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A B S T R A C T

Tensor decomposition (TD) has been recognized as an effective technique for multilinear dimensionality reduc-

tion and feature extraction for decades. However, traditional TD approaches often struggle to capture complex 

hierarchical structures and nonlinear relationships in high-dimensional datasets. For instance, in biomedical set-

tings, disease groups may naturally contain subgroups or exhibit hierarchical structures; mechanistic interactions 

among diseases, drugs and targets often demonstrate nonlinearity. To address these challenges, a new paradigm, 

deep tensor decomposition (deep TD) has recently emerged inspired by the success of deep learning. Deep TD 

techniques can be mainly divided into two categories: linear and nonlinear deep TD. Linear deep TD exploits 

the layered structure of deep neural networks (DNNs) to recursively factorize factor matrices obtained from the 

classic TD enabling feature extraction at multiple levels of granularity. Nonlinear deep TD leverages the expres-

sive power of DNNs to capture nonlinear correlations within the data. Despite rapid progress, there remains no 

unified treatment of deep TD methods. In this survey, we provide a comprehensive review of deep TD models, 

together with the deep learning training schemes for TD, and applications of deep TD models. Finally, we discuss 

open challenges and outline promising directions for future research.

1. Introduction

With the increasing availability of high-dimensional data in tensor 

format across various domains, efficiently analyzing such data has be-

come a critical challenge. A key goal is to extract features and identify 

latent structures that capture complex patterns in the data. Tensor de-

composition (TD), has emerged as a powerful technique for this purpose, 

and has been successfully applied in diverse domains such as signal 

processing [1,2], healthcare analysis [3,4], and transportation systems 

[5,6]. Traditional TD approaches, such as CANDECOMP/PARAFAC (CP) 

[7] and Tucker decomposition [8], focus on factorizing a tensor into 

low-rank components to capture multilinear correlations among dif-

ferent modes. While these models perform well for relatively simple 

and structured data, they often face challenges when applied to com-

plex datasets for representing hierarchical or nonlinear relationships. 

To overcome these limitations, researchers have proposed advanced hi-

erarchical (multi-layer) and nonlinear TD approaches. Hierarchical TD 

models [9,10] extend traditional TD methods by recursively factorizing 

the components of initial decompositions. This enables the extraction

of deeper, multi-level representations that better reflect the structure 

of real-world data. For example, Hierarchical Alternating Least Squares 

(HALS) [9] was the first to introduce layered TD structure, iteratively 

capturing local representations within each decomposition level. In par-

allel, nonlinear TD models aim to explore more flexible patterns by 

moving beyond the multilinear assumptions. For instance, [11] proposed 

the Bayesian nonlinear tensor factorization framework which incorpo-

rates Gaussian process (GP) to model a variety of nonlinear relationships 

in the tensor data.

In recent years, deep neural networks (DNNs) [12] have gained sig-

nificant attention and achieved state-of-the-art performance in a wide 

range of tasks [13–15]. DNNs are composed of multiple layers between 

the input and output layers, where the term “deep” refers to the pres-

ence of multiple hidden layers enabling networks to learn complex 

representations from data that “shallow” architectures cannot easily 

handle. Building upon the remarkable success of DNNs, researchers 

have extended deep learning principles to tensor analysis, leading to 

the development of deep tensor decomposition (deep TD). These models
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Fig. 1. Structure of the survey.

aim to integrate the representational power of deep learning with 

the structure-preserving benefits of traditional tensor decomposition. 

Broadly, existing deep TD methods mainly fall into two categories. The 

first involves hierarchical decomposition structures, in which each layer 

performs a basic multi-linear factorization of the previous layer’s output 

[16–19]. These models are designed to extract features at varying levels 

of abstraction, progressing from global, coarse-grained patterns to more 

fine-grained, detailed structures. For example, HNCPD [17] and DNTF 

[19] extend CP decomposition and Tucker decomposition, respectively, 

through iterative decomposition to uncover hierarchical correlations 

in complex tensor data. The second category of deep TD incorporates 

layers of nonlinear operations through neural networks to model non-

linear interactions within tensor components [20–28]. A representative 

example is CoSTCo (Convolutional Sparse Tensor Completion) [20], the 

first method to embed convolutional neural network (CNN) structures 

into CP decomposition, enabling the model to learn complex nonlinear 

interactions among components. This integration leads to an improved 

performance on the sparse tensor completion task. Building on this 

line of work, [29] constructs a neural Tucker framework that employs 

an auto-encoding module to refine the core of Tucker decomposition. 

[30] introduced CoATR, a convolutional-based generalized autoregres-

sive tensor-ring decomposition method designed for spatio-temporal 

data completion, extending the idea beyond CP and Tucker to more 

expressive tensor-ring representations.

