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MOMENTUM-BASED MINIMIZATION OF THE GINZBURG-LANDAU

FUNCTIONAL ON EUCLIDEAN SPACES AND GRAPHS

OLUWATOSIN AKANDE, PATRICK DONDL, KANAN GUPTA, AKWUM ONWUNTA,
AND STEPHAN WOJTOWYTSCH

Abstract. We study the momentum-based minimization of a diffuse perimeter functional on Eu-

clidean spaces and on graphs with applications to semi-supervised classification tasks in machine
learning. While the gradient flow in the task at hand is a parabolic partial differential equation,

the momentum-method corresponds to a damped hyperbolic PDE, leading to qualitatively and
quantitatively different trajectories. Using a convex-concave splitting-based FISTA-type time

discretization, we demonstrate empirically that momentum can lead to faster convergence if the

time step size is large but not too large. With large time steps, the PDE analysis offers only
limited insight into the geometric behavior of solutions and typical hyperbolic phenomena like

loss of regularity are not be observed in sample simulations.

1. Introduction

From its inception as Dido’s problem, separating two regions with as short a boundary as possible
is one of the oldest problems in mathematics. Many problems across the sciences are driven by the
energetic imperative to minimize a perimeter or weighted perimeter functional, from crystal grain
growth to rocks being ground to smooth pebbles in the sea and from liquids with surface tension
to soap films and bubbles. The heuristic of minimizing a transition region in a suitable sense has
been applied to graphs in the classical setting (min-cut problem) and more recently on weighted
graphs in the setting of semi-supervised learning in data science.

In semi-supervised learning tasks, we have a large number of data points but only a small subset
of them are labeled. Our goal is to label the remaining points. Two heuristics are common:

(1) Proximity-based clustering. We base new labels on the closest labeled point or points. The
simplest instance of this heuristic is the k-nearest neighbors algorithm, which does not
exploit the knowledge of where other unlabeled points are. A more advanced PDE-based
version which integrates this information can be based on the eikonal equation [DEK22].

(2) Perimeter minimization clustering. We try to assign consistent labels to clusters of data
and change labels only in between clusters in regions of low data density (small weighted
perimeter)

The second approach leads to similar mathematical structures in data sciences as in the science.
PDE-based algorithms are popular in machine learning due to their interpretability: While intuition
may not transfer one-to-one to the new setting, such analogy can offer insight into the relative
strengths and weaknesses of algorithms and even inspire methods to remedy such pitfalls [CCTS20].

Finding minimizers of perimeter functionals is not easy, neither analytically nor numerically.
It has stimulated active research across disciplines from minimal surfaces in differential geometry

Key words and phrases. Phase-field model, semi-supervised learning, Graph-PDE, momentum-based

optimization.
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to mean curvature flow (the L2-gradient flow of the perimeter functional) in partial differential
equations and to rigorous computational approximations in numerical analysis.

Direct numerical discretizations of an evolving interface between two regions are possible, but
challenging even for surfaces in dimension three [DDE05, DE07]. Mimicking extrinsic perspectives
in geometric measure theory [Bra15], extrinsic approaches to mean curvature flows have been pro-
posed. These include the ‘thresholding’ or Merriman-Bence-Osher (MBO) scheme [MBO92, Eva93]
and the Allen-Cahn equation. Both have an L2-gradient-flow structure with respect to a smooth
approximation of the perimeter functional [EO15, LO20]. Heuristically, the sharp jump between the
two domains is ‘smeared out’ across a narrow region in a principled way, leading to computationally
stable methods which can easily accommodate topological transitions. Due to their stability, dif-
fuse interface models have been popular both in mathematical modeling and computational works.
Both the MBO scheme and the Allen-Cahn equation have been studied extensively on graphs for
applications in image segmentation and semi-supervised learning [LB17, MBC18, BKS18, BM19,
Cri19, MBS20, BKMS20, BvGL21, BvGL+23].

Classical energy-driven approaches (MCF, MBO, Allen-Cahn) have emphasized using a gradient
flow to minimize a diffuse perimeter functional, both on Euclidean spaces and graphs. In this work,
we consider a momentum-based method or ‘accelerated gradient flow’ instead.

While gradient flows choose a locally optimal ‘descent’ direction based on first order information
on an objective landscape, momentum methods (also referred to as ‘accelerated gradient flows’) re-
tain information on past descent directions along their trajectory. Both can be seen as applications
of Newton’s second law, but while the (inertial) mass vanishes in gradient flow models, it is nor-
malized as 1 in momentum methods. Due to inertia, the velocity does not change instantaneously
to adapt to a new gradient. Integrating such global information allows them to converge faster in
‘favorable’ landscapes where past information is indicative of future geometry.

Rigorous guarantees for momentum methods outperforming gradient descent schemes are avail-
able mostly in convex optimization or in landscapes with convex-like properties [GW24]. Qualita-
tive differences can arise between finite-dimensional and infinite-dimensional tasks [SW23]. Still,
for non-convex optimization tasks in machine learning such as the training of neural networks, there
is a large corpus of empirical evidence that momentum-based methods converge significantly faster
than pure gradient descent methods – see e.g. [GW24] and the sources cited therein.

We note that (diffuse) perimeter minimization geometrically differs from most benchmarks in
convex (and non-convex) optimization. For instance, compact initial surfaces vanish in finite time
under mean curvature flow (the gradient flow of the perimeter functional), while gradient flows
typically require infinite time to find minimizers in convex and strongly convex optimization tasks.
This article is a curiosity-driven exploration into momentum methods for perimeter minimization:
Are they (provably and/or empirically) outperforming gradient flow discretizations?

Our main contributions are as follows.

(1) We introduce the ‘accelerated Allen-Cahn’ equation and establish its elementary properties
(total energy dissipation, conditional convergence to a minimizer).

(2) We show that the accelerated Allen-Cahn equation is hyperbolic and inherits its geometric
properties from the wave equation, in particular: finite speed of propagation and a lack of
implicit regularization for evolving interfaces, compared to the parabolic mean curvature
flow equation.

(3) We demonstrate that it also inherits features from momentum-methods compared to gra-
dient flows (such as ‘overshooting’ a global minimizer due to inertia).
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(4) We conjecture a geometric evolution equation for the hypersurfaces in the singular limit as
the width of the diffuse interfaces is taken to zero.

(5) We introduce two time discretizations of the ‘accelerated Allen-Cahn equation’, both based
on a stablizing convex-concave splitting, i.e. a splitting where the gradient of the ‘convex
part’ of the objective function is evaluated implicitly and the gradient of the ‘concave part’
of the objective function is evaluated explicitly.

The Convex-Implicit Nonconvex-Explicit Momentum Algorithm (CINEMA) is a discretiza-
tion which provably decreases the sum of kinetic and potential energy in every time step
even for large time step sizes, but empirically it does not achieve acceleration over a standard
gradient descent scheme with convex-concave splitting.

The second discretization is an instance of the Fast iterative shrinkage and thresholding
algorithm (FISTA), also with convex-concave splitting. We do not guarantee it to be energy
decreasing, but empirically it achieves substantial acceleration over a gradient flow.

(6) We demonstrate how both algorithms can be implemented with negligible excess compu-
tational cost over a mere gradient descent scheme. A key ingredient is the choice of a
double-well potential whose convex part is quadratic, leading to a linear problem for the
implicit part of the time step.

(7) We compare momentum methods and local-in-time gradient descent methods numerically
in Eudlidean spaces and on semi-supervised learning tasks on graphs.

Oversimplifying, we can summarize: The ‘accelerated gradient flow’ of the diffuse perimeter func-
tional has potentially undesirable geometric properties. However, in a large time step discretization,
the algorithm may achieve significantly faster convergence than a convex-concave splitting gradient
descent scheme. The choice of a time discretization is crucial.

Note that we are not considering the ‘accelerated Allen-Cahn equation’ as a physical model,
but only as a computational tool to find a (local) minimizer of the diffuse perimeter functional.
Momentum-based methods have been previously considered in numerical analysis for solving ob-
stacle problems [Sch18, CY19] with an L1-penalty (which enforces the obstacle constraint exactly).
Unlike the Allen-Cahn equation, these tasks fall into the realm of convex optimization where FISTA
is provably faster (at least in the sense of minmax rates).

The article is organized as follows. In Section 2, we give more context for the mathematical
models underlying this work: The Ginzburg-Landau (diffuse perimeter) functional, momentum-
based first order optimization, and partial differential equations on graphs. In Section 3, we analyze
the accelerated gradient flow and gradient flow of the Ginzburg-Landau energy on Euclidean spaces
and compare their geometric properties. In Section 4, we derive discrete time algorithms for the
numerical solution of the evolution equations, which we use for numerical experiments both in
Euclidean spaces and on graphs in Section 5. We conclude with a discussion of context and open
problems in Section 6.

2. Background Material

2.1. Perimeter minimization and the Ginzburg-Landau functional. Many physical phe-
nomena are driven by ‘perimeter minimization’, i.e. by the imperative to minimize the length (or
area) separating two different ‘phases’/open sets in R2 (or R3). Mathematically, this is generally
described as minimizing

Per(E) =

∫

Ω

∥∇1E∥ dx = sup

{∫

E

div(ϕ) dx : ϕ ∈ C∞(Ω;Rd), ∥ϕ∥L∞ ≤ 1

}
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where 1E is the indicator function of the set E and Ω is a larger containing set. Since 1E is non-
smooth, the integral has to be understood in the sense of functions of bounded variation [GW84],
which leads to analytic and numerical challenges.

