)-(D); (iii) the
neighborhood opening parameter γ ∈ (0, 1) that specifies N2(γ), the d2-neighborhood of the central
path; and (iv) the failure rate δ ∈ (0, 1) to which we allow the quantum algorithm returns a point
that is not in N2(γ).

In Algorithm 1, we simulate the Schrödinger equation (20) to error δ
8 , which can be accomplished

through the use of

Õm,n, 1
δ

(√
m+ n · R1

ε

)
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queries to an evaluation oracle for fµ(z) and

Õm,n, 1
δ

(
(m+ n)

R1

ε

)

elementary gates. We address the construction an evaluation oracle for fµ(z) and its associ-
ated cost in Section 3.4. Letting Φ0(µf ) denote the ground state associated to the Hamiltonian
H(µf ), and choosing h according to Equation (17), simulating the Schrödinger equation suffices
to ensure that |Φ0(µf )|2 is the probability density function of the multivariate normal distribution
N
(
z (µf ) ,

h
2 (H(µf ))

−1/2
)
, with µf ≤ ε. A sketch of this process is visualized in Figure 3.3.

Algorithm 1 Quantum central path algorithm for linear optimization
Input: Matrix A ∈ Rm×n, vectors b ∈ Rm and c ∈ Rn, optimality tolerance ε ∈ (0, 1), neighborhood

opening γ ∈ (0, 1), failure rate δ ∈ (0, 1)
Output: ε-optimal solution z ∈ Rn to the LO problem (SP)
Initialize: µf ← ε

1. Initialize the quantum register to |Φ(0)〉, the ground state of H(0).

2.
∣∣Ψη

sim(1)
〉
← simulate the Schrödinger equation (20) to error δ/8 with

h(t) =
γ2µ(t)2

2R1(
√
n/2 + 3 log(2/δ)/4)

, η =
1

log(8C/δ)
,

where µ(t) is defined in (19) and the constant C is independent of m,n and δ (see Proposition
2).

3. z ← sample from the quantum state |Ψη(1)〉.

We may now establish the correctness and complexity of Algorithm 1.

Theorem 5. Let ε ∈ (0, 1). Choose γ ∈ (0, 1) and δ ∈ (0, 1). Given access to a quantum oracle
Ofµ that evaluates the potential function fµ(z, t) in a superposition:

Ofµ (|z〉 ⊗ |t〉 ⊗ |0〉) = |z〉 ⊗ |t〉 ⊗ |fµ(z, t)〉 ,

with probability at least 1−δ Algorithm 1 returns a classical vector z ∈ Rm+n+2
++ such that (z, s(z)) ∈ N2(γ)

with d2(z, s(z); ε) ≤ γε. Moreover, Algorithm 1 can be implemented with

O
(√

m+ n · R1

ε
· polylog

(
m,n,

1

δ

))

queries to Ofµ and

O
(
(m+ n) · R1

ε
· polylog

(
m,n,

1

δ

))

elementary gates.
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Proof. We obtain a quantum state
∣∣Ψη

sim(1)
〉

by simulating the Schrödinger equation (9) to error
δ/8. By Proposition 2, if we choose η = 1/ log(8C/δ) (where C is a constant independent of d and
δ), we have ‖Ψη(1) −Φ0(µf )‖ ≤ δ/8. By the triangle inequality, it turns out that

∥∥Ψη
sim(1) − Φ0(µf )

∥∥ ≤ δ

4
. (22)

We define Bγ,ε := {z ∈ Rn : f(z) ≤ 1
2γ

2ε2}, which is a compact set containing the point z(ε).
Let 1Bγ,ε(z) be the indicator function of the set Bγ,ε, then we have

Pr
z∼|Ψη

sim(1)|2

[
fµ(z) >

1

2
γ2ε2

]
= 1−

〈
Ψη

sim(1)
∣∣
1Bγ,ε

∣∣Ψη
sim(1)

〉
,

Pr
z∼|Φ0(µf )|2

[
fµ(z) >

1

2
γ2ε2

]
= 1− 〈Φ0(µf )|1Bγ,ε |Φ0(µf )〉 .