Despite the growing interest in developing deep TD approaches for 

capturing hierarchical and nonlinear relationships within tensor data, 

this field remains relatively underexplored, and a systematic overview 

is still lacking. This paper aims to fill this gap by providing a thorough re-

view of recent advancements in deep TD, covering fundamental models, 

key variants, training schemes, and representative applications, as sum-

marized in Fig. 1. The rest of the paper is organized as follows. Section 3 

presents linear deep TD models and their extensions, including the in-

corporation of constraints such as non-negativity and sparsity. Section 4 

summarizes nonlinear deep TD models that utilize various DNN struc-

tures such as multi-layer perceptron (MLP) and CNN. In Section 5, we 

review the popular training schemes in deep learning being applied to 

deep TD such as self-supervised learning and transfer learning. Section 6 

summarizes the main applications of deep TD models across various 

domains. Finally, Section 7 concludes this survey by discussing open 

challenges and presenting perspectives on future research directions for 

deep TD methods.

2. Tensor decomposition models

This section first introduces the notations used throughout the 

survey. It then provides definitions and formulations of classical

Table 1 

Description of the notations used in this survey.

Notations Description

x, x, X, X scalar, vector, matrix, and tensor

Xi 1 ,...,iN  

the (i1 ,... , i N )-element of the N  -th 

  

order tensor X
X 

T 

X  

 

-1
transpose of the matrix X 

inverse of the matrix X 

X (n) 

the mode- the n matricization of   tensor X 

￮, *, ⊙, ⊗ outer, Hadamard, Khatri-Rao, and Kronecker product 

X × n X 

 

matrixthe n-mode product of tensor X with   X
Tr(X) trace of the matrix X 

|| . || F 

Frobenius norm 

|| . || 1 

𝓁 norm1
|| . || 2 𝓁 norm2

tensor decomposition models, including CANDECOMP/PARAFAC (CP), 

Tucker, Tensor-Train (TT), and Tensor-Ring (TR) models.

2.1. Notations

Table 1 summarizes the commonly used notations in this survey pa-

per for ease of reference. More details can be found in this foundational 

work [31]. Matricization, also known as unfolding or flattening, is the 

process of converting a tensor into a matrix by rearranging its elements 

along specific modes.

2.2. Tensor decomposition models

Definition 1 (CP decomposition). Given a N -way tensor X ∈
R 

I 1×I2 ×...×IN , the CP model factorizes it into the sum of R component 

rank-one tensors [31], formulated as follows,

X ≈
R∑
r=1

a 

(1)
r ￮a 

(2)
r ￮ . . . ￮a 

(N)
r ≡ [[A 

(1) ,A 

(2) ,... ,A 

(N) ]], (1)

where 

(R is a positive integer denoting tensor canonical rank, A 

n) ∈
R 

I 
(n)n×R (n ∈ {1, ... , N}) is the n-th  

 

  factor matrix and a ∈ R 

Inr (r ∈
{1, ... , R}) denotes the r-th column of the n-th factor matrix.

Definition 2 (Tucker decomposition). Tucker model factorizes the N -
×way a 1 

 tensor X as the mode products of  core tensor G ∈ R 

J
 

J2  

×...×JN 

and N factor matrices A    

 

(n) ∈ R 

In×Jn [8], 

X ≈ G × 1 

A 

(1) . . . × N 

A 

(N) ≡ [[G;A 

(1) ,A 

(2), . . .,A 

(N) ]], (2) 

where J numbern(1 ≤ n ≤ N) is the   

 

of dimensionality in mode-n of the

core tensor G.
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Definition 3 (Tensor-Train decomposition). Tensor-Train (TT) model

[32] expresses the N -way tensor X as multilinear products of a chain of 

third-order tensors except the first and last are matrices. It is formulated 

as,

Xi1 ,...,i N 

≈ A 1[1, i 1 

, :]A 2 

[:, i 2 

, :] ... A N 

[:, i N 

, 1], (3) 

where A 

 

∈ R 

rn -1 

×In ×rn  is called the n-th TT-coren   and r n 

is the TT-rank

(r 0 

= r N 

= 1).

Definition 4 (Tensor-Ring decomposition). Tensor-Ring (TR) model

[33] decomposes the N -way tensor X by a sequence of third-order latent 

tensors multiplied circularly where the first and last tensors are also 

connected. It is formulated as,

Xi1 ,...,i N 

≈ Tr{A 1(i 1 

)A 2 

(i 2 

) ... A N 

(i N 

)}

≈ Tr{
N𝛑
n=1

A n 

(i n 

)}, (4) 

where A n 
 (i  

 

) ∈ R 

r ×r n+1 is the i lateral 

 

-th slice matrixn n n   of the latent tensor

A 

 

, alsn  o called the n-th TR-core or node.

