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Abstract

An algorithm based on the interior-point methodology for solving continuous nonlinearly
constrained optimization problems is proposed, analyzed, and tested. The distinguishing feature
of the algorithm is that it presumes that only noisy values of the objective and constraint
functions and their first-order derivatives are available. The algorithm is based on a combination
of a previously proposed interior-point algorithm that allows inexact subproblem solutions and
recently proposed algorithms for solving bound- and equality-constrained optimization problems
with only noisy function and derivative values. It is shown that the new interior-point algorithm
drives a stationarity measure below a threshold that depends on bounds on the noise in the
function and derivative values. The results of numerical experiments show that the algorithm
is effective across a wide range of problems.

1 Introduction

Interior-point methods have been studied extensively and have proved to be successful in practice
for solving continuous nonlinearly constrained optimization problems. Two prominent categories
of interior-point methods are those based on line-search [15, 30, 31, 33] and trust-region [6, 7,
34] mechanisms. Many state-of-the-art nonlinear optimization solvers, such as IPOPT [31] and
KNITRO [8], are based on interior-point methods.

An important feature of these contemporary interior-point methods is that they rely on exact
values of the objective and constraint functions and their first-order derivatives. On the other
hand, there has been little work done on developing and analyzing such algorithms for cases when
function evaluations are affected by noise. In noisy settings, only estimates of the function and
derivative values are available. Generally speaking, noise can be stochastic or deterministic. By
stochastic noise, we refer to situations in which it is reasonable to model a function value through
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a probability distribution, in which case any realization of a value is a realization of a random
variable. By deterministic noise, on the other hand, we are referring to situations in which any
request for a function or derivative value with respect to an input value always results in the same
noisy value that approximates some original true value. The original function of interest may
be presumed to be, e.g., continuously differentiable, but the corresponding noisy function may be
nonsmooth or even discontinuous. Computational noise—say, from a numerical simulation—is an
example of deterministic noise [26], where it might only be assumed that the noise is bounded over
the domain of a given function.

Recently, a number of algorithms have been proposed and analyzed for solving unconstrained,
bound-constrained, or equality-constrained optimization problems in the presence of stochastic or
deterministic noise. For further information, we refer the reader to [1, 2, 3, 12, 13, 14, 21, 23, 24, 25,
28, 32]. There has also been some recent work on the design of stochastic-gradient-based interior-
point methods [9, 10]. However, to our knowledge, there have not yet been extensions of recent
algorithms for the bound- or equality-constrained setting with deterministic noise to the nonlinear-
inequality-constrained setting with deterministic noise. In this paper, we propose, analyze, and test
such an algorithm. Due to its practical success in noiseless settings, our algorithm is based on
the interior-point methodology. As a result, we expect our approach to yield good performance in
practice, and expect that our proposed techniques can be incorporated readily into state-of-the-art
software packages for solving continuous nonlinearly constrained optimization problems.

1.1 Contributions

This paper builds primarily upon the interior-point algorithm proposed in [16] for solving bound-
constrained optimization problems in the presence of deterministic noise by extending the method-
ology and theoretical results to settings involving nonlinear inequality constraints. The method
proposed in [16] is a line-search interior-point algorithm. Proposing such a method for solving
nonlinearly constrained problems comes with significant additional challenges. For example, as is
well known even in settings when exact function and derivative values are available, line-search
interior-point methods that compute the search directions through Newton-based techniques may
fail to converge due to inconsistency between the step computation and enforcement of nonnegativ-
ity constraints on variables [29]. In addition, if the Jacobian of the constraint function at a given
point can be rank deficient, then a Newton-based approach may result in an ill-posed subproblem.
To address these issues, we follow the step-decomposition approach proposed for the interior-point
method in [15].

Another challenge that we face as we transition from the bound-constrained case to the nonlinear-
inequality-constrained setting (with deterministic noise) is assessing the progress of the algorithm
in terms of minimizing the objective function while aiming to satisfy the constraints. For solv-
ing bound-constrained problems with the interior-point method in [16], the barrier subproblem is
unconstrained and satisfaction of the bounds is enforced through a fraction-to-the-boundary rule.
Thus, the barrier objective function measures the progress of the algorithm and the fraction-to-
the-boundary rule ensures satisfaction of the constraints. However, in the nonlinearly constrained
case, it is typically inefficient to enforce feasibility of the constraints at every algorithm iterate,
meaning that it is preferred to employ a so-called infeasible algorithm. In the context of such an
algorithm, one needs a measure of progress that balances the improvement in the objective function
and constraint satisfaction. In noiseless settings, this is typically accomplished by defining a merit
function that is a weighted sum of the objective function and a measure of constraint violation.
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The weight assigned to the objective function relative to the constraint satisfaction [22] is called
the merit parameter. Typically, the merit parameter is updated in an adaptive manner in such a
way that it guarantees that the original optimization problem is being solved. Extending such an
approach and its analysis to the noisy setting is the main contribution of this work.

We mention upfront that our proposed algorithm and analysis leave certain natural questions
unanswered. In particular, we focus our attention in this paper on an algorithm for solving a
single barrier subproblem that arises in an interior-point framework. This subproblem is equality-
constrained, but unlike for an approach for the equality-constrained setting with deterministic
noise such as that proposed in [23], significant obstacles arise in our setting due to the fact that
our method needs to enforce nonnegativity of slack variables that are introduced for our problem
formulation. Along with our concluding remarks, we suggest a heuristic strategy for decreasing
the barrier parameter so that, in practice, a sequence of barrier subproblems may be solved, as is
typical for an interior-point method. However, our analysis does not cover convergence guarantees
for solving the original constrained optimization problem as the barrier parameter vanishes. On this
note, one should recognize that such an analysis would be questionable in any case. After all, even
for a method for the equality-constrained setting such as that in [23], the presence of deterministic
noise means that one cannot guarantee convergence to a solution of the original problem of interest.
Such is the case for our method for solving each barrier subproblem as well, meaning that it may
be impossible to guarantee that a point is reached that is sufficiently close to optimality (or even
stationarity) of the noiseless barrier subproblem to warrant a decrease in the barrier parameter.
That said, in practice, a decrease of the barrier parameter may yield good behavior, so we suggest
a heuristic in our concluding remarks.

1.2 Notation

Our optimization problem of interest is stated in terms of a decision variable x ∈ Rn; see (1) in
Section 2. For any k ∈ N, the value of x in the kth iteration of our algorithm is denoted as xk.
Such subscripts are used for other variables and adaptive parameters that are employed. For any
i ∈ [n] := {1, . . . , n}, the ith component of a vector x ∈ Rn is denoted x(i). Generally, vectors are
expressed using lowercase letters. With respect to any such a vector, the corresponding uppercase
letter denotes a diagonal matrix with the components of the vector on the diagonal, e.g., with
respect to s ∈ Rq we denote S := diag(s) ∈ Rq×q.

Given a matrix M ∈ Rm×n, its range space is denoted as range(M), its null space is denoted as
null(M), its minimum singular value is denoted as σmin(M), its maximum singular value is denoted
as σmax(M), and its condition number is denoted as κ(M) := σmax(M)/σmin(M). Given a square
matrix M ∈ Rn×n, a square root of M is any matrix M1/2 such that M1/2M1/2 = M . Given a pair
of vectors (u, v) ∈ Rn × Rn, their inner product is denoted as ⟨u, v⟩ = uT v. We use the operator
notation ∥ · ∥ := ∥ · ∥2 =

√
⟨·, ·⟩ to denote the 2-norm of a vector and similarly use ∥ · ∥ to denote

the induced 2-norm for a matrix. For a symmetric and positive definite matrix M ∈ Rn×n and a
pair of vectors (u, v) ∈ Rn × Rn, we write ⟨u, v⟩M = uTMv and denote ∥ · ∥M =

√
⟨·, ·⟩M .

Given two sequences {uk} and {vk} with uk ∈ R and vk ∈ [0,∞) for all k ∈ N, the “big-
O” notation, namely, uk = O(vk), indicates that there exists a real number c ∈ (0,∞)—defined
independently from k—such that for all sufficiently large k ∈ N one has |uk| ≤ cvk.
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1.3 Outline

Our problem of interest and related optimization problem formulations for which our proposed
algorithm is designed are stated in Section 2. Our proposed algorithm for solving a so-called barrier
subproblem that arises in our discussions is presented in Section 3. Our analysis of the convergence
properties of our proposed algorithm from Section 3 is provided in Section 4. In Section 5, we
present the results of numerical experiments that show the effectiveness of the proposed algorithm.
A conclusion is provided in Section 6.

2 Problem Description

Our main algorithm, stated as Algorithm 1 on page 11, generates an iterate sequence {xk} with
xk ∈ Rn for all generated k ∈ N. Its aim is to solve (if only approximately) the continuous
optimization problem

min
x∈Rn

f̄0(x) s.t. c̄I(x) ≤ 0, (1)

where f̄0 : Rn → R and c̄I : Rn → Rq. (Throughout the paper, a “bar” above a quantity is used
to indicate a noiseless quantity, as opposed to noisy quantities that have no “bar” above them.)
The algorithm can be extended to settings in which equality constraints are also present, but
for simplicity and since the main algorithmic components and corresponding analysis are nearly
identical for that situation and this one, we restrict attention to the setting with only inequality
constraints. The problem functions f̄0 and c̄I are assumed to satisfy the following loose assumption
pertaining to the generated iterates. The assumption includes that the functions are continuously
differentiable so that the objective gradient function ḡ0 := ∇f̄0 : Rn → Rn and constraint Jacobian
function J̄I := ∇c̄TI : Rn → Rq×n are well defined. As previously mentioned, the main challenge
of our setting is that the algorithm only has access to noisy values of the objective function f̄0,
its gradient function ḡ0, the constraint function c̄I , and its Jacobian function J̄I . Our assumption
about the noisy evaluations of these functions is included in the following assumption.

Assumption 2.1. The iterate sequence {xk} generated by Algorithm 1 is contained in an open
convex set X ⊆ Rn over which f̄0 and c̄I are continuously differentiable, f̄0 is bounded below, c̄I is
bounded in norm, and both functions ḡ0 := ∇f̄0 and J̄I := ∇c̄TI are Lipschitz continuous with values
that are bounded uniformly in norm. Moreover, for any x ∈ X , a call for f̄0(x), ḡ0(x), c̄I(x), or
J̄I(x) results in the approximate value f0(x), g0(x), cI(x), or JI(x), respectively, where for some
known constants (ϵf , ϵg, ϵc, ϵJ) ∈ (0,∞)4 one has

|f̄0(x)− f0(x)| ≤ ϵf , ∥ḡ0(x)− g0(x)∥ ≤ ϵg,

∥c̄I(x)− cI(x)∥ ≤ ϵc, and ∥J̄I(x)− JI(x)∥ ≤ ϵJ .
(2)

Under Assumption 2.1, there exist constants finf ∈ R and (cI,sup, g0,sup, JI,sup) ∈ (0,∞)3 such
that for all x ∈ X one has

f̄0(x) ≥ finf , ∥c̄I(x)∥ ≤ cI,sup, ∥ḡ0(x)∥ ≤ g0,sup, and ∥J̄I(x)∥ ≤ JI,sup,

and there exist (Lg, LJ) ∈ (0,∞)2 such that for all (x, x̄) ∈ X × X one has

∥ḡ0(x)− ḡ0(x̄)∥ ≤ Lg∥x− x̄∥ and ∥J̄I(x)− J̄I(x̄)∥ ≤ LJ∥x− x̄∥.
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Under Assumption 2.1—specifically the assumption that the objective and constraint functions
are continuously differentiable—and a constraint qualification, e.g., the Mangasarian-Fromovitz
constraint qualification (MFCQ) [19], it follows that at a local minimizer x ∈ Rn of (1) there exists
ȳI ∈ Rq with

ḡ0(x) + J̄I(x)
T ȳI = 0, c̄I(x) ≤ 0, ȳI ≥ 0, and c̄I(x)

T ȳI = 0.

However, more generally, it is possible that the constraints of problem (1) are infeasible (at least
locally near a point), or that at a local minimizer of (1) the constraints are degenerate in the sense
that a constraint qualification does not hold. With respect to these situations, the aim of the
algorithm is at least to solve the infeasibility-minimization problem

min
x∈Rn

1
2∥max{c̄I(x), 0}∥2, (3)

where the max is defined component-wise. The objective of this problem is continuously differen-
tiable and first-order conditions for optimality for it are

J̄I(x)
T max{c̄I(x), 0} = 0. (4)

We refer to any x yielding (4) with c̄I(x) ̸≤ 0 as an infeasible stationary point.
Following the design of the algorithm in [15], our algorithm aims to solve (perhaps only ap-

proximately) the optimization problem (1) or at least the infeasibility-minimization problem (3)
by working with related formulations involving slack variables. In particular, observe that (1) is
equivalent to

min
x∈Rn

f̄0(x) s.t. c̄I(x) + s = 0 and s ≥ 0, (5)

and that if s ≥ 0 and c̄I(x) + s ≥ 0, then (4) is equivalent to

J̄I(x)
T (c̄I(x) + s) = 0 and S(c̄I(x) + s) = 0. (6)

The conditions s ≥ 0 and c̄I(x)+s ≥ 0 motivate a slack reset that is incorporated into the algorithm
to ensure that these inequalities always hold at least with respect to the noisy constraint function
evaluation; see Section 3.

Our algorithmic strategy falls within the interior-point methodology, which means that it does
not aim to solve (5) or (6) directly; rather, it employs a log-barrier function of the slack variables
to replace the inequality constraints. The general idea of an interior-point method would be to
solve to some accuracy a subproblem involving the barrier function on the slack variables for a
given value of a barrier parameter µ ∈ (0,∞), then decrease this parameter and solve the next
subproblem in an iterative manner such that the overall algorithm converges to a solution of (5)
or at least (6). The goal of our main algorithm and our corresponding analysis of it is to solve
such a barrier subproblem approximately using only noisy function and derivative evaluations. The
barrier subproblem that we employ (with log(·) denoting the natural logarithm) is

min
(x,s)∈Rn×Rq

f̄0(x)− µ

q∑
i=1

log(s(i)) s.t. c̄I(x) + s = 0 and s > 0. (7)

Observe that, at any point (x, s) with s > 0, the linear independence constraint qualification
(LICQ) with respect to (7) holds. Hence, at any local minimizer (x, s) of (7), there exists a
Lagrange multiplier ȳI,µ ∈ Rq such that

ḡ0(x) + J̄I(x)
T ȳI,µ = 0, −µS−1 + ȳI,µ = 0, c̄I(x) + s = 0, and s > 0. (8)
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We remark that in a setting in which equality constraints are also present, the LICQ would not be
guaranteed to hold, but a similar set of conditions would be guaranteed under a suitable constraint
qualification, such as the MFCQ.

For notational convenience in our presentation and analysis of our proposed algorithm, let us
introduce the combined primal iterate vector z ∈ Rn+q as z := [xT sT ]T . For a given barrier
parameter µ, the objective and constraint functions of (7) can be expressed as f̄ : Rn+q → R and
c̄ : Rn+q → Rq where

f̄(z) = f̄0(x)− µ

q∑
i=1

log(s(i)) and c̄(z) = c̄I(x) + s for all z ∈ Rn+q.

