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Abstract

When dealing with a multi-objective optimization problem, obtaining a comprehensive
representation of the Pareto front can be computationally expensive. Furthermore, identi-
fying the most representative Pareto solutions can be difficult and sometimes ambiguous.
A popular selection are the so-called Pareto knee solutions, where a small improvement in
any objective leads to a large deterioration in at least one other objective. In this paper,
using Pareto sensitivity, we show how to compute Pareto knee solutions according to their
verbal definition of least maximal change. We refer to the resulting approach as the sen-
sitivity knee (snee) approach, and we apply it to unconstrained and constrained problems.
Pareto sensitivity can also be used to compute the most-changing Pareto sub-fronts around
a Pareto solution, where the points are distributed along directions of maximum change,
which could be of interest in a decision-making process if one is willing to explore solutions
around a current one. Our approach is still restricted to scalarized methods, in particular to
the weighted-sum or epsilon-constrained methods, and require the computation or approxi-
mations of first- and second-order derivatives. We include numerical results from synthetic
problems that illustrate the benefits of our approach.

1 Introduction

In this paper, we focus on the following multi-objective optimization (MOO) problem

min
x∈X⊆Rn

F (x) = (f1(x), . . . , fq(x)) , (1.1)

where each fi : Rn → R is a twice continuously differentiable function for all i ∈ {1, . . . , q},
with q ≥ 2, and X represents a feasible set. Throughout the paper, we assume X = Rn, ex-
cept in Section 5 at the end of the paper, which is dedicated to the constrained case X ⊂ Rn.
Problems with multiple objectives find applications across a wide range of domains. In engi-
neering design, multiple objectives correspond to various performance measures (e.g., efficiency,
reliability, and safety) that must be maximized simultaneously [8, 22]. In finance, MOO is
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at the heart of portfolio optimization problems, where the trade-offs between risk and return
need to be balanced to achieve the best investment strategy [40]. In the healthcare sector,
MOO is used to strike a balance between providing equitable or rapid service to patients and
managing operational costs effectively [4, 45]. In transportation systems, MOO helps optimize
routing and speed decisions to minimize environmental impact while maximizing efficiency for
service providers and ensuring high service quality for users [17, 25]. In the field of machine
learning, MOO problems are particularly relevant in scenarios like multi-task learning [7, 30],
where a model must perform well on several related conflicting tasks simultaneously, and in
learning problems that address fairness and privacy concerns [32, 35]. The optimal solutions
to problem (1.1) are referred to as Pareto minimizers or Pareto solutions. The Pareto front of
problem (1.1) is the set obtained by mapping the Pareto minimizers from the decision space Rn

to the objective space Rq.

1.1 Finding relevant Pareto minimizers

Determining a large number of Pareto minimizers can be computationally expensive and re-
dundant, particularly with a high number of objectives [43]. While all Pareto minimizers are
mathematically valid solutions, it is generally preferable to identify only a few representative
solutions from the Pareto front [41]. Well-known multi-criteria decision analysis techniques have
been proposed for selecting a single Pareto solution. A priori methods [18, 34] consist of re-
ducing a multi-objective optimization problem into a single-objective one by incorporating user
preferences, which can be achieved by either weighting the objective functions into a single func-
tion with user-defined weights (weighted-sum method), minimizing one objective function and
considering the other objectives as constraints with user-defined right-hand sides (ε-constraint
method), minimizing a user-defined utility function (utility-based method), or minimizing the
deviation of the objectives from user-defined target values (also known as goal programming).
The so-called knee solutions [6, 14, 34] are Pareto minimizers where a small improvement in
any objective would lead to a large deterioration in at least one other objective, which is a
commonly-used verbal definition. Sharpe solutions [38] possess the smallest function value in
the first objective per unit of function value in the second objective. A priori methods require
explicit user preferences, which are not necessary for knee and Sharpe solutions.

Knee solutions have gained significant popularity and have been extensively studied in the
literature. A review of methods to compute knee solutions is provided in [5, 15]. However,
a widely accepted (quantitative) definition for such solutions is lacking, and identifying knee
solutions in high-dimensional objective spaces remains challenging. Furthermore, as discussed
in [15, Subsection 2.2], most current methods identify points that do not necessarily correspond
to knee solutions based on the verbal definition, but are simply intermediate points on the Pareto
front, where the trade-off between the improvement in any objective and the corresponding
deterioration in at least one other objective is not necessarily significant. Existing methods for
determining knee solutions generally fall into three categories: angle-based, utility-based, and
normal boundary intersection-based approaches. Such methods are described below, highlighting
their motivation and limitation.

Angle-based methods, which are applicable only to problems with two objective functions,
identify knee solutions by measuring reflex angles [5] or bend angles [15] using a predetermined
set of Pareto solutions. Specifically, a reflex angle is formed between a Pareto solution and
two chosen neighboring solutions (one to the left and one to the right) on the Pareto front.
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Since a reflex angle is determined using neighboring solutions, it reflects a local characteristic
of the Pareto front, describing its behavior in the vicinity of a specific Pareto solution. A bend
angle is similar to a reflex angle but is obtained by replacing neighboring solutions with extreme
points of the Pareto front∗, which are Pareto solutions in the objective space that correspond
to the minimizers of each objective function individually. Since a bend angle is calculated using
extreme points of the Pareto front, it is better able to capture the global behavior of the Pareto
front. In general, reflex and bend angles approximate the shape of the Pareto front at a given
Pareto solution, and the knee solution is the Pareto solution with the maximum reflex or bend
angle. In [15], the authors propose using a problem-specific, user-defined threshold to determine
whether a bend angle is sharp enough to classify the corresponding solution as a knee solution.
If the threshold is set too high, a knee solution may not exist, and solutions that are practically
significant may be excluded without proper fine-tuning of the threshold.

According to [5], utility-based methods identify knee solutions using a linear utility function
of the form U(F (x), µ) =

∑q
i=1 µifi(x), where µ lies in the simplex set. To identify a knee

solution, one can assume a uniform distribution over the values of µ and maximize the expected
value of a marginal utility function. A variant of such a method is provided in [15], which
defines a knee solution as a Pareto minimizer that minimizes U(F (·), µ) over the set P of Pareto
minimizers for the maximum number of weight vectors µ.

Normal boundary intersection-based methods, applicable to an arbitrary number of objective
functions, search for knee solutions on the Pareto front by maximizing their distance to the
convex hull of the extreme points of the Pareto front, referred to as the boundary line. Such
solutions are typically found in the intermediate regions of Pareto fronts, especially when they
are convex [15]. To identify such solutions, one can employ a nonlinear constrained optimization
approach, as introduced in [11, 12] and further refined in [39]. Evolutionary algorithms were
used to search for normal boundary intersection-based knee solutions in [3, 46].