3. Track I: linear deep TD models

This section reviews the first category of deep TD models, namely 

linear deep TD, in which the factor matrices or core tensors derived 

from each layer are recursively decomposed into deeper levels, en-

abling the capture of hierarchical features within the tensor data. The 

main idea of linear deep TD leverages the multi-layer architecture of 

DNNs.

3.1. Basic linear deep TD models

In this subsection, we primarily introduce two types of linear deep TD 

models: deep CP decomposition and deep Tucker decomposition, which 

are built upon the foundations of the traditional CP and Tucker models, 

as illustrated in Fig. 2. The flowchart of linear deep TD built on CP model 

is demonstrated in Fig. 3.

3.1.1. Deep CP decomposition

Traditional one-layer CP decomposition defined in Eq. (1) may fail 

to extract hierarchical structures or multi-level features in complex 

datasets. To address this limitation, [17] proposed a deep CP decom-

position model which extends the basic CP into a multi-layer structure 

by minimizing the total reconstruction loss resulting from using the fac-

tor matrices in each layer to reconstruct the tensor data. The first step 

of a deep CP model is to perform the regular CP decomposition defined 

in Eq. (1). For the layers that follow, a sequential and hierarchical TD is 

performed on each of the factor matrices. The loss function for deep CP 

is given as follows,

min
A,S

||X - [[A(1)
1 A 

(1) 

2 ...A 

(1)
L S 

(1)
L ,... ,A(N) 

1 A 

(N) 

2 ...A 

(N) 

L S 

(N) 

L ]]||2F , (5)

where L is the number of decomposition
(n)

  

  

 

l-1×layers, A ∈l  R 

r rl (l =
2,... , L) S(n),  ∈L  R 

r L 

×R , and r l 

is the tensor rank for layer l.

Fig. 2. Illustration of CP decomposition (left) and Tucker decomposition (right).

Fig. 3. Flowchart of linear deep TD model using CP decomposition as an 

example.

3.1.2. Deep tucker decomposition

Similarly, deep Tucker decomposition takes Tucker model as a 

building block to stack up a multi-layer structure, therefore, gradually 

extracting more abstract structures at higher layers. It begins with a basic 

Tucker decomposition defined in Eq. (2), followed by iterative decompo-

sition of the core tensor from the previous step. Tensor X is reconstructed 

using the core tensor G L 

in the highest layer and the factor matrices in 

each layer [19] by minimizing the following least square loss,

minG L ,{A
(n)
1 },...,{A(n)

L }
||X - G L 

× 1 A 

(1)
L ... ×N A(N)

L ... × 1 A 

(1)
1 ... × N A 

(N)
1 ||2F , (6)

where L is the number of layers and in the l-th layer, the core tensor 

G 

)l ∈ R 

J1 ,(l) 

×...×J N,(l ( ×l  

 = 1,... , L); An  

1 ∈ R   

  

×
  

In Jn,(1)
  

n
  

Jn,(l-1) Jn,(l)
 

 

; A ∈ R (l l =
2,... , L). 

3.2. Variants of linear deep TD models

Beside basic linear deep TD models, recent studies have also intro-

duced their variants by adding constraints on factor matrices, such as 

non-negativity, to enhance solution uniqueness and interpretability. For 

example, the non-negativity constraint has been imposed on the factor 

matrices A 

(n) (n = 1, ... , N) in deep CP model and the core tensor G in 

deep Tucker model [17,19]. This subsection reviews the two most com-

mon variants of linear deep TD models: deep nonnegative TD and deep 

sparse TD. Using Tucker decomposition as an example, constrained lin-

ear deep TD can be generally formulated by incorporating regularization 

terms into the original objective function, as shown below,

minG L ,{A
(n)
1 },...,{A(n)

L }
||X - G L 

× 1 A 

(1)
L ... × N A 

(N)
L ... × 1 

A 

(1)
1 ... × N A 

(N)
1 ||2F (7)

+ αc G 

(G L 

) + 

∑
n

∑ 

l 

β n,l 

c n,l(A
(n)
l ),

where cG (.) and cn,l (.) are penalty functions for core  

 

tensor and factor

matrices; α and βn,l are their corresponding penalty coefficients. 