Following [15], our algorithm employs scaled first-order derivatives of these functions. In particular,
we define the scaled gradient function ḡ : Rn+q → R and scaled Jacobian function J̄ : Rn+q →
Rq×(n+q) such that, for all z ∈ Rn+q,

ḡ(z) =

[
ḡ0(x)
−µe

]
, and J̄(z) =

[
J̄I(x) S

]
,

where e ∈ Rq is a vector with all entries equal to one. (The imposed scaling is that the second block
of the gradient of the objective and the second block of the constraint Jacobian are both multiplied
by the diagonal matrix S.) Observe that in terms of this scaled Jacobian, the conditions in (6) are
equivalent to

J̄(z)T c̄(z) = 0. (9)

Letting f , g, c, and J denote noisy approximations of f̄ , ḡ, c̄, and J̄ , respectively, Assumption 2.1
implies that for all z = [xT sT ]T with x ∈ X one has

|f̄(z)− f(z)| ≤ ϵf , ∥ḡ(z)− g(z)∥ ≤ ϵg,

∥c̄(z)− c(z)∥ ≤ ϵc, and ∥J̄(z)− J(z)∥ ≤ ϵJ .
(10)

3 Algorithm Description, Fixed Barrier Parameter

Let us now present our main algorithm, which aims to produce at least an approximate solution
of (1) by solving the barrier subproblem (7) for a fixed barrier parameter µ ∈ (0,∞), or at least
to yield convergence to satisfying the stationarity conditions (9). To describe the steps of our
main algorithm, suppose that it has reached iteration k ∈ N, in which case the kth iteration
proceeds as described in this section with the noisy function and derivative values fk := f(zk) :=

f0(xk) − µ
∑q

i=1 log(s
(i)
k ), ck := c(zk) := cI(xk) + sk, gTk := g(zk)

T := [g0(xk)
T − µeT ]T , and

Jk := J(zk) := [JI(xk) Sk]. The corresponding noiseless values f̄k, c̄k, ḡk, and J̄k are defined
similarly. Our proposed algorithm is stated formally as Algorithm 1 on page 11. We remark that,
as previously mentioned, the initial conditions and structure of the algorithm will ensure that sk ≥ 0
and c(zk) = cI(xk)+sk ≥ 0 for all k ∈ N. Let us also define, for all k ∈ N, the error values εf,k ∈ R,
εg,k ∈ Rn, εc,k ∈ Rq, and εJ,k ∈ Rq×(n+q) according to the equations

fk = f̄k + εf,k, gk = ḡk + εg,k, ck = c̄k + εc,k, and Jk = J̄k + εJ,k, (11)

where by (10) one has |εf,k| ≤ ϵf , ∥εg,k∥ ≤ ϵg, ∥εc,k∥ ≤ ϵc, and ∥εJ,k∥ ≤ ϵJ .
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The following occurs for each iteration index k ∈ N. First, if JT
k ck = 0 and cI(xk) ̸≤ 0,

then the algorithm has reached an infeasible stationary point (based on noisy evaluations) and it
terminates; recall that the algorithm ensures sk ≥ 0 and ck = cI(xk)+sk ≥ 0, so JT

k ck = 0 (i.e., (9))
corresponds to (6). Otherwise, the algorithm computes a normal step toward the satisfaction of a
linear approximation of the constraint functions within a trust region. Specifically, for a prescribed
constant ω ∈ (0,∞), the normal step vk is computed by solving the trust-region subproblem

min
v∈range(JT

k )

1
2∥ck + Jkv∥2 s.t. ∥v∥ ≤ ω∥JT

k ck∥. (12)

For later reference, let us define v̄k as the solution of (12) (with respect to xk) if the true values
(c̄k, J̄k) are used in place of the noisy values (ck, Jk). Second, the algorithm computes a tangential
step to minimize a local model of the objective function subject to maintaining the progress toward
linearized feasibility that was attained by the normal step. This computation employs symmetric

Wk ←
[
Hk 0
0 Σk

]
, (13)

where Hk ∈ Rn×n and Σk ∈ Rq×q. (See below for further discussion on the requirements of Wk for
each k ∈ N.) The tangential step is defined as uk := dk−vk, where the full step dk (i.e., normal step
plus tangential step) along with a new Lagrange multiplier estimate yk+1 is computed by solving[

Wk JT
k

Jk 0

] [
dk
yk+1

]
=

[
−gk
Jkvk

]
. (14)

For later reference, let us define (ūk, d̄k, ȳk+1) as the values that would have been computed (with
respect to the same symmetric matrix Wk) if the true values (J̄k, ḡk, v̄k) are used in place of the
noisy values (Jk, gk, vk).

A few comments on the choice of {Wk} are in order. First, we remark that the traditional
choice in an interior-point method in the noiseless setting is for Hk to be chosen as the Hessian
of a Lagrangian at the current iterate, or an approximation to it. However, for our noisy setting
wherein we do not guarantee a fast rate of local convergence, we require Hk to be a symmetric
matrix, but do not require it to be a matrix of second-order derivatives. (It can be constructed
using noisy second-order derivative estimates, if they are available, but this is not necessary for
our analysis.) As for Σk, if it is chosen as Σk = µI, then this is said to be the primal approach,
whereas if it is chosen as Σk = SkŶk for some multiplier vector ŷk ∈ Rq, then this is said to be the
primal-dual approach. That said, we do not restrict our analysis to any such choice of Σk, as long
as it is diagonal and positive definite. In addition to each element of the sequence {Wk} defined by
(13) being symmetric, we also require that (a) the linear system (14) has a unique solution for all
k ∈ N, (b) Wk is sufficiently positive definite in the null space of Jk for all k ∈ N, and (c) {∥Wk∥}
is bounded. We formalize these assumptions in Assumption 4.1 on page 13, where in fact (for
simplicity) we go a bit further and assume that Wk satisfies such properties also with respect to
true function and derivative values. To ensure these conditions with respect to noisy quantities in
practice, during the kth iteration for any k ∈ N, the algorithm can start with initial symmetric Hk

and Σk such that Wk in (13) satisfies a prescribed bound on its norm. Then, the algorithm can
determine if (14) has a unique solution and Wk is positive definite over null(Jk), say, by checking
the inertia of the matrix in (14); see, e.g., [22]. If not, then Hk and/or Σk can be replaced with
a convex combination of its current value and a prescribed positive definite matrix, or it can be
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modified by adding a multiple of the identity matrix; see, e.g., [31]. This process can be repeated
iteratively until the desired conditions are satisfied. Observe that modifying Wk as discussed above
guarantees that the system (14) has a unique solution because Jk has full row rank.

Upon the computation of the normal step vk, tangential step uk, combined search direction
dk, and updated multiplier estimate yk+1, the algorithm checks another termination condition. If
JT
k ck = 0 (implying cI(xk) ≤ 0 since the algorithm did not terminate previously) and gk+JT

k yk+1 =
0, then the algorithm has reached a point at which no further progress can be made (with respect
to noisy values). This situation implies that the algorithm has reached an approximate stationary
point for the barrier subproblem (7). We discuss the meaning of this situation further in our
analysis in Section 4.

If the algorithm proceeds in the kth iteration after checking this second termination condition
and has not terminated, then it needs to determine the amount to move along the search direction,
i.e., it needs to determine a positive step size. This is done using a merit function—which balances
the objective function and a constraint violation measure—whose aim is to measure progress of the
algorithm toward a minimizer. Before determining the step size, the algorithm first updates the
merit parameter that weighs the contributions of the merit function terms. For the merit function,
our proposed algorithm employs ϕ : Rn+q × (0,∞)→ R defined by

ϕ(z, τ) = τf(z) + ∥c(z)∥,

where τ ∈ (0,∞) is the merit parameter that is updated dynamically. For later reference, let us also
introduce the corresponding true merit function ϕ̄ : Rn+q×(0,∞)→ R with ϕ̄(z, τ) = τ f̄(z)+∥c̄(z)∥.
To determine whether and by how much the merit parameter should be decreased, the algorithm
uses a (noisy) model of ϕ at xk, namely, mk : Rn+q × (0,∞)→ R with

mk(d, τ) = τ(fk + gTk d) + ∥ck + Jkd∥.

The change in this model corresponding to (dk, τk) ∈ Rn+q × (0,∞) is measured by the model
reduction function ∆mk : Rn+q × (0,∞)→ R defined by

∆mk(dk, τk) = mk(0, τk)−mk(dk, τk)

= −τkgTk dk + ∥ck∥ − ∥ck + Jkdk∥
= −τkgTk dk + ∥ck∥ − ∥ck + Jkvk∥, (15)

where the last equation follows by (14). For reference in our analysis, let us also note that the
reduction in a true (i.e., noiseless) model of the true merit function ϕ̄ at xk can be defined as
∆m̄k : Rn+q × (0,∞) → R defined similarly. This true model reduction is notable since having
{(dk, τk)} with τk ≥ τ for some τ ∈ (0,∞) and {∆m̄k(dk, τk)} → 0 is central to analyses of an
algorithm of our type in the noiseless setting. We discuss this further in Section 4.

The goal of our update strategy of the merit parameter is to ensure that the chosen value
τk ∈ (0, τk−1] (where τk−1 ∈ (0,∞) is the value from the prior iteration) yields, for some prescribed
σ ∈ (0, 1), the condition

∆mk(dk, τk) ≥ 1
2τku

T
kWkuk + σ(∥ck∥ − ∥ck + Jkvk∥). (16)

(This is the same kind of approach as has been employed in the noiseless setting; see, e.g., [15].)
From (12) and positive-definiteness of Wk with respect to null(Jk), the right-hand side of this

9



expression is always nonnegative, and in fact in our analysis we show that this quantity is strictly
positive when the algorithm does not terminate in iteration k. To determine such a value for the
merit parameter τk, the algorithm uses the trial merit parameter value

τ trialk ←

∞ if gTk dk +
1
2u

T
kWkuk ≤ 0

(1−σ)(∥ck∥−∥ck+Jkvk∥)
gTk dk+

1
2u

T
k Wkuk

otherwise,
(17)

then, with prescribed δτ ∈ (0, 1), sets the merit parameter as

τk =

{
τk−1 if τk−1 ≤ τ trialk

min{(1− δτ )τk−1, τ
trial
k } otherwise.

(18)

(In Lemma 4.11, we show that this ensures that (16) holds.) For future reference, let us also
define the sequence {τ̄k} as the one that would have been generated in this manner if the algorithm
generated the same iterate sequence {xk}, but employed noiseless values for updating the merit
parameter value for all k ∈ N.

Now that the value of the merit parameter has been determined, the algorithm proceeds to
compute a step size to take along the primal search direction. At this stage, it is necessary to
characterize the primal search direction in terms of two components—corresponding to the variables
x and s, respectively—and the search direction corresponding to the unscaled derivatives as well.
The scaled and unscaled search directions, respectively, are

dk =:

[
dxk
dsk

]
and d̂k ←

[
dxk

Skd
s
k

]
, where (dxk, d

s
k) ∈ Rn × Rq.

One rule for the step size is that it must ensure that the slack variables remain sufficiently positive.
This is done through a fraction-to-the-boundary rule. The unscaled direction in the slack variables
is the latter component of the direction d̂k, namely, Skd

s
k. Therefore, the fraction-to-the-boundary

rule involves computing the largest value of αmax
k in (0, 1] such that

sk + αmax
k Skd

s
k ≥ (1− ηs)sk, (19)

where ηs ∈ (0, 1) is a prescribed parameter. Once this maximum step size has been determined,
the algorithm backtracks, if necessary, until a relaxed Armijo condition is satisfied [1, 23]. Defining
εk ∈ (0,∞) for all k ∈ N by εk := τkϵf + ϵc, and with ηϕ ∈ (0, 1) and ζ ∈ (0,∞), the condition is

ϕ(zk + αkd̂k, τk) ≤ ϕ(zk, τk)− ηϕαk∆mk(dk, τk) + (2 + ζ)εk. (20)

(In practice, we expect one to set ζ relatively small, at least less than 1. For example, in our
numerical experiments, ζ ← 0.1.) Observe that (20) is well defined since it is always satisfied for
sufficiently small αk ∈ (0, 1] in the presence of positive ϵf and/or ϵc. Given αk ∈ (0, 1] obtained
by backtracking (starting from αmax) that yields (20), the algorithm sets xk+1 ← xk + αkd

x
k and

sk+1 ← max{sk + αkSkd
s
k,−cI(xk+1)} ≥ 0, for which one finds that

c(zk+1) = cI(xk+1) + sk+1

= cI(xk+1) + max {sk + αkSkd
s
k,−cI(xk+1)} ≥ 0.

(21)

It is important to observe that, after employing this update for the slack variables, which as in the
literature we refer to as a slack reset, one finds that ϕ(zk+1, τk) ≤ ϕ(zk + αkd̂k, τk), meaning that
(20) holds with the left-hand side replaced by ϕ(zk+1, τk). This is clarified in the following remark.

10



Remark 3.1. Line 11 of Algorithm 1 guarantees ϕ(zk+1, τk) ≤ ϕ(zk + αkd̂k, τk). To see this,

consider arbitrary i ∈ {1, . . . , q}. If [cI(xk+1)]
(i) ≥ −[sk + αkSkd

s
k]

(i), then it yields s
(i)
k+1 ← [sk +

αkSkd
s
k]

(i); otherwise, s
(i)
k+1 ← [−cI(xk+1)]

(i), in which case [c(zk+1)]
(i) = 0. In any case, one finds

sk+1 ≥ sk + αkSkd
s
k, f(zk+1) ≤ f

([
xk+1

sk + αkSkd
s
k

])
, and ∥c(zk+1)∥ ≤

∥∥∥∥c([ xk+1

sk + αkSkd
s
k

])∥∥∥∥, so
ϕ(zk+1, τk) ≤ ϕ(zk + αkd̂k, τk), as claimed.

Algorithm 1 : Algorithm for Solving (7) with Noisy Function Evaluations

Require: (x0, s0, y0) ∈ Rn × Rq × Rq with s0 ≥ 0 and c(z0) = cI(x0) + s0 ≥ 0; (ϵf , ϵc) ∈ (0,∞)2

from Assumption 2.1; τ−1 ∈ (0,∞); ω ∈ (0,∞); σ ∈ (0, 1); δτ ∈ (0, 1); ηs ∈ (0, 1); ηϕ ∈ (0, 1);
and ζ ∈ (0,∞)

1: for k = 0, 1, . . . do
2: if JT

k ck = 0 and cI(xk) ̸≤ 0 then return (xk, yk+1)
3: compute vk as the solution of (12)
4: choose Wk satisfying (upcoming) Assumption 4.1

5: compute (dk, yk+1), where dk ≡ vk + uk ≡
[
dxk
dsk

]
, by solving (14)

6: if JT
k ck = 0 (so cI(xk) ≤ 0) and gk + JT

k yk+1 = 0 then return (xk, yk+1)
7: set τk by (18)
8: set αmax

k as the largest value in (0, 1] such that (19) holds

9: set αk ← (12)
jαmax

k , where j = min

{
j ∈ N : (20) holds with d̂k ←

[
dxk

Skd
s
k

]}
10: set xk+1 ← xk + αkd

x
k

11: set sk+1 ← max{sk + αkSkd
s
k,−cI(xk+1)}

12: end for

4 Analysis of Algorithm 1

In this section, we analyze the behavior of Algorithm 1 for solving (7). Before starting our analysis,
we discuss its main goals by remarking on the convergence guarantees that one aims to show in a
noiseless setting for an algorithm such as ours. Then, we discuss our main assumptions and show
that the algorithm is well posed before proceeding to our main convergence analysis.