A computationally stable approximation is the Ginzburg-Landau functional (also sometimes
referred to as Modica-Mortola energy)

Perε(u) =

∫

Ω

ε

2
∥∇u∥2 + W (u)

ε
dx

where W is a ‘double-well potential’: A non-negative function which takes the value zero only if
u ∈ {0, 1}, for instance W (u) = u2(1 − u)2. If ε is small, then u takes values very close to 0 or
1 on most of the domain. However, the transition between the potential wells 0, 1 cannot happen
arbitrary quickly due to the presence of the squared gradient. Both contributions to the energy
balance when u transitions between being close to 0 and close to 1 on a length scale ∼ ε. Indeed,
Perε converges to (a W -dependent multiple of) Per as ε → 0+ (in the sense of Γ-convergence).
Depending on the boundary conditions for u, the limit may also be a perimeter relative to the set
Ω – we refer to [MM77, Mod87, ADA00] for details.

Rather than the characteristic function of the set E, which jumps along the boundary ∂E, we
encounter functions of the form

uε(x) = ϕ

(
sdistE(x)

ε

)

when studying Perε. Here sdist(x) = dist(x,Ec) − dist(x,E) is the signed distance function from
∂E, taken to be positive inside of E, and ϕ is the optimal transition between the potential wells at
0 and 1 in one dimension, i.e. the monotone increasing function which balances the contributions
to the energy: (ϕ′)2 = W (ϕ). Under mild assumptions, there is a unique solution to this ODE such
that ϕ(0) = 1/2 and limx→∞ ϕ(x) = 1, limx→−∞ ϕ(x) = 0.

By differentiation, we see that the ‘optimal profile’ ϕ satisfies ϕ′′ = W ′(ϕ). The transition
between 0 and 1 is ‘smeared out’ across an area of width ∼ ε with the characteristic shape ϕ. We
recall that sdist, like the regular distance function, has a unit gradient: ∥∇sdist∥ ≡ 1 wherever the
distance function is smooth. By standard results, sdist is always C2-smooth close to a C2-boundary
and even if ∂E is non-smooth, it is differentiable except on a set of measure zero by Rademacher’s
theorem.

2.2. The Allen-Cahn Equation. The Allen-Cahn equation

ε ∂tu = ε∆u− W ′(u)
ε

is the (time-normalized) L2-gradient flow of the Ginzburg-Landau functional. Different boundary
conditions imposed on the Ginzburg-Landau energy – which correspond to different limits as ε → 0+

– correspond to different boundary conditions for the PDE.

2.2.1. Singular limit. Like Perε converges to a perimeter functional, also solutions to the Allen-
Cahn equation (i.e. the L2-gradient flow of Perε) converge to solutions of Mean Curvature Flow
(i.e. the L2-gradient flow of Per) in a suitable sense. Heuristically, this can be reasoned out as
follows:

If uε,0 : Ω → [0, 1] is the initial condition for the Allen-Cahn equation, then 0 < uε(t, x) < 1 for
all t > 0 and x ∈ Ω by the maximum principle (unless the boundary conditions on ∂Ω force us to
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leave the interval). In particular, we can write

uε(t, x) = ϕ

(
rε(t, x)

ε

)
, rε = ε ϕ−1(uε).

In rε, the Allen-Cahn operator can be expressed as

(∂t −∆)uε +
W ′(uε)

ε2
=

ϕ′′(rε/ε)
ε2

(
1− ∥∇rε∥2

)
+ ϕ′

(rε
ε

) (
∂t −∆

)
rε.

It is in general not possible to simultaneously make both terms zero, i.e. to simultaneously solve
∥∇r∥2 = 1 and (∂t −∆)r = 0. If rε → r for some limiting r, then we expect that the coefficient
of 1/ε2 has to be zero, while there is a slight bit of leeway for the O(1) term. Thus, we expect
that ∥∇r∥ ≡ 1 everywhere, suggesting that r should be a signed distance function in the spatial
coordinates. This does not tell us anything about the time evolution of r and the interface. To find
it, we posit that the second PDE (∂t −∆)r is solved on the interface r = 0, i.e. in the place where
ϕ′ is largest.

It is well known that div(∇v/∥∇v∥)(x) is the mean curvature of the level set {z : v(z) = v(x)}
at z for any smooth function v – see e.g. [ES91, Section 2.1]. If we are correct and ∥∇r∥ ≡ 1, then
∆r is the mean curvature of the interface

I(t) = {x : rε(t, x) = 0} = {x : uε(t, x) = 1/2}.
A proof in the context of distance functions is also given in [GT77, Chapter 14.6].

The meaning of ∂tr is easiest to glean in the setting of moving hyperplanes. Namely, if H(t) =
{x : xn = x0

n + vt}, then the signed distance function is sdist = (x0
n + vt) − xn and the normal

velocity is v = ∂tr (where v > 0 corresponds to the area where sdist > 0 expanding in time).
We thus conjecture that rε is (close to) the signed distance function from an interface I(t) which

moves by mean curvature. Far away from the interface, we conjecture that ‘nothing happens’, i.e.
uε remains almost constant in space and time close to the potential wells. Overall, uε would then
be close (e.g. in L2) to the characteristic function of a set E(t) whose boundary moves by mean
curvature flow.

The heuristic explanation above in fact describes the limiting behavior of the Allen-Cahn equa-
tion. Rigorous proofs of this result in various forms are given in [Ilm93, MR11, FLS20].

2.2.2. Vector-valued extension. In many applications, there may be more than two phases. If the
phases are unordered (i.e. phase 1 can border phase 3 and does not have to pass through phase 2),
we can design Ginzburg-Landau type functionals

Eε(u) =

∫

Ω

ε

2
∥Du∥2F +

W (u)

ε
dx

for functions u : Ω → Rk where k ≥ 3 is the number of classes, ∥Du∥F is the Frobenius norm of the
derivative matrix and W is a potential with k wells, usually selected at the unit vectors e1, . . . , ek,
unless prior information suggests that boundaries between different phases should have different
‘surface tension’.

An easy way to create such a double-well potential is to select a double-well potential W1D :
R → R which vanishes only at 0, 1 and set

W : Rk → [0,∞], W (u) =

k∑

i=1

W1D(ui) + λ ·
(
1−

k∑

i=1

ui

)2



6 MOMENTUM-BASED MINIMIZATION OF THE GINZBURG-LANDAU FUNCTIONAL

for some λ ∈ (0,∞]. The first contribution to the potential W vanishes if and only if W1D(ui) = 0
for all i, i.e. if and only if ui ∈ {0, 1} for all i. The second term ensures that exactly one of the ui

is 1 and the others are 0.
Also solutions to the vector-valued Allen-Cahn equation approach (multi-phase) mean curvature

flow as proved recently in [FM24].

2.2.3. The hyperbolic Allen-Cahn equation. Another modification of the classical Allen-Cahn equa-
tion is its hyperbolic version

τ utt + αut = ∆u+
W ′(u)
ε2

.

which has been considered more recently by several authors with parameters scaling as τ/α = O(ε).
Like in the parabolic case, the limiting dynamics are described by mean curvature flow. For details,
see e.g. [NGA16, FLM16, Fol17].

The ‘accelerated Allen-Cahn equation’ considered in this work is given by the same equation, but
in a parameter regime where τ and α are both of order 1. Its behavior is therefore quite different
and borrows more from the hyperbolic world of PDEs.

2.3. Momentum-based first order methods in optimization. Gradient flows reduce an objec-
tive function by adjusting the function inputs towards a locally optimal ‘steepest descent’ direction.
If the objective function has favorable geometric properties – for instance, in convex optimization
– it is possible to integrate more global geometric information gained throughout the optimization
process to achieve faster convergence. This is the rationale behind both conjugate gradient methods
in numerical linear algebra and momentum-based optimizers such as Nesterov’s algorithm [Nes83]
and FISTA [BT09] in convex optimization.

For instance, if f is a convex objective function which has a minimizer and a Lipschitz-continuous
gradient, then gradient descent achieves a decay of f(xGD

t ) − inf f = O(1/t) in t steps while
Nesterov’s method achieves the much faster decay f(xNest

t ) − inf f = O(1/t2) with constants of
comparable size hidden in the Landau notation. Non-asymptotic lower bounds demonstrate that
Nesterov’s method achieves optimal decay, at least up to a constant factor – see e.g. [Nes18] for
precise statements.

For information from previous time-steps to remain useful, the objective function f must have
favorable geometric properties such as convexity or strong convexity. Recently, multiple works
have relaxed the geometric conditions under which faster convergence can be established in several
directions – see e.g. [GW24, HADR24] and the references cited therein. While many realistic
optimization tasks do not fall into classes where faster convergence for momentum methods can be
guaranteed, the use of momentum often leads to a notable improved in practice (for instance in the
training of neural networks).

Both momentum-methods and gradient flows are derived from Newton’s second law of mechanics

mẍ = −α ẋ−∇f(x)

for a particle of mass m under the influence of a linear friction and a potential force −∇f . Gradient
flows formally correspond to m = 0, α = 1 while momentum-methods correspond to positive mass
m = 1. The optimal coefficient of friction α depends on the geometry of f : For µ-strongly convex
functions, we select (an estimate of) 2

√
µ while for general convex functions, α = α(t) = 3/t is in

fact a function of time.
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2.4. Momentum-based time stepping algorithms in convex optimization. Notably, the
choice of time discretization for the heavy-ball dynamics is crucial. Polyak’s [Pol64] heavy-ball
method

xn+1 = xn − α∇f(xn) + β(xn − xn−1)

is closely related to the explicit (forward) Euler discretization of the heavy ball ODE and generally
does not achieve acceleration (or even fails to converge) in situations where Nesterov’s scheme
remains stable [LRP16, GTD23]. In situations where a convex function can be decomposed into one
smooth part and one ‘simple’ part, the fast iterative shrinkage and thresholding algorithm (FISTA)
which treats the smooth part explicitly and the simple part implicitly is a stable algorithm with
provable acceleration.