1.2 Computing knee solutions through Pareto sensitivity

As an advancement over existing multi-criteria decision analysis techniques, the main contribu-
tion of our paper is the introduction of a novel approach for determining knee solutions through
Pareto sensitivity. To derive Pareto sensitivity in a convenient way, we consider the weighted-
sum function

∑q
i=1 λifi(x), where λ takes values in the simplex set Λ. For each λ ∈ Λ, the

minimization of the weighted-sum function leads to a Pareto solution x(λ) (and it is known that
such a process only gives a full characterization of P when all the functions fi are convex). For
simplicity of notation, let f̄i(λ) = fi(x(λ)).

To determine a Pareto knee solution that follows the spirit of the verbal definition, we pro-
pose measuring the maximum change around a Pareto minimizer x(λ) using the maximum ratio
∥∇f̄i(λ)∥/∥∇f̄j(λ)∥ of the norms of ∇f̄i(λ) and ∇f̄j(λ) across all pairs of objective functions i
and j, where {i, j} ⊆ {1, . . . , q}, with i ̸= j. Our knee solutions are determined by minimizing
such a maximum ratio (which we refer to as the maximal-change function), see problem for-
mulation (4.1) in Section 4, thus leading to Pareto solutions where the least maximal change
occurs. When such a knee solution is selected, the decision-maker is guaranteed that trading
among objectives is optimally balanced, minimizing the extent of compromise required for one
objective relative to the others. We refer to the resulting approach as the sensitivity knee (snee)

∗In general, given q objectives, the corresponding Pareto front has at most q extreme points in the objective
space, given by F (xi

∗), where xi
∗ is a minimizer of fi, with i ∈ {1, . . . , q}.
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approach. We note that the techniques used in our snee approach require the computation
or approximations of first- and second-order derivatives and are still restricted to scalarized
methods, in particular to the weighted-sum method considered in this paper.

Our snee approach provides a formal, quantitative definition for knee solutions that captures
the essence of the verbal definition. Since the maximal-change function to be minimized in (4.1)
may be non-convex (regardless of the convexity of the Pareto front), and thus have more than
one local minimizer, our knee solutions may have a local or global nature. Moreover, our knee
solutions may not necessarily lie in the intermediate region of the Pareto front. The concept
of knee solutions outside the intermediate region was analyzed in [15, Section 5], where such
solutions, located near or at the extreme points of the Pareto front, are referred to as edge-knee.
However, the definition of an edge-knee solution applies only to MOO problems with 2 objectives
and depends on a problem-specific, user-defined parameter, whereas our approach overcomes
such limitations.

Let F̄ (λ) = F (x(λ)), and note that F̄ (λ) = (f̄1(λ), . . . , f̄q(λ))
⊤. We will also see in this paper

that the Jacobian matrix of the vector function F̄ can be used to define a neighborhood around
the corresponding Pareto solution x(λ) where the objective functions fi exhibit the greatest
variation per unit change of the weights. One can then compute the most-changing Pareto
sub-fronts around a Pareto solution, where points are distributed along directions of maximum
change. Mapping by F the Pareto minimizers in the neighborhood to the objective space Rq

results in a local most-changing Pareto sub-front, which can be used by decision makers when
locally exploring different trade-offs.

Several advantages are offered by our snee approach (for which we provide a Python imple-
mentation†) compared to existing techniques:

1. Change on the Pareto front is quantified using the most universal concept of rate of
change, i.e., first-order derivatives, eliminating the need for problem-specific, user-defined
parameters.

2. It offers the flexibility to compute knee solutions according to the verbal definition, but
in a quantifiable and optimal form, searching the Pareto front for local or global knee
solutions, without relying on an approximation of the front in advance.

3. It can be applied to any number q of objective functions.

4. It detects a knee solution in the intermediate region of the Pareto front only if the trade-off
between improvement and deterioration in the objectives is significant enough. Otherwise,
the knee solution may lie on the boundary of the Pareto front.

5. It does not involve bilevel or minimax formulations, and it allows for easy use of off-the-
shelf software.

6. The approach also allows for the identification of most-changing Pareto sub-fronts of pre-
defined size, rather than focusing on a single Pareto solution.

Our paper is organized as follows. In Section 2, after presenting basic MOO definitions
and facts as well as general assumptions for problem (1.1), we derive the Pareto sensitivity
formulas. In Section 3, we address how to compute most-changing Pareto sub-fronts around a

†The complete code for our implementation is available at https://github.com/tommaso-giovannelli/snee
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Pareto solution. In Section 4, we introduce the snee approach by developing a single-objective
formulation to define and determine Pareto knee solutions, and we extend such an approach to
the constrained case in Section 5. Each section is accompanied by numerical results illustrating
the benefits of our approach. Finally, we draw some concluding remarks and ideas for future
work in Section 6.

All code was implemented in Python 3.12.7. The experimental results were obtained using a
Dell Latitude 5520 with 16GB of RAM and an Intel(R) Core(TM) i7-1185G7 processor running
at 3.00GHz. Throughout the paper, ∥ · ∥ denotes the Euclidean norm ∥ · ∥2.

2 MOO background and Pareto sensitivity

Pareto minimizers (or Pareto solutions) of problem (1.1) are introduced in Definitions 1 and 2
below [18].

Definition 1 (Pareto dominance) Given any two points {x1, x2} ⊂ X, we say that x1 dom-
inates x2 if F (x1) < F (x2) componentwise. Moreover, we say that x1 weakly dominates x2
if F (x1) ≤ F (x2) componentwise and F (x1) ̸= F (x2).

Definition 2 (Pareto minimizer) A point x∗ ∈ X is a strict Pareto minimizer (or strict
Pareto solution) for problem (1.1) if no other point x̄ ∈ X exists such that x∗ is weakly dominated
by x̄. A point x∗ ∈ X is a weak Pareto minimizer (or weak Pareto solution) if no other
point x̄ ∈ X exists such that x∗ is dominated by x̄.

Let Ps represent the set of strict Pareto minimizers and P the set of weak Pareto minimizers.
Note that Definition 2 implies that P contains the set of strict Pareto minimizers: P ⊇ Ps.
Mapping the set P (or Ps) to the objective space Rq leads to the Pareto front, which is defined
as {F (x) | x ∈ P}.

Definition 3 below defines ideal and nadir points, which are the points in the objective space
associated with the best and worst possible values for all objectives, respectively.