4.1 Discussion of Aims of Convergence Analysis

Given the fact that Algorithm 1 aims to solve (7), but only has access to noisy function and
derivative values, it is important to establish at the outset what one can hope to prove about the
behavior of the algorithm. First, we note that if for some k ∈ N the algorithm terminates in line 2,
then at least with respect to noisy quantities it has reached an infeasible stationary point. The
point is not necessarily an infeasible stationary point with respect to noiseless quantities, but it
is still reasonable for the algorithm to terminate since, by (11) and upcoming Lemma 4.2 in our
analysis, one respectively has

∥c̄I(xk)− cI(xk)∥ ≤ ϵc and ∥J̄T
k c̄k − JT

k ck∥ = O(ϵc + ϵJ).
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Similarly, if for some k ∈ N the algorithm terminates in line 6, then at least with respect to the
noisy quantities it has reached a point that appears to be stationary for (7). The point is not
necessarily stationary for (7) with respect to noiseless quantities, but it is still reasonable for the
algorithm to terminate since, under the assumptions of our upcoming analysis, one can show that

∥ḡk + J̄T
k ȳk+1 − (gk + JT

k yk+1)∥ = O(ϵc + ϵJ + ϵg).

For the sake of brevity and since finite termination is unlikely in practice, we omit the details of
this bound, but claim that it would follow under the assumptions and results in Section 4.3 up
through and including Corollary 4.1.

Assuming that Algorithm 1 does not terminate finitely, the aims of our analysis are to prove
results that are modeled on the noiseless setting. In particular, we note the main convergence
result in [11] and the main convergence result for a fixed barrier parameter in [15]. In both of these
cases, the main aim is to show that, when the sequence of constraint Jacobians has singular values
that are bounded away from zero, one has that the merit parameter remains bounded below by a
positive real number and in the limit one finds

{∆m̄k(d̄k, τ̄k)} → 0, which in turn yields

{∥∥∥∥[ḡk + J̄T
k ȳk+1

c̄k

]∥∥∥∥}→ 0. (22)

(See, e.g., Lemma 3.18 and its proof in [11].) Otherwise (when the constraint Jacobians tend
toward rank deficiency), one at least has that {∥J̄T

k c̄k∥} → 0. In our noisy setting, the case of
potential rank deficiency of the constraint Jacobians presents a practical hurdle, especially when
the noisy Jacobians tend toward rank deficiency while the true Jacobians do not. Our analysis
thus focuses on the stronger results that can be proved when the constraint Jacobians do not tend
toward rank deficiency and do not differ too much from their true values (see Assumptions 4.3
and 4.4 in Section 4.3). Overall, the main aim of our convergence analysis is to show that, under
reasonable assumptions, Algorithm 1 generates merit parameter values that remain bounded below
by a positive number and generates iterates such that, at least for some iteration index k ∈ N, the
value ∆m̄k(d̄k, τ̄k) (see (22)) is below a threshold that depends on the magnitude of the noise in
the function and derivative values.

We also show under looser assumptions that the algorithm generates iterates such that, at least
for some k ∈ N, the value ∥J̄T

k c̄k∥2 is below a threshold that depends on the magnitude of the noise.
This result, which is arguably of less interest in practice, is relegated to Appendix A.

4.2 Assumptions and Well-Posedness

Before proceeding to our analysis, let us introduce the assumptions that we make beyond As-
sumption 2.1. We also make an additional assumption on the bounds on the noisy function and
derivative evaluations; this is presented after Lemma 4.8 since it relies on quantities introduced in
that lemma.

First, we formalize our assumption pertaining to the sequence {Wk} as follows. Recall that
this assumption with respect to the noisy quantities has already been justified in the paragraph
following (14). We strengthen it slightly to refer to noiseless values as well, since later on this will
allow us to quantify, e.g., the difference between dk and d̄k. (Alternatively, we could introduce a
“true” matrix W̄k that satisfies similar properties with respect to noiseless quantities as Wk does
with respect to noisy ones. However, this would add extra complication without adding significant
value to our analysis.)
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Assumption 4.1. The symmetric matrices {Wk} defined by (13) is chosen such that: (a) for all
k ∈ N, (14) has a unique solution when either the noisy quantities (Jk, gk, vk) or noiseless quantities
(J̄k, ḡk, v̄k) are used; (b) for some σW ∈ (0,∞) and all k ∈ N, one has pTWkp ≥ σW ∥p∥2 for all
p ∈ null(Jk) ∪ null(J̄k); and (c) for some κW ∈ (0,∞) and all k ∈ N, one has ∥Wk∥ ≤ κW .

Second, while most of our analysis merely requires that the generated slack iterates have positive
components, our later results require that the slack variables remain bounded. Thus, we introduce
Assumption 4.2, below. In the noiseless setting, boundedness of the slack variables can be proved
by the behavior of the algorithm and boundedness of the function and derivative values, as in
Assumption 2.1; see [6, 15]. However, in our noisy setting, it happens that a similar conclusion
cannot be drawn in the same way since the merit function values are not monotonically decreasing.
In any case, we contend that the following Assumption 4.2 is weak under Assumption 2.1.

Assumption 4.2. There exists ssup ∈ (0,∞) such that ∥sk∥ ≤ ssup for all k ∈ N. Thus, along
with Assumption 2.1, {ϕ̄(zk, τk)} is bounded below.

Under Assumptions 2.1 and 4.2, there exists (gsup, Jsup) ∈ (0,∞)2 such that

∥ḡk∥ ≤ gsup, and ∥J̄k∥ ≤ Jsup for all k ∈ N. (23)

Third, many parts of our analysis merely require that J̄k has full row rank for all k ∈ N, which
in our setting is guaranteed since sk has positive components for all k ∈ N. However, some of our
results require that, at least eventually, the Jacobians have singular values that are bounded above
the noise level for the Jacobian values. Hence, let us introduce the following assumption.

Assumption 4.3. There exist kJ ∈ N and γ ∈ (ϵJ ,∞) such that, for all k ∈ N with k ≥ kJ , one
has that σmin(Jk) ≥ γ.

Under Assumptions 2.1 and 4.3, it follows that for all k ∈ N with k ≥ kJ one has σmin(J̄k) ≥
γ − ϵJ > 0. Thus, there is (σ̄J , σJ) ∈ (0,∞)2 such that, for such k,

∥(J̄kJ̄T
k )

−1∥ ≤ σ̄J and ∥(JkJT
k )

−1∥ ≤ σJ . (24)

It is worth emphasizing that both Assumption 4.3 and upcoming Assumption 4.4 impose implicit
bounds on the noise level for the constraint Jacobian matrices.

Let us close this subsection by showing that, under our stated assumptions, the algorithm is
well posed. For this purpose, it is worthwhile to note that the normal step vk, which is the exact
solution of (12), satisfies the Cauchy decrease condition [22], i.e., for some prescribed δv ∈ (0, 1],
one has

∥ck∥ − ∥ck + Jkvk∥ ≥ δv(∥ck∥ − ∥ck + α̂kJkv̂k∥) ≥ 0, (25)

where v̂k := −JT
k ck and α̂k is a solution of the one-dimensional problem

min
α̂

1
2∥ck + α̂Jkv̂k∥2 s.t. α̂ ∈ [0, ω]. (26)

A Cauchy decrease condition also holds for the noiseless normal step v̄k with (c̄k, J̄k) in place of
(ck, Jk) and with α̂k redefined accordingly.

The lemma below summarizes prior remarks to show that, by its construction, Algorithm 1 is
well defined in the sense that if it reaches iteration k ∈ N, then each step involves finite computation
and the algorithm will either terminate in iteration k or proceed to iteration k + 1. The lemma
also shows that, as claimed, one finds sk ≥ 0 and c(zk) ≥ 0 for all generated k ∈ N.
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Lemma 4.1. Suppose that Assumptions 2.1 and 4.1 hold. Then, if Algorithm 1 reaches iteration
k ∈ N such that sk ≥ 0 and c(zk) ≥ 0, then it either terminates finitely or proceeds to iteration k+1
such that sk+1 ≥ 0 and c(zk+1) ≥ 0. Thus, the algorithm either terminates finitely or generates an
infinite sequence of iterates, where in either case sk ≥ 0 and c(zk) ≥ 0 for all generated k ∈ N.

Proof. Suppose that Algorithm 1 reaches iteration k ∈ N such that sk ≥ 0 and c(zk) ≥ 0. First,
if it terminates in line 2, then there is nothing left to prove. Hence, we may proceed under
the assumption that it continues, in which case one finds that (12) is feasible and there exists
vk ∈ range(JT

k ) that is feasible for (12) and satisfies (25), meaning that the computation of vk is
well defined. It then follows under Assumption 4.1 that the computation of uk and (dk, yk+1) is
well defined. Next, either the algorithm terminates in line 6 or it reaches line 7, in which case it is
guaranteed to reach line 8. Since ηs ∈ (0, 1), line 8 is well defined. Similarly, since εk ∈ (0,∞), it
follows that (20) holds for sufficiently small αk, meaning that line 9 is well defined. It follows that
line 11 is reached, which guarantees that sk+1 ≥ 0 and c(zk+1) ≥ 0.

4.3 Convergence Analysis

Let us now proceed to the main part of our analysis. Since we have already discussed the conse-
quences of finite terminate of the algorithm in Section 4.1, our analysis in this section presumes
that the algorithm does not terminate.

Let us define for all k ∈ N the errors

εv,k := vk − v̄k, εu,k := uk − ūk, εd,k := dk − d̄k, and ετ,k := τk − τ̄k. (27)

Our preliminary analysis, prior to our main results, focuses on providing bounds on these errors in
terms of the bounds on the errors from (11). Observe that, since {τk} and {τ̄k} are monotonically
nonincreasing and bounded below by zero, it follows trivially that ετ,k ≤ τ0 for all k ∈ N.

Our next few lemmas focus on properties of the constraint function value, constraint Jacobian
value, and normal step. The lemmas involve properties of these quantities as well as differences
between noisy and noiseless values.

Lemma 4.2. Suppose Assumptions 2.1 and 4.1 hold. Then, for all k ∈ N,

∥JT
k Jk − J̄T

k J̄k∥ ≤ ϵJ(ϵJ + 2∥J̄k∥), (28a)

∥JkJT
k − J̄kJ̄

T
k ∥ ≤ ϵJ(ϵJ + 2∥J̄k∥), (28b)

∥(JkJT
k )

1/2 − (J̄kJ̄
T
k )

1/2∥ ≤ (ϵJ(ϵJ + 2∥J̄k∥))1/2, (28c)

and ∥J̄T
k c̄k − JT

k ck∥ ≤ ∥J̄k∥ϵc + (∥c̄k∥+ ϵc)ϵJ . (28d)

Proof. Consider arbitrary k ∈ N. By Assumption 2.1, the triangle inequality, and submultiplicity
of the matrix 2-norm, one finds that∥∥JT

k Jk − J̄T
k J̄k

∥∥ =
∥∥JT

k Jk − JT
k J̄k + JT

k J̄k − J̄T
k J̄k

∥∥
≤ ∥JT

k ∥ϵJ + ∥J̄k∥ϵJ ≤ (ϵJ + ∥J̄T
k ∥)ϵJ + ∥J̄k∥ϵJ = ϵJ(ϵJ + 2∥J̄k∥),

which gives (28a). The proof of inequality (28b) is similar to that of (28a). Next, by 1
2 -Hölder

continuity of the square root operator for symmetric positive definite matrices and the fact that
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the matrix 2-norm is unitarily invariant, inequality (28c) follows from inequality (28a). Lastly, by
(11), one finds

∥J̄T
k c̄k − JT

k ck∥ ≤ ∥J̄T
k c̄k − J̄T

k ck + J̄T
k ck − JT

k ck∥ ≤ ∥J̄k∥ϵc + (∥c̄k∥+ ϵc)ϵJ ,

which gives (28d).

The following useful lemma is well known. Its proof can be found in [6].

Lemma 4.3. Given a ∈ R, b ∈ [0,∞), and ω ∈ (0,∞), the optimal value Φ∗ of

min
z∈[0,ω)

Φ(z) ≡ 1
2z

2a− zb satisfies Φ∗ ≤ − b
2 min{ b

|a| , ω}.

Lemma 4.3 can be used to prove our next lemma. A proof of a similar result, with less detail
on the form of the lower bound that is proved, can be found in [11]. We provide a proof here to
show the precise form of the lower bound.

Lemma 4.4. Suppose Assumptions 2.1 and 4.1 hold. Then, for all k ∈ N,

∥c̄k∥(∥c̄k∥ − ∥c̄k + J̄kv̄k∥) ≥ ξ1,k∥J̄T
k c̄k∥2, where ξ1,k = 1

2δv min

{
1

∥J̄T
k J̄k∥

, ω

}
.

Proof. Consider arbitrary k ∈ N and recall that v̄k is the solution of (12) when (ck, Jk) is replaced
by (c̄k, J̄k). If ∥J̄T

k c̄k∥ = 0, then v̄k = 0, so the desired conclusion follows trivially. Hence, we may
proceed under the assumption that ∥J̄T

k c̄k∥ > 0. By (26) with respect to noiseless quantities, for
which the steepest-descent direction is v̂k = −J̄T

k c̄k, Cauchy decrease is attained with

α̂k ∈ arg min
α̂∈[0,ω]

1
2 α̂

2∥J̄kJ̄T
k c̄k∥2 − α̂∥J̄T

k c̄k∥2.

Hence, by Lemma 4.3 and ∥J̄T
k c̄k∥2∥J̄T

k J̄k∥ ≥ ∥J̄kJ̄T
k c̄k∥2, it follows that

1
2(∥c̄k + α̂kJ̄kv̂k∥2 − ∥c̄k∥2) = 1

2 α̂
2
k∥J̄kJ̄T

k c̄k∥2 − α̂k∥J̄T
k c̄k∥2

≤ −1
2∥J̄

T
k c̄k∥2min

{
∥J̄T

k c̄k∥2

∥J̄kJ̄T
k c̄k∥2

, ω

}
≤ −1

2∥J̄
T
k c̄k∥2min

{
1

∥J̄T
k J̄k∥

, ω

}
. (29)

Since v̄k satisfies Cauchy decrease (see (25)) with respect to noiseless quantities and since 2a(a−b) ≥
a2 − b2 for arbitrary (a, b) ∈ R× R, one finds that

∥c̄k∥(∥c̄k∥ − ∥c̄k + J̄kv̄k∥) ≥ δv∥c̄k∥(∥c̄k∥ − ∥c̄k + α̂kJ̄kv̂k∥)
≥ 1

2δv(∥c̄k∥
2 − ∥c̄k + α̂kJ̄kv̂k∥2)

≥ 1
2δv∥J̄

T
k c̄k∥2min

{
1

∥J̄T
k J̄k∥

, ω

}
,

which is the desired conclusion.
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We now show that, under all of our aforementioned assumptions, the difference between the
noisy and noiseless normal step is bounded uniformly for all sufficiently large k ∈ N. The proof
follows a similar argument as in [4].