Let H be a Hilbert space. Consider the task of minimizing the sum of two functions F+G : H →
R. If F,G are both convex, then Nesterov’s method and FISTA are two well-studied methods which
are both based on numerical discretizations of the ‘heavy ball ODE’ ẍ = −α(t) ẋ −∇(F + G)(x).
Both can be written in the form

(1) xn+1 = xn + τvn − ηgn, vn+1 = ρn
(
vn − τgn

)

where gn is an approximation of the gradient. The general scheme (1) encompasses

(1) Nesterov’s method with

gn =
(
∇F +∇G

)(
xn + τvn

)

and parameters η = τ2 and ρn = n
n+3 (convex case, corresponding to α(t) = 3/t) or

ρn =
1−√

µ τ

1+
√
µ τ (µ-strongly convex case, corresponding to α = 2

√
µ).

The scheme converges (at a rate faster than GD in general in the sense of minimax
optimal rates) if F+G is convex and τ ≤ 1/L where L is the Lipschitz-constant of∇(F+G).

(2) FISTA with
gn = ∇F (xn+1) +∇G

(
xn + τvn

)

and parameters η = τ2 and ρn = n
n+3 (convex) or ρn =

1−√
µ τ

1+
√
µ τ (µ-strongly convex).

The scheme converges (at a rate faster than GD) if F,G are convex and τ ≤ 1/L where
L is the Lipschitz-constant of ∇G (which may be finite even if ∇F is discontinuous).

Neither scheme is guaranteed to decrease the ‘total energy’

(F +G)(xn) +
λ

2
∥vn∥2

monotonically in non-convex optimization for a suitable λ depending on τ, η, ρ, and even for very
small time steps, we found that FISTA increased Eε in numerical experiments in certain time steps
when we split Eε into its convex part F and concave part G (details below).

Remark 2.1 (Restart). It is well-known that momentum may cause us to overshoot minimizers both
in continuous and in discrete time: A boulder rolling down a mountainside generally will not come
to rest the moment it reaches the bottom of a valley.

A popular remedy are momentum algorithms with adaptive or scheduled restart:

(xn+1, vn+1) =

{
(xn+1, vn+1) as in Theorem 4.2 if (F +G)(xn+1) < (F +G)(xn)

(xn, 0) else.

The first step in the momentum scheme coincides with a convex-concave gradient descent step
since v0 = 0, i.e. (F + G)(x1) ≤ e1 ≤ e0 = (F + G)(x0). Restarting therefore guarantees strict
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Figure 1. Left: x+τf ′(x) for f(x) = − cos(πx) and τ = 1.5 (red line) as well as
z = 0.5 (blue line). The intersections of the lines are the solutions to the implicit
gradient descent equation x+ τf ′(x) = z starting at z and are marked by vertical
lines. Right: The objective function f(x) (red line) and the energy level f(z) at
the initial point (blue line). The admissible implicit Euler solutions and the initial
point z are marked by vertical lines. We see that the energy at the possible next
steps is above the energy at the starting point for four out of nine options.

energy-monotonicity, unless we restart at (xn, 0) where −∇G(xn) ∈ ∂F (xn), i.e. a stationary point
of F +G.

2.5. Convex-concave splitting. If F is convex and G is concave, their sum can have a very
complicated geometry – indeed, any C2-function f : Rd → R with globally bounded Hessian can be
written as

f(x) = f(x) +
λ

2
∥x∥2

︸ ︷︷ ︸
convex

+
−λ

2
∥x∥2

︸ ︷︷ ︸
concave

.

An explicit gradient descent scheme xn+1 = xn − h∇f(xn) is only energy-decreasing if h is small
enough (h < 2/L is sufficient where L is the Lipschitz-constant of∇f). The implicit gradient descent
scheme xn+1 = xn − h∇f(xn+1) always has an energy decreasing solution xn+1 = argminz

1
2 ∥x−

z∥2 + h f(z), but if h is too large, there are generally additional solutions with possibly higher
energy – see e.g. Figure 1. Finding the energy decreasing solution may not be feasible.

However, if an explicit splitting f = F+G into a convex and part F a concave part G is available,
then the mixed explicit/implicit scheme

(2) xn+1 = xn − h
(
∇F (xn+1) +G(xn)

)

defines a sequence uniquely and is energy-stable for any step size. Namely, xn+1 is the unique
minimizer of the strongly convex function

faux
xn,h(z) :=

1

2
∥z − xn∥2 + h

(
F (z) + F (x) + ⟨∇F (x), z − x⟩

)
.

To see that the scheme is energy-stable, recall that a convex C1-function F : Rd → R satisfies the
first order convexity condition

F (x) ≥ F (z) + ⟨∇F (z), x− z⟩ ∀ x, z ∈ Rd.
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For a concave function G on the other hand, we note that

G(z) ≤ G(x) +∇G(x), z − x⟩
where we reversed the roles of x and z in the notation. In particular, if x = xn+1 and x = xn as in
(2), then we may add the two inequalities to obtain

(F +G)(xn+1) ≤ (F +G)(xn) + ⟨∇G(xn), xn+1 − xn⟩ − ⟨∇F (xn+1), xn − xn+1⟩
= (F +G)(xn) + ⟨∇G(xn) +∇F (xn+1), xn+1 − xn⟩
= (F +G)(xn)− h

∥∥∇F (xn+1) +∇G(xn)
∥∥2.

In particular, the sequence (F +G)(xn) is monotone decreasing independently of the step size.
The assumptions on F,G can be relaxed somewhat in terms of regularity, and the scheme may

be defined on a Hilbert space rather than Rd. These extensions are indeed necessary for the Allen-
Cahn equation. We sill pursue them below, where we study a momentum scheme of the type (1)
with convex-concave splitting in the gradients.

For geometric intuition, we provide the following example.

Example 2.2. Assume that F (x) = 1
2 x

TAx where A is a symmetric positive semi-definite d × d-

matrix, and g : Rd → R is a smooth convex function. Then the convex-concave splitting gradient
descent scheme reads

xn+1 = xn − hAxn+1 − h∇G(xn),

or equivalently

(I + hA)xn+1 = xn − h∇G(xn) = (I + hA)xn − h (Axn +∇G)(xn)

= (I + hA)xn − h∇(F +G)(xn).

This reduces to the preconditioned explicit gradient descent scheme

xn+1 = xn − h
(
I + hD2f(xn)

)−1∇(F +G)(xn).

In particular in one dimension, the effect of the convex-concave splitting is to automatically select
a stable step size for the explicit gradient descent scheme.

This observation also illustrates the limitations of the convex-concave splitting: A large step size
may in reality correspond to a fairly small (explicit) time-step. Even with an unconditionally stable
scheme, there can be room to accelerate convergence in practice.

2.6. Partial differential equations on graphs. A graph Γ = (V,E) is a tuple of two sets: The
set V of vertices and the set E of edges, where an edge e = {v, v′} is a set containing two vertices
v, v′ ∈ V . We say that e = {v, v′} connects v and v′.

In the following, we will assume that each edge has a weight we ∈ [0,∞) which is large if its
vertices are ‘close’ (the edge is short) and small if the vertices are ‘far apart’ (the edge is long). We
can think of we as a reciprocal length or a reciprocal length squared.

The graphs we consider have a finite set V = {v1, . . . , vn} of vertices and two vertices can only
be connected by at most one edge. If e connects the vertices vi, vj in V = {v1, . . . , vn}, we also
denote we = wij = wji. A function u : V → Rk can also be interpreted as a vector ui = u(xi).

In analogy to the Euclidean Dirichlet energy EDR(u) =
1
2

∫
∥∇u∥2 dx, one can define the graph

Dirichlet energy

EDR(u) =
1

2

∑

e∈E

we

∣∣ui − uj

∣∣2 =
1

4

n∑

i,j=1

wij

∣∣ui − uj

∣∣2
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where wij = 0 if vi, vj are not connected by an edge. The L2-gradient of the Dirichlet energy is the
(negative) Laplacian, so we call the gradient

(Lu)k = ∂uk
EDR(u) =

1

2

∑

i,j

wij(ui − uj)(δik − δjk) =
∑

j

wkj (uk − uj)

of the Dirichlet energy the ‘graph Laplacian.’ Like the classical (negative) Laplacian, also the
graph-Laplacian is symmetric and positive semi-definite and, since

⟨Lu, u⟩ =
∑

i

ui

∑

j

wij (ui − uj) =
1

2


∑

i,j

wij(ui − uj)ui −
∑

i,j

wij(ui − uj)uj


 = 2EDR(u),

it is positive definite on the orthogonal complement of the functions which are constant on the
connected components of the graph.1

The graph-Laplacian introduced here is unnormalized, but symmetric positive definite. We note
that there are two other common notions of a ‘graph-Laplacian’: The symmetric normalized graph
Laplacian ensures that the weights of incoming edges at each node sum up to 1. The unnormalized
graph Laplacian is given by the application of the matrix L with entries Lij = −wij for i ̸= j and

Lii =
∑

j ̸=i wij . The normalized graph Laplacian is given by L̃ = D−1/2LD−1/2 where D is the
diagonal matrix with entries Dii = Lii. In simulations below, we use this normalization which falls
into the same framework, but with different weights.