Definition 3 (Ideal and nadir points) The ideal point F I ∈ Rq is the vector whose i-th
component is given by F I

i = minx∈Rn fi(x), for all i ∈ {1, . . . , q}. The nadir point FN ∈ Rq is
the vector whose i-th component is given by FN

i = maxx∈P fi(x), for all i ∈ {1, . . . , q}.
To compute Pareto minimizers, one can use scalarization techniques to reduce a multi-

objective problem into a single-objective one and then apply classical optimization methods [18,
34]. One popular scalarization technique is the weighted-sum method, which consists of weight-
ing the objective functions into a single objective

∑q
i=1 λifi(x), where λi are non-negative

weights. The resulting optimization problem is

min
x∈Rn

q∑

i=1

λifi(x). (2.1)

A necessary and sufficient condition for weak Pareto optimality based on the weighted-sum
method is included in Proposition 2.1 below, where Λ denotes the simplex set, i.e.,

Λ = {λ ∈ Rq |
q∑

i=1

λi = 1, λi ≥ 0, ∀i ∈ {1, . . . , q}}. (2.2)
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In Proposition 2.1, we also include a sufficient condition for equivalence between Ps and P . For
the proof of such a proposition, we refer to [18, 24, 34].

Proposition 2.1 Let the objective functions f1, . . . , fq be convex. Then, x∗ ∈ P if and only if
there exists a weight vector λ ∈ Λ such that x∗ is an optimal solution to problem (2.1). If the
objective functions f1, . . . , fq are strictly convex, then Ps = P .

Throughout the paper, as a working assumption for the non-singularity of the weighted-sum
Hessian, we require Assumption 2.1 below, which implies that the individual Hessian matri-
ces ∇2fi(x), with i ∈ {1, . . . , q}, are positive definite for all x ∈ Rn. Assumption 2.1 and Propo-
sition 2.1 imply P = Ps. Therefore, in the remainder of the paper, we will use the terms Pareto
minimizers or Pareto solutions without specifying whether they are strict or weak.

Assumption 2.1 The objective functions f1, . . . , fq are twice continuously differentiable and
strictly convex.

Throughout the paper, we will focus on the unconstrained case X = Rn, except in Section 5,
where we will address the constrained caseX ⊂ Rn. WhenX = Rn, a way to ensure the existence
of Pareto minimizers would be through strong convexity. However, since we are already assuming
strict convexity, all that is needed is a point x(λ) where the gradient of the weighted-sum function
is the null vector.

Assumption 2.2 (Existence of Pareto minimizer) Let X = Rn. For any λ ∈ Λ, there
exists a point x(λ) such that

∑q
i=1 λi∇xfi(x(λ)) = 0.

Then, to calculate the Jacobian ∇x(λ)⊤ ∈ Rn×q, we take derivatives with respect to λ on
both sides of the first-order necessary optimality conditions

q∑

i=1

λi∇xfi(x(λ)) = 0, (2.3)

yielding the equations

(∇xf1(x(λ)), . . . ,∇xfq(x(λ)))
⊤ +

q∑

i=1

λi∇x(λ)∇2
xxfi(x(λ)) = 0.

Therefore, under Assumptions 2.1 and 2.2, we have

∇x(λ) = −(∇xf1(x(λ)), . . . ,∇xfq(x(λ)))
⊤
(

q∑

i=1

λi∇2
xxfi(x(λ))

)−1

. (2.4)

Recall the function F̄ (λ) = F (x(λ)), defined for all λ ∈ Λ. By applying the chain rule and
using (2.4), the transpose of the Jacobian matrix of F̄ at λ is given by

∇F̄ (λ) = ∇x(λ)∇xF (x(λ))

= −(∇xf1, . . . ,∇xfq)
⊤
(

q∑

i=1

λi∇2
xxfi

)−1

(∇xf1, . . . ,∇xfq),
(2.5)
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where all the gradients ∇xfi and Hessians ∇2
xxfi are evaluated at x(λ), with i ∈ {1, . . . , q}.

Recalling that F̄ (λ) = (f̄1(λ), . . . , f̄q(λ))
⊤, where f̄i(λ) = fi(x(λ)), the columns of ∇F̄ (λ)

correspond to the gradients of the functions f̄i, i.e., ∇F̄ (λ) = (∇f̄1(λ), . . . ,∇f̄q(λ)). Although in
Assumption 2.1 we required the strict convexity of the objective functions, to apply our approach
when X = Rn, all that is required is for the matrix resulting from the convex linear combination
of the individual Hessian matrices to be non-singular, as evident from the expression for ∇F̄ (λ)
in (2.5).

When X ⊂ Rn, instead of using the first-order necessary unconstrained optimality conditions
in (2.3), we compute the Jacobian ∇x(λ)⊤ from the corresponding conditions under the presence
of constraints, typically referred to as the first-order KKT conditions. More details will be
provided in Section 5.

3 Most-changing Pareto sub-fronts around Pareto solutions

Given a Pareto minimizer xc of interest, we want to find a neighboorhood of Pareto minimizers
where the objective functions in F change the most. In this paper, we will address this question
in the space of parameters λ, and thus we seek a neighborhood of λc, with xc = x(λc), where F̄
changes the most.

Given a neighborhood size α > 0, our sub-front of most change is identified using the
following neighborhood

Eα(λc) = {λ ∈ Rq | ∥∇F̄ (λc)
†(λ− λc)∥ ≤ α}, (3.1)

where ∇F̄ (λc) is the transpose of the Jacobian matrix of F̄ defined in (2.5), for λ = λc,
and ∇F̄ (λc)

† is its pseudo-inverse. Note that ∇F̄ is symmetric. It is also singular due to
the fact that (2.3) implies the linear dependence of the gradients at x(λc). Geometrically, the
neighborhood (3.1) results in an ellipsoid with its major axis aligned in the direction of maximum
change.

The ellipsoidal neighborhood (3.1) can be motivated in two different, related ways. First
note that when n = q = 1, we obtain |λ− λc| ≤ α · f ′(λc), and we can see that we are basically
considering larger intervals centered at λc with amplitudes increasing with the slope.

One can also introduce a motivating argument based on the general notion of steepest as-
cent/descent. We are interested in the weight vectors λ that lead to a significative change
in ∥F̄ (λ)− F̄ (λc)∥. Given the expansion

∥F̄ (λ)− F̄ (λc)∥ = ∥∇F̄ (λc)∆λ∥+O(∥∆λ∥2),

we ask for a quadratic decrease in ∥λ− λc∥ and introduce the neighboorhood

Eβ(λc) = {λ ∈ Rq | ∥∇F̄ (λc)(λ− λc)∥ ≥ β∥λ− λc∥2}, (3.2)

for some β > 0. Note that ∥∇F̄ (λc)(λ− λc)∥ ≥ β∥λ− λc∥2 implies

κ(∇F̄ (λc))

β
≥ ∥∇F̄ (λc)

†(λ− λc)∥,

where κ(∇F̄ (λc)) = ∥∇F̄ (λc)∥∥∇F̄ (λc)
†∥ measures the conditioning of ∇F̄ (λc) beyond singu-

larity. We conclude that for moderate κ(∇F̄ (λc)), we recover (3.1) from (3.2) by setting α =
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κ(∇F̄ (λc))/β. Geometrically, neighborhood (3.2) resembles a Cassini oval, which is clearly
visible in some of the plots of this paper.