Then, it follows from Lemma 8 that

Pr
z∼|Ψη

sim(1)|2

[
fµ(z) >

1

2
γ2ε2

]
≤ Pr

z∼|Φ0(µf )|2

[
fµ(z) >

1

2
γ2ε2

]
+
δ

2
≤ δ,

where the last step follows from Proposition 1. This proves the first part of the theorem.
Next, we discuss the complexity of Algorithm 1. The Schrödinger equation (20) can be written

as follows:
iη
∂

∂t
Ψη(t) =

[
−θ
2
∇2 +

1

µ(t)h(t)
fµ(z)

]
Ψη(t),

where the coefficient

θ :=
h(t)

µ(t)
=

γ2µ(t)

R1

(√
n
2 + 2 log

(
2/δ
4

)) . (23)

We introduce the change of variable t 7→ η
θ τ for τ ∈ [0, θ/η], and we define a new wave function

Ψ̃η(τ) := Ψη
(ητ
θ

)
.

It turns out that simulating the Schrödinger equation (20) is equivalent to simulate the following
time-dilated Schrödinger equation

i
∂

∂τ
Ψ̃η(τ) =

[
−1

2
∇2 +

1

h2(τ)
fµ(z)

]
Ψ̃η(τ) (24)

for 0 ≤ τ ≤ θ
η , where h(τ) := h

(
θt
η

)
.

The time-dilated Schrödinger equation (24) can be simulated using Theorem 4. Note that in the
quantum simulation, we need to truncate the time-dependent potential function fµ(z)/h

2(τ) over
a compact domain Ω = [0,D]n, where D is a large number such that Ω contains the neighborhood
of the central path (e.g., N2(γ)). Usually, D can be fixed as an absolute constant. We denote the
truncated time-dependent potential function as

V (z, τ) =
1

h2(τ)
Vµ(z),
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where Vµ(z) = fµ(z) for z ∈ Ω. The ‖ · ‖∞,1-norm of V (z, τ) is defined as

‖V ‖∞,1 :=

∫ θ/η

0

1

h2(τ)
‖Vµ(·)‖∞ dτ.

At each τ , the ℓ∞-norm of Vµ(z) could be large because the function increases when z is far away
from the central path. However, as we are simulating the quantum dynamics in the adiabatic regime
and the quantum state is approximately the ground state of the quantum Hamiltonian, we can give
an improved estimate on ‖Vµ‖∞ based on our knowledge of the ground state. Thanks to our choice
of h(·), the ground state is concentrated in a narrow neighborhood N2(γ) on which the function
fµ(z) is controlled by γ2µ2/2. Thus, we may assume there is a small constant K > 0 such that for
any µ ∈ [ε, 1],

‖Vµ‖∞ ≤ Kγ2µ2.
It follows that

‖V ‖∞,1 ≤
∫ θ/η

0

Kγ2µ2(τ)

h2(τ)
dτ ≤ Kγ2

θη
= O

(
R1

µ
log

(
1

δ

)
·
(√

n+ log

(
1

δ

)))
,

where θ is defined according to (23). Similarly, we estimate the Lipschitz constant of V (x, s),

∥∥∥V̇
∥∥∥
∞
≤ 2µ̇

θ2µ2
‖Vµ‖∞ ≤

2Kγ2

θ2
= O

((
R1

µ

)2(√
n+ log

(
1

δ

))2
)
.

Noting that µ ≥ ε, and applying Theorem 4, we can simulate the Schrödinger equation (24) using

O
(
R1

ε

(√
n+ log

(
1

δ

))
log

(
1

δ

)
log

(
n

δ

))
= Õm,n, 1

δ

(√
m+ n

R1

ε

)

queries to OVµ , and

Õ
(
R1

ε

(√
n+ log2.5

(
n

δ

))(√
n+ log

(
1

δ

))
log

(
1

δ

)
log

(√
n

δ

))
= Õm,n, 1

δ

(
(m+ n)

R1

ε

)

additional gates. Note that we ignore log log(n) and log log(1/δ) factors in the big-O notation.

3.4 Constructing an evaluation oracle for fµ

We now discuss the cost of constructing a quantum oracle Ofµ that queries the function value of
fµ(z) for |z〉 ∈ Ω. To construct Ofµ , we only need the classical binary description of the matrix
A ∈ Rm×n and the vectors b ∈ Rm, c ∈ Rn. We also stress that our construction is only one possible
way to do so.