Lemma 4.5. Suppose Assumptions 2.1, 4.1, 4.2, and 4.3 hold. Then, there exists ϵv ∈ [0,∞) such
that for all k ∈ N with k ≥ kJ one has

∥v̄k − vk∥ ≤ ϵv. (30)

In addition, (30) holds with ϵv → 0 as (ϵc, ϵJ)↘ (0, 0).

Proof. Consider arbitrary k ∈ N with k ≥ kJ . Since (12) requires v ∈ range(JT
k ), one can express

the solution of (12) as vk = JT
k tk, where tk solves

min
t∈Rq

1
2∥ck + JkJ

T
k t∥2 s.t. ∥JT

k t∥ ≤ ω∥JT
k ck∥. (31)

Let us now define, as allowed under Assumption 4.3, the change of variables

t̂ :=
∥JT

k ck∥
∥J̄T

k c̄k∥
(JkJ

T
k )

−1/2(J̄kJ̄
T
k )

1/2t̄. (32)

Since ∥(JkJT
k )

1/2t̂∥ = ∥JT
k t̂∥ and ∥(J̄kJ̄T

k )
1/2t̄∥ = ∥J̄T

k t̄∥, it follows that ∥JT
k t̂∥ =

∥JT
k ck∥

∥J̄T
k c̄k∥
∥J̄T

k t̄∥.
Now considering (31) with respect to the noiseless quantities, but replacing the variable t̄ with
∥J̄T

k c̄k∥
∥JT

k ck∥
(J̄kJ̄

T
k )

−1/2(JkJ
T
k )

1/2t̂, one obtains

min
t̂∈Rq

1
2∥c̄k +

∥J̄T
k c̄k∥

∥JT
k ck∥

(J̄kJ̄
T
k )

1/2(JkJ
T
k )

1/2t̂∥2 s.t. ∥JT
k t̂∥ ≤ ω∥JT

k ck∥. (33)

The feasible regions of (31) and (33) are identical. Thus, let us denote the feasible region of these
problems as the nonempty, closed, and convex set Π := {t ∈ Rq : ∥JT

k t∥ ≤ ω∥JT
k ck∥}. Problems (31)

and (33) can now be written respectively as

min
t∈Π

1
2∥(JkJ

T
k )

−1ck + t∥2
(JkJ

T
k )2

, and (34)

min
t̂∈Π

1
2

∥∥∥∥JT
k ck∥

∥J̄T
k c̄k∥

(JkJ
T
k )

−1/2(J̄kJ̄
T
k )

−1/2c̄k + t̂
∥∥∥2
(JkJ

T
k )1/2(J̄kJ̄

T
k )(JkJ

T
k )1/2

. (35)

Let (t∗, t̂∗) ∈ Π × Π be the optimal solutions of (34) and (35), respectively. (Since their objective
functions are strongly convex, these solutions are unique.) By first-order optimality, respectively,
for all t ∈ Π one has

⟨−(JkJT
k )

−1ck − t∗, t− t∗⟩(JkJT
k )2 ≤ 0

⟨∥J
T
k ck∥

∥J̄T
k c̄k∥

(JkJ
T
k )

−1/2(J̄kJ̄
T
k )

−1/2c̄k + t̂∗, t̂∗ − t⟩(JkJT
k )1/2J̄kJ̄

T
k (JkJ

T
k )1/2 ≤ 0.

Substituting t̂∗ for t in the first inequality, substituting t∗ for t in the second inequality, and
summing the results, one finds that I ≤ 0, where

I := −((JkJT
k )

−1ck + t∗)T (JkJ
T
k )

2(t̂∗ − t∗)

+ (
∥JT

k ck∥
∥J̄T

k c̄k∥
(JkJ

T
k )

−1/2(J̄kJ̄
T
k )

−1/2c̄k + t̂∗)T (JkJ
T
k )

1/2J̄kJ̄
T
k (JkJ

T
k )

1/2(t̂∗ − t∗).

By expanding the inner products in I, one may write I = I1 + I2, where

I1 := −(t∗)T (JkJT
k )

2(t̂∗ − t∗) + (t̂∗)T (JkJ
T
k )

1/2J̄kJ̄
T
k (JkJ

T
k )

1/2(t̂∗ − t∗)
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and I2 :=
∥JT

k ck∥
∥J̄T

k c̄k∥
c̄Tk (J̄kJ̄

T
k )

1/2(JkJ
T
k )

1/2(t̂∗ − t∗)− cTk JkJ
T
k (t̂

∗ − t∗).

By adding and subtracting (t̂∗)T (JkJ
T
k )

2(t̂∗ − t∗), I1 can be written as

I1 = (t̂∗ − t∗)T (JkJ
T
k )

2(t̂∗ − t∗)

+ (t̂∗)T (JkJ
T
k )

1/2
(
J̄kJ̄

T
k − JkJ

T
k

)
(JkJ

T
k )

1/2(t̂∗ − t∗)

= ∥t̂∗ − t∗∥2
(JkJ

T
k )2

+ (t̂∗)T (JkJ
T
k )

1/2
(
J̄kJ̄

T
k − JkJ

T
k

)
(JkJ

T
k )

1/2(t̂∗ − t∗),

In addition, by adding and subtracting both c̄Tk (J̄kJ̄
T
k )

1/2(JkJ
T
k )

1/2(t̂∗−t∗) and cTk (J̄kJ̄
T
k )

1/2(JkJ
T
k )

1/2(t̂∗−
t∗), I2 can be written as

I2 = (−(1− ∥JT
k ck∥

∥J̄T
k c̄k∥

)c̄Tk (J̄kJ̄
T
k )

1/2

+ (c̄k − ck)
T (J̄kJ̄

T
k )

1/2 + cTk ((J̄kJ̄
T
k )

1/2 − (JkJ
T
k )

1/2))(JkJ
T
k )

1/2(t̂∗ − t∗).

Thus, I = I1 + I2 ≤ 0 along with these inequalities yields

∥t̂∗ − t∗∥2
(JkJ

T
k )2

≤ ((t̂∗)T (JkJ
T
k )

1/2(JkJ
T
k − J̄kJ̄

T
k ) + (1− ∥JT

k ck∥
∥J̄T

k c̄k∥
)c̄Tk (J̄kJ̄

T
k )

1/2

+ (ck − c̄k)
T (J̄kJ̄

T
k )

1/2 + cTk ((JkJ
T
k )

1/2 − (J̄kJ̄
T
k )

1/2))(JkJ
T
k )

1/2(t̂∗ − t∗).

Thus, by submultiplicity of the matrix 2-norm, the facts that ∥(JkJT
k )

1/2t̂∗∥ = ∥JT
k t̂

∗∥ and ∥(J̄kJ̄T
k )

1/2c̄k∥ =
∥J̄T

k c̄k∥, the definition of the feasible set Π, and the fact that for any pair of vectors (a, b) ∈ Rn×Rn

one has |∥a∥ − ∥b∥| ≤ ∥a− b∥, it follows that

∥t̂∗ − t∗∥2
(JkJ

T
k )2

≤ (∥JT
k t̂

∗∥∥JkJT
k − J̄kJ̄

T
k ∥+ |1−

∥JT
k ck∥

∥J̄T
k c̄k∥
|∥J̄T

k c̄k∥+ ∥ck − c̄k∥∥(J̄kJ̄T
k )

1/2∥

+ ∥ck∥∥(JkJT
k )

1/2 − (J̄kJ̄
T
k )

1/2∥)∥(JkJT
k )

1/2(t̂∗ − t∗)∥
≤ (ω∥JT

k ck∥∥JkJT
k − J̄kJ̄

T
k ∥+ ∥J̄T

k c̄k − JT
k ck∥+ ∥ck − c̄k∥∥J̄k∥

+ ∥ck∥∥(JkJT
k )

1/2 − (J̄kJ̄
T
k )

1/2∥)∥(JkJT
k )

1/2∥∥t̂∗ − t∗∥.

This bound, submultiplicity of the matrix 2-norm, and Lemma 4.2 yield

∥t̂∗ − t∗∥2
(JkJ

T
k )2

≤ (ω(∥J̄k∥+ ϵJ)(∥c̄k∥+ ϵc)ϵJ(ϵJ + 2∥J̄k∥) + 2∥J̄k∥ϵc + (∥c̄k∥+ ϵc)ϵJ

+ (∥c̄k∥+ ϵc)(ϵJ(ϵJ + 2∥J̄k∥))1/2)(∥J̄k∥+ ϵJ)∥t̂∗ − t∗∥.

Hence, along with ∥t̂∗ − t∗∥2 ≤ ∥(JkJT
k )

−2∥∥t̂∗ − t∗∥2
(JkJ

T
k )2

and (24) one has

∥t̂∗ − t∗∥
≤ σ2

J(∥J̄k∥+ ϵJ)(ω(∥J̄k∥+ ϵJ)(∥c̄k∥+ ϵc)ϵJ(ϵJ + 2∥J̄k∥)
+ 2∥J̄k∥ϵc + (∥c̄k∥+ ϵc)ϵJ + (∥c̄k∥+ ϵc)(ϵJ(ϵJ + 2∥J̄k∥))1/2)

17



=: ϵt1,k. (36)

Now let t̄∗ ∈ Π be the unique optimal solution of (31) with respect to the noiseless quantities.
Our next aim is to bound ∥t̄∗ − t∗∥. That being said, since ∥t̄∗ − t∗∥ ≤ ∥t̄∗ − t̂∗∥ + ∥t̂∗ − t∗∥,
where ∥t̂∗ − t∗∥ has the bound given in (36), we only need to bound ∥t̂∗ − t̄∗∥. By (24), (32), and
Lemma 4.2,

∥t̄∗ − t̂∗∥

= ∥(I − ∥JT
k ck∥

∥J̄T
k c̄k∥

(JkJ
T
k )

−1/2(J̄kJ̄
T
k )

1/2)t̄∗∥

= ∥(∥J
T
k ck∥

∥J̄T
k c̄k∥

I − ∥JT
k ck∥

∥J̄T
k c̄k∥

I + I − ∥JT
k ck∥

∥J̄T
k c̄k∥

(JkJ
T
k )

−1/2(J̄kJ̄
T
k )

1/2)t̄∗∥

≤ ∥JT
k ck∥

∥J̄T
k c̄k∥

(|∥J̄
T
k c̄k∥

∥JT
k ck∥

− 1|+ ∥I − (JkJ
T
k )

−1/2(J̄kJ̄
T
k )

1/2∥)

· ∥(J̄kJ̄T
k )

−1/2∥∥(J̄kJ̄T
k )

1/2t̄∗∥
≤ ω∥JT

k ck∥∥(J̄kJ̄T
k )

−1/2∥

· (|1− ∥J̄T
k c̄k∥

∥JT
k ck∥
|+ ∥(JkJT

k )
−1/2∥∥(JkJT

k )
1/2 − (J̄kJ̄

T
k )

1/2∥)

= ω∥(J̄kJ̄T
k )

−1/2∥(|∥JT
k ck∥ − ∥J̄T

k c̄k∥|
+ ∥JT

k ck∥∥(JkJT
k )

−1/2∥∥(JkJT
k )

1/2 − (J̄kJ̄
T
k )

1/2∥)
≤ ω
√
σ̄J(∥J̄k∥ϵc + (∥c̄k∥+ ϵc)ϵJ

+ (∥J̄T
k c̄k∥+ ∥J̄k∥ϵc + ϵJ(∥c̄k∥+ ϵc))

√
σJ(ϵJ(ϵJ + 2∥J̄k∥))1/2) =: ϵt2,k.

Thus, with (24) and (36), one has ∥t̂∗ − t∗∥ ≤ ϵt1,k + ϵt2,k =: ϵt,k, so

∥v̄k − vk∥ = ∥J̄T
k t̂

∗ − JT
k t̂

∗ + JT
k t̂

∗ − JT
k t

∗∥
≤ ∥J̄k − Jk∥∥(J̄kJ̄T

k )
−1/2∥∥(J̄kJ̄T

k )
1/2t̂∗∥+ ∥Jk∥∥t̂∗ − t∗∥

≤ ϵJω
√
σ̄J∥J̄T

k c̄k∥+ (∥J̄k∥+ ϵJ)ϵt,k.

Thus, under Assumptions 2.1 and 4.2, the fact that ϵt,k := ϵt1,k + ϵt2,k, and the definitions of ϵt1,k
and ϵt2,k, the desired conclusions follow.

We now present a few lemmas that focus on properties of the tangential steps. Our goal in
these lemmas is to prove a result similar to Lemma 4.5, except in terms of the tangential steps.
Our derivation of this result relies on expressing each tangential step as the result of an oblique
projection onto the null space of a constraint Jacobian. Hence, our first result pertains to oblique
projection matrices. The result is known, but we present it for the sake of completeness. For a
matrix A ∈ Rn×n, the M -adjoint of A is a matrix A∗ ∈ Rn×n such that ⟨u,Av⟩M = ⟨A∗u, v⟩M
for all (u, v) ∈ Rn × Rn. For a symmetric positive definite matrix M , the M -adjoint of A equals
A∗ = M−1ATM . In addition, a matrix P is called an M -orthogonal projection matrix if and only
if it is idempotent (P 2 = P ) and M -self-adjoint (P = P ∗).

Lemma 4.6. Suppose that the matrix J ∈ Rq×(n+q) has full row rank, the columns of the matrix
Z ∈ R(n+q)×n form an orthonormal basis for null(J), and Γ ∈ R(n+q)×(n+q) is symmetric and
positive definite. Then,

P := Z(ZTΓZ)−1ZTΓ = I − Γ−1JT (JΓ−1JT )−1J ∈ R(n+q)×(n+q)
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is a Γ-orthogonal projection matrix that projects u ∈ Rn+q onto null(J) and

Q := Γ−1JT (JΓ−1JT )−1J ∈ R(n+q)×(n+q)

is a Γ-orthogonal projection matrix that projects v ∈ Rn+q onto range(Γ−1JT ), i.e., the space that
is Γ-orthogonal to null(J).

Proof. It is straightforward to verify that the stated matrices for P are equal and that both P and
Q are idempotent and Γ-self-adjoint. Furthermore, given any u ∈ Rn+q, one finds that JPu = 0,
which shows that Pu lies in null(J), and given any v ∈ Rn+q, one finds that Qv ∈ range(Γ−1JT ),
as claimed.

Let us now introduce the following result, which shows that the noisy and noiseless tangential
steps can be expressed in terms of solutions of linear systems involving certain positive definite
matrices that, under our assumptions, have eigenvalues that are uniformly contained within a
positive interval.

Lemma 4.7. Suppose that Assumptions 2.1, 4.1, 4.2, and 4.3 hold. Then, there exists (λ, σΓ) ∈
[0,∞)× (0,∞) such that, for all k ∈ N, one can express[

Wk + λJT
k Jk JT

k

Jk 0

] [
uk
yk+1

]
= −

[
gk +Wvk

0

]
and

[
Wk + λJ̄T

k J̄k J̄T
k

J̄k 0

] [
ūk
ȳk+1

]
= −

[
ḡk +Wv̄k

0

]
,

(37)

where Γk := Wk + λJT
k Jk and Γ̄k := Wk + λJ̄T

k J̄k satisfy

min{σmin(Γk), σmin(Γ̄k)} ≥ σΓ.