We will now perform numerical experiments to understand which neighborhood produces
a better Pareto sub-front. Table 2 in Appendix A details the test problems considered in
this section, including their number of variables and objectives. For each problem with n ≤ 3
and q ≤ 3, we graphically represent the parameter, objective, and decision spaces. In this section,
we do not include results for problem GRV2, where q = 2, because both neighborhoods (3.1)
and (3.2) yield similar Pareto sub-fronts in the bi-objective case, providing little insight into our
understanding of which one is better. Given a weight vector λc, to evaluate the effectiveness
of a Pareto neighborhood E(λc) (either Eα(λc) in (3.1) or Eβ(λc) in (3.2)) in identifying the
corresponding Pareto sub-front {F (x) | x ∈ E(λc)}, we will use the most-changing metric (3.3)
below, which measures the extent of the Pareto front covered by a set of Pareto solutions in the
objective space relative to the full extent of the front‡. In our case, as a set of Pareto solutions, we
will use the minimizers that can be obtained by applying the weighted-sum method with weight
vectors in the intersection between a Pareto neighborhood and the simplex set. In particular,
the most-changing metric (MCM) is given by

MCM = MCM(E(λc)) =

q∏

i=1

|maxλ∈E(λc)∩Λ fi(x(λ))−minλ∈E(λc)∩Λ fi(x(λ))|
|maxλ∈Λ fi(x(λ))−minλ∈Λ fi(x(λ))|

. (3.3)

The numerator in (3.3) measures the maximum variation of the objective function fi over
the set of weights in E(λc) ∩ Λ. The denominator measures the maximum variation of fi over
the set of weights in Λ, which is an approximation of the maximum variation achievable in fi.
The denominator can also be written as |F I

i − FN
i |, where F I and FN are the ideal and nadir

points introduced in Definition 3 in Section 2. Note that metric (3.3) lies between 0 and 1. Since
such a metric is computed relative to the full Pareto front, it is not affected by differences in
the orders of magnitude of the objective functions. A higher value of metric (3.3) indicates that
the corresponding Pareto sub-front has higher change.

To obtain numerical results, we considered a finite set of equidistant vectors that corresponds
to a fine-scale discretization of Λ, i.e., Λm = {λ1, . . . , λm} ⊂ Λ. We compared the ellipsoidal
neighborhood Eα(λc) in (3.1) and neighborhood Eβ(λc) in (3.2) against a ball of radius r, defined
as follows

Br(λc) = {λ ∈ Rq | ∥λ− λc∥ ≤ r}. (3.4)

Note from (3.1) and (3.4) that Br(λc) is equal to Eα(λc) when r = α and the Jacobian of F̄ is
equal to the identity matrix. When using the ellipsoidal neighborhood Eα(λc), we set α to 0.10,
which results in neighborhoods of a reasonable size. In practice, the value of α should be chosen
by a decision-maker. When using Br(λc) and Eβ(λc), we set r and β to values that produce
neighborhoods comparable in size to Eα(λc).

Figures 1–3 illustrate the results for problems ZLT1, GRV1, and VFM1. In each plot, the
black dot represents the center of the corresponding neighborhood or sub-front. Such figures
show that Eα(λc) and Eβ(λc) lead to sub-fronts where points are distributed along directions of
maximum change of the Pareto front.

The values of metric (3.3) for problems ZLT1, GRV1, VFM1, and ZLT1q are included in
Table 1 below for each type of neighborhood, along with the values of n and q used in the

‡In the literature, such a metric is referred to as the overall Pareto spread [2, 44]. However, in our case, since
we are not computing Pareto fronts, the term spread is not relevant.
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Problem n q Neighborhood MCM (# Neigh. Points)/|Λm|

ZLT1 3 3
Br(λc), r = 0.40 0.0895 0.2392

Eα(λc), α = 0.10 0.1529 0.2329

Eβ(λc), β = 7 0.0837 0.2251

GRV1 2 3
Br(λc), r = 0.30 0.0136 0.1702

Eα(λc), α = 0.10 0.1078 0.1639

Eβ(λc), β = 10 0.0252 0.1749

VFM1 2 3
Br(λc), r = 0.23 0.0260 0.1788

Eα(λc), α = 0.10 0.0824 0.1804

Eβ(λc), β = 13 0.0546 0.1859

ZLT1q 5 5
Br(λc), r = 0.28 0.0111 0.1026

Eα(λc), α = 0.10 0.0974 0.0948

Eβ(λc), β = 8.5 0.0176 0.1007

Table 1: Comparison of Br(λc), Eα(λc), and Eβ(λc) from the numerical experiments in Section 3.

experiments and the fraction of the weight vectors in Λm that are contained within each neigh-
borhood. To obtain the Pareto solutions associated with each weight vector in a neighborhood,
we minimized the corresponding weighted-sum function using the BFGS algorithm implemen-
tation available in the Python SciPy library [23, 42], with default parameters. When comput-
ing the MCM for the ball (3.4), we replace E(λc) in (3.3) with Br(λc). For problems ZLT1
and GRV1, we arbitrarily set λc = (0.8, 0.1, 0.1), while for problems VFM1 and ZLT1q, we ar-
bitrarily set λc = (0.4, 0.2, 0.4) and λc = (0.6, 0.1, 0.1, 0.1, 0.1), respectively. From Table 1, one
can observe that Eα(λc) outperforms Eβ(λc) and Br(λc) on all of the problems. Additionally,
Eβ(λc) yields (nearly all the times) better results than Br(λc).

Remark 3.1 If one wants to determine a most-changing Pareto sub-front around multiple
Pareto solutions, there are several approaches one can use based on the above procedure for
a single point. A first approach consists of computing a most-changing neighborhood using the
centroid of the weight vectors that correspond to the given Pareto solutions. A second approach
involves determining the centroid of the given Pareto solutions and computing a most-changing
neighborhood using a matrix that could be either the Jacobian at the centroid or a linear com-
bination of the Jacobians at the given Pareto solutions. A third approach consists of computing
a most-changing neighborhood for all the given Pareto solutions, and then taking the union of
such neighborhoods.