Lemma 3. Suppose that the total number of non-zeros in A is nnz(A). Then, the quantum oracle
Ofµ can be constructed with ℓ bits of precision using O (nnz(A) · poly(ℓ)) elementary quantum gates
and at most O(nnz(A) · poly(ℓ)) ancilla qubits.
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neighborhood

feasible region

central path µ→ 0

z(1)

z(µ(T ))

z∗
µ = 0

optimal solution

Figure 1: Visualization of the quantum central path algorithm. The dotted lines define the boundary
of a neighborhood of the central path. The dashed circles indicate the progression of the wave packet
from time t = 0 to t = T . The wave packet begins to concentrate on a small ball centered at z(µ(T )),
near the optimal solution to the linear optimization problem z∗.
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Proof. For any |z〉 ∈ Ω and |t〉 ∈ [0, 1], the quantum oracle is defined as

Ofµ (|z〉 ⊗ |t〉 ⊗ |0〉) = |z〉 ⊗ |t〉 ⊗ |fµ(z, t)〉 ,

where the function fµ(z, t) is given by

fµ(z, t) =
1

2

n∑

j=1

(zjsj − µ(t))2 .

Recall that vector s is given by s(z) =Mz + q. We write M = (mj,k)
n
j,k=1, so

sj =

n∑

k=1

mj,kzk + qj ∀j ∈ [n].

Note that the input |z〉 and |t〉 are in binary representation. To maintain ℓ bits of precision, |z〉 is
represented using ℓn qubits (in which each entry uses ℓ qubits), and |t〉 is represented by ℓ qubits.

Without loss of generality, we may assume nnz(b), nnz(c) = O(nnz(A)). For j = 1, . . . , n, we
denote Ñj as the number of non-zeros in the j-th row of M . Due to our definition of M (see Section
2.1.2), we have that

∑n
j=1 Ñj = O(nnz(A)). To compute each sj (for j = 1, . . . , n), we need Ñj uses

of quantum multipliers and quantum adders, respectively.
Since we have a closed-form formula for the function µ(t) : [0, 1]→ R, we assume the value of µ(t)

can be computed by a quantum circuit with O(poly(ℓ)) elementary gates and at most O(poly(ℓ))
ancilla qubits, where ℓ is the digit length of the floating point number t.

Counting the arithmetic operations in the definition of fµ, we find that the function value of
fµ(z, t) can be computed using

1 + n +

n∑

j=1

Ñj = O(nnz(A))

quantum multipliers and 2n quantum adders. In this process, we also need to query µ(t) for n
times. A quantum adder with input size ℓ can be implemented using O(ℓ) elementary gates and
O(1) ancilla qubits [VBE96]. A quantum multiplier with input size ℓ can be implemented using
O(ℓlog(3)) elementary gates and O(ℓ) ancilla qubits [Gid19]. Therefore, we can construct the oracle
Ofµ using O (nnz(A) · poly(ℓ)) elementary gates and O (nnz(A) · poly(ℓ)) ancilla qubits.

Now, we are ready to give an end-to-end complexity result of our quantum algorithm in the
standard gate model. We point out that we made no attempt to optimize the implementation of
the evalation oracle; it may be possible to improve the gate cost further, particularly for highly LO
problems.

Corollary 1. Let ε ∈ (0, 1). Assume that nnz(A) ≥ √m+ n. Choose γ ∈ (0, 1) and δ ∈ (0, 1).
Then, with probability at least 1 − δ, Algorithm 1 returns a classical vector z ∈ Rn

++ such that
(z, s(z)) ∈ N2(γ) with d2(z, s(z); ε) ≤ γε. Moreover, if the LO problem data (A, b, c) is specified in
a classical data structure (e.g., a sparse matrix list, etc.), Algorithm 1 can be implemented with

O
(√

m+ n · nnz(A)
R1

ε
· polylog

(
m,n,

1

δ

))

elementary gates, where nnz(A) is the number of non-zeros in the matrix A.
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Proof. Without loss of generality, we assume nnz(A) ≥ √m+ n. By Lemma 3, the quantum
evaluation oracle Ofµ can be constructed up to fixed digit precision using O(nnz(A)) elementary
gates. Therefore, the overall gate complexity follows from Theorem 5.

3.5 Comparison to existing LO solvers

In Table 2 we provide a comparison of our algorithms to the current state of the art algorithms for
solving Linear Optimization problems in both the classical and quantum models of computation.
For the classical setting, we state the overall cost of the algorithms in both time complexity and bit
complexity. In the quantum setting, the costs for each algorithm are provided in the gate model
and the QRAM input model.