Proof. Consider arbitrary k ∈ N. By the second block equation in (14), one finds that uk ∈ null(Jk)
and ūk ∈ null(J̄k). Therefore, by (14), the pairs (uk, yk+1) and (ūk, ȳk+1) satisfy (37) for any
λ ∈ [0,∞). The remainder of the proof follows by known results; see, e.g., Section 5.4.2 of [18].

Lemma 4.8. Suppose that Assumptions 2.1, 4.1, 4.2, and 4.3 hold. Then, for all k ∈ N with Γk

and Γ̄k defined as in Lemma 4.7, one has that

∥Γ−1
k − Γ̄−1

k ∥ ≤ λσ−2
Γ ϵJ(ϵJ + 2∥J̄k∥). (38)

Proof. Consider arbitrary k ∈ N. By Lemma 4.7, submultiplicity of the matrix 2-norm, and
Lemma 4.2, it follows that

∥Γ−1
k − Γ̄−1

k ∥ = ∥Γ
−1
k (Γ̄k − Γk)Γ̄

−1
k ∥

≤ ∥Γ−1
k ∥∥Γ̄

−1
k ∥∥Γk − Γ̄k∥

≤ λσ−2
Γ ∥JkJ

T
k − J̄kJ̄

T
k ∥ ≤ λσ−2

Γ ϵJ(ϵJ + 2∥J̄k∥),

which gives the desired conclusion.
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We are now prepared to prove a uniform bound on the norm of the differences between the noisy
and noiseless tangential steps. The bound that we prove, stated in Lemma 4.9 below, requires an
additional assumption pertaining to the noise in the constraint Jacobians, which we state next. That
the assumption pertains to the noise in the constraint Jacobians specifically can be seen by observing
the manner in which the matrices {Γk} and {Γ̄k} are defined through Lemma 4.7 (i.e., with the
same matrix Wk for both the noisy and noiseless linear systems in (37)). Whereas Assumption 4.3
requires that, for large k, the noise in each constraint Jacobian estimate is small relative to singular
values, the following assumption essentially requires that the noise in the constraint Jacobian
estimates is small enough such that the null space defined by the noisy and noiseless values does
not differ too much.

Assumption 4.4. Let kJ ∈ N be defined as in Assumption 4.3, and for all k ∈ N let Γk and Γ̄k

be defined as in Lemma 4.7. Then, for all k ∈ N with k ≥ kJ ,

∥(J̄kΓ̄−1
k J̄k)

−1∥(∥J̄k∥∥Γ−1
k JT

k − Γ̄−1
k J̄T

k ∥ + ∥Γ̄−1
k J̄T

k ∥ϵJ + ∥Γ−1
k JT

k − Γ̄−1
k J̄T

k ∥ϵJ) < 1.

Observe that if ϵJ = 0, then Jk = J̄k and Γk = Γ̄k, in which case the expression on the left-
hand side of the inequality in Assumption 4.4 is 0, so the assumption holds. It follows that the
assumption also holds for ϵJ sufficiently small relative to the magnitudes of the elements of J̄k and
Wk for all k ∈ N.

Lemma 4.9. Suppose that Assumptions 2.1, 4.1, 4.2, 4.3, and 4.4 hold. Then, there exists ϵu ∈
[0,∞) such that for all k ∈ N with k ≥ kJ one has

∥uk − ūk∥ ≤ ϵu. (39)

In addition, (39) holds with ϵu → 0 as (ϵc, ϵJ , ϵg)↘ (0, 0, 0).

Proof. Consider arbitrary k ∈ N with k ≥ kJ . Let Zk and Z̄k have columns that form orthonormal
bases for null(Jk) and null(J̄k), respectively. From (37),

uk = −Zk(Z
T
k ΓkZk)

−1ZT
k Γk(Γ

−1
k gk + Γ−1

k Wkvk),

and ūk = −Z̄k(Z̄
T
k Γ̄kZ̄k)

−1Z̄T
k Γ̄k(Γ̄

−1
k ḡk + Γ̄−1

k Wkv̄k),

where Γk and Γ̄k are defined as in Lemma 4.7. By Lemma 4.6, the matrices

Pk := Zk(Z
T
k ΓkZk)

−1ZT
k Γk and P̄k := Z̄k(Z̄

T
k Γ̄kZ̄k)

−1Z̄T
k Γ̄k

are a Γk-orthogonal projection matrix on null(Jk) and a Γ̄k-orthogonal projection matrix on null(J̄k),
respectively. One finds that

∥uk − ūk∥ = ∥Pk(Γ
−1
k gk + Γ−1

k Wkvk)− P̄k(Γ
−1
k gk + Γ−1

k Wkvk)

+ P̄k(Γ
−1
k gk + Γ−1

k Wkvk)− P̄k(Γ̄
−1
k ḡk + Γ̄−1

k Wkv̄k)∥
≤ ∥Pk − P̄k∥∥Γ−1

k gk + Γ−1
k Wkvk∥ (40)

+ ∥P̄k∥∥Γ−1
k (gk +Wkvk)− Γ̄−1

k (ḡk +Wkv̄k)∥.

Our aim now is to establish upper bounds for the terms on the right-hand side of (40). To bound
∥Pk− P̄k∥, we define Qk = Γ−1

k JT
k (JΓ

−1
k JT

k )
−1Jk and Q̄k = Γ̄−1

k J̄T
k (J̄kΓ̄

−1
k J̄T

k )
−1J̄k. By Lemma 4.6,
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Theorem 3.4 in [27] regarding the properties of the oblique projection matrices (under Assump-
tion 4.4), one finds

∥Pk − P̄k∥ = ∥Qk − Q̄k∥

≤ ∥Q̄k∥(1 + ∥Q̄k∥)min{κ(Γ̄−1
k J̄T

k ), κ((J̄kΓ̄
−1
k J̄T

k )
−1J̄k)}

∥Γ−1
k JT

k − Γ̄−1
k J̄T

k ∥
∥Γ̄−1

k J̄T
k ∥

+ ∥Q̄k∥(1 + ∥Q̄k∥)min{κ(J̄T
k ), κ(Γ̄

−1
k J̄T

k (J̄kΓ̄
−1
k J̄T

k )
−1)} ϵJ

∥J̄T
k ∥

+O(∥Q̄k∥max{∥Γ−1
k JT

k − Γ̄−1
k J̄T

k ∥, ϵJ}2). (41)

By Lemmas 4.2, 4.7, and 4.8 along with Assumption 2.1, one has

∥Γ−1
k JT

k − Γ̄−1
k J̄T

k ∥ = ∥Γ−1
k JT

k − Γ−1
k J̄T

k + Γ−1
k J̄T

k − Γ̄−1
k J̄T

k ∥
≤ ∥Γ−1

k ∥ϵJ + ∥Γ−1
k − Γ̄−1

k ∥∥J̄k∥
≤ σ−1

Γ (ϵJ + λσ−1
Γ ϵJ(ϵJ + 2∥J̄k∥)∥J̄k∥).

Similarly, under the assumptions of the lemma, one can establish uniform upper bounds on the
remaining terms on the right-hand side of (41) in terms of ϵJ , λ, σΓ, JI,sup, and ssup in such a
manner that they all vanish as ϵJ ↘ 0.

Let us now turn to the next term on the right-hand side in (40). By Lemma 4.7, (12), and the
assumptions of the lemma, one finds that

∥Γ−1
k gk + Γ−1

k Wkvk∥ ≤ σ−1
Γ (∥ḡk∥+ ϵg + κWω(∥J̄k∥+ ϵJ)(∥c̄k∥+ ϵc)).

Consequently, one has a uniform upper bound on this expression in terms of the error bounds
(ϵc, ϵJ , ϵg) that vanishes as (ϵc, ϵJ , ϵg)↘ (0, 0, 0).

Next, with respect to ∥P̄k∥, one finds that

∥P̄k∥ = ∥I − Γ̄−1
k J̄T

k (J̄kΓ̄
−1
k J̄T

k )
−1J̄k∥ ≤ 1 + ∥Γ̄−1

k J̄T
k ∥∥(J̄kΓ̄−1

k J̄T
k )

−1J̄k∥.

Following a similar approach as for ∥Pk − P̄k∥, one can derive a uniform upper bound for this
expression that vanishes as ϵJ ↘ 0.

Finally, with respect to the last term on the right-hand side in (40), one has along with (12)
(i.e., ∥vk∥ ≤ ω∥JT

k ck∥), Lemma 4.7, and Lemma 4.8 that

∥Γ−1
k (gk +Wkvk)− Γ̄−1

k (ḡk +Wkv̄k)∥
= ∥Γ−1

k (gk +Wkvk)− Γ̄−1
k (gk +Wkvk)

+ Γ̄−1
k (gk +Wkvk)− Γ̄−1

k (ḡk +Wkv̄k)∥
≤ ∥Γ−1

k − Γ̄−1
k ∥∥gk +Wkvk∥+ ∥Γ̄−1

k ∥∥(gk − ḡk) +Wk(vk − v̄k)∥
≤ σ−1

Γ (λσ−1
Γ ϵJ(ϵJ + 2∥J̄k∥)(∥ḡk∥+ ϵg + κWω(∥J̄k∥+ ϵJ)(∥c̄k∥+ ϵc))

+ ϵg + κW ϵv).

Consequently, under the assumptions of the lemma, one can establish a uniform upper bound for
this term in terms of ϵJ , λ, σJ , JI,sup, ssup, g0,sup, µ, ϵg, κW , ω, cI,sup, ϵc, and ϵv in such a manner
that the upper bound vanishes as (ϵc, ϵJ , ϵg) ↘ (0, 0, 0). Combined with prior results, the proof is
complete.
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The following corollary now follows with dk = uk + vk and d̄k = ūk + v̄k.

Corollary 4.1. Suppose that Assumptions 2.1, 4.1, 4.2, 4.3, and 4.4 hold. Then, there exists
ϵd ∈ [0,∞) such that for all k ∈ N with k ≥ kJ one has

∥dk − d̄k∥ ≤ ϵd. (42)

In addition, (42) holds with ϵd → 0 as (ϵc, ϵJ , ϵg)↘ (0, 0, 0).

Proof. The proof follows from Lemmas 4.5 and 4.9 with ϵd := ϵv + ϵu.

Observe that we have shown upper bounds for the quantities in (27), as desired. For the
next phase of our analysis, we focus on properties of the computed search directions, where in
particular we are interested in showing that they yield positive reductions in the model of the merit
function, which in turn are reductions that (generally) vanish as the algorithm progresses. As a
brief aside, we present the following lemma, which shows that in terms of noiseless quantities the
model reduction is a valid stationarity measure. This lemma provides further detail to our claim in
(22) that reducing the noiseless model reduction corresponds to improvement toward stationarity
of the barrier subproblem (namely, (7)) that the algorithm aims to solve.

Lemma 4.10. Suppose that Assumptions 2.1 and 4.1 hold. Then, for all k ∈ N such that τ̄k−1 > 0,
one has that either

(a) J̄T
k c̄k = 0 and c̄I(xk) ̸≤ 0;

(b) J̄T
k c̄k = 0, c̄I(xk) ≤ 0, and ḡk + J̄T

k ȳk+1 = 0; or

(c) τ̄k > 0 and ∆m̄k(d̄k, τ̄k) ≥ 1
2 τ̄kū

T
kWkūk + σ(∥c̄k∥ − ∥c̄k + J̄kv̄k∥) > 0.

Thus, if xk is not an infeasible stationary point, then ∆m̄k(d̄k, τ̄k) = 0 if and only if (xk, yk+1)
satisfies the first-order conditions for (7), i.e., (8).

Proof. Consider arbitrary k ∈ N such that τ̄k−1 > 0. If (a) or (b) holds, then there is nothing left
to prove. Thus, one may proceed under the assumption that J̄T

k c̄k ̸= 0 and/or ḡk + J̄T
k ȳk+1 ̸= 0.

If J̄T
k c̄k ̸= 0, then it follows from well-known properites of (12) (e.g., see [22]) that v̄k ̸= 0 and

∥c̄k∥ − ∥c̄k + J̄kv̄k∥ > 0, which in turn shows by (15), (16), and (17) that (c) holds. On the other
hand, if J̄T

k c̄k = 0, but ḡk + J̄T
k ȳk+1 ̸= 0, then from (12) and (14) one has v̄k = 0 and

Wkūk + J̄T
k ȳk+1 = −ḡk =⇒ ūk ̸= 0 and 0 < ūTkWkūk = −ḡTk ūk.

Thus, τ̄k ← τ̄k−1 > 0 and from (15)–(16) the conditions of part (c) hold.

Following a similar line of argument as in the proof of Lemma 4.10, but with respect to the
noisy quantities, the following result can be established due to our previous assumption that the
algorithm does not terminate finitely.

Lemma 4.11. Suppose that Assumptions 2.1 and 4.1 hold. Then, for all k ∈ N, one has that
τk > 0 and (dk, τk) together satisfy (16).

Proof. Since the algorithm does not terminate, for all k ∈ N either JT
k ck ̸= 0 or gk + JT

k yk+1 ̸= 0.
Thus, the proof follows like that of Lemma 4.10.
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The aim of our next three results is to establish a bound on the difference between ∆mk(dk, τk)
and ∆m̄k(d̄k, τ̄k) for all k ∈ N. Ultimately, the purpose of this bound is to show that, as the
algorithm is designed to drive ∆mk(dk, τk) to small values, this in turn means that ∆m̄k(d̄k, τ̄k)
is driven to be small as well. We establish the bound in two steps, first by proving a bound on
the difference between ∆mk and ∆m̄k with respect to (dk, τk), then by proving a bound on the
difference between ∆m̄k with respect to (dk, τk) and (d̄k, τ̄k).

Lemma 4.12. Suppose that Assumptions 2.1 and 4.1 hold. Then, for all k ∈ N, one has that
∆mk(dk, τk) = ∆m̄k(dk, τk) + Em,1

k , where

Em,1
k =

− (τ̄k + ετ,k)ε
T
g,k(d̄k + εd,k) + ∥c̄k + εc,k∥ − ∥c̄k∥

−
(
∥c̄k + J̄kd̄k + J̄kεd,k + εc,k + εJ,kd̄k + εJ,kεd,k∥ − ∥c̄k + J̄kd̄k + J̄kεd,k∥

)
.

Moreover, supposing that Assumptions 4.2, 4.3, and 4.4 also hold, then for all k ∈ N with k ≥ kJ
and ϵd ∈ [0,∞) defined in Corollary 4.1, one has

|Em,1
k | ≤ (τ̄k + ετ,k)ϵgϵd + 2ϵc + ϵJϵd + ((τ̄k + ετ,k)ϵg + ϵJ) ∥d̄k∥ := Em,1

k .