The final normalization generalizes a different property of the classical differential operator: Its
link to Brownian motion. The ‘random walk graph Laplacian’ D−1L is the generator of a random
walk on V . It is usually not symmetric since the probability of jumping from vi to vj may be
different from the probability of jumping from vj to vi: The probabilities to jump from vi to vj in
the next step have to sum up to 1 over j (since there are no other options), but there is no reason
that they should sum up to 1 over i.

For variational problems – such as minization of the Ginzburg-Landau energy – the unnom-
rmalized or symmetric normalized graph Laplacians are suitable, and we focus on them in this
article.

2.7. Semi-supervised learning. Consider a data space X and label space Y. In semi-supervised
learning applications, we receive a set of data points S = {xi ∈ X : i = 1, . . . , N} and a collection
of labels {yi ∈ Y : i ∈ I} for a subset of the data. In general, the cardinality of the labeled set is
much smaller than that of the dataset. Our task is to find a ‘good’ function ℓ : S → Y such that
ℓ(xi) = yi for all i ∈ I.

To decide what a ‘good’ function ℓ is, we require further information. In general, we assume that
a notion of similarity or distance between data points is available which is meaningful in the sense
that similar data points can generally be expected to have similar labels. We can use this notion
to construct a graph with vertex set V = S in which two nodes are connected by an edge if they
are ‘similar enough’.

Our applications fall into a common framework: We assume that X = Rd for some d and
Y = {1, . . . , k} for some k ∈ N. We either connect two vertices xi, xj ∈ V = S by an edge if their
Euclidean distance ∥xi − xj∥ is below a cut-off length, or we connect every point to its K nearest
neighbors for some K ∈ N (where the symmetry of the graph means that some vertices have degree

1 Two vertices v, v′ are in the same connected component if there exists a ‘path’ vi1 , . . . , vim such that vi1 = v,

vim = v′ and eilil+1
> 0.
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≫ K if they are the nearest neighbor to that vertex). We either assign the weight 1 to all edges,
or we choose edge weights

wij = exp

(
−∥xi − xj∥2

σ2

)

for the edge connecting xi, xj for a suitable σ. Of course, more advanced constructions are possible
and, at times, required.

The well-developed Allen-Cahn framework can be leveraged in semi-supervised learning applica-
tions by minimizing the ‘energy’

Eε : (Rk)n → [0,∞), Eε(u) =
ε

4

N∑

i,j=1

wij

∣∣ui − uj

∣∣2 + 1

ε

N∑

i=1

W (ui)

subject to the (Dirichlet) ‘boundary condition’ ui = y⃗i if i ∈ I. The vector y⃗i is the one-hot
encoding of the label yi ∈ {1, . . . , k} (i.e. the vector which has a one in the yi-th coordinate and
zeros in all others). From u, we derive the label function ℓ by ℓ(xi) = argmax1≤m≤k um(xi). As
in the Euclidean setting, minimizing Eε (approximately) corresponds to minimizing the size of the
transition set as measured by the sum over edges between differently labeled points

1

2N

∑

i,j

wij1{ℓ(xi) ̸=ℓ(xj)}.

The energy E is non-convex and in general, there exist many (local) minimizers. Using a gra-
dient flow to minimize Eε corresponds to solving the graph Allen-Cahn equation [BKS18, BM19,
BKMS20, MBS20]. In this article, we investigate the use of momentum methods for the same
purpose.

3. The Allen-Cahn Equation and Accelerated Allen-Cahn Equation on Rd

3.1. Basic properties. For the sake of convenience, we assume that the doublewell potential
W : R → [0,∞) is C1-smooth, vanishes only at 0 and 1, and only grows quadratically at ∞. This
excludes the popular prototype W (u) = u2(1 − u)2, but it includes for instance the potentials
used in our simulations. It could be generalized with little additional effort, but more complicated
statements. We define

Fε : L
2(Ω) → [0,∞], Fε(u) =

{∫
Ω

ε
2 ∥∇u∥2 + W (u)

ε dx if u ∈ H1(Ω)

+∞ else.

The choice of defining Fε on the larger space L2 provides a notion of dissipation both for the
gradient flow and the momentum method. For an initial condition u0 ∈ H1(Ω), the accelerated
and time-normalized L2-gradient flow of Fε is given by the evolution equation





(∂tt + α∂t)u = ∆u− 1
ε2 W

′(u) t > 0, x ∈ Ω
u = u0 t = 0

∂tu = 0 t = 0
∂νu = 0 t > 0, x ∈ ∂Ω.

Naturally, we can require Dirichlet boundary conditions by making Fε finite if and only if u ∈
g + H1

0 (Ω) for some g ∈ H1(Ω) rather than for all u ∈ H1(Ω). In this case, we would recover a
Dirichlet boundary condition also for the evolution equation in place of the homogeneous Neumann
boundary condition. The following statement applies to both settings.
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Theorem 3.1 (Total energy decrease). Let α, ε > 0 and W ∈ C2(R) a function such that W (u) = 0
if and only if u ∈ {0, 1}. Assume that u ∈ C2([0,∞)× Ω) solves the PDE

(∂tt + α∂t)u = ∆u− 1

ε2
W ′(u)

in a domain Ω and that either

(1) ∂tu(t, x) ≡ 0 for all t > 0 and x ∈ ∂Ω or
(2) ∂νu(t, x) ≡ 0 for all t > 0 and x ∈ ∂Ω or
(3) ∂Ω = ∅,

i.e. we have Dirichlet boundary conditions which do not depend on time (first case), homogeneous
Neumann boundary conditions (second case) or periodic boundary conditions (third case).

Then the total energy

Eε(u) = Fε(u) +
ε

2
∥∂tu∥2L2(Ω)

is monotone decreasing in time.

Proof. We compute

E′
ε(t) =

2ε

2
⟨ut, utt⟩L2(Ω) +

∫

Ω

ε ⟨∇u, ∇ut⟩+
W ′(u)

ε
ut dx

=

∫

Ω

ε utt ut + div(ut∇u)− ut ∆u+
W ′(u)

ε
ut dx

=

∫

Ω

(
ε utt − ε∆u+

W ′(u)
ε

)
ut dx+

∫

∂Ω

ut ∂νudA = −αε ∥ut∥2L2(Ω)

since the boundary integral vanishes if ut ≡ 0 or ∂νu ≡ 0 on ∂Ω (in particular if ∂Ω = ∅). The
domain integral is evaluated using the PDE. □

We conjecture that the regularity assumptions can be relaxed. Existence, uniqueness and regu-
larity of solutions to the accelerated Allen-Cahn equation are left for future work.

While we do not prove that solutions to the accelerated Allen-Cahn equation have a long term
limit, we establish that any limit if it does exist must be a critical point of the energy Fε.

Theorem 3.2 (Conditional convergence to a critical point). Let u be as in Theorem 3.1 Assume
that there exist c, C,R > 0 such that

c|u| ≤ sign(u)W ′(u) ≤ C |u| ∀ |u| ≥ R.

(1) There exist a sequence of times tn → ∞ and u∗ ∈ H1(Ω) such that u(tn, ·) ⇀ u∗ weakly in
H1(Ω).

(2) Assume that u(t, ·) → u∞ weakly in H1(Ω) as t → ∞. Then −∆u∞ + W ′(u∞)
ε2 = 0.

The condition on W is purely technical and could easily be removed at the expense of a more
complicated statement. For instance, for the classical example W (u) = u2(1− u)2, we would have
to consider the more complicated space H1 ∩ L4.

Proof. First claim. The condition on W ′ ensures that

W (u) ≥ W (R) + c

∫ u

R

tdt ≥ c

(
u2

2
− R2

2

)
⇒ u2 ≤ R2 +

2

c
W (u)
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if u ≥ R and similarly for u ≤ −R. The same bold holds trivially for |u| ≤ R, so
∫

Ω

u2 dx ≤ R2|Ω|+ 2

c

∫

Ω

W (u) dx.

Since Eε(u) remains bounded along the accelerated Allen-Cahn equation, we find that for any
sequence tn ∈ (0,∞), the associated sequence u(tn, ·) remains bounded in H1. By [Bre11, Theorem
3.18 and Proposition 9.1] there exists a subsequence tnk

of tn such that u(tnk
, ·) converges to a limit

weakly in H1(Ω).

Second claim. Assume for the sake of contradiction that f := ∆u∞ + W ′(u∞)
ε2 ̸= 0 in H−1(Ω).

Let ϕ ∈ H1
0 (Ω) such that c̄ := ⟨f, ϕ⟩H−1,H1 > 0. Denote

h(t) :=

∫

Ω

u(t, x)ϕ(x) dx.

Since u converges to a limit weakly in L2(Ω) as t → ∞, we find that h converges to a limit. To
obtain a contradiction, compute

(
d2

dt2
+ α

d

dt

)∫

Ω

u(t, x)ϕ(x) dx =

∫

Ω

(utt(t, x) + αut) ϕ(x) dx

= ⟨−∆u+W ′(u)/ε2, ϕ⟩H−1,H1 .

We note that −∆u(t, ·) ⇀ −∆u∞ in H−1(Ω) by definition. For the non-linear term W ′(u(t, ·)), we
note that W ′ grows linearly, i.e. W ′(u(tn, ·)) → W ′(u∞) strongly in L2 by the compact Sobolev
embedding [Dob10, Kapitel 6.7] and hence in H−1.

We conclude that for sufficiently large t we have

d

dt
(h′(t) + αh(t)) = h′′(t) + αh′(t) ≥ c̄/2.