3.2.1. Deep nonnegative TD

In certain applications, domain knowledge imposes specific condi-

tions and requirements for deep TD models. A notable example is topic
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modeling, where non-negativity is essential to ensure the interpretability 

and semantic consistency of the extracted topics. To address this, [18] 

proposed a deep nonnegative CP decomposition based on Eqs. (5), where 

non-negativity constraints were applied to all factor matrices. The model 

began with a nonnegative CP decomposition in the first layer. From the 

second layer onward, each additional layer will right multiply all of the 

factor matrices by a nonnegative subtopic selection matrix S 

(n) 

l , where l is 

the level of the layer and n is the n-th dimension. The model achieved su-

perior reconstruction performance compared to the benchmarks and was 

capable of capturing latent hierarchical structures in multi-modal tensor 

data. Similarly, [19] proposed a deep non-negative Tucker factorization 

(DNTF) model, which enforces non-negativity on both the core tensor 

and the mode matrices to ensure a clearer clustering interpretation of 

the decomposed components.

3.2.2. Deep sparse TD

In specific fields such as signal processing, text mining, and gene ex-

pression analysis, obtaining sparse representations is often desirable to 

enhance interpretability and improve the uniqueness of decomposition. 

While sparsity constraints have been widely applied in single-layer TD 

models, their integration into deep TD frameworks remains an active 

area of research. To this end, [34] proposed a hierarchical sparse TD 

with a two-layer decomposition structure. In the first layer, the input 

tensor is factorized using a Tucker model augmented with an additive 

noise term, yielding a core tensor and three factor matrices. In the second 

layer, the core tensor is decomposed into a low-rank component and a 

sparse component, with a 𝓁 1 

norm and a nuclear norm imposed, respec-

tively. Then the model was optimized using a block coordinate descent 

(BCD) and alternative direction method of multipliers (ADMM), which 

together enable efficient convergence and robust anomaly detection.

4. Track II: nonlinear deep TD models

This section presents a taxonomy of nonlinear deep TD models 

based on the underlying DNN architectures. We categorize these mod-

els into three main groups: (1) MLP-based nonlinear deep TD models, 

(2) CNN-based nonlinear deep TD models, and (3) other nonlinear deep 

TD models. Table 2 summarizes the recent advancements in this area. 

Notably, most existing approaches adopt CP decomposition as the foun-

dational structure in conjunction with DNN, while Tucker, TT, and 

TR models remain underexplored. In addition, we also briefly mention 

emerging developments that integrate TD with neural networks [35] or 

advanced architectures such as Transformers [36,37] and diffusion mod-

els [38,39], primarily for parameter compression and model efficiency. 

While these approaches illustrate the versatility of TD in enhancing 

state-of-the-art deep learning models and presents a promising direc-

tion for further exploration, they fall outside the primary scope of this 

survey and are not reviewed in detail here. An illustrative flowchart of 

nonlinear deep TD models is presented in Fig. 4.

4.1. MLP-based nonlinear deep TD models

Multilayer perceptrons (MLPs) form the backbone of many deep 

learning architectures due to their ability to capture complex nonlin-

ear relationships in hidden layers through activation functions such as 

ReLU, sigmoid, and tanh. When integrated with tensor decomposition 

(TD), MLPs extend traditional multilinear decomposition to better cap-

ture nonlinear structures in multi-dimensional data. This integration has 

demonstrated effectiveness across various domains such as healthcare 

and knowledge representation.

Two early approaches, NeuralCP [41] and the Bayesian neural tensor 

decomposition for knowledge base completion [40], both incorporate 

MLPs into a Variational Bayesian Inference framework but differ in 

applications and architectures. [41] replaces the standard multilinear 

product in CP decomposition with an MLP, allowing the model to learn

Table 2 

Categories of nonlinear deep TD models based on the model structure.

Years Models Brief Description

2018 BNTD [40] Bayesian NTN + MLP

NeuralCP [41] Bayesian CP + MLP 

2019 CoSTCo [20] CP + CNN

NTF [21] CP + MLP

2020 NeurTN [22] CP + MLP

POND [42] GP + CNN 

NTM [43] Generalized CP (GCP) + tensorized MLP 

NTC [23] CP + CNN + MLP 

Avocado [44] 3D tensor + DNNs

2021 DAIN [45] TD + MLP + CNN

C-PIC [46] Tensor-Train + CNN 

NePTuNe [47] Tucker + CNN

2022 DeepTensor [48] Low-rank MF/CP + 1D & 2D CNN

JULIA [24] CP + MLP 

PSC [49] CP + hierarchical VAE + tiny MLP 

M 

2 DMTF [25] Tucker + MLP 

HLRTF [26] t-SVD + DNN

2023 LightNestle [50] CP + MLP

DATC [51] Tensor completion model + Autoencoder 

GNTD [52] CP+GNN

2024 ConvTR [53] Tensor-Ring + CNN

D-NORM[54] CP + CNN

NTRD[55] Tensor-Ring + NNs

NeAT[56] CP + MLP

2025 MSNTucF [28] Tucker + Multi-head self-attending NN

Coatr [30] Tensor-Ring + CNN 

NCPF [27] CP + MLP 

ANLFT [57] CP + Attention-mechanism-based NN 

ANTucF [29] Tucker + Autoencoder

complex interactions while incorporating Bayesian uncertainty model-

ing. [40] utilizes a Stochastic Gradient Variational Bayesian (SGVB) 