Proof. For any k ∈ N, one finds from (11), (15), and (27) that

∆mk(dk, τk)−∆m̄k(dk, τk)

= − τkε
T
g,kdk + ∥ck∥ − ∥c̄k∥ − (∥ck + Jkdk∥ − ∥c̄k + J̄kdk∥)

= − (τ̄k + ετ,k)ε
T
g,k(d̄k + εd,k) + ∥c̄k + εc,k∥ − ∥c̄k∥

− (∥c̄k + εc,k + J̄kd̄k + J̄kεd,k + εJ,kd̄k + εJ,kεd,k∥ − ∥c̄k + J̄kd̄k + J̄kεd,k∥),

as claimed. Now by the additional assumptions of the lemma, Corollary 4.1, and the triangle
inequality (applied twice), one finds that

|Em,1
k | ≤ (τ̄k + ετ,k)|εTg,kεd,k|+ ∥εc,k∥

+ ∥εc,k + εJ,kεd,k∥+ ((τ̄k + ετ,k)ϵg + ϵJ)∥d̄k∥
≤ (τ̄k + ετ,k)ϵgϵd + 2ϵc + ϵJϵd + ((τ̄k + ετ,k)ϵg + ϵJ)∥d̄k∥,

which completes the proof.

Our next lemma provides the aforementioned complementary result.

Lemma 4.13. Suppose that Assumptions 2.1 and 4.1 hold. Then, for all k ∈ N, one has that
∆m̄k(dk, τk) = ∆m̄k(d̄k, τ̄k) + Em,2

k , where

Em,2
k = −τ̄kḡTk εd,k − ετ,kḡ

T
k d̄k − ετ,kḡ

T
k εd,k + ∥c̄k + J̄kd̄k∥ − ∥c̄k + J̄kd̄k + J̄kεd,k∥.

Moreover, supposing that Assumptions 4.2, 4.3, and 4.4 also hold, then for all k ∈ N with k ≥ kJ
and ϵd ∈ [0,∞) defined in Corollary 4.1, one has

|Em,2
k | ≤ (τ̄k + ετ,k)∥ḡk∥ϵd + |ετ,k|∥ḡk∥∥d̄k∥+ ∥J̄k∥ϵd =: Em,2

k .
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Proof. For any k ∈ N, one finds from (11), (15), and (27) that

∆m̄k(dk, τk)

= − τkḡ
T
k dk + ∥c̄k∥ − ∥c̄k + J̄kdk∥

= − τ̄kḡ
T
k d̄k + ∥c̄k∥ − ∥c̄k + J̄kd̄k∥

− τ̄kḡ
T
k εd,k − ετ,kḡ

T
k d̄k − ετ,kḡ

T
k εd,k + ∥c̄k + J̄kd̄k∥ − ∥c̄k + J̄kd̄k + J̄kεd,k∥

= ∆m̄k(d̄k, τ̄k) + Em,2
k ,

as claimed. Now by the additional assumptions of the lemma, Corollary 4.1, and the triangle
inequality, one finds that

|Em,2
k | ≤ (τ̄k + ετ,k)|ḡTk εd,k|+ |ετ,k|∥ḡk∥∥d̄k∥+ ∥J̄kεd,k∥
≤ (τ̄k + ετ,k)∥ḡk∥ϵd + |ετ,k|∥ḡk∥∥d̄k∥+ ∥J̄k∥ϵd,

which completes the proof.

Remark 4.1. If, for some k ∈ N, one finds εf,k = ∥εc,k∥ = ∥εg,k∥ = ∥εJ,k∥ = 0, then Em,1
k = 0.

However, these errors being zero does not imply that ετ,k is zero since one might find ετ,k ̸= 0 due
to updates of the merit parameter in prior iterations. Thus, one finds that noise in any iteration
can cause a nonzero difference between ∆m̄k(dk, τk) and ∆m̄k(d̄k, τ̄k) for any subsequent index k.

The following corollary follows easily from the previous two lemmas. Thus, we state the corollary
without a proof, since it is straightforward.

Corollary 4.2. Suppose that Assumptions 2.1 and 4.1 hold. Then, for all k ∈ N, one has that
∆mk(dk, τk) = ∆m̄k(d̄k, τ̄k) + Em

k , where Em
k := Em,1

k + Em,2
k with Em,1

k and Em,2
k defined in

Lemma 4.12 and Lemma 4.13, respectively. Moreover, supposing that Assumptions 4.2, 4.3, and
4.4 also hold, then for all k ∈ N with k ≥ kJ and ϵd ∈ [0,∞) defined in Corollary 4.1, one has

|Em
k | ≤ Emk := Em,1

k + Em,2
k (43)

where Em,1
k and Em,2

k are defined in Lemmas 4.12 and 4.13, respectively.

We have by now established bounds on differences between the noisy and noiseless model re-
ductions. For our next two lemmas, we explore the effect of steps on changes in the noiseless merit
function values. By construction of the algorithm, it follows that each step yields an upper bound
on the change in the noisy merit function value given by (20). However, to establish that the al-
gorithm also ensures certain progress with respect to the noiseless quantities, the next two lemmas
provide bounds with respect to the noiseless merit function ϕ̄. The proof of our next lemma is
similar to that of [15, Lemma 3.5].

Lemma 4.14. Suppose that Assumptions 2.1, 4.1, and 4.2 hold. Then, for all k ∈ N, one finds
for all α ∈ (0, 1] with αdsk ≥ −ηs that

ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk) ≤ −α∆m̄k(dk, τk) + ξ2(τk)α
2∥dk∥2,

where ξ2(τk) := max{12(τkLg + LJ),
τkµ
1−ηs
}.
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Proof. For any real numbers ξ and ξ′ with ξ > 0 and ξ′ ≥ −ηsξ, one has∣∣∣∣log(ξ + ξ′)− log ξ − ξ′

ξ

∣∣∣∣ ≤ sup
ξ′′∈[ξ,ξ+ξ′]

∣∣∣∣ ξ′ξ′′ − ξ′

ξ

∣∣∣∣ ≤ 1

1− ηs

(
ξ′

ξ

)2

.

Thus, by Taylor’s theorem and Assumptions 2.1, 4.1, and 4.2, for any k ∈ N

ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk)

= τk

(
f̄0(xk + αdxk)− f̄0(xk)− µ

q∑
i=1

log((sk + αSkd
s
k)

(i)) + µ

q∑
i=1

log(s
(i)
k )

)
+ ∥c̄I(xk + αdxk) + (sk + αSkd

s
k)∥ − ∥c̄I(xk) + sk∥

≤ τkαḡ0(xk)
Tdxk +

1
2τkα

2Lg∥dxk∥2 − τkαµe
Tdsk +

τkµ

1− ηs
α2∥dsk∥2

+ ∥c̄I(xk) + α∇c̄I(xk)Tdxk + (sk + αSkd
s
k)∥ − ∥c̄I(xk) + sk∥+ 1

2α
2LJ∥dxk∥2

= τkαḡ
T
k dk +

1
2α

2(τkLg + LJ)∥dxk∥2 +
τkµ

1− ηs
α2∥dsk∥2

+ ∥c̄(zk) + αJ̄kdk∥ − ∥c̄(zk)∥
≤ − α(−τkḡTk dk + ∥c̄(zk)∥ − ∥c̄(zk) + J̄kdk∥) + ξ2(τk)α

2∥dk∥2

= − α∆m̄k(dk, τk) + ξ2(τk)α
2∥dk∥2,

as desired.

Our next lemma extends the result of Lemma 4.14 by expressing the right-hand side of the
inequality in terms of the stationarity measure ∆m̄k(d̄k, τ̄k).

Lemma 4.15. Suppose that Assumptions 2.1, 4.1, and 4.2 hold. Then, for all k ∈ N, one finds
for all α ∈ (0, 1] with αdsk ≥ −ηs that

ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk) ≤ −α∆m̄k(d̄k, τ̄k)− αEm,2
k + ξ2(τk)α

2∥d̄k + εd,k∥2,

where Em,2
k and ξ2(τk) are defined as in Lemmas 4.13 and 4.14, respectively.

Proof. The result follows directly from (27) along with Lemmas 4.13 and 4.14.

Following the result of Lemma 4.15, our next aim is to establish, for all k ∈ N, a relationship
between the noiseless model reduction ∆m̄k(d̄k, τ̄k) and the norm of the noiseless search direction
d̄k. This relationship is established by tying both quantities to a combination of ∥ūk∥2 and ∥J̄T

k c̄k∥2.

Lemma 4.16. Suppose that Assumptions 2.1, 4.1, and 4.2 hold. Then, there exist ξ3 ∈ (0,∞) and
ξ4 ∈ (0,∞) such that, for all k ∈ N, one has

∆m̄k(d̄k, τ̄k) ≥ ξ3(τ̄k∥ūk∥2 + ∥J̄T
k c̄k∥2)

and ∥d̄k∥2 ≤ ξ4(∥ūk∥2 + ∥J̄T
k c̄k∥2).

Proof. Consider arbitrary k ∈ N. Following a similar argument as in Lemma 4.10, one has
∆m̄k(d̄k, τ̄k) ≥ 1

2 τ̄kū
T
kWkūk + σ(∥c̄k∥ − ∥c̄k + J̄kv̄k∥), regardless of whether xk is an infeasible
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stationary point or a first-order stationary point for (7). Hence, along with Lemma 4.4, one has
under the given conditions that

∆m̄k(d̄k, τ̄k) ≥ 1
2 τ̄kū

T
kWkūk + σ(∥c̄k∥ − ∥c̄k + J̄kv̄k∥)

≥ 1
2 τ̄kσW ∥ūk∥

2 + σξ1,k
∥J̄T

k c̄k∥2
∥c̄k∥ .

The existence of ξ3, as claimed, now follows since ∥c̄k∥ is bounded under the conditions of the
lemma. On the other hand, by the triangle inequality and the definition of the normal subproblem
in (12), one finds that

∥d̄k∥2 ≤ 2(∥ūk∥2 + ∥v̄k∥2) ≤ 2(∥ūk∥2 + ω2∥J̄T
k c̄k∥2),

from which the desired conclusion holds with ξ4 := 2max{1, ω2}.

Following Lemma 4.16, we are able to prove a stronger relationship between ∆m̄k(d̄k, τ̄k) and
∥d̄k∥2 if there exist a positive lower bound for the elements of the noiseless merit parameter sequence
{τ̄k}. This may occur more generally, but let us at least establish that this is guaranteed to occur
under Assumptions 2.1, 4.1, 4.2, and 4.3. We do this through our next few lemmas.

Lemma 4.17. Suppose that Assumptions 2.1, 4.1, and 4.2 hold. Then, for all k ∈ N, one has
∥v̄k∥ ≤ ωJsup(cI,sup+ssup). Moreover, supposing Assumption 4.3 also holds, there exists ξ5 ∈ (0,∞)
such that for all k ∈ N with k ≥ kJ one finds

∥v̄k∥ ≤ ξ5(∥c̄k∥ − ∥c̄k + J̄kv̄k∥).

Proof. Under the initially stated conditions, the first desired conclusion follows from (12) and
(23). Now suppose Assumption 4.3 also holds and consider arbitrary k ∈ N with k ≥ kJ . Then,
∥J̄T

k c̄k∥ ≥ γ∥c̄k∥. Hence, by Lemma 4.4,

∥c̄k∥ − ∥c̄k + J̄kv̄k∥ ≥ ξ1,k
∥J̄T

k c̄k∥2
∥c̄k∥ ≥ ξ1,kγ

2∥c̄k∥.

Thus, by the conditions of the lemma and (12), there exists ξ5 ∈ (0,∞) with

∥v̄k∥ ≤ ω∥J̄T
k ∥∥c̄k∥ ≤ ξ−1

1,kγ
−2ω∥J̄T

k ∥(∥c̄k∥ − ∥c̄k + J̄kv̄k∥)
≤ ξ5(∥c̄k∥ − ∥c̄k + J̄kv̄k∥),

which completes the proof.

Lemma 4.18. Suppose that Assumptions 2.1, 4.1, and 4.2 hold. Then, for all k ∈ N, one has that
∥ūk∥ ≤ σ−1

W (gsup + κWωJsup(cI,sup + ssup)).

Proof. Consider arbitrary k ∈ N. Let Z̄k ∈ R(n+q)×n be a matrix whose columns form an orthonor-
mal basis for null(J̄k). As in the proof of Lemma 4.9, one has ūk = −Z̄k(Z̄

T
k Γ̄kZ̄k)

−1Z̄T
k (ḡk+Wkv̄k).

Thus, under the conditions of the lemma, one finds with ∥Z̄k∥ ≤ 1 and Lemmas 4.7 and 4.17 that

∥ūk∥ ≤ ∥Z̄k(Z̄
T
k ΓkZ̄k)

−1Z̄T
k ∥∥ḡk +Wkv̄k∥

= ∥Z̄k(Z̄
T
k WkZ̄k)

−1Z̄T
k ∥∥ḡk +Wkv̄k∥

≤ σ−1
W (gsup + κWωJsup(cI,sup + ssup)),

which completes the proof.
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We now show the aforementioned fact that the noiseless merit parameter values can be guaran-
teed to be bounded below by a positive real number. The proof of the following lemma is similar
to that of Lemma 3.16 in [11].

Lemma 4.19. Suppose that Assumptions 2.1, 4.1, 4.2, and 4.3 hold. Then, there exist kτ̄ ∈ N and
τ̄ ∈ (0,∞) such that τ̄k = τ̄ for all k ∈ N with k ≥ kτ̄ .

Proof. By construction, {τ̄k} is monotonically nonincreasing. Thus, by (18), one can reach the
desired conclusion by showing that the corresponding sequence of trial merit parameter values is
bounded below. Consider arbitrary k ∈ N with k ≥ kJ . By (14), it follows that Wkd̄k + ḡk +
J̄T
k ȳk+1 = 0. This, along with ūk ∈ null(J̄k), yields ūTkWkūk + ūTkWkv̄k + ūTk ḡk = 0. Thus, along

with Lemmas 4.17 and 4.18, there exists ξ6 ∈ (0,∞) such that

ḡTk d̄k +
1
2 ū

T
kWkūk = ḡTk ūk + ḡTk v̄k +

1
2 ū

T
kWkūk

≤ −ūTkWkv̄k + ḡTk v̄k − 1
2 ū

T
kWkūk

≤ −1
2σW ∥ūk∥

2 + ∥ḡk∥∥v̄k∥ − ūTkWkv̄k

≤ ∥ḡk∥∥v̄k∥+ ∥ūk∥∥Wk∥∥v̄k∥
≤ ξ6∥v̄k∥
≤ ξ6ξ5(∥c̄k∥ − ∥c̄k + J̄kv̄k∥).

Hence, (1−σ)(∥c̄k∥−∥c̄k+J̄k v̄k∥)
ḡTk d̄k+

1
2 ū

T
k Wkūk

≥ 1−σ
ξ6ξ5

, which, as stated, completes the proof.

Our next lemma now builds upon the result of Lemma 4.16.

Lemma 4.20. Suppose that Assumptions 2.1, 4.1, 4.2, and 4.3 hold. Then, there exists ξd ∈ (0,∞)
such that, for all k ∈ N, one finds

ξd∥d̄k∥2 ≤ ∆m̄k(d̄k, τ̄k).

Proof. Consider arbitrary k ∈ N. By Lemmas 4.16 and 4.19, one finds that

∆m̄k(d̄k, τ̄k) ≥ ξ3(τ̄∥ūk∥2 + ∥J̄T
k c̄k∥2)

≥ ξ3min{τ̄ , 1}(∥ūk∥2 + ∥J̄T
k c̄k∥2) ≥ ξd∥d̄k∥2,

where ξd := ξ3ξ
−1
4 min{τ̄ , 1}, which completes the proof.