In particular

h′(t) + αh(t) ≥ h∗ +
c̄

2
(t− t∗)

for t > t∗ with some h∗, t∗ ∈ R. Since h converges, it also remains bounded. This means that
h′(t) → +∞ as t → ∞, also contradicting the fact that h remains bounded. □

Formally, the accelerated Allen-Cahn equation is a semi-linear version of the telegraph equation
(
∂tt + λ1∂t + λ2

)
u = c2 ∆u

with a zeroth-order non-linearity. The telegraph equation is a hyperbolic partial differential equation
of second order which arises when decoupling a system of PDEs modelling the electric flow in a
transmission line. As an equation from electromagnetism, it is compatible with special relativity:
Information cannot propagate faster than the speed of light.

We establish a similar limit on the speed of propagation also for the accelerated Allen-Cahn
equation, as it will be crucial for our geometric analysis below. The method is standard, and more
general results are known, but harder to access.

Theorem 3.3 (Finite speed of propagation). Let (t̄, x̄) ∈ (0,∞)×Ω such that the initial condition
satisfies u0 ≡ 0 on Bt̄(x̄)∩Ω and the initial condition for ∂tu vanishes on Bt̄(x̄). Assume that u is
as in Theorem 3.1. Then u(t̄, x̄) = 0.
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Proof. Consider the ‘past light cone’ of (t0, x0), i.e. the family of shrinking domains C(t) = Bt̄−t(x̄)∩
Ω and the localized energy

e(t) :=

∫

C(t)

1

2
u2
t +

1

2
∥∇u∥2 + W (u)

ε2
dx.

We can compute the derivative

e′(t) =
∫

C(t)

ututt + ⟨∇u,∇ut⟩+
W ′(u)
ε2

ut dx−
∫

Ω∩∂Bt̄−t(x̄)

u2
t + ∥∇u∥2

2
+

W (u)

ε2
dA

=

∫

C(t)

(
utt −∆u+

W ′(u)
ε2

)
ut dx−

∫

Ω

u2
t + ∥∇u∥2

2
+

W (u)

ε2
dA+

∫

∂C(t)

ut ∂νudA

since only the portion ∂Bt̄−t(x0) of the boundary is moving. The second boundary integral is
obtained by the divergence theorem and therefore goes over the whole boundary ∂C(t), but the
boundary conditions make ut∂νu ≡ 0 on ∂Ω ∩ ∂C(t), so

e′(t) = −αε

∫

C(t)

|ut|2 dx+

∫

Ω∩∂Bt̄−t(x0)

ut ∂νu− u2
t + ∥∇u∥2

2
− W (u)

ε2
dA

≤
∫

∂Bt̄−t(x0)

1

2

(
u2
t + (∂νu)

2
)
− u2

t + ∥∇u∥2
2

dA ≤ 0

by Young’s inequality, using that |∂νu| ≤ ∥∇u∥. In particular, since ∥∇u∥ ≡ ut ≡ W (u) ≡ 0 in
C(0), we conclude that e(t) = 0 for all t ≤ t̄. □

Naturally, the same would be true if u ≡ 1 on Ω ∩Bt̄(x̄).
Theorems 3.1 and 3.2 serve as indicators that the accelerated Allen-Cahn equation can alterna-

tively be used to as a tool to minimize the Ginzburg-Landau energy in place of the Allen-Cahn
equation. To the best of our knowledge, the existence of a long time limit for solutions to the
Allen-Cahn equation (i.e. the uniqueness of the limit for different subsequences tn, t

′
n → ∞) is open

in the general case. Even for gradient flows in finite dimensions, a unique limit may not exist – see
for instance the summary of counterexamples in the introduction of [DK21].

Theorem 3.3 is a first step towards geometrically analyzing solutions to the accelerated Allen-
Cahn equation. We will explore the geometry in greater detail in the following section by deriving
the singular limit ε → 0 of the evolutions.

3.2. Singular limit. Even if the initial condition takes values strictly between the potential wells,
there is no guarantee that the same is true for the solution to the accelerated Allen-Cahn equation
at a positive time. For instance, with homogeneous Neumann (or periodic) boundary conditions, if
the inital condition u0 ≡ c is constant in space, so is the solution u(t, ·) ≡ c(t) for all positive times,
and the constant c(t) satisfies the one-dimensional heavy ball ODE

(3) c′′ + αc′ = −W ′(c)
ε2

.

If W ′′(0),W ′′(1) > 0, W behaves like a quadratic function at the minimizers and c strongly resem-

bles a harmonic oscillator. Unless α is sufficiently large – roughly 2
√

min{W ′′(0),W ′′(1)}/ε for
critical dampening – it is well-known that c ‘overshoots’ the potential wells – see e.g. [SW23].

We conjecture that a singular limit as ε → 0 exists, and that it is given by the relation

(4) ∂tv = (1− v2) (h− αv)
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between the normal velocity v and the mean curvature h. In Figure 2, we compare solutions to
the accelerated Allen-Cahn equation to the predicted singular limit for the special case of a circle,
where (4) becomes an ordinary differential equation for the radius

r̈ = (1− ṙ2)

(
−1

r
− α ṙ

)

since the PDE (4) is rotationally invariant.2 The coefficient of friction is chosen as α = 0.05. The
numerical results suggest a good resemblance between continuum limit and numerical approxima-
tion.

Differential operators are implemented using a fast Fourier transform on a spatial spatial grid
of 400 × 400 points with a time step size of τ = 2.5 · 10−7. Further details of the numerical
implementation can be found in Section 4.

Solutions to the ordinary differential equations for the singular limit are found using a predic-
tor/corrector scheme based on the Adams-Bashforth and Adams-Moulton formulas of order five.
The initial values for the linear multi-step methods were found by the Runge-Kutta method of
order four.

3.3. A brief comparison of the Allen-Cahn and accelerated Allen-Cahn equations. There
are several notable differences between the Allen-Cahn equation and its ‘accelerated’ version.

3.3.1. Interface velocity. The maximal speed that an interface can have in the accelerated Allen-
Cahn equation or its singular limit is 1. This is quite different from the singular limit of the Allen-
Cahn equation, where the velocity is routinely unbounded at topological singularities. It does,
however, strongly resemble the behavior of the hyperbolic ‘leading order’ expression (∂tt −∆)u in
the accelerated Allen-Cahn equation.

Thus interfaces can move faster – and the perimeter can decrease faster – in the singular limit of
the Allen-Cahn equation than in the singular limit of what we optimistically dubbed the ‘accelerated
Allen-Cahn equation’. However, the analysis in continuous time may not be representative of
discrete time simulations: If f is µ-strongly convex, then generically the gradient flow of f decays
as f(xt)− inf f ∼ exp(−µt) while the ‘accelerated gradient flow’ with α = 2

√
µ decays like f(xt)−

inf f ∼ exp(−√
µ t). Which rate of decay is faster depends on whether µ < 1 or µ > 1.

However, if ∇f is L-Lipschitz continuous, then the largest stable step size for the explicit Eu-
ler discretization of gradient flow scales as 1/L, while we can allow larger timesteps ∼ 1/

√
L in

Nesterov’s discretization of the accelerated gradient flow [SBC14]. In discrete time, we obtain the

decay f(xk)− inf f ∼ (1−
√
µ/L)k for Nesterov’s scheme after k steps while gradient descent leads

to markedly slower decay f(xk)− inf f ∼ (1− µ/L)k.
A more conclusive answer to which algorithm is ‘faster’ in practical (e.g. machine learning)

applications therefore requires a discrete time analysis. For the highly non-convex problem of
perimeter minimization, a fully satisfying answer is beyond the scope of this note, but numerical
experiments suggest that momentum may be helpful if a suitable time-discretization is chosen.

3.3.2. Interface width and shape. For both equations, we make the ansatz that u(t, x) = ϕ(r(t, x)/ε).
For the Allen-Cahn equation, we find based on this that r is the signed distance function from a
spatially evolving hypersurface, i.e. ∥∇r∥ ≡ 1. For the accelerated Allen-Cahn equation, on the

2 So is the accelerated Allen-Cahn equation, up to boundary conditions. Our derivation is only valid inside the

domain Ω, i.e. for circles away from the boundary.
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Figure 2. We numerically solve the Allen-Cahn equation and the accelerated
Allen-Cahn equation for ε = 0.01 on the unit square with periodic boundary con-
ditions. The initial condition is a circle of radius r = 0.45 centered at (0.5, 0.5).
Both solutions remain circular throughout their evolution.
For the accelerated Allen-Cahn equation, we estimate the circumference of the cir-
cle in two ways: By the Ginzburg-Landau energy (solid line) and by the volume-

area relation Per = 2
√
π
∣∣∫ udx

∣∣ of a circle (dashed line). The second estimate

suggests that the solution is indeed close to the singular limit (4), but the Ginzburg-
Landau energy dramatically overestimates the true perimeter.
This effect is expected since the interfaces become compressed when the interface
moves quickly, leading to suboptimal transitions between the potential wells. It is
additionally possible that the spatial resolution is insufficient to accurately capture
the effect’s precise magnitude in the continuum limit.
Notably, after vanishing in a point, the solution to the accelerated Allen-Cahn equa-
tion continues its evolution by expanding the circle again, increasing its perimeter.
Briefly, before the circle expands again, the integral of u becomes negative.
For comparison, we present the solution to mean curvature flow/curve shortening
flow – the singular limit of the Allen-Cahn equation – and the singular limit (4)
for the accelerated Allen-Cahn equation.

other hand, the interface width depends on its velocity v: If v ̸= 0, then ∥∇r∥ = 1/
√
1− v2 > 1

and the interface is thinner than it would be without acceleration (see Figure 3).
In particular, an evolving ‘interface’ may become much thinner than we would anticipate from

the optimal transition shape. Unless the spatial resolution of a numerical approximation is much
finer than the thickness parameter ε – and much finer than the Allen-Cahn equation would require
in the same problem – the accelerated Allen-Cahn equation may not be resolved accurately.