framework with a multivariate Bernoulli likelihood to model fact ex-

istence in knowledge graphs. MLPs are employed to enhance the in-

teractions between latent entity and relation factors. Later, Chen and 

Li proposed neural tensor network (NeurTN) and neural tensor ma-

chine (NTM) [22,43], to model biomedical data. NeurTN combines tensor 

algebra and DNNs, which offers a more powerful way to capture the non-

linear relationships among drugs, targets, and diseases. Meanwhile, NTM 

extends multilinear decomposition by introducing a shallow Generalized 

CP (GCP) layer followed by a deep tensorized MLP. This hybrid de-

sign enables the model to learn rich nonlinear feature interactions from 

multi-aspect tensors.

Several other approaches that combine CP decomposition with 

MLPs architectures include neural tensor factorization (NTF) framework 

[21], Joint mUlti-linear and nonLinear IdentificAtion (JULIA) [24], and 

LightNestle [50]. Specifically, NTF generalizes the conventional CP 

model by incorporating a LSTM structure to learn temporal dynam-

ics and a MLP structure to model the nonlinear relationships between 

latent factors; JULIA decomposes a tensor into both linear and nonlin-

ear components, where the linear part is modeled by CP decomposition 

and the nonlinear part consists of a nonlinear function. The MLP with

l 2 

error is trained to fit the nonlinear relationships between factor 

matrices. LightNestle designs a three-component framework: (1) an ex

pressive NN that transfers spatial knowledge from previous embeddings 

to current embeddings; (2) an attention-based module that encodes 

temporal patterns into current embeddings with linear complexity; (3) 

meta-learning-based algorithm that iteratively recovers missing data and 

updates transfer modules to catch up with learned knowledge.

-

In contrast to CP-based models, [25] proposed a Tucker-based multi-

mode deep nonlinear TD where each factor matrix was parameterized by 

an MLP. Experiments on two real-world network traffic datasets showed
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Fig. 4. Flowchart of nonlinear deep TD model using CP as an example.

that the proposed methods achieve both fast retraining and high re-

covery accuracy. Extending to Tensor Ring (TR) decomposition, [55] 

proposed a nonlinear TR model by fitting an MLP for each core ten-

sor. These nonlinear mappings are set to be different for all the samples 

and dimensions, with Gaussian processes used to dynamically adjust the 

training step size.

4.2. CNN-based nonlinear deep TD models

The layer of CNN is a fundamental part in deep learning, par-

ticularly for processing spatially structured data such as images and 

videos. Combining CNN layer rather than fully connected MLP struc-

ture in nonlinear deep TD allows the model to efficiently capture spatial 

hierarchies and patterns and reduces the risk of overfitting. As the pi-

oneering work in combination of CNN and TD, [20] proposed CoSTCo 

(Convolutional Sparse Tensor Completion), which leverages the expres-

sive power of CNN to model the complex interactions inside tensors and 

its parameter-sharing scheme to preserve the desired low-rank structure. 

Based on this pioneering work, [58] provided NTDMDA method to obtain 

miRNA-gene-disease association prediction scores.

Other works in combination of CNN and CP decomposition include 

Neural Tensor Completion (NTC) [23], DeepTensor [48], and Distributed 

Neural tensOR coMpletion (D-NORM) [54]. NTC [23] is a scheme to infer 

the missing data in a large network with a representation of three-way 

tensor. This algorithm consists of a fully connected embedding layer to 

project the three one-hot encoding features from three dimensions into 

feature vectors; an interaction map layer to use outer product to map the 

feature vectors into a tensor; a feature extraction layer with CNN, and 

an inferring layer perception to complete the missing data. DeepTensor 

[48] decomposed a tensor into low-rank factors, where each factor is 

further modeled by 2D CNN layers. D-NORM [54] adopts two schemes to 

solve the data recovery problem. First, they design a parameter-efficient 

multi-layer architecture with CNN to learn nonlinear correlations among 

data. Second, they reformulate the initial model as an equivalent set 

function optimization problem under a matroid base constraint.