The QCPM achieves polynomial speedups over the state of the art classical and quantum IPMs
in m and n under the mild requirement nnz(A) < (m + n)ω−

1
2 . Without further enhancements to

our framework, an end-to-end speedup over these algorithms is only possible in the low-precision
regime, and requires nnz(A)R1 < (m + n)ω−

1
2 · polylog(m,n). Strikingly, these speedups are not

reliant on QRAM: our algorithm only requires access to the natural binary description for the LO
problem data (A, b, c). When compared to the QIPM in [AG23], our algorithm provides a speedup
in n even when A is fully dense. However, the QIPM in [AG23] exhibits superior dependence on m,
making it the favorable choice for very tall LO problems (with m≫ n), or problems with very large
solution size (in the ℓ1-norm). That said, we emphasize that the QIPM found in [AG23] assume
access to a classical-write/quantum-read RAM (QRAM), and it is unclear whether the running time
of their algorithm would remain competitive in the gate model (without QRAM).

Another approach to solve linear optimization problems, besides IPMs, is the Primal-Dual Hy-
brid Gradient (PDHG) algorithm with restarts [AHLL23]. This algorithm can solve some huge-scale
LO problems in practice, while offering interesting theoretical guarantees. PDHG is a first-order
method, and only needs to compute matrix-vector products involving A at each iteration. This
framework achieves polylogarithmic dependence on precision using restarts, and the number of
restarts depends on the Hoffman constant κ of the KKT system associated to (P)-(D). The Hoff-
man constant is notoriously difficult to compute and rigorously bound; it is often left “as is” and
not expressed as a function of the input size. The Hoffman constant is generally considered a pes-
simistic bound on the iteration complexity of restarted PDHG [XF23]. Our algorithm’s performance
matches that of PDHG when κ = O(

√
m+nR1

ε ), but we are not aware of explicit bounds for κ in the
general case so a direct comparison with our algorithm is difficult.

There are also quantum algorithms based on zero-sum games and Gibbs sampling [vAG19,
BGJ+23, GJLW24] that achieve sublinear running times in m and n, and polynomial dependence
on precision and an ℓ1-norm upper bound R1 on the size of the solution to (P)-(D). Observe that
the superquadratic dependence on R1/ε for the algorithms in [vAG19, BGJ+23, GJLW24] is worse
than the linear scaling enjoyed by the QCPM.

Algorithms for zero-sum games also operate under the assumption that the problem data is
normalized: it is assumed that A ∈ [−1, 1]m×n in [vAG19, BGJ+23] and ‖A‖ ≤ 1 in [GJLW24].
These algorithms employ different definitions of optimality and feasibility than (Q)IPMs and our
QCPM. The output of (Q)IPMs and the QCPM is a classical primal-dual pair (x, y) satisfying

Ai,·x ≤ bi ∀i ∈ [m], x > 0,
(
A⊤
)
i,·
y ≤ ci ∀i ∈ [n], y > 0,
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Table 2: Complexity to solve the primal-dual pair (P)-(D) to precision ε
Classical Algorithms Time complexity
IPM Õm,n, 1

ε
(
√
n
(
nnz(A) + n2)

)
[LS15]

IPM Õm,n, 1
ε
((m+ n)ω) [CLS21, vdB20]

PDHG Õm,n, 1
ε
(κ · nnz(A)) [AHLL23]

Quantum Algorithms Query complexity Gate complexity QRAM
QMMWU Õ

(√
m+ nR2.5

1 ε−2.5 +R3
1ε

−3
)

[BGJ+23, GJLW24] Õ
(√
m+ nR2.5

1 ε−2.5 +R3
1ε

−3
)

[BGJ+23, GJLW24] ✓

QIPM Õm,n, 1
ε

(√
mn5

)
[AG23, Section 7] Õm,n, 1

ε

(√
mn

(
n6.5s2 + nω+2

))
[AG23, Theorem 1.1] ✓

QCPM (this work) Õm,n,α

(√
m+ nR1ε

−1
)

Theorem 5 Õm,n,α

(√
m+ nnnz(A)R1ε

−1
)

Corollary 1 ✗

with
c⊤x− b⊤y ≤ ε.