4 Finding knee solutions through Pareto sensitivity

In this section, we develop a single-objective optimization formulation to determine knee solu-
tions of a Pareto front. When q = 2, a Pareto front can be modeled in the objective space
as either the curve f2 = f2(f1) or the curve f1 = f1(f2). Let df2/df1 and df1/df2 denote the
derivatives of f2 with respect to f1 and vice versa, and let us assume their existence. These
derivatives represent the slope of the tangent line to the corresponding curve at a given point.
As proposed in [15, Section 6], knee solutions according to their verbal definition (trade-off be-
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Figure 1: Pareto neighborhoods for problem ZLT1 in the parameter, objective, and decision
spaces. The upper, middle, and lower plots were obtained by sampling weights from Λ at
equidistant points within Br(λc), Eα(λc), and Eβ(λc), respectively.
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Figure 2: Pareto neighborhoods for problem GRV1 (for n̄ in Table 2 equal to 2) in the parameter,
objective, and decision spaces. The upper, middle, and lower plots were obtained by sampling
weights from Λ at equidistant points within Br(λc), Eα(λc), and Eβ(λc), respectively.
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Figure 3: Pareto neighborhoods for problem VFM1 in the parameter, objective, and decision
spaces. The upper, middle, and lower plots were obtained by sampling weights from Λ at
equidistant points within Br(λc), Eα(λc), and Eβ(λc), respectively.
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tween improvement and deterioration in the objectives) correspond to Pareto minimizers where
these derivatives are equal in size. We then observe that a knee solution for q = 2 mini-
mizes max{|df2/df1| , |df1/df2|}. When q > 2, such an approach can be extended by minimizing
the maximum derivative |dfi/dfj | for all pairs {i, j} ⊆ {1, . . . , q}, with i ̸= j, in an attempt to
levelize all the derivative sizes. However, such an approach is limited in practice to the fact that
it would require the calculation of the entire Pareto front followed by the calculation of a model
of the curves fi(fj) to compute the derivatives |dfi/dfj |.

To replicate the role of |dfi/dfj |, our approach uses the ratio between the norms of ∇f̄i(λ)
and ∇f̄j(λ) (which are the columns of matrix ∇F̄ (λ) in (2.5)), resulting in the maximal-change
function (MCF), which we minimize as follows

min
λ∈Λ

MCF(λ), where MCF(λ) = max
{i,j}⊆{1,...,q}

i ̸=j

∥∇f̄i(λ)∥
∥∇f̄j(λ)∥

. (4.1)

Intuitively, the minimization problem in (4.1) aims to make the norms of ∇f̄i(λ) and ∇f̄j(λ) as
close as possible§. Recalling that derivatives measure the rate of change of a function, our snee
approach defines a knee solution as a Pareto solution where the least maximal change of the
Pareto front occurs. When selecting such a knee solution, the decision maker is thus protected
against large trade-offs in a certain optimal way. In our numerical experiments, to avoid divi-
sion by zero, we replaced ∥∇f̄j(λ)∥ by max{∥∇f̄j(λ)∥, eps}, where eps represents the machine
precision. Once an optimal solution λ∗ to the minimization problem in (4.1) is obtained, one
can determine a Pareto neighborhood with λc = λ∗, as described in Section 3.

Note that problem (4.1) involves the minimization of a non-smooth and nonconvex function
for which subgradients involve third-order derivatives. However, the dimension of the problem
is equal to the number q of objective functions, typically very low, and so problem (4.1) can be
efficiently solved by a derivative-free optimization (DFO) algorithm [1, 9, 10, 31].

To solve the minimization problem in (4.1), we considered two popular DFO algorithms:
Nelder-Mead [36] ad DIRECT [28]. The Nelder-Mead (NM) algorithm uses a simplex of points
to navigate the search space, adjusting the simplex through operations such as reflection, expan-
sion, contraction, and shrinkage. It requires an initial starting point, but it typically involves
fewer function evaluations than global methods like DIRECT, making it suitable for problems
where computational efficiency is a priority. The DIRECT algorithm is a global optimization
method that systematically divides the search space into hyper-rectangles, calculating objec-
tive function values to find potential global minima without requiring derivative information. It
does not require an initial starting point and it may necessitate a substantial number of function
evaluations. For the numerical experiments, we used the implementations of both algorithms
available in the Python SciPy library [42], with default parameters. At each iteration of both
algorithms, feasibility is ensured by computing orthogonal projections onto Λ.

We again considered the unconstrained problems from Table 2 in Appendix A. Figure 4
presents the results for problem GRV2, while Figures 5–8 present the results for problems ZLT1,
GRV1, VFM1, and ZLT1q. For the NM algorithm, we used the weight vectors λc from Section 3
as starting points for problems ZLT1, GRV1, VFM1, and ZLT1q. For problem GRV2, the
starting point was arbitrarily set to (0.9, 0.1). In each figure, the iterates of the optimization
process corresponding to the NM algorithm are represented by purple diamonds, while the

§Hence, one could consider alternative formulations of (4.1), such as minimize the absolute value of the
difference between the norms of ∇f̄i(λ) and ∇f̄j(λ).
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starting points are indicated by cyan stars. The neighborhoods shown in the figures are the
ellipsoidal ones, centered at the best point returned by the algorithm¶. To avoid redundancy,
we do not represent the parameter, objective, and decision spaces for the DIRECT algorithm
because its final solution to the minimization problem in (4.1) is nearly identical to that of
the NM algorithm (there are no noticeable differences in the plots). Each figure includes plots
that show the values of the MCF and MCM over the iterations, demonstrating their approximate
correlation (the plot on the left corresponds to NM, while the plot on the right corresponds
to DIRECT). One can observe that the NM and DIRECT algorithms achieve the same minimum
values for the MCF and MCM. Note that the neighborhoods are required only for computing
the MCM and not for the MCF. To determine x(λ) for a given λ, we used the weighted-sum
method and minimized the resulting weighted-sum function by applying the BFGS algorithm,
as in Section 3.

Remark 4.1 Given the approximate correlation between the MCF and MCM, one might think
that knee solutions could be obtained by minimizing the MCM over λc instead of the MCF over λ.
However, such an approach presents challenges because MCM = MCM(Eα(λc)) depends on the
neighborhood size α. With fixed right-hand sides, the MCM may achieve a small value for a
neighborhood E(λc) with a small size (particularly in regions of the parameter space where the
norm of ∇F̄ (λc) is low), even if its center λc is not a knee solution. Therefore, minimizing
the MCF provides a more reliable approach.