Additionally, several works have explored other tensor decom-

position structures. [47] proposed Neural Powered Tucker Network 

(NePTuNe) to specifically resolve the overfitting in link prediction prob-

lem. In extension to Neural Tensor Network (NTN), NePTuNe utilized a 

shared core tensor to solve the potential overfitting problem. [42] pro-

posed Probabilistic Neural-kernel tensor Decomposition (POND) that uses 

Gaussian processes (GPs) to model the hidden relationships to automat-

ically detect their complexity in tensors, preventing both underfitting 

and overfitting, and then incorporates CNN to construct the GP kernel to 

greatly promote the capability of estimating highly nonlinear relation-

ships. [53] proposed a novel tensor-ring (TR) decomposition method 

based on the convolutional computation (ConvTR), which can be re-

garded as a natural extension of deep learning models for the LRTC 

problem. Specifically, ConvTR employs the multi-layer CNN to model the 

complex interactions between TR factors. Each element in the index vec-

tor of the observation tensor can be embedded as a corresponding tensor 

slice in the factor tensor decomposed by the TR model. CoATR [30] cou-

ples a tensor-ring (TR) decomposition for global low-rank structure with 

a CNN-based nonlinear mapping and a learned autoregressive (AR) mod-

ule for local temporal consistency, yielding a generalized TR model that 

replaces matrix products with convolutional operators. [45] presented

DAIN, a general data augmentation framework that enhances the predic-

tion accuracy of neural tensor completion methods. As a framework, 

DAIN is compatible with multiple tensor decomposition methods and 

multiple neural networks such as MLP, CNN, RNN, to recover and 

augment data.

4.3. Other nonlinear deep TD models

While most nonlinear deep TD models are built on MLP and CNN 

structures, a growing number of studies explore the integration of TD 

with alternative neural network architectures such as auto-encoder (AE), 

general adversarial network (GAN), graph neural network (GNN), etc. 

These models demonstrate the flexibility of deep TD and extend its appli-

cability to more diverse and complex data modeling tasks. For example, 

[46] developed a modular deep TD, structured into four blocks for 

large-scale datasets. The model begins with an encoder block to reduce 

dimensionality, followed by tensor train decomposition combined with 

feature projection to extract compact latent representations. A final pre-

diction block is then applied to perform forecasting tasks. Specifically, 

the use of cross-approximation within the tensor train decomposition 

enables efficient approximation of high-dimensional tensors. [49] in-

troduced a novel 3D shape completion model by integrating tensor 

rank decomposition and the hierarchical variational autoencoder (VAE) 

to estimate the canonical factors. Their results showed that the de-

veloped approach outperforms previous methods in both fidelity and 

diversity metrics, when the input consists of the bottom half of the point 

cloud. [51] designed a novel deep Adversarial Tensor Completion (DATC) 

scheme based on DL techniques. DATC is the first scheme that exploits the 

data reconstruction ability of autoencoder and the power of adversarial 

training from Generative Adversarial Networks to infer the missing data. 

Furthermore, [52] introduced a graph-guided neural tensor decompo-

sition (GNTD) model for reconstructing whole spatial transcriptomes in 

tissues. GNTD employs a hierarchical tensor structure and formulation 

to explicitly model the high-order spatial gene expression data with a 

hierarchical nonlinear decomposition in a three-layer neural network, 

enhanced by spatial relations among the capture spots and gene func-

tional relations for accurate reconstruction from highly sparse spatial 

profiling data.

These models exemplify the potential of deep TD when integrated 

with advanced neural architectures beyond MLPs and CNNs. They also 

highlight the adaptability of TD frameworks in addressing challeng-

ing tasks such as shape reconstruction, clinical forecasting, adversarial 

imputation, and biological data recovery. Future research may fur-

ther explore such hybrid approaches, combining TD with transformers, 

diffusion models, and other emerging architectures.

5. Track III: deep learning training schemes for TD

In this section, we further discuss the popular training schemes in 

deep learning being applied to TD to overcome innate limitations of 

original TD, including self-supervised learning, transfer learning, and 

multi-task learning (Fig. 5).

5.1. TD with self-supervised learning

Traditional TD is trained to minimize the reconstruction loss. 

As stated in [59], training via reconstruction loss ensures that the
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Fig. 5. Deep learning training schemes with tensor decomposition.

“reconstructed values“ are close to the “ground truth values”; however, 

when the data have class structure, e.g., the four types of movement in 

human activity dataset [60], the decomposed components do not effec-

tively represent and align the class features when the training is only 

supervised by the reconstruction loss.