Even for the continuous partial differential equation without numerical approximation, the
sharper interfaces may have noticeable numerical impact: Since u does not transition on the optimal
length scale between the potential wells, it overestimates the size of the transition area. The faster
the interface moves, the larger the gap between the value of the Ginzburg-Landau functional and
the true size of the transition area.
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Figure 3. Top line: An interface moving to the left (left image) and an interface
moving right (right image). The optimal profile ϕ (red line) is included on the
length scale of a stationary interface (red line) and scaled for a good visual fit
(green line) to illustrate the compression of fast-moving interface in the Allen-
Cahn equation with momentum. Bottom line: The green line indicates where
the one-dimensional slice which we are viewing in the image above is taken from
in a simulation.

Comparing the radius estimates from the Ginzburg-Landau energy of the circle and the estimate
from volume, this effect is noticeable in Figure 2 even when the interface is moving relatively slowly,
e.g. at times t ≈ 0.4.

3.3.3. Ambient/parametrized compatibility. The limit of solutions to the Allen-Cahn equation – a
gradient flow of the Ginzburg-Landau energy – as ε → 0+ is (the indicator function of a set whose
boundary is moving according to) a mean curvature flow, i.e. a gradient flow of the singular limit
of the Ginzburg-Landau energies. More plainly: The limit of the gradient flows is the gradient flow
of the limit. Whether such a result is true can in general be subtle [SS04, Ser11, DKW19], and an
analogous result is not true for the momentum method. Namely, the singular limit of the evolution
equations is

v̇ =
1− v2

1 + v2
(
h− αv) not v̇ = h− αv
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which we would get by imitating Newton’s second law directly on the surface.

3.3.4. Non-monotonicity of the energy. As we observe in Figure 2, the Ginzburg-Landau energy
Perε(u(t)) is monotone decreasing for the gradient flow (Allen Cahn), but not for the momentum
dynamics (accelerated Allen-Cahn). This is unsurprising: Even for a quadratic function in one
dimension, the momentum dynamics generally overshoot the minimizer if the coefficient of friction
α is too low. What is perhaps more surprising is that a along the momentum dynamics, a circle
can shrink, disappear – and then reappear! From our preliminary analysis, it is unclear how the
flow should continue past singularities.

4. Solving the accelerated Allen-Cahn equation numerically

In this Section, we introduce a computationally stable time discretization of the accelerated Allen-
Cahn equation (CINEMA) and compare it to a version of FISTA with convex-concave splitting,
using the ideas from Sections 2.4 and 2.5. Our main algorithmic contribution is given in an abstract
setting in Section 4.1 and specialized to the accelerated Allen-Cahn equation in Section 4.2. An
additional simplification is described in Section 4.3. A direct comparison between the two time-
stepping methods is given in Section 4.4.

4.1. An unconditionally stable momentum algorithm. We consider the version of (1) for
which gn = ∇F (xn+1) + ∇G(xn), i.e. we treate F implicitly and G explicitly, but unlike FISTA,
we evaluate the gradient of G at xn rather than the ‘advanced’ point xn + τvn. In terms of
implementation, this merely corresponds to exchanging the order of two partial steps. We dub this
version the Convex Implicit/Non-convex Explicit Momentum Algorithm (CINEMA).

We prove existence and energy-stability the CINEMA scheme in a slightly more general context
which automatically covers the PDE setting.

Theorem 4.1 (Existence in discrete time). Let H be a separable Hilbert space. Assume that

(1) F : H → R is a weakly lower semi-continuous and convex function with sub-differential ∂F
such that the domain of ∂F is dense in H.

(2) G : H → R is concave, continuous, Gateaux-differentiable and the Gateaux-derivative is
continuous and linear, i.e. for every x ∈ H there exists a vector ∇G(x) ∈ H such that

lim
t→0

G(x+ tv)−G(x)

t
= ⟨∇G(x), v⟩ ∀ v ∈ H.

Then given x, v ∈ H and τ, η > 0, there exists a unique z∗ ∈ H such that

x− z∗ + τv

η
−∇G(x) ∈ ∂F (z∗).

The proof is given in the Appendix. Assuming for the moment that ∂F (z) = {∇F (z)} is a
singleton, we re-write

x− z + τv

η
−∇G(x) ∈ ∂F (z∗) ⇒ x+ τv − z − η∇G(x)−∇F (z) = 0

which is compatible with the scheme (1) with gn = ∇F (xn+1) +∇G(xn).

Theorem 4.2 (Stability in discrete time). Let F and G be as in Theorem 4.1. Given (x0, v0) and
τ > 0, η > τ2/2, and ρ ∈ [0, 1], there exists a unique sequence (xn, vn) which obeys the CINEMA
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time-stepping scheme

xn + τvn − xn+1

η
−∇G(xn) ∈ ∂F (xn+1)

vn+1 = ρn
(
vn − τgn

)

where gn ∈ ∇G(xn) + ∂F (xn+1) is the same element of the sub-differential as in the line above.
Additionally, the ‘total energy’ en = (F +G)(xn) +

1
2ρ2 ∥vn∥2 satisfies

en+1 ≤ en − 1

2
(ρ−2 − 1)∥vn∥2 +

(
τ2

2
− η

)
∥gn∥2.

Also this proof is given in the Appendix.We will see in the next section that the Ginzburg-Landau
energy satisfies all of the conditions of Theorem 4.2.

4.2. The accelerated Allen-Cahn equation. Let W be a double-well potential such that W ′

grows at most linearly at infinity. We split the energy

Fε : L
2(Ω) → R, Fε(u) =

{∫
Ω

ε
2 ∥∇u∥2 + W (u)

ε dx if u ∈ H1(Ω)

+∞ else

into a convex and a concave part

F convex
ε (u) =

∫

Ω

ε

2
∥∇u∥2 + Wconvex(u)

ε
dx, F concave

ε (u) =

∫

Ω

Wconcave(u)

ε
dx

where W = Wconvex +Wconcave and naturally, Wconvex is convex and Wconcave is concave.

Lemma 4.3. Assume that W ′
convex and W ′

concave both grow at most linearly at infinity. Then the
functions F := F convex

ε and G := F concave
ε satisfy the conditions of Theorem 4.2.

The assumption on the derivatives is necessary since the convex-concave decomposition is never
unique. Namely, if f = g + h is a decomposition into a convex and a concave function, then also
f = (g + ϕ) + (h− ϕ) where ϕ is any convex function.

Proof. F is convex by construction with domain H1(Ω) and the singleton-valued sub-differential
−∆u on the domainH2(Ω) of the sub-differential (which is dense in L2). To see that F is lower semi-
continuous, we note that if un ⇀ u∗ in L2(Ω) and lim infn→∞ F (un) < ∞, then the subsequence
which realizes the liminf is indeed bounded in H1(Ω) as well. A further subsequence then converges
to a limit u′ weakly in H1(Ω). By the compact embedding of H1 into L2, we find that un → u′

strongly in L2, yielding that u′ = u∗. We conclude that∫

Ω

∥∇u∗∥2 dx ≤ lim inf
n→∞

∫

Ω

∥∇un∥2 dx

by the lower semi-continuity of the norm under weak convergence [Bre11, Proposition 3.5] and that
∫

Ω

Wconvex(u
∗) dx ≤ lim inf

n→∞

∫

Ω

Wconvex(un) dx

by convexity. G is concave and continuous by construction. Furthermore

lim
t→0

G(u+ tϕ)−G(u)

t
= lim

t→0

∫

Ω

Wconcave(u+ tϕ)−Wconcave(u)

t
dx =

∫

Ω

W ′
concave(u)ϕ dx,

so G is Gateaux-differentiable and the derivative is a continuous linear functional at every point
(and continuous as a map into L2) since W ′

concave grows at most linearly by assumption. □
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The momentum descent step in the scheme of Theorem 4.2 for the u-variable is

un+1 = un + τvn − η

(
−∆un+1 +

W ′
convex(un+1)

ε2
+

W ′
concave(un)

ε2

)

or equivalently

(1− η∆)un+1 + η
W ′

convex(un+1)

ε2
= un + τvn − η

W ′
concave(un)

ε2
.

For a particularly simple implementation, we choose a double-well potential such that Wconvex(u) =

u2 (scalar valued case) or Wconvex(u) = |u|2+∞·1{u/∈V } for the affine subspace V = {u :
∑k

i=1 ui =

1} of Rk (vector-valued case). To compute the next CINEMA time-step, we only need to solve
(
1 + 2

η

ε2
− η∆

)
ũn+1 = un + τvn − η

ε2
W ′

concave(un)

and un+1 = ũn+1 (scalar-valued case) or un+1 = ΠV ũn+1 where ΠV denotes the orthogonal projec-
tion onto V . A similar expression holds true for FISTA.

The algorithm can easily discretized by spectral methods or finite elements, leading to large but
sparse linear systems. The same is true in the graph setting if the graph is sparse.