Conversely, quantum algorithms for zero-sum games output a dual solution y ∈ Rm such that the
primal-dual pair (x, y) satisfies

Ai,·x ≤ bi + εabs ∀i ∈ [m], x > 0,
(
A⊤
)
i,·
y ≤ ci + εabs, ∀i ∈ [n], y > 0,

and the objective value attained by this solution is OPT ∈ [ς − O(εabs), ς + O(εabs)], where ς is a
bound on the optimal objective value determined using binary search. Observe that this is another
difference between the QCPM/(Q)IPMs and quantum algorithms for zero-sum games: in contrast
with the approximate infeasibility of solutions obtained from the zero-sum games approach, the
output of the QCPM/(Q)IPMs always satisfies primal and dual feasibility exactly. We also point
out that, like QIPMs, the state of the art running times for quantum algorithms for zero-sum games
rely on access to QRAM, which is highlighted in Table 2 – the query and gate complexities are the
same (at least up to polylogarithmic factors).

We note that there may exist a regime in which our algorithm is faster than known approaches.
Assume that m ≤ n, and that nnz(A) = Õ(n), e.g., A has O(log(n))-row sparsity. Finally, assume
R1 = O(nξ) for some ξ, and ξ is such that the gate complexity of the QCPM is

Õ
(
n1.5+ξ

)
= Õ

(
nω−δ

)
=⇒ ξ ≤ .87− δ,

where δ > 0 is independent of n. On the other hand, the gate complexity of the algorithms based on
zero-sum games for this regime is Õ(n0.5+2.5ξ), so under these assumptions, for ξ ≥ .67 the QCPM
has better asymptotic complexity than known classical and quantum state-of-the-art algorithms.

4 Conclusion and outlook

In this work, we proposed a new quantum algorithm that solves linear optimization problems by
quantum evolution of the central path. Combining our approach with iterative refinement tech-
niques, one can obtain an exact solution to a linear optimization problem involving m constraints
and n variables using at most Õm,n, 1

δ

(√
m+ nnnz(A)R1

ε

)
elementary gates, where nnz(A) is the to-

tal number of nonzero entries found in A. When the constraint matrix A is sufficiently sparse in the
sense that nnz(A) < (m+n)ω−

1
2 , our results imply a polynomial speedup in m and n over all general-

purpose classical and quantum algorithms for solving linear optimization problems that have poly-
logarithmic dependence on the error. For problems satisfying nnz(A)R1 < (m+n)ω−

1
2 ·polylog(m,n)
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the QCPM attains an end-to-end speedup over these algorithms in the low-precision regime. We
stress that these speedups are not reliant on QRAM, our algorithm only relies on data structures
for the sparse binary representation of (A, b, c).

Though we leave this for future work, our framework should readily generalize to more com-
plex classes of convex optimization problems, such as semidefinite optimization and second-order
conic optimization. Our work highlights a previously unexplored connection between Interior Point
Methods and the Quantum Adiabatic Algorithm [FGGS00], and we believe further exploration into
this relationship to be a worthy endeavor.

Acknowledgements

This project has been carried out thanks to funding by the U.S. Department of Energy, Office of
Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator,
the Defense Advanced Research Projects Agency (DARPA), ONISQ grant W911NF2010022, titled
The Quantum Computing Revolution and Optimization: Challenges and Opportunities. G. Nan-
nicini is supported by ONR award # N000142312585. J.L. and X.W. are partially supported by the
U.S. National Science Foundation grant CCF-1816695 and CCF-1942837 (CAREER), and a Sloan
research fellowship. J.L. is partially supported by the Simons Quantum Postdoctoral Fellowship
and a Simons Investigator award through Grant No. 825053.

References

[AG23] Simon Apers and Sander Gribling. Quantum speedups for linear programming via
interior point methods. arXiv preprint arXiv:2311.03215, 2023.

[AHLL23] David Applegate, Oliver Hinder, Haihao Lu, and Miles Lubin. Faster first-order primal-
dual methods for linear programming using restarts and sharpness. Mathematical Pro-
gramming, 201(1):133–184, 2023.

[AKL+24] Arpit Agarwal, Sanjeev Khanna, Huan Li, Prathamesh Patil, Chen Wang, Nathan
White, and Peilin Zhong. Parallel approximate maximum flows in near-linear work and
polylogarithmic depth. In Proceedings of the 2024 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 3997–4061. SIAM, 2024.

[AL22] Dong An and Lin Lin. Quantum linear system solver based on time-optimal adia-
batic quantum computing and quantum approximate optimization algorithm. ACM
Transactions on Quantum Computing, 3(2):1–28, 2022.