Researchers [59] proposed using self-supervised learning, especially 

contrastive learning [61] to enhance the classification discrimination 

power of TD models. Contrastive learning is a training scheme originated 

in the computer vision community for more robust classification against 

noise and other perturbations [61]. It has three key steps: (1) data aug-

mentation, which generates augmented images from the original one via 

various augmentation techniques; (2) positive and negative pairs: the 

child images (generated by various augmentation techniques) from the 

same parent image are usually positive pairs usually, otherwise, negative 

pairs; (3) contrastive loss, which puts positive pairs closer to each other, 

and pushes negative pairs away from each other. As such, the trained 

classification model will boost its robustness against perturbations. ATD 

[59] and PCL [62] adopted similar training scheme for TD: firstly, the

original tensor X is augmented to a second tensor X~ based on adding 

noise, jittering, bandpass and so on. Then, both tensors go through the 

(TD model: given the n-th sample X 

n) and its augmented counterpart

X~ (n) 
 

 , both are decomposed, with share factor matrices and their unique

weight vectors, representing this n-th sample’s original feature and the 

one after augmentation,

X 

(n) = [[w 

(n) ;A 

(1),A 

(2) ,... ,A 

(K)]],

~X 

(n) = [[ ~ w(n) ;A 

(1),A 

(2) ,... ,A 

(K)]]
(8)

In ATD, the n-th sample’s original feature w 

(n) and the augmented 

one w~ 

(n) are considered to be positive pairs. Apart from the regular 

reconstruction loss, a self-supervision loss is also added,

𝓁 self -supervised = 

1
N

Tr(W 

TΛ(W)IΛ(~W)~W), (9)

where 

(
Λ(W) = diag

 )
 1/||w(1) ||2 , ... ,

 

 1/||w(
 

N)||2  

is the row-wise scaling

matrix, and T r(.) is the trace of a matrix. Such a self-supervision loss is

designed to maximize the similarity of the 〈 w 

(n)

||w 

(n) || 2
, ~w(n)

||~ w(n)|| 2 

〉. 

However, PCL further claimed that the ATD still only treats the same 

sample, e.g., the n-th sample’s original feature and augmented feature 

as positive pair to each other, which basically only boosts the decompo-

sition model’s robustness to the perturbation, not actually helping the 

model to recognize the sample i and j are from the same class. Thus, 

PCL [62] uses the features {w}s and {w~ }s to construct a pseudo graph, 

and updates the self-supervised loss to achieve better class-awareness, 

simply by replacing the I to the graph Laplacian matrix L,

𝓁 class-awareness = 

1
N

Tr(W 

TΛ(W)LΛ(~W) 

~ W) (10)

5.2. TD with multi-task learning

Multi-task learning is designed to learn a model with multiple tasks 

completed at the same time [63]: It aims to leverage useful information 

contained in multiple related tasks to help improve the generalization 

performance of all the tasks. In TD, multi-task learning is interpreted 

as two kinds: (1) decomposition, prediction, anomaly detection, and so 

on are considered as different tasks, or (2) different samples or datasets 

are considered as different tasks. For the first type, multi-task learning 

is simply achieved by combining multiple losses together [64],

min loss TD 

+ loss othertasks 

(11)

For example, to learn both the spatiotemporal pattern and de-

composition, [65] simultaneously performed decomposition (splitting 

spatiotemporal data into spatial and temporal matrices) and prediction 

(using these matrices). Consequently,∑ ∑  a prediction loss was added as
1   

(x (W AspatialT T
  + VT 

 At 

temporal
2 s t s,t s ) - ys, t), where W and V are the

spatial and temporal prediction coefficients. To achieve both subspace 

learning, anomaly detection, and decomposition, [64] combined the 

sparse coding loss, i.e., ||X - S - G × 2 A  

 

(2)
 

× 3 

A 

(3)||, as well as the self
1expression term in subspace 

2learning, i.e., ||G-G× 1 

Z||+ ||Z|| ,2 F  where S
is the anomaly, and Z is the self-expression matrix. To classify the EEG 

signals better, [

 -

66] also added the loss of minimizing the within-class 

variation and maximizing the between-class boundary together with the 

tensor decomposition loss.

For the second type, where different related samples or datasets are 

considered as different tasks, the intuition is to use a regularization term 

[67,68] to encourage such a shared relatedness across different samples 

or tasks, such as shared progressive patterns of different patients, shared 

temporal smoothness of traffic flow of different stations [5]. This can be 

generally formulated as,

min loss TD 

+ R relatedness 

({A 

(n) }s) (12)

(where Rr elatedness({A 

n) }s) is the regularization added on the decom

posed factor matrices to achieve relatedness across different samples. 