We are almost prepared to present our main theorem about the behavior of our proposed
algorithm. The theorem considers two situations: one when only Assumptions 2.1, 4.1, and 4.2
hold, and another when Assumptions 4.3 and 4.4 also hold. For the latter situation, we provide
the following corollary.

Corollary 4.3. Suppose Assumptions 2.1, 4.1, 4.2, 4.3, and 4.4 hold. Then, for all k ∈ N,

Em,1
k ≤ em,1

1 + em,1
2 ∥d̄k∥ and Em,2

k ≤ cm,2
1 + cm,2

2 ∥d̄k∥, (44)

where Em,1
k and Em,2

k are defined in Lemmas 4.12 and 4.13, respectively, and

em,1
1 := (τ0ϵg + ϵJ)ϵd + 2ϵc, em,1

2 := τ0ϵg + ϵJ ,

cm,2
1 := (τ0gsup + Jsup)ϵd, and cm,2

2 := τ0gsup,

with gsup and Jsup defined in (23).
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Proof. Under the stated assumptions, the desired conclusions follow from Lemmas 4.12 and 4.13,
(23), and the facts that τ̄k + ετ,k = τk ≤ τ0 and |ετ,k| ≤ τ0.

Our last lemma prior to our main theorem, stated next, shows situations in which the relaxed
line search condition is guaranteed to hold.

Lemma 4.21. Suppose that Assumptions 2.1, 4.1, and 4.2 hold, and for all k ∈ N with αmax
k

computed to satisfy the fraction-to-the-boundary rule, εd,k defined in (27), and ξ2(τk) defined in
Lemma 4.14, let

α̂k = min

{
(1− ηϕ)∆m̄k(d̄k, τ̄k)

2ξ2(τk)∥d̄k + εd,k∥2
, αmax

k

}
. (45)

Then, with (Em,1
k , Em,2

k ) from Lemmas 4.12–4.13, one has for any k ∈ N that

ηϕE
m,1
k − (1− ηϕ)E

m,2
k ≤ 1

2(1− ηϕ)∆m̄k(d̄k, τ̄k) (46)

implies that (20) holds for all α ∈ [0, α̂k]. Now suppose that, in addition, Assumptions 4.3 and 4.4
hold, and let kτ̄ be defined in Lemma 4.19, ξd be defined in Lemma 4.20, (em,1

1 , em,1
2 , cm,2

1 , cm,2
2 ) be

defined in Corollary 4.3, and

ᾱk := min

{
(1− ηϕ)ξd∆m̄k(d̄k, τ̄k)

4ξ2(τk)(∆m̄k(d̄k, τ̄k) + ξdϵ
2
d)
, αmax

k

}
for all k ≥ kτ̄ . (47)

Then, one has for any k ≥ kτ̄ that

(ηϕe
m,1
1 + (1− ηϕ)c

m,2
1 ) + ξ

−1/2
d (ηϕe

m,1
2 + (1− ηϕ)c

m,2
2 )∆m̄k(d̄k, τ̄k)

1/2

≤ 1
2(1− ηϕ)∆m̄k(d̄k, τ̄k) (48)

implies that (20) holds for all α ∈ [0, ᾱk].

Proof. Consider arbitrary k ∈ N. Our first aim is to show that if (46) holds, then (20) holds for all
α ∈ [0, α̂k]. Toward this end, observe that by (10) and Lemma 4.15, one finds for all α ∈ (0, αmax

k ]
that

ϕ(zk + αd̂k, τk)− ϕ(zk, τk)

≤ ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk) + 2εk

≤ − α∆m̄k(d̄k, τ̄k)− αEm,2
k + α2ξ2(τk)∥d̄k + εd,k∥2 + 2εk

= − αηϕ∆mk(dk, τk) + 2εk − α(1− ηϕ)∆m̄k(d̄k, τ̄k)

+ αηϕE
m,1
k − α(1− ηϕ)E

m,2
k + α2ξ2(τk)∥d̄k + εd,k∥2. (49)

Hence, along with (45) and (46), one finds that

ϕ(zk + αd̂k, τk)− ϕ(zk, τk)

≤ − αηϕ∆mk(dk, τk) + 2ϵk − 1
2α(1− ηϕ)∆m̄k(d̄k, τ̄k) + α2ξ2(τk)∥d̄k + εd,k∥2

≤ − αηϕ∆mk(dk, τk) + 2εk,
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which implies that (20) is satisfied, as desired.
Now let us prove the second part of the lemma with the addition of Assumptions 4.3 and 4.4.

Consider arbitrary k ∈ N with k ≥ kτ̄ . By (49), Lemmas 4.12 and 4.13, and Corollary 4.3, one
finds for all α ∈ (0, αmax

k ] that

ϕ(zk + αd̂k, τk)− ϕ(zk, τk)

≤ − αηϕ∆mk(dk, τk) + 2εk − α(1− ηϕ)∆m̄k(d̄k, τ̄k)

+ αηϕEm,1
k + α(1− ηϕ)Em,2

k + 2α2ξ2(τk)(∥d̄k∥2 + ϵ2d)

≤ − αηϕ∆mk(dk, τk) + 2εk − α(1− ηϕ)∆m̄k(d̄k, τ̄k)

+ αηϕ(e
m,1
1 + em,1

2 ∥d̄k∥)
+ α(1− ηϕ)(c

m,2
1 + cm,2

2 ∥d̄k∥) + 2α2ξ2(τk)(∥d̄k∥2 + ϵ2d).

Now by Lemmas 4.19 and Lemma 4.20, one has

ϕ(zk + αd̂k, τk)− ϕ(zk, τk)

≤ − αηϕ∆mk(dk, τk) + 2εk − α(1− ηϕ)∆m̄k(d̄k, τ̄k)

+ α(ηϕe
m,1
1 + (1− ηϕ)c

m,2
1 )

+ αξ
−1/2
d (ηϕe

m,1
2 + (1− ηϕ)c

m,2
2 )∆m̄k(d̄k, τ̄k)

1/2

+ 2α2ξ2(τk)ξ
−1
d ∆m̄k(d̄k, τ̄k) + 2α2ξ2(τk)ϵ

2
d.

Hence, by (47) and (48), one finds that

ϕ(zk + αd̂k, τk)− ϕ(zk, τk)

≤ − αηϕ∆mk(dk, τk) + 2εk − 1
2α(1− ηϕ)∆m̄k(d̄k, τ̄k)

+ 2α2ξ2(τk)ξ
−1
d ∆m̄k(d̄k, τ̄k) + 2α2ξ2(τk)ϵ

2
d

≤ − αηϕ∆mk(dk, τk) + 2εk,

which implies that (20) is satisfied, as desired.

We are now ready to prove our main theorem. We following the proof of the theorem with
commentary on the theorem’s consequences.

Theorem 1. Suppose Assumptions 2.1, 4.1, and 4.2 hold. Then, with Em,1
k defined in Lemma 4.12,

Em,2
k defined in Lemma 4.13, Em

k defined in Corollary 4.2, and α̂k defined in Lemma 4.21, there
exists k ∈ N such that

∆m̄k(d̄k, τ̄k) ≤ max

{
2(ηϕE

m,1
k − (1− ηϕ)E

m,2
k )

(1− ηϕ)
,−2Em

k ,
4(4 + 2ζ)εk

α̂kηϕ

}
. (50)

Now suppose that, in addition, Assumptions 4.3 and 4.4 hold, and let kτ̄ be defined in Lemma 4.19,
ξd be defined in Lemma 4.20, and (em,1

1 , em,1
2 , cm,2

1 , cm,2
2 ) be defined in Corollary 4.3. Then, there

exists k ∈ N with k ≥ kτ̄ such that

∆m̄k(d̄k, τ̄) ≤ max{ρk,1, ρk,2, ρk,3}, (51)
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where

ρk,1 = 2
(

ηϕ
1−ηϕ

em,1
1 + cm,2

1 + ξ
−1/2
d (

ηϕ
1−ηϕ

em,1
2 + cm,2

2 )∆m̄k(d̄k, τ̄)
1/2
)
,

ρk,2 = 2
(
em,1
1 + cm,2

1 + ξ
−1/2
d (em,1

2 + cm,2
2 )∆m̄k(d̄k, τ̄)

1/2
)
,

and ρk,3 =
4(4+2ζ)εk

ᾱkηϕ
= 4(4+2ζ)εk

ηϕ
max

{
4ξ2(τ̄)(∆m̄k(d̄k,τ̄)+ξdϵ

2
d)

(1−ηϕ)ξd∆m̄k(d̄k,τ̄)
, 1
αmax
k

}
.

Proof. To derive a contradiction to the first desired conclusion, suppose (50) does not hold for all
k ∈ N. Under this supposition, consider arbitrary k ∈ N. Since (50) does not hold, it follows that
(46) holds, which in turn means by Lemma 4.21 that (20) holds for some step size α ≥ α̂k/2. Thus,
with Corollary 4.2,

ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk)

≤ ϕ(zk + αd̂k, τk)− ϕ(zk, τk) + 2εk

≤ − 1
2 α̂kηϕ∆mk(dk, τk) + 2εk + (2 + ζ)εk

= − 1
2 α̂kηϕ∆m̄k(d̄k, τ̄k)− 1

2 α̂kηϕE
m
k + (4 + ζ)εk. (52)

This, again with the fact that (50) does not hold, implies

ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk) ≤ −1
4 α̂kηϕ∆m̄k(d̄k, τ̄k) + (4 + ζ)εk ≤ −ζεk.

However, with Remark 3.1 this implies that ϕ̄(zk+1, τk) − ϕ̄(zk, τk) ≤ −ζεk, which contradicts
Assumption 4.2, specifically the fact that {ϕ̄(zk, τk)} is bounded below. Consequently, (50) must
hold for some k ∈ N, as desired.

Now consider the second desired conclusion under the addition of Assumptions 4.3 and 4.4. To
derive a contradiction, suppose that (51) does not hold for all k ∈ N with k ≥ kτ̄ . Under this
supposition, consider arbitrary such k. Since (51) does not hold, it follows that (48) holds, which
in turn means by Lemma 4.21 that (20) holds for some step size α ≥ ᾱk/2. Thus, by a similar
derivation that led to (52), Corollary 4.2, Corollary 4.3, and Lemma 4.20,

ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk)

≤ − 1
2 ᾱkηϕ∆m̄k(d̄k, τ̄k) +

1
2 ᾱkηϕEmk + (4 + ζ)εk

≤ − 1
2 ᾱkηϕ∆m̄k(d̄k, τ̄k) + (4 + ζ)εk

+ 1
2 ᾱkηϕ(e

m,1
1 + cm,2

1 + (em,1
2 + cm,2

2 )∥d̄k∥)
≤ − 1

2 ᾱkηϕ∆m̄k(d̄k, τ̄k) + (4 + ζ)εk

+ 1
2 ᾱkηϕ(e

m,1
1 + cm,2

1 + ξ
−1/2
d (em,1

2 + cm,2
2 )∆m̄k(d̄k, τ̄k)

1/2).

This, again with the fact that (51) does not hold, implies

ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk) ≤ −1
4 ᾱkηϕ∆m̄k(d̄k, τ̄k) + (4 + ζ)εk ≤ −ζεk

However, with Remark 3.1 this implies that ϕ̄(zk+1, τk) − ϕ̄(zk, τk) < −ζεk, which contradicts
Assumption 4.2, specifically the fact that {ϕ̄(zk, τk)} is bounded below. Consequently, (51) must
hold for some k ∈ N, as desired.

The following observations explain the strong consequences of Theorem 1.
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• The first conclusion of the theorem, expressed in (50), shows a preliminary upper bound on
the stationarity measure ∆m̄(d̄k, τ̄k) in terms of error quantities in the given iteration k ∈ N.
If Em,1

k , Em,2
k , and Em

k are each relatively small and the step size threshold α̂k (recall (45))
is not exceedingly small, then (50) describes that the algorithm has reached an iteration in
which ∆m̄(d̄k, τ̄k) is small, as is desirable; recall §4.1. One should of course note that α̂k itself
depends on ∆m̄(d̄k, τ̄k), ∥d̄k + εd,k∥2, and αmax

k , and in particular α̂k not being exceedingly
small means that ∥d̄k + εd,k∥2 is not exceedingly large relative to ∆m̄(d̄k, τ̄k) and that αmax

k

is not exceedingly small. It is not straightforward to guarantee that such a situation occurs
without considering the overall behavior of the algorithm over the entire sequence of iterations,
rather than in the particular iteration k ∈ N in which (50) holds. Therefore, let us turn to the
second desired conclusion wherein we have effectively shown an iteration-independent bound
on the threshold reached by the stationary measure ∆m̄(d̄k, τ̄k).

• In the second conclusion of the theorem under the additional Assumptions 4.3 and 4.4, the
bound ∆m̄(d̄k, τ̄k) ≤ max{ρk,1, ρk,2} would imply that

∆m̄(d̄k, τ̄k) ≤ c1 + c2∆m̄(d̄k, τ̄k)
1/2

for some iteration-independent constants c1 ∈ (0,∞) and c2 ∈ (0,∞), which in turn would
bound ∆m̄(d̄k, τ̄k)

1/2 in terms of these constants. Recalling Corollary 4.3, one finds that these
constants would all vanish if the noise bounds were to vanish, except for the term derived
from cm,2

2 := τ0gsup, which depends on the initial merit parameter value. This directs us back
to Remark 4.1, where we first observed that poor behavior can be exhibited by the algorithm
if the noisy and noiseless merit parameter sequences diverge substantially. Specifically, the
worst case is when the noisy merit parameter values does not decrease sufficiently, in which
case the algorithm does not put enough weight on reducing constraint violation. One way in
which this poor behavior can be mitigated is by choosing τ0 to a conservative, small value,
although this might not always yield the best performance in real-world practice.

• In the second conclusion, the bound ∆m̄(d̄k, τ̄k) ≤ ρk,3 would imply that

∆m̄(d̄k, τ̄k) ≤
4(4 + 2ζ)εk

ηϕ
max

{
4ξ2(τ̄)(∆m̄k(d̄k, τ̄) + ξdϵ

2
d)

(1− ηϕ)ξd∆m̄k(d̄k, τ̄)
,

1

αmax
k

}
.

Recall that by Corollary 4.1 it follows that ∥dk − d̄k∥ ≤ ϵd. One can also show under our
assumptions that {dk} is bounded in norm; see, e.g., Lemma 3.7 in [15]. Consequently,
following Lemma 3.11 in [15], one can show that there exists a constant dssup such that
(αmax

k )−1 ≤ η−1
s ∥dsk∥ ≤ η−1

s dssup for all k ∈ N. In fact, this is quite a pessimistic bound, since
in fact one should expect ∥dsk∥ to be small at points at which ∆m̄(d̄k, τ̄k) is small. In any
case, overall one can essentially conclude that ∆m̄(d̄k, τ̄k) ≤ ρk,3 implies that ∆m̄(d̄k, τ̄k) is
bounded by constants that vanish with the noise.

5 Numerical Experiments

The purpose of our numerical experiments is to demonstrate the practical performance of our
proposed algorithm on a large and diverse set of test problems. Our aim is to show that, in
practice, our algorithm is able to drive stationarity measures below levels that are proportional

31



to the noise in the function and derivative values. Similarly as for our theoretical results in the
preceding section, our experiments consider runs with a fixed barrier parameter. We discuss a
proposed heuristic for reducing the barrier parameter in Section 6.