4.3. A double-well potential with quadratic convex part. We are looking for a doublewell
potential W such that W (u) = u2 +Wconc(u) where Wconc is a differentiable concave function. To
simplify the presentation, we construct W with potential wells at ±1 rather than at 0, 1. When
we want the potential wells at 0, 1 in simulations, we work with W ((1 + u)/2), which also has a
quadratic convex part u2/4.

The functions we consider are smoother versions of W (u) = u2 + 1− 2|u| in order to apply the
existence result for our time-stepping scheme.

Example 4.4. For R, β, γ > 0, the potential

W (u) = Wβ,γ,R(u) := u2 + β − γ
√
Ru2 + 1

satisfies limu→±∞ W (u) = ∞. If γ > 0, then

Wconc(u) := β − γ
√

Ru2 + 1

is smooth and concave. We see that

0 = W ′(u) = 2u− 2γRu

2
√
Ru2 + 1

=

(
2− γR√

Ru2 + 1

)
u = 0

if u = 0 and at u = ±1 if γ = 2
√
R+1
R . The critical point at zero is a local maximum and

W (±1) = 1 + β − γ
√
R+ 1 = 0

if β = γ
√
R+ 1− 1 = 2(R+1)

R = 1 + 2/R. At the origin, we have

W (0) = β − γ = 1 +
2

R
− 2

√
R+ 1

R
=

R+ 2− 2
√
R+ 1

R
=

(
√
R+ 1− 1)

√
R+ 1

R
> 0

for all R > 1. This ansatz therefore yields a one parameter family of doublewell potentials with
quadratic convex part and potential wells at ±1, which we denote by WR. As R → ∞, the value
approaches 1 from below. See Figure 4 for a visualization. Higher values of R corresponds to a
more pronounced wall between the potential wells.
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Figure 4. The doublewell WR for R = 3, 8 and 15 (moving from left to right).

Figure 5. We compare FISTA, CINEMA and gradient descent where for all
schemes, the convex part of the Ginzburg-Landau energy is treated implicitly and
the concave part is treated explicitly. The x-axis counts the number of iterations,
the y-axis the Ginzburg-Landau energy (not total energy).

A multi-well potential for the vector-valued case can be derived from W as described in Section
2.

4.4. CINEMA vs FISTA. Let us compare CINEMA to the well-established FISTA scheme. In
Figure 6, we compare three different versions of the time-stepping scheme (1) for minimizing the
double-well potential WR : R → R described in Section 4.3 (which corresponds to minimizing the
Ginzburg-Landau energy among constant functions).

In all three versions, F is the convex part and G is the concave part of W , but the algorithms
differ in where the gradients are evaluated: For Nesterov’s algorithm, we evaluate both gradients at
xn+ τvn. For FISTA, we evaluate ∇G at xn+ τvn and ∇F (implicitly) at xn+1. For CINEMA, we
evaluate ∇G at xn and ∇F at xn+1. In all algorithms, η = τ2 and ρ = 1/(1 + ατ) with α = 0.01.

Unsurprisingly, the explicit Nesterov scheme quickly seizes to be stable. More surprisingly, FISTA
fails to reduce the ‘total energy’ en = W (un) +

1
2ρ2 |vn|2 over a range of time step sizes, even as the

energy is low enough to ensure that we are indeed in a region where W is convex. Other monotone
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Figure 6. We plot the total energy en = W (un) +
1

2ρ2 |vn|2 for Nesterov’s algo-

rithm (blue line), FISTA (orange line) and the algorithm proposed above (green
line) for time step sizes τ ∈ {0.5, 1, 10, 100, 1000} (from left to right).

quantities exist. CINEMA is decreasing the energy fastest among the algorithms and reliably over
several orders of magnitude in the time-step size.

The situation is quite different in the PDE-experiments we present in Figure 5. Here we compare
the FISTA and CINEMA discretizations of the accelerated Allen-Cahn equation starting from a
circle in the same experimental setting as outlined in Section 5.1.1. We see that for small time-steps
(τ = 10−3), FISTA and CINEMA behave very similarly, and for very large time step sizes (τ = 103),
both FISTA and CINEMA essentially recover the behavior of a pure gradient descent scheme with
convex-concave splitting.

Over the vast range of intermediate time step sizes (roughly 10−2 ≤ τ ≤ 102), we find that FISTA
leads to much faster decrease of the Ginzburg-Landau energy while CINEMA never accelerates
substantially over the gradient descent scheme with convex-concave splitting.

To interpret this observation, we compare the two time-stepping schemes. CINEMA corresponds
to solving

un+1 = un + τvn + η

(
∆un+1 −

2un+1 +W ′
R,conc(un)

ε2

)

or equivalently

(5) (−η∆+ 1 + 2η)un+1 = un + τvn − η

ε2
W ′

R,concave(un).

Formally, all that changes in FISTA is the place where the derivative of WR,concave is evaluated:

(−η∆+ 1 + 2η)un+1 = un + τvn − η

ε2
W ′

R,concave(un + τvn).

Both schemes have comparable computational complexity. However, we conjecture that their dif-
ferent performance can be explained as follows: The FISTA scheme factors into a momentum step
and a gradient descent step

un+1/2 = un + τvn, (1 + η/ε2 − η∆)un+1 = un+1/2 −
η

ε2
Wconcave′(un+1/2).

The momentum step is not energy-driven and may lead to an intermediate ‘loss of regularity’ which
is regained by the gradient descent step. The velocity – which concentrates on the narrow interface
– is not regularized. By comparison, the two steps happen simultaneously and cannot be separated
for CINEMA. This leads to unconditional stability, but also this comes at the cost of oversmoothing
the velocity with the Laplacian by coupling the momentum step and the gradient descent step. See
also Figure 10 for a visualization of the FISTA scheme with large time step size.
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Figure 7. Evolution of a Jordan curve under the Allen-Cahn approximation to
curve shortening flow at times t ∈ {0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08} (left to
right, top to bottom).

5. Numerical experiments

5.1. Simulations in Euclidean Spaces. We present numerical solutions to the accelerated Allen-
Cahn equation in two dimensions to develop geometric intuition.

5.1.1. Simulations in R2. We compare the gradient flow and accelerated flow for the Ginzburg-
Landau functional on the unit square with periodic boundary conditions. The gradient flow is
implemented by a convex-concave splitting and the accelerated gradient flow is implemented as
CINEMA on a n × n-grid with n = 400 with ε = 0.01 and the coefficient of friction α = 3 for
the accelerated version. The time step size is τ = 10−5. The equation (5) is solved in the Fourier
domain, transforming the right hand side by an FFT and the solution by the inverse FFT, and
analogously for the regular Allen-Cahn equation.

The initial condition is (a relaxation of) the characteristic function of a C-shaped set. For
increased numerical stability, we take ten Allen-Cahn time steps with step size τ̃ = 10−4 from the
discontinuous initialization.

In Figure 7, we illustrate the numerical behavior of the Allen-Cahn approximation to mean cur-
vature flow: corners are instantaneously smoothed out and the curve convexifies before disappearing
in a ‘round point’ (i.e. the shape becomes approximately circular at the time of disappearance).
This behavior is representative of MCF for curves in dimension two (also known as curve shortening
flow) where it is known that no singularities occur if the inital curve is embedded.

In Figure 8, we illustrate the accelerated Allen-Cahn approximation to the geometric motion
governed by (4). There are notable geometric differences to the regular Allen-Cahn equation.

At the ninety degree corners in the initial condition, the curvature is infinite (or essentially
infinite after the Allen-Cahn relaxation), so the corner begins to instantaneously move inwards
with velocity close to 1. On the straight interfaces, on the other hand, the curvature is zero, so
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the interfaces remain initially unchanged due to the finite speed of propagation of information.
In effect, this creates new corners with sharp angles of forty-five degrees. There is no parabolic
‘smoothing’ effect in the evolution.

In fast-moving segments of the boundary, the transition between the potential wells is markedly
faster than in stationary segments. This increased sharpness is particularly visible in the vertical
segments of the boundary in the second row (also compare Figure 3).

The ‘vertical’ momentum in the accelerated Allen-Cahn equation translates into ‘horizontal’
momentum for the interface: After the white area disappears in the bottom row, it reappears
again.

We compare the decrease in the Ginzburg-Landau energy along the two different evolutions in
Figure 9. Notably, the Ginzburg-Landau energy is not monotone decreasing along the accelerated
Allen-Cahn equation, but the total energy (the sum of Ginzburg-Landau energy and kinetic energy)
is. As in Figure 2, there is a singularity in the Ginzburg-Landau energy curve at the time that
the shape ‘disappears’ briefly, but it is less pronounced since α is much larger in this simulation.
Unsurprisingly, the energy decrease is much faster along the Allen-Cahn equation in ‘physical’ time.

Figure 9. Left: The decrease of boundary length in the Allen-Cahn equa-
tion and ‘accelerated Allen-Cahn equation’ as measured by the Ginzburg-Landau
functional. Right: The evolution of ‘potential energy’ (the Ginzburg-Landau func-
tional), kinetic energy ε

2 ∥ut∥2L2 and the total energy (their sum). While the poten-
tial energy is not monotone decreasing, the total energy decreases, as is expected
for a momentum-based optimizer.

In Figure 10, we consider the evolution of the same initial condition with the FISTA discretization
and the much larger time step size τ = 1 and with η = τ2 = 1 and ρ = 1/(1+ατ) for α = 0.1. In this
regime, the momentum method geometrically resembles mean curvature more than the accelerated
mean curvature flow and does not develop non-smooth interfaces. The curve shrinks significantly
faster than under the convex-concave splitting discretization of the Allen-Cahn equation.