[Ans88] Kurt M. Anstreicher. Linear programming and the Newton barrier flow. Mathematical
Programming, 41(1-3):367–373, 1988.

[ANTZ23] Brandon Augustino, Giacomo Nannicini, Tamás Terlaky, and Luis F. Zuluaga. Quan-
tum interior point methods for semidefinite optimization. Quantum, 7:1110, 2023.

[BCLL18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy
method for ℓp-regression provably beyond self-concordance and in input-sparsity time.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1130–1137, 2018.

27



[BGJ+23] Adam Bouland, Yosheb M. Getachew, Yujia Jin, Aaron Sidford, and Kevin Tian.
Quantum speedups for zero-sum games via improved dynamic Gibbs sampling. In
International Conference on Machine Learning, pages 2932–2952. PMLR, 2023.

[BL89a] Dave A. Bayer and Jeffrey C. Lagarias. The nonlinear geometry of linear programming.
I. Affine and projective scaling trajectories. Transactions of the American Mathematical
Society, 314(2):499–526, 1989.

[BL89b] Dave A. Bayer and Jeffrey C. Lagarias. The nonlinear geometry of linear program-
ming. II. Legendre transform coordinates and central trajectories. Transactions of the
American Mathematical Society, 314(2):527–581, 1989.

[Bou99] Jean Bourgain. On growth of Sobolev norms in linear Schrödinger equations with
smooth time dependent potential. Journal d’Analyse Mathématique, 77(1):315–348,
1999.

[CDS+22] B. David Clader, Alexander M. Dalzell, Nikitas Stamatopoulos, Grant Salton, Mario
Berta, and William J. Zeng. Quantum resources required to block-encode a matrix of
classical data. IEEE Transactions on Quantum Engineering, 3:1–23, 2022.

[CGJ19] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The power of block-
encoded matrix powers: improved regression techniques via faster Hamiltonian sim-
ulation. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2019), volume 132, pages 33:1–33:14, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[CLL+22] Andrew M. Childs, Jiaqi Leng, Tongyang Li, Jin-Peng Liu, and Chenyi Zhang. Quan-
tum simulation of real-space dynamics. Quantum, 6:860, 2022.

[CLS21] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021.

[CMSV17] Michael B. Cohen, Aleksander Mądry, Piotr Sankowski, and Adrian Vladu. Negative-
weight shortest paths and unit capacity minimum cost flow in Õ(m10/7 logW ) time.
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Appendices

A Technical lemmas

Before proceeding further, we provide two results that will be useful in our analysis later in the
paper. For ease of notation, we define F (z) := z ⊙ s(z) ∈ Rn. We begin by establishing that the
Jacobian of F (z) is non-singular over the positive orthant.

Lemma 4. Let Z := diag(z), S := diag(s(z)) and J (z) := ∂F (z)
∂z . Then,

J (z) = ZM + S (25)

is non-singular whenever z, s(z) > 0.

Proof. We use the following identities:

F (z) = z ⊙ s(z) = z ⊙ (Mz + q) = diag(z)Mz + q ⊙ z.

To show that J (z) = ZM + S is non-singular whenever z, s > 0, note that in this case D = Z−1S
is a positive diagonal matrix, and hence

u⊤(M +D)u = u⊤Mu+ u⊤Du = 0 ⇐⇒ u⊤Du = 0 ⇐⇒ u = 0,

as u⊤Mu = 0 for all u ∈ Rn since M is skew-symmetric.

The result in Lemma 4 allows us to analyze the singular values of the Jacobian J (z) of F (z),
and thus the spectrum of the matrix J (z)⊤J (z), which will play a crucial role in the quantum
Hamiltonian we define later in Section 3.

Lemma 5. Let µ > 0 and z(µ) denote the µ-center. Then, the smallest singular value of

J (z(µ)) :=
∂F (z)

∂z

∣∣∣∣
z=z(µ)

satisfies
σmin (J (z(µ))) ≥ µ

R∞
> 0,

where R∞ > 0 is an ℓ∞ upper bound on z and s(z).

Proof. Let s(µ) := s(z(µ)). Note that if z(µ) is the µ-center, then we must have

diag (z(µ)) diag (s(µ)) = Z(µ)S(µ) = S(µ)Z(µ) = µI,

with z(µ), s (µ) > 0. Since Z(µ) and S(µ) are positive diagonal matrices, we may write

Z(µ)2 := diag
(
(z(µ))21 , . . . , (z(µ))

2
n

)
, S(µ)2 := diag

(
(s(µ))21 , . . . , (s(µ))

2
n

)
.