Note that the knee solutions found by both the NM and DIRECT algorithms lie in the
intermediate regions of the Pareto fronts, except for problem VFM1, where the knee solution
lies on the upper boundary of the Pareto front (see Figure 7). This outcome aligns with the
concept of edge-knee solutions proposed in [15] for problems with 2 objectives, but differs from
the knee solutions found by the normal boundary intersection method [11, 12], which tends to
identify solutions in the intermediate region of a Pareto front (when it is convex), depending on
where the distance between a point on the front and the convex hull of the extreme points is
maximized. If the front lacks a bulge (i.e., a region where a small improvement in any objective
leads to a large deterioration in at least one other objective, which is the verbal definition of
a knee solution), the solution found by our approach will not be in the intermediate region, as
there is no clear knee solution according to the verbal definition.

5 Finding knee solutions through Pareto sensitivity in the con-
strained case

In this section, we extend the snee approach developed in Section 4 to handle constrained MOO
problems. We start by pointing out that such an extension requires only a recalculation of
the sensitivity ∇x(λ) under the presence of constraints, as everything else lies in the space of

¶The neighborhood size α was set to 0.1 for all problems, except for GRV2, where using a fixed neighborhood
size resulted in ellipsoidal neighborhoods that either had no solutions or contained the entire simplex set at
certain iterations. Therefore, recalling the fine-scale discretization of Λ given by {λ1, . . . , λm} ⊂ Λ and denoting
the iterations of the algorithms as k, for GRV2, we determined the neighborhood size using an adaptive rule.
Specifically, we set α to 0.4(1/m)

∑m
i=1 ∥∇F̄ (λk)†(λi−λk)∥. Such a choice ensures that a reasonable proportion of

the weight vectors in Λm are contained within each neighborhood E(λk), where λk is the center of the neighborhood
at iteration k. The same adaptive rule will be used for the problems in Section 5.
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weights and encapsulates the details of the solution of each weighted-sum subproblem. When
dealing with constrained MOO problems, instead of using the first-order necessary unconstrained
optimality conditions in (2.3), we compute ∇x(λ) from the corresponding conditions under the
presence of constraints, typically referred to as the first-order KKT conditions, in particular
from the equality part of such conditions (the so-called KKT system).

Let us consider the following constrained MOO problem

min
x∈X

F (x), with X = {x ∈ Rn | cj(x) ≤ 0, j ∈ I, and cj(x) = 0, j ∈ E}, (5.1)

where I and E are finite index sets used to denote inequality and equality constraints, respec-
tively. Appendix B includes the derivation of ∇x(λ) using the first-order KKT system associated
with problem (5.1). We will assume a well-known set of conditions in constrained optimization
theory (LICQ, strict complementarity slackness, and second-order sufficient optimality), as de-
tailed in Assumption B.1, in order to secure the required matrix invertibility in the derivative
calculation. By applying the chain rule as we did to derive (2.5), but now using the matrix∇x(λ)
from (B.4) instead of (2.4), we obtain that the transpose of the Jacobian matrix of F̄ at λ is
given by

∇F̄ (λ) = ∇x(λ)∇xF (x(λ))

= −∇λK∇wK
−1L(∇xf1, . . . ,∇xfq),

(5.2)

where K is the vector function associated with the KKT system of problem (5.1) and w is a
vector formed by primal variables x and Lagrange multipliers. The matrices ∇λK and ∇wK

are the Jacobians of K with respect to λ and w, respectively (see (B.2)), and L =
(
In 0

)⊤
.

In (5.2), all gradients ∇xfi are evaluated at x(λ), with i ∈ {1, . . . , q}, and ∇λK and ∇wK
are evaluated at w(λ). Note that matrix ∇F̄ (λ) in (5.2) is no longer symmetric as in the
unconstrained case (2.5), but this does not change anything in regards to the applicability of
the snee approach.

To solve the minimization problem in (4.1), where ∇f̄i(λ) and ∇f̄j(λ) in the MCF now
correspond to the columns of matrix ∇F̄ (λ) in (5.2) instead of (2.5), we again applied the NM
and DIRECT algorithms, as in Section 4. Figures 9–11 show the results obtained by the NM
algorithm for problems DAS1, DO2DK, and VFM1constr from Table 3 in Appendix A. We
considered two configurations for problem DO2DK by selecting the constraint right-hand side r
from {0.5, 1}, where 1 corresponds to a larger feasible set and 0.5 results in a tighter feasi-
ble set. For the NM algorithm, we arbitrarily used the weight vectors (0.4, 0.6), (0.2, 0.8),
and (0.4, 0.2, 0.4) as starting points for problems DAS1, DO2DK, and VFM1constr, respec-
tively. To determine x(λ) for a given λ, we used the weighted-sum method and minimized the
resulting weighted-sum function by applying the SLSQP algorithm [29], which is designed for
solving constrained optimization problems through sequential quadratic programming. We ran
the SLSQP algorithm implementation available in the Python SciPy library [42], with default
parameters. Similar to Section 4, the neighborhoods shown in the figures are the ellipsoidal
ones, centered at the best point returned by the algorithm. For all the problems, using a fixed
neighborhood size α resulted in ellipsoidal neighborhoods that either had no solutions or con-
tained the entire simplex set at certain iterations. Therefore, we adopted the same adaptive
rule used for GRV2 in Section 4. Again, the neighborhoods are required only for computing
the MCM and not for the MCF.

Figure 9 and the upper plots of Figure 10 show that the knee solutions for problems DAS1 and
for problem DO2DK when r = 1 (i.e., the feasible set is relatively large) lie in the intermediate
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Figure 4: Knee solution for problem GRV2 (for n̄ in Table 2 equal to 2). The upper plots show
the parameter, objective, and decision spaces when applying the NM algorithm. The lower plots
show the values of the MCF and MCM over the iterations (left: NM, right: DIRECT).

region of the Pareto front. In contrast, in the lower plots of Figure 10 and in Figure 11, our snee
approach leads to solutions that correspond to points on the boundary of the Pareto front.
Similar to Section 4, the reason why we do not observe a knee solution in the intermediate
region for DO2DK with r = 0.5 and VFM1constr is due to the lack of a bulge in the Pareto
front within the interior of the feasible set. Instead, the normal boundary intersection method
would have returned a point in the intermediate region, regardless of the presence of a bulge.