5.2. Simulations on graphs. In this section, we report simulations on graphs using the syn-
thetic ‘blobs’ dataset [Den12] with a densely connected graph. The weights are assigned as wij =
exp(−∥xi−xj∥2/σ2) in both cases, where σ is suitably chosen and ∥·∥ denotes the Euclidean norm.
The graph Laplacian in the experiment is the symmetric normalized graph Laplacian.
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Figure 8. Evolution of a Jordan curve under the accelerated Allen-Cahn approx-
imation to ‘accelerated curve shortening flow’ at times t ∈ {0, 0.05, 0.1, 0.15} (top
row, left to right), t ∈ {0.225, 0.3, 0.4, 0.45} (second row) t ∈ {0.55, 0.6, 0.65, 0.7}
(third row) and t ∈ {0.80.9, 0.925, 0.95} (bottom row).

5.2.1. A toy example. For the synthetic blobs dataset, we generate 2000 data points in R2, belonging
to five distinct classes using a function from scikit-learn [PVG+11]. We consider two situations:
One, in which the clusters (‘blobs’) are spatially separated and where correct classification based on
Euclidean distances is easy (the standard deviation for the draw of the clusters is 1.5) [PVG+11].

In the second experiment, we use a cluster standard deviation of 2.5, resulting in a dataset with
some overlap between clusters.
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Figure 10. The evolution of u under the FISTA-approximation to the accelerated
Allen Cahn equation for α = 0.1 with convex-concave splitting and large time steps
(τ = 1) after 10, 20, 30, 40 and 50 time steps (top to bottom). We give u in the
middle column, the velocity variable v = ut in the middle column and the energy

gradient ∆un+1 − 2un+1+W ′
concave(un)
ε2 in the right column.

The gradient variable accumulates in the velocity into a signed quantity driving the
interface, but in the gradient descent step, it is an unsigned quantity which undoes
the sharpening interface caused by the momentum step. As expected, the interface
velocity remains below 1. Compared to the PDE, the large time-step scheme does
not lead to singular interfaces with corners.
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After generating the dataset, we randomly select 1% of the data points as points with known
labels. At all other points, the label is predicted based on a phase parameter u : D → Rk, where D
is the data set and k = 5 is the number of classes. The labels at the known data points (encoded
as one-hot vectors) are enforced as a boundary condition. The double-well potential is above.

We selected parameters σ = 0.1 for the matrix generating the Gaussian weights, ε = 0.1 for the
parameter of the phase-field energy and a time-step size τ = 1.0 for the convex-concave split FISTA
discretization (accelerated Allen-Cahn equation) and the convex-concave split gradient descent
algorithm (Allen-Cahn equation). The optimization algorithm ran for T = 1, 000 iterations. As our
main focus is the comparison between optimizers, the parameters associated with graph construction
were not optimized over. As initial condition, we selected u(xi) = 1/k for all points with unknown
labels.

In Figures 11 and 12, we visualize the blobs dataset with true labels and the solutions to the
Allen-Cahn equation and accelerated Allen-Cahn equation.

Figure 11. Performance comparison using the blobs datasets. Left: True labels.
The initially labeled data points for the boundary condition are marked by red
crosses. Center: The final state of the accelerated Allen-Cahn method. Right:
The final state of the Allen-Cahn method.
In the absence of geometric evidence, points are predicted as class zero (purple) by
the tie-breaking mechanism. Evidently, momentum enables the method to over-
come the distance separating outlying datapoints from the bulk and more outliers
are labeled correctly by the momentum method in the light green and turquoise
clusters.



28 MOMENTUM-BASED MINIMIZATION OF THE GINZBURG-LANDAU FUNCTIONAL

Figure 12. Performance comparison using the blobs datasets. Left: The original
blobs data with an overlap. Center: The solution of the accelerated Allen-Cahn
method. Right: The solution of the Allen-Cahn method.

In Figure 13, we visualize the classification accuracies by comparing the correct labels to the
labels predicted by the Allen-Cahn method compared to the accelerated Allen-Cahn method on the
for well-separated data as in 11. In Figure 14, we plot how the Ginzburg-Landau energy decreases
for the two methods. Notably, FISTA with convex-concave splitting converges much faster than
gradient descent with convex-concave splitting in both accuracy and energy.

Figure 13. Accuracies of the
Allen-Cahn and the acceler-
ated Allen-Cahn method

Figure 14. Energies of the
Allen-Cahn and the acceler-
ated Allen-Cahn method

In Figures 15 and 16, we describe the classification accuracies and Ginzburg-Landau energy on
the data with overlap as in Figure 12 using the Allen-Cahn and accelerated Allen-Cahn methods
also.
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Figure 15. Accuracies of the
gradient flow and the momen-
tum method

Figure 16. Energies of the
Allen-Cahn and the Acceler-
ated Allen-Cahn method

6. Conclusion and open questions

We have studied the ‘accelerated Allen-Cahn equation’ (momentum-based) in a setting where
it is not guaranteed to outperform the regular Allen-Cahn equation (gradient flow). Many of our
findings are reminiscent of observations in neural network training:

(1) While we observe convergence to the unique global minimizer (the zero function) in experi-
ments with compactly supported initial condition, the trajectory which the flows take there
are very different (in the parlance of machine learning, the ‘implicit bias’ of both algorithms
is different in terms of which regions of space are explored).

(2) A large time step size appears to nudge also the momentum method towards preferring
smoother interfaces, suggesting a potentially better ‘implicit bias’. A similar phenomenon
is observed in neural network training, where the implicit bias may be best at the ‘edge of
stability’, i.e. for the largest admissible step size.

Neither analogy is perfect. Stochastic effects play a crucial role in neural network training,
and arbitrarily large time steps are admissible with a convex-concave splitting. Additionally, the
implicit bias studied in the training of neural networks typically concerns the long time limit of the
trajectory of an optimization algorithm, while we are considering the full trajectory (and the long
time limits coincide, at least in the experiments with compactly supported initial conditions in Rd).
Still, we maintain that

(1) momentum-based optimization is a promising avenue also for (non-convex) Ginzburg-Landau
functionals,

(2) important questions remain about the appropriate time discretization (in particular, the
stability of FISTA), and

(3) there are interesting parallels to momentum-based optimization in other high-dimensional
settings.
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In particular, the question remains: Can momentum-based optimization in a PDE setting give
insight into momentum-based optimization in high-dimensional settings with less clear geometric
interpretation?
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Appendix A. Proofs for CINEMA

Proof of Theorem 4.1. For x, v ∈ H, we consider the function

M : H → R, M(z) =
1

2
∥z − x∥2 + ⟨η∇G(x)− τv, z⟩+ ηF (z).

We observe that for for fixed x and v, M is bounded below since

M(z) =
1

2
∥z∥2 + 1

2
∥x∥2 + ⟨η∇G(x)− τv − x, z⟩+ ηF (z)

≥ 1

2
∥z∥2 − ∥τv + x∥ ∥z∥+ ∥η∇G(x)∥∥z∥+ η

(
F (ξ)− ∥∂F (ξ)∥ ∥z − ξ∥

)

for some ξ in the domain of ∂F . The expression on the right is bounded from below even if F is
not. Suppose that zn is a minimizing sequence of M , i.e. limn M(zn) = infz∈H M(z). Then the
inequality above implies that zn is a bounded sequence. By the Banach-Alaoglu theorem and the
fact that H is a a separable Hilbert space, zn has a weakly convergent subsequence. For notational
convenience, we can assume that zn itself is weakly convergent and z∗ is its weak limit. Then
limn⟨η∇G(x)− τv, zn⟩ = ⟨η∇G(x)− τv, z∗⟩. Further, since F and the norm ∥ · ∥H are both convex
and lower semi-continuous, they are also weakly lower semi-continuous, i.e. F (z∗) ≤ lim infn F (zn)
and ∥z∗ − x∥2 ≤ lim infn ∥zn − x∥2. Hence, we have shown that

M(z∗) ≤ lim inf
n

M(zn) = inf
z
M(z) ≤ M(z∗).

We can conclude that z∗ is the minimizer of M and thus 0 ∈ ∂M(z∗), which is equivalent to

x− z∗ + τv

η
−∇G(x) ∈ ∂F (z∗). □

Proof of Theorem 4.2. Existence of the scheme follows from Theorem 4.1. For convenience, we
denote sn+1 ∈ ∂F (xn+1) and gn = sn+1 + ∇G(xn). Using the first order convexity condition for
F , we find that

F (xn+1)− F (xn) ≤ ⟨sn+1, xn+1 − xn⟩ = ⟨sn+1, τvn − ηgn⟩.
On the other hand, due to the concavity of G, we have

G(xn+1)−G(xn) ≤ ⟨∇G(xn), xn+1 − xn⟩ = ⟨∇G(xn), τvn − ηgn⟩.
Adding the last two inequalities,

F (xn+1) +G(xn+1) ≤ F (xn) +G(xn)− η∥gn∥2 + ⟨gn, τvn⟩.
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From this inequality and the definition of vn+1 it follows that

en+1 = F (xn+1) +G(xn+1) +
1

2ρ2
∥vn+1∥2

≤ F (xn) +G(xn)− η∥gn∥2 + ⟨gn, τvn⟩

+
1

2
∥vn∥2 +

τ2

2
∥gn∥2 − ⟨τvn, sn+1 +∇G(xn)⟩

= F (xn) +G(xn) +
1

2
∥vn∥2 +

(
τ2

2
− η

)
∥gn∥2

= en − 1

2
(ρ−2 − 1)∥vn∥2 +

(
τ2

2
− η

)
∥gn∥2. □
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