We implemented our algorithm in Matlab. We chose, in the following manner, test problems
from CUTE (Constrained and Unconstrained Testing Environment) [5] for which AMPL models
[17] were available.1 First, of all available CUTE/AMPL problems, we restricted attention to
those involving at least one (potentially nonlinear) constraint given by CUTE/AMPL in their
standard form l <= c(x) <= u. (Problems with only bound constraints on an individual variable
or variables were ignored.) Second, of these problems, we restricted attention to those with l < u,
componentwise. Third, we removed from consideration all problems with more than 100 primal or
dual variables. This resulted in a set of 137 test problems for our numerical experiments.

The following initialization strategy and algorithmic parameters were fixed for all runs. (Values
not mentioned here were chosen differently for different experiments, as discussed later on.) For
the initial primal iterate x0, we took the initial point offered by CUTE/AMPL and projected it
inside any present bound constraints using the strategy proposed in Section 3.6 of [31]. The initial
slack variable s0 was set to a vector of all ones, then a slack reset was performed; recall (21). The
initial merit parameter was set to τ−1 ← 10−1, the normal-step trust-region-radius parameter was
set to ω ← 103, the merit parameter update parameters were set to σ ← 10−1 and δτ ← 10−4, and
the relaxed Armijo line-search parameters were set to ηϕ ← 10−8 and ζ ← 10−1.

Important implementation details were as follows. First, as is typical for software for solving
continuous optimization problems, each problem was scaled before our algorithm was applied.
Specifically, if the noiseless gradient of the objective function evaluated at the initial point had an
ℓ∞ norm greater than 10, then the objective function was scaled by 10/∥ḡ0∥∞. Similarly, if the
noiseless gradient of any constraint function evaluated at the initial point had an ℓ∞ norm greater
than 10, then the constraint function was scaled similarly. All of our subsequent numerical results
refer to solving the resulting scaled problems. Second, during the run of our proposed algorithm to
compute the normal step vk for all k ∈ N, our code employs an implementation of the well-known
Moré-Sorensen method [20] for solving the trust-region subproblem (12). Third, for all k ∈ N, to
compute the tangential step uk, we initialize Wk as in (13) with a noisy Hessian value (see next
paragraph) and Σk ← SkYk. Then, a Hessian modification subroutine is performed to ensure that
it is sufficiently positive definite over null(Jk). This is done by using Matlab’s built-in ldl method
to compute a block LDL factorization of the matrix in (14), then checking its inertia [22]. If the
block diagonal matrix in this factorization has n positive eigenvalues with value at least 10−10,
then no modification is performed. Otherwise, sequentially larger multiples of the identity matrix
are added to Wk until the block diagonal matrix in its LDL factorization has n positive eigenvalues
with value at least 10−10. Once the Hessian modification strategy is completed, the tangential step
uk and multipliers yk+1 are computed using Matlab’s built-in mldivide routine for solving linear
systems of equations.

We present the results of experiments with two barrier parameter values and two noise levels. For
the barrier parameter, we considered µ← 10−1 and µ← 10−4. In each case, the initial dual variable
y0 was set to µS−1

0 e and the fraction-to-the-boundary parameter was set to ηs ← max{0.99, 1−µ}.
For the noise levels, we considered ϵf = ϵc ← 10−2 and ϵf = ϵc ← 10−6. In each case, we chose
ϵg = ϵJ = ϵH ←

√
ϵf =

√
ϵc. Given these constants, noise was added to each CUTE/AMPL

function and derivative value for each k ∈ N as follows. For the objective and constraint functions,

1https://vanderbei.princeton.edu/ampl/nlmodels/index.html
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we set f0(xk)← f̄0(xk) + εf0,k and cI(xk)← c̄I(xk) + εcI ,k, where εf0,k was drawn from a uniform
distribution over [−ϵf , ϵf ] and εcI ,k was drawn from a uniform distribution over an ℓ2-norm ball with
radius ϵc. For the objective and constraint first-order derivatives, we set g0(xk)← ḡ0(xk)+εg0,k and
JI(xk)← J̄(xk)+εJI ,k, where εg0,k was drawn from a uniform distribution over an ℓ2-norm ball with
radius ϵg, εJI ,k had the same sparsity pattern as J̄(xk), and the nonzero components of each row
of εJI ,k were drawn from a uniform distribution over an ℓ2-norm ball with radius ϵJ/

√
q. Finally,

with H̄k defined as the Hessian of the Lagrangian evaluated at (xk, yk), we set Hk ← H̄k + εH,k,
where εH,k is a diagonal matrix with each diagonal element drawn from a uniform distribution over
[−ϵH , ϵH ].

For each test problem, barrier parameter, and noise level, we ran our code until 2000 iterations
were conducted or a time limit of 1 hour was reached. In actual practice, it would be more
reasonable to run Algorithm 1 with termination conditions corresponding to those stated in the
algorithm itself, i.e., for prescribed thresholds, the algorithm may terminate when—according to
noisy quantities—an approximate infeasible stationary point or approximate first-order stationary
point has been reached. However, for our purposes here, we chose to disable these termination
conditions in order to be confident that the algorithm has reached the highest quality solution that
it can in each run.

In Figure 1, we show the quality of the solutions found with µ = 10−1 in terms of noisy
stationarity measures, both with respect to ϵf = 10−2 and ϵf = 10−6. (Recall from above that the
value for ϵf determines all of the values for ϵc, ϵg, ϵJ , and ϵH as well.) Specifically, for varying
thresholds on the stationarity measure for solving the barrier subproblem (left) and a stationarity
measure for minimizing infeasibility (right), we show the percentages of problems for which the
geometric average of the last 10 iterates satisfied the given threshold for each measure. Figure 2
provides the results for these same runs of the algorithm (using noisy quantities), but considers
values of the measures with respect to noiseless function and derivative values. These are included
to show that the algorithm is reaching points that can be considered nearly stationary for noiseless
values, even though it only has access to noisy ones.

(a) Stationarity w.r.t. barrier subproblem (b) Stationarity w.r.t. minimizing infeasibility

Figure 1: µ = 10−1, measured with noisy function and derivative values

Figures 3 and 4, respectively, show results in terms of noisy and noiseless stationarity measures,
this time when the barrier parameter is µ = 10−4.
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(a) Stationarity w.r.t. barrier subproblem (b) Stationarity w.r.t. minimizing infeasibility

Figure 2: µ = 10−1, measured with noiseless function and derivative values

(a) Stationarity w.r.t. barrier subproblem (b) Stationarity w.r.t. minimizing infeasibility

Figure 3: µ = 10−4, measured with noisy function and derivative values

The results for µ = 10−4 are comparable to those with µ = 10−1. On one hand, these results
show that the performance of our algorithm is robust with respect to the barrier parameter value,
which is good news. At the same time, the results show that with a smaller barrier parameter, one
should not necessarily expect to be able to obtain significantly better final solution estimates. This
can be attributed to the fact, which we mentioned at the end of §1.1, that regardless of the barrier
parameter value, one may be inhibited from obtaining high-accuracy solutions due to the presence
of noise.

6 Conclusion and Future Work

We have presented, analyzed, and tested the practical performance of an interior-point algorithm
for solving continuous inequality-constrained optimization problems when function and derivative
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(a) Stationarity w.r.t. barrier subproblem (b) Stationarity w.r.t. minimizing infeasibility

Figure 4: µ = 10−4, measured with noiseless function and derivative values

values are corrupted by noise. Our algorithm focuses on solving a single barrier subproblem. We
have shown that the algorithm either terminates finitely due to one of two reasonable termination
criteria, or it generates an infinite sequence of iterates, and in this latter case it is guaranteed under
certain assumptions to reach a point at which a stationarity measure is below a threshold that
depends on the noise level.

As previously mentioned in the paper and shown in our numerical experiments, in the noisy
setting there is not necessarily a benefit of reducing the barrier parameter too small, since in any case
the noise in the function and derivative values may inhibit the ability to acquire a highly accurate
solution (to the underlying noiseless problem). That being said, it is very reasonable to expect that,
in some cases, one may obtain better solutions by solving a sequence of barrier subproblems for a
diminishing sequence of barrier parameters. We propose that this may be done by incorporating a
practical stopping condition for a given barrier subproblem that builds off of the practical condition
proposed in Theorem 3.9 in [16]. This would essentially involve employing an iteration-dependent
variant of (51) where the unknown quantities are estimated. Since (ϵf , ϵg, ϵc, ϵJ) are presumed to
be known, and both gsup and Jsup are easily estimated during a run of the algorithm using (23), the
main quantity that requires some attention is ξd. By its definition in Lemma 4.20, one finds that
this value is affected by the choice of ω in (12). If ω is chosen to be a relatively large value, then
ξd becomes relatively small, which in turn can cause {ρk,1, ρk,2, ρk,3} to become relatively large. In
some sense, this makes (51) easier to satisfy, but at the expense of only having a looser bound on
∆m̄k(d̄k, τ̄). By contrast, one may obtain a tighter, computable bound on ∆m̄k(d̄k, τ̄) by replacing
ω in the definition of ϵd with ∥JT

k ck∥/∥vk∥. Passing this value through the definition of ϵd, one can
use the resulting right-hand side of (51) as a threshold for terminating the solve for a given barrier
subproblem. (Specifically, the solve may terminate if/when ∆m(dk, τk) is below this threshold.)
If/when this bound holds, the barrier parameter can be reduced using a typical update rule; see,
e.g., [31].
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A Convergence of ∥J̄T
k c̄k∥2

Under looser assumptions than for the first part of Theorem 1—specifically, without Assump-
tions 4.3 and 4.4—we prove in this appendix that Algorithm 1 is guaranteed to generate a sequence
of iterates such that, for some k ∈ N, one finds that ∥J̄T

k c̄k∥2 is below a threshold that depends on
noisy quantities. The statement is similar to the first part of Theorem 1. As in Section 4.3, the
result presumes that the algorithm does not terminate finitely.

Theorem 2. Suppose that Assumptions 2.1, 4.1, and 4.2 hold, and for all k ∈ N, with ξ2(τk)
defined in Lemma 4.14, (ξ3, ξ4) defined in Lemma 4.16, εd,k defined in (27), and αmax

k computed to
satisfy the fraction-to-the-boundary rule, let

α̌k := min

{
1

4ξ2(τk)

(
(1− ηϕ)ξ3∥J̄T

k c̄k∥2

ξ4(∥ūk∥2 + ∥J̄T
k c̄k∥2) + ∥εd,k∥2

)
, αmax

k

}
. (53)

Then, with Em,1
k defined in Lemma 4.12, Em,2

k defined in Lemma 4.13, and Em
k defined in Corol-

lary 4.2, there exists k ∈ N such that

∥J̄T
k c̄k∥2 ≤ max

{
2(ηϕE

m,1
k − (1− ηϕ)E

m,2
k )

(1− ηϕ)ξ3
,−

2Em
k

ξ3
,
8(2 + ζ)εk
α̌kηϕξ3

}
. (54)

Proof. Consider arbitrary k ∈ N. Our first aim is to show that if

ηϕE
m,1
k − (1− ηϕ)E

m,2
k ≤ 1

2(1− ηϕ)ξ3∥J̄T
k c̄k∥2, (55)

then the relaxed Armijo condition (20) is satisfied for all α ≤ α̌k. Toward this end, first observe
that by (10), Lemma 4.13, and 4.14, one finds for all α ∈ (0, αmax

k ] that

ϕ(zk + αd̂k, τk)− ϕ(zk, τk) ≤ ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk) + 2εk

≤ − α∆m̄k(d̄k, τ̄k)− αEm,2
k + ξ2(τk)α

2∥dk∥2 + 2εk

= − αηϕ∆m̄k(d̄k, τ̄k)− α(1− ηϕ)∆m̄k(d̄k, τ̄k)

− αEm,2
k + ξ2(τk)α

2∥dk∥2 + 2εk.
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Consequently, by Corollary 4.2 and ∥dk∥2 ≤ 2(∥d̄k∥2 + ∥εd,k∥2), one finds

ϕ(zk + αd̂k, τk)− ϕ(zk, τk)

≤ − αηϕ∆mk(dk, τk) + αηϕE
m
k + 2εk

− α(1− ηϕ)∆m̄k(d̄k, τ̄k)− αEm,2
k + 2ξ2(τk)α

2(∥d̄k∥2 + ∥εd,k∥2)
= − αηϕ∆mk(dk, τk) + 2εk

− α(1− ηϕ)∆m̄k(d̄k, τ̄k) + 2ξ2(τk)α
2(∥d̄k∥2 + ∥εd,k∥2)

+ αηϕE
m,1
k − α(1− ηϕ)E

m,2
k .

Thus, under (55), one finds from Lemma 4.16 that

ϕ(zk + αd̂k, τk)− ϕ(zk, τk) ≤ − αηϕ∆mk(dk, τk) + 2εk

− α(1− ηϕ)ξ3(τ̄k∥ūk∥2 + ∥J̄T
k c̄k∥2)

+ 2ξ2(τk)ξ4α
2(∥ūk∥2 + ∥J̄T

k c̄k∥2) + 2ξ2(τk)α
2∥εd,k∥2

+ 1
2α(1− ηϕ)ξ3∥J̄T

k c̄k∥2

≤ − αηϕ∆mk(dk, τk) + 2εk

− 1
2α(1− ηϕ)ξ3∥J̄T

k c̄k∥2

+ 2ξ2(τk)ξ4α
2(∥ūk∥2 + ∥J̄T

k c̄k∥2) + 2ξ2(τk)α
2∥εd,k∥2,

which along with (53) implies that, for all α ≤ α̌k, (20) holds, as claimed.
Now, to derive a contradiction to the desired conclusion, suppose that (54) does not hold for

all k ∈ N. Under this supposition, consider arbitrary k ∈ N. Since (54) does not hold, it follows
that (55) holds, which in turn means that (20) holds for some step size α ≥ α̌k/2. Thus, with
Corollary 4.2, one has

ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk) ≤ ϕ(zk + αd̂k, τk)− ϕ(zk, τk) + 2εk

≤ − 1
2 α̌kηϕ∆mk(dk, τk) + 2εk + (2 + ζ)εk

=− 1
2 α̌kηϕ∆m̄k(d̄k, τ̄k)− 1

2 α̌kηϕE
m
k + 2εk + (2 + ζ)εk.

Now by Lemma 4.16, ∥J̄T
k c̄k∥2 > −

2Em
k

ξ3
, and ∥J̄T

k c̄k∥2 >
8(2+ζ)εk
α̌kηϕξ3

, one finds

ϕ̄(zk + αd̂k, τk)− ϕ̄(zk, τk) ≤ − 1
2 α̌kηϕξ3∥J̄T

k c̄k∥2 − 1
2 α̌kηϕE

m
k + 2εk + (2 + ζ)εk

< − 1
4 α̌kηϕξ3∥J̄T

k c̄k∥2 + 2εk + (2 + ζ)εk < −ζεk.

However, with Remark 3.1 this implies that ϕ̄(zk+1, τk) − ϕ̄(zk, τk) < −ζεk for all k ∈ N, which
contradicts Assumption 4.2, specifically the fact that {ϕ̄(zk, τk)} is bounded below. Consequently,
(54) must hold for some k ∈ N, as desired.
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