For the DIRECT algorithm, we include in Figure 12 the plots showing the values of the MCF
and MCM over the iterations for all constrained problems from Table 3, and we do not repre-
sent the parameter, objective, and decision spaces because the final solution to the minimization
problem in (4.1) is nearly identical to that of the NM algorithm, except for problem VFM1constr.
For VFM1constr, the final solution found by DIRECT lies on the west boundary of the Pareto
front (see objective space of Figure 13), whereas the solution found by NM lies on the upper
boundary, as shown in the objective space of Figure 11. Such differences arise because the MCF
is non-convex, causing the NM algorithm to get stuck in local minimizers, while the DIRECT
algorithm finds global minimizers (or, at least, better local minimizers than NM). It becomes
then evident that knee solutions can have a local or global nature. Interestingly, the results
for problem VFM1constr shown in plot d) of Figure 12 suggest that a minimizer of the MCF
may not correspond to a minimizer of the MCM. This discrepancy arises because the ellip-
soidal neighborhood becomes degenerate at the point corresponding to the optimal solution
(and nearby points), as shown in the objective space in Figure 13. The degeneracy occurs
because the matrix ∇F̄ (λ) is highly ill-conditioned, with two of its three eigenvalues close to
zero, resulting in an elongated ellipsoid that inflates the value of the MCM. This observation
confirms that minimizing the MCM instead of the MCF is not a reliable approach for finding
knee solutions, as previously noted in Remark 4.1.
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Figure 5: Knee solution for problem ZLT1. The upper plots show the parameter, objective, and
decision spaces when applying the NM algorithm. The lower plots show the values of the MCF
and MCM over the iterations (left: NM, right: DIRECT).

Figure 6: Knee solution for problem GRV1 (for n̄ in Table 2 equal to 2). The upper plots show
the parameter, objective, and decision spaces when applying the NM algorithm. The lower plots
show the values of the MCF and MCM over the iterations (left: NM, right: DIRECT).
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Figure 7: Knee solution for problem VFM1. The upper plots show the parameter, objective, and
decision spaces when applying the NM algorithm. The lower plots show the values of the MCF
and MCM over the iterations (left: NM, right: DIRECT).

Figure 8: Knee solution for problem ZLT1q (for n̄ in Table 2 equal to 5). The plots show the
values of the MCF and MCM over the iterations (left: NM, right: DIRECT).

Figure 9: Knee solution for problem DAS1 when applying the NM algorithm. The left two
plots show the parameter and objective spaces. The right plot shows the values of the MCF
and MCM over the iterations.
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Figure 10: Knee solutions for problem DO2DK (upper plots: r = 1, lower plots: r = 0.5) when
applying the NM algorithm. The figure includes plots of the parameter and objective spaces, as
well as the values of the MCF and MCM over the iterations.

Figure 11: Knee solution for problem VFM1constr when applying the NM algorithm. The figure
includes plots of the parameter, objective, and decision spaces, as well as the values of the MCF
and MCM over the iterations.
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(a) DAS1 (b) DO2DK (for r in Table 3 equal to 1)

(c) DO2DK (for r in Table 3 equal to 0.5) (d) VFM1constr

Figure 12: Plots that show the values of the MCF and MCM over the iterations when applying
the DIRECT algorithm to determine knee solutions for constrained problems.

6 Concluding remarks and future work

In this paper, we have seen how to use first-order rates of variation of Pareto solutions to
better understand the tradeoffs of a Pareto front in multi-objective optimization. We have
used such sensitivity rates to provide an answer to the open question of how to rigorously
compute knee solutions, i.e., points where a small improvement in any objective leads to a large
deterioration in at least one other objective. Based on the observation that such solutions lie
where slopes in a Pareto front are levelized, we introduced a problem formulation (4.1) capable of
accurately identifying the desired knee solutions. The corner stone of our approach is the ability
to compute the gradient ∇fi(x(λ)) of each individual objective function fi through the rate of
variation ∇x(λ) of the Pareto solution x(λ), where λ denotes a vector of objective weights. The

Figure 13: Knee solution for problem VFM1constr. The plots show the parameter, objective,
and decision spaces when applying the DIRECT algorithm.
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formulation (4.1) was used to compute knee solutions following their verbal definition regardless
of the presence of constraints. We called our approach snee to emphasize the use of Pareto
sensitivity in the calculation of the derivatives of F (x(λ)). We have also shown in this paper
how to compute the most-changing Pareto sub-fronts around a Pareto solution. Such sub-fronts
are obtained from neighborhoods constructed in the decision space using the pseudo-inverse of
the Jacobian matrix of the vector function F (x(λ)) and include points that are distributed along
directions of maximum change.

The techniques used in our approach are still restricted to scalarized methods. In the cur-
rent paper, we explored the weighted-sum method, which requires convexity of the objective
functions in F for a complete coverage of the Pareto front. Our approach can be extended
to the ε-constrained method, which converts a multi-objective problem into a single-objective
constrained problem where one objective is optimized subject to constraints requiring the other
objectives to be below varying thresholds. Given a positive threshold ε and denoting the corre-
sponding Pareto solution as x(ε), one can consider a neighborhood of ε to determine a Pareto
neighborhood around x(ε). To compute knee solutions using our snee approach, one can consider
a reformulation of problem (4.1) in terms of ε. Although the ε-constrained method does not
explicitly require convexity for a complete coverage of the Pareto front, it requires a global solu-
tion of a constrained optimization problem. Therefore, our future work will focus on exploring
techniques that do not rely on scalarized methods.
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A MOO test problems

Table 2 specifies the unconstrained test problems considered in the experiments for Sections 3
and 4, along with the number of variables and objectives (i.e., n and q, respectively). All of the
problems have strictly convex objective functions, which is in accordance with Assumption 2.1
in Section 2. In Problem GRV1, a1, a2, and a5 were randomly generated according to a uniform
distribution over [−5, 0), resulting in a1 = −1.87, a2 = −4.75, and a5 = −0.78. Similarly, a3,
a4, and a6 were randomly generated according to a uniform distribution over [0, 5), resulting
in a3 = 3.66, a4 = 2.99, and a6 = 0.78. Additionally, we randomly generated three n̄ ×
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Problem n q Ref. Objective Functions

ZLT1 3 3 [27]
f1(x1, x2, x3) = (x1 − 1)2 + x2

2 + x2
3

f2(x1, x2, x3) = x2
1 + (x2 − 1)2 + x2

3

f3(x1, x2, x3) = x2
1 + x2

2 + (x3 − 1)2

GRV1 2n̄ 3
f1(x1, x2) =

1
2x

⊤
1 H1x1 +

1
2x

⊤
2 H2x2 + x⊤

1 H3x2 + a⊤1 x1 + a⊤2 x2

f2(x1, x2) =
1
2x

⊤
1 H3x1 +

1
2x

⊤
2 H4x2 + x⊤

1 H5x2 + a⊤3 x1 + a⊤4 x2

f3(x1, x2) =
1
2x

⊤
1 H7x1 +

1
2x

⊤
2 H8x2 + x⊤

1 H9x2 + a⊤5 x1 + a⊤6 x2

VFM1 2 3 [27]
f1(x1, x2) = x2

1 + (x2 − 1)2

f2(x1, x2) = x2
1 + (x2 + 1)2 + 1

f3(x1, x2) = (x1 − 1)2 + x2
2 + 2

ZLT1q n̄ q̄ [27] fj(x) = (xj − 1)2 +
∑

1≤i≤n̄,i ̸=j x
2
i , j ∈ {1, . . . , q̄}

GRV2 n̄ 2
f1(x) =

1
n̄

∑n̄
i=1 x

2
i +

1
2

∑n̄
i=1 x

4
i

f2(x) =
1
n̄

∑n̄
i=1(xi − 2)2 + 1

2

∑n̄
i=1(xi − 2)4

Table 2: Unconstrained test problems (n̄ and q̄ are arbitrary positive scalars).