Now, (SP) is strictly feasible, and so its solution set SP is bounded. Without loss of generality,
we may assume that there exists a positive constant R∞ > 0 such that

1

R∞
≤ zi, s(z)i ≤ R∞ ∀i ∈ [n].
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Hence,

min
i∈[n]
{s(µ)i} = min

i∈[n]

{
µ

z(µ)i

}
=

µ

maxi∈[n] {z(µ)i}
≥ µ

R∞
, (26)

since z(µ)is(µ)i = µ for all i ∈ [n].
Given that z(µ) and s(µ) are strictly positive, Lemma 4 ensures that J (z(µ)) is non-singular,

and as a consequence, J (z(µ))⊤ J (z(µ)) is positive definite. Combining these facts, and noting
that M is skew-symmetric, we obtain

J (z(µ))⊤ J (z(µ)) = (Z(µ)M + S(µ))⊤ (Z(µ)M + S(µ)))

=M⊤Z(µ)2M +M⊤Z(µ)S(µ) + S(µ)Z(µ)M + S(µ)2

=M⊤Z(µ)2M −MZ(µ)S(µ) + S(µ)Z(µ)M + S(µ)2

=M⊤Z(µ)2M − µMI + µIM + S(µ)2

=M⊤Z(µ)2M + S(µ)2 ≻ 0. (27)

Combining equations (26) and (27) with Weyl’s inequality, we have

σmin (J (z(µ))) =
√
λmin (M⊤Z(µ)2M + S(µ)2) ≥

√
λmin (S(µ)2)

= min
i∈[n]
{(S(µ))ii} ≥

µ

R∞
> 0. (28)

The proof is complete.

Next, we provide an upper bound for the row-norms of M in terms of the LO problem data.

Lemma 6. Let M be the coefficient matrix of the self dual embedding model (SP). Then,

max
i∈[n−1]

‖Mi,·‖ ≤ 3.

Proof. The result is a simple consequence of the assumption ‖A1,·‖, . . . , ‖Am,·‖, ‖b‖, ‖c‖ ≤ 1 and
the triangle inequality.

B Proof of Proposition 1

Proposition 3 (Proposition 1, [HKZ12]). Let V ∈ Rm×n be a matrix, and let Σ = V TV . Let
x = (x1, . . . , xn) be an isotropic multivariate Gaussian random vector with mean zero. For all
t > 0,

Pr
[
‖V x‖2 > Tr(Σ) + 2

√
Tr(Σ2)t+ 2‖Σ‖t

]
≤ e−t.

Now, we are ready to prove Proposition 1.

Proof. Recall that we define f(x;µ) = 1
2‖F (x) − µe‖2 = 1

2d
2
2(x;µ). So x ∈ N2(γ) is equivalent to

f(x) ≤ γ2µ2

2
.
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Let W := h
2 (H(µ))−1/2. We define y := W−1/2 (x− z(µ)), then for x ∼ |Φ0(µ)|2, we have

y ∼ N (0, I). In a small neighborhood of z(µ),

fµ(x) ≈
1

2
(x− z(µ))TH(µ)(x− z(µ)) = 1

2
yT (H(µ)W )y = ‖V y‖2,

where V := 1
2

√
h(H(µ))1/4. Let Σ := V 2 = h

4 (H(µ))1/2, we have one can write

tr
[
Σ2
]

=
h2

16

n∑

i=1

(
M⊤Z(µ)2M + S(µ)2

)
ii

=
h2

16

n∑

i=1

z(µ)2i ‖Mi,·‖2 + s(µ)2i

≤ h2

16

(
max
i∈[n]
‖Mi,·‖2 · ‖z‖21 + ‖s(z)‖21

)

Lemma 6
≤ 2h2R2

1.

Therefore,
tr[Σ] ≤

√
n
(
2h2R2

1

)
=
√
2h
√
nR1.

By Proposition 3 we need to choose h such that

Pr
x∼|Φ0(µ)|2

[
f(x;µ) >

h

2
√
2

√
nR1α+ 2

√
2h2
√
nR2

1 + 2R1 log

(
1

δ

)]
≤ δ.