n̄ symmetric positive definite matrices H(1), H(2), and H(3), and we set the matrices in the
objective functions fi, with i ∈ {1, 2, 3}, as follows:

H(1) =

[
H1 H3

H⊤
3 H2

]
=

[
50.82 −0.23
−0.23 10.57

]
, H(2) =

[
H4 H6

H⊤
6 H5

]
=

[
38.25 12.19
12.19 6.53

]
,

H(3) =

[
H7 H9

H⊤
9 H8

]
=

[
45.10 −9.55
−9.55 9.91

]
.

Table 3 specifies the constrained test problems considered in the experiments for Section 5,
along with the number of variables and objectives (i.e., n and q, respectively). Problems DAS1
and DO2DK are well-known in the MOO literature. They have a convex Pareto front, despite
some of the objective functions being non-convex.

B Calculating ∇x(λ) in the constrained case

Recall problem (5.1) in Section 5. Denoting cI(x) = (cj(x), j ∈ I) and cE(x) = (cj(x), j ∈
E), and given λ ∈ Λ, the Lagrangian function of problem (5.1) is defined as L(x, zI , zE) =∑q

i=1 λifi(x) + cI(x)
⊤zI + cE(x)

⊤zE , where zI and zE are vectors of Lagrange multipliers. We
assume in Assumption B.1 below that the constraint functions are twice continuously differen-
tiable and there exists a solution x(λ) satisfying the KKT conditions for problem (5.1) with
associated vectors of multipliers (zI(λ), zE(λ)). Specifically, the first-order KKT system for
problem (5.1) at x(λ) is given by (see [34, Theorem 3.1.5])





∑q
i=1 λi∇xfi(x(λ)) +∇xcI(x(λ)) zI(λ) +∇xcE(x(λ)) zE(λ) = 0,

zI(λ) ◦ cI(x(λ)) = 0,

cE(x(λ)) = 0,

(B.1)

where ◦ denotes the element-wise multiplication of two vectors. We do not include the non-
negativity of the multipliers in zI(λ) and the satisfaction of the inequality constraints in (B.1)
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Problem n q Ref. Objective Functions and Constraints

DAS1 5 2 [12]

f1(x1, . . . , x5) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5

f2(x1, . . . , x5) = 3x1 + 2x2 − x3/3 + 0.01(x4 − x5)
3

c1(x1, . . . , x5) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 ≤ 0

c2(x1, . . . , x5) = x1 + 2x2 − x3 − 0.5x4 + x5 − 2 = 0
c3(x1, . . . , x5) = 4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x2

5 = 0

DO2DK 30 2 [5, 13, 16]

f1(x) = g1(x)g2(x1) (sin (πx1/2 + π) + 1)
f2(x) = g1(x)g2(x1) (cos (πx1/2 + π) + 1)
g1(x) = 1 + 9

n−1

∑n
i=2 xi

g2(x1) = 5 + 10 (x1 − 0.5)
2
+ cos (2πx1) · 2

1
2

cj(x) = −xj ≤ 0, j ∈ {1, 2, . . . , n}
cn+j(x) = xj − r ≤ 0, j ∈ {1, 2, . . . , n}

VFM1constr 2 3

f1(x1, x2) = x2
1 + (x2 − 1)2

f2(x1, x2) = x2
1 + (x2 + 1)2 + 1

f3(x1, x2) = (x1 − 1)2 + x2
2 + 2

c1(x1, x2) = x2
1 + x2

2 − 0.8 ≤ 0
c2(x1, x2) = (x1 − 1)2 + x2

2 − 1 ≤ 0

Table 3: Constrained test problems (r in DO2DK is an arbitrary positive scalar
that we use to tighten the feasible set).

because they are not necessary for the derivation below. In Assumption B.1 below, we also
require the linear independence constraint qualification (LICQ), strict complementarity slack-
ness (SCS), and the second-order sufficient condition (SOSC), and we refer to [37, Chapter 12]
for their definitions.

Assumption B.1 (Existence of Pareto minimizer (LL constrained case))
Let X be defined as in problem (5.1). The constraint functions cj, with j ∈ I ∪ E, are twice
continuously differentiable. There exists a solution x(λ) satisfying the KKT conditions with
associated multipliers (zI(λ), zE(λ)) such that the LICQ, SCS, and SOSC are satisfied.

Under Assumption B.1, based on [19, 20, 21, 33], the vectors of multipliers zI(λ) and zE(λ)
associated with x(λ) are unique, and the vector function w(λ) = (x(λ), zI(λ), zE(λ))

⊤ is once
continuously differentiable for any given λ. Let us now introduce a vector function K such that
the KKT system (B.1) can be written as K(w(λ)) = 0. Applying the chain rule to such an
equation, we obtain ∇wK

⊤∇w⊤ = −∇λK
⊤, with

∇λK
⊤ =



∇2

xλL
0
0


 and ∇wK

⊤ =




∇2
xxL ∇xcI ∇xcE

zI ◦ ∇xc
⊤
I CI 0

∇xc
⊤
E 0 0


 , (B.2)

where ∇xλL and ∇xxL are evaluated at w(λ), the Jacobian matrices ∇xc
⊤
I and ∇xc

⊤
E are evalu-

ated at x(λ), CI is a diagonal matrix with elements defined by cI(x(λ)), and zI ◦∇λc
⊤
I represents

a matrix formed by element-wise multiplication of the entries of zI with the corresponding rows
of ∇xc

⊤
I .

Under Assumption B.1, it is well known that the Jacobian ∇wK
⊤ is non-singular at w(λ)

(see [33, 37]). Therefore, we have

∇w =
(
∇x,∇zI ,∇zE

)
= −∇λK∇wK

−1. (B.3)
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Following [26, Subsection 2.2], we can now introduce a matrix L =
(
In 0

)⊤
to extract the

columns of (B.3) that correspond to the ∇x(λ) term, where In denotes an identity matrix of
size n and 0 represents a null matrix of dimensions n×

(
|I|+ |E|

)
, resulting in

∇x(λ) = −∇λK∇wK
−1L. (B.4)
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