Using the identity 2
√
ab ≤ a+ b implies

√
2hαR1

[
√
n+ 2

√
√
n log

(
1

δ

)
+ 2 log

(
1

δ

)]
≤
√
2hR1

[
2
√
n+ 3 log

(
1

δ

)]
.

Hence, in order to ensure

Pr
x∼|Φ0(µ)|2

[
f(x;µ) ≥ 1

2
γ2µ2

]
,

we must choose

h =
µ2√
2nR1

.

C Additional Proofs

Lemma 7. Let Ψ(x, t) denote the exact solution of (10) and Ψ̃(x, t) denote the approximated solu-
tion by the Fourier spectral method (truncated up to frequency n).5 We assume that the initial data
Ψ0(x) is periodic and analytic in x ∈ Ω. Then, for any integer n ≥ 1, the error from the Fourier
spectral method satisfies

max
x,t
|Ψ(x, t) − Ψ̃(x, t)| ≤ 2rn/2+1, (29)

where 0 < r < min(12 ,
1
At), A is an absolute constant that only depends on Ψ0(x).

5More details on the Fourier spectral method can be found in Section 2.2 (in particular Lemma 1) in [CLL+22].
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Proof. We give the proof in one dimension, as the same argument is readily generalized to arbitrary
finite dimensions. We assume the initial data Ψ0(x) is periodic over [0, 2π]. The analyticity implies
that, for any x ∈ [0, 2π], there is a constant C such that

∣∣∣Ψ(k)
0 (x)

∣∣∣ ≤ Ck+1(k!). (30)

Therefore, the function Ψ0(x) admits an analytic continuation in the strip

Γ0 =

{
z ∈ C:|z − x| < 1

C
, x ∈ [0, 2π]

}
.

Due to [Bou99, Proposition 1], there is an absolute constant A such that for any t ∈ [0, T ],
∥∥∥Ψ(k)(·, t)

∥∥∥ ≤ At
∥∥∥Ψ(k)

0

∥∥∥ ≤ ACk+1t(k!), (31)

which implies that the wave function Ψ(x, t) is periodic and analytic for any finite t. The strip on
which Ψ(x, t) admits an analytic continuation is

Γt =

{
z ∈ C:|z − x| < 1

ACt
, x ∈ [0, 2π]

}
.

Suppose that the function Ψ(x, t) allows an exact, infinite trigonometric polynomial representa-
tion (see [CLL+22, Lemma 16]),

Ψ(x, t) =
∞∑

k=0

ck(t)e
ikx. (32)

Let Ψ̃(t, x) be the truncated Fourier series up to k = n/2, then the error from the Fourier spectral
method satisfies

|Ψ(x, t)− Ψ̃(x, t)| ≤
∞∑

k=n/2+1

|ck(t)|. (33)

Meanwhile, the function Ψ(x, t) has an analytic continuation defined by Ψ(x, t) =
∑∞

k=0 ck(t)z
k for

z ∈ Γt. By Cauchy’s integral formula, for any simply connected curve γ on the strip Γt, we have
that

ck(t) =
1

k!

∫

γ
Ψ(k)(z, t)dz. (34)

Together with (31), it turns out that |ck(t)| ≤ rk for some 0 < r < 1
At . Therefore, the error from

the Fourier spectral method satisfies

|Ψ(x, t)− Ψ̃(x, t)| ≤
∞∑

k=n/2+1

|ck(t)| ≤
rn/2+1

1− r . (35)

Moreover, if we force r < 1/2, the error is bounded by 2rn/2+1.
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Proof of Theorem 4. To ensure that the simulation error is bounded by η, we may choose the
truncation number

n =

⌈
2

(
log(4/η)

log(1/r)
− 1

)⌉
≤ O (log(1/η)) .

Next, by plugging this truncation number in [CLL+22, Equation 113], we prove Theorem 4.

Lemma 8. Suppose that ψ1, ψ2 are two unit vectors such that ‖ψ1 − ψ2‖ ≤ δ. Then, we have

|〈ψ1|O |ψ1〉 − 〈ψ2|O |ψ2〉| ≤ 2‖O‖δ.

Proof. By the triangle inequality,

|〈ψ1|O |ψ1〉 − 〈ψ2|O |ψ2〉| ≤ |(〈ψ1| − 〈ψ2|)O |ψ1〉|+ |〈ψ2|O(|ψ1〉 − |ψ2〉)| ≤ 2‖O‖δ.
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