For example, one of the most popular regularizations for controlling the 

shared relatedness across different samples is the low-rank regulariza

tion, which can be formulated by L 1 

norm [

-

-

5], nuclear or trace norm 

[67,68], generalized trace norm [69] and so on. Usually, the regular

ization is designed specifically according to the application domain and 

purposes, and we recommend that readers who are interested refer to 

-

[63] for various design choices of regularizations.

5.3. TD with transfer learning

Transfer learning is designed to transfer the knowledge from the 

source data or tasks to the target data or tasks [70]. Tensor transfer 

learning, similarly, assumes that the source tensor and target tensor
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share transferable knowledge in some subspaces [71]. Taking four

dimensional tensors as example, the source tensor X ∈ R 

(I1 ×I2  

 

I3 SS
 

 

× )×I

( × × )×
 

and the R  

 X ∈    

  

 target   

I1 I2 

 tensor 

I3 IT share 

 

the same feature dimenT
sions {I1           

 

, I2 

, I3}, but have their own sample dimensions IT 

, I . WhenS  

conducting the transfer of XS → 

 

X , T  

 

it is usually assumed that,

-

-

• Both target and source tensor are projected in the same space on the

feature dimension.

• The low-rank representation can be used to format using the target

representing the source.

For example, [71] formulated such a tensor transfer learning based 

on Tucker decomposition: (1) Both target and source tensor are projected 

on the feature dimension, 

( ) ( )i.e., A  

 

n GS ⊆ A 

n G ; Low-rankT  (2)  

 

repre

sentation can be achieved by regularization. The formulation is given

as,

-

 

min 

Z
||Z|| * 

s.t. A 

(n)G S 

= A 

(n) G TZ,

A 

(n)T A 

(n) = I, n = 1, 2, 3,

(13)

where Z is the projection matrix mapping from the target tensor to the 

source tensor.

Disclaimer: Methods that only use TD as a way to decompose the tensor 

of parameters and transfer learning is totally independently designed will not 

be covered [72–75].

6. Applications of deep TD models

Deep tensor decomposition (Deep TD) models have been applied 

across a wide range of domains due to their ability to model com

plex, nonlinear relationships within data. This section reviews their 

applications in five major areas: transportation, healthcare, computer 

vision, web and social media, and other emerging fields. Within these 

domains, deep TD methods support a variety of tasks including data re

-

-

covery, feature extraction, classification, and prediction, as summarized 

in Table 3.

6.1. Domain-Specific Applications

Transportation. Deep TD models have been successfully applied to 

spatiotemporal data imputation and traffic forecasting. Approaches such 

as LightNestle [50] and JULIA [24] have demonstrated strong perfor-

mance in recovering missing traffic flow and mobility data, leveraging

Table 3 

Applications of deep TD methods in different areas according to various tasks.

Task Area

Transportation Healthcare Computer

vision

Web & social

media

Other

domains

Data recovery [50], [46],

[24] [55], [49], [24],

[54] [25], [55], [24], [20],

[51], [22] [48], [45], [76],

[20], [24], [20], [54] [77]

[53], [52], [53]

[27] [48]

Feature

extraction

[51], [55],

[30] [22] [42] [42] [43]

[16],

Classification [78],

[19], [48]

[79]

[21],

Prediction [46], [47]. [40],

[41] [40] [20]

multilayer perceptrons (MLPs) and attention mechanisms within the TD 

framework.

Healthcare. In healthcare systems, deep TD has been applied for 

reconstructing clinical measurements and modeling complex patient 

records. Studies such as [25,46], and [55] show that deep TD models 

can recover patient health records accurately. Beyond recovery, deep 

TD models have also been applied to diagnostic tasks; for example, 

works including [16,19,78], and [79], leverage deep TD for phenotype 

classification and disease prediction.

Computer vision. In visual data analysis, deep TD techniques have 

been used for data recovery (e.g., occluded image restoration) and object 

and scene classification. For example, [48] applies deep TD to capture 

spatial correlations in image data, improving recognition accuracy in 

complex scenes.

Web and social media. Deep TD has proven valuable in modeling 

social networks, temporal behavior prediction, and so on. Models such as 

[21,40] exploit deep TD to learn interactions among users, content, and 

time, enabling applications ranging from personalized recommendations 

to knowledge graph completion.

Other domains. Emerging areas such as bioinformatics and ge-

nomics have also benefited from deep TD models. For example, deep 

TD models have been used to analyze protein interactions and drug-

target-disease relationships [22,43] by extracting nonlinear features 

from high-dimensional biological tensors.

6.2. Guidance for deep TD model selection in practice

Beyond cataloging application scenarios, it is important to consider 

how the characteristics of domain data can influence the choice of deep 

TD methods in practice. For example, in healthcare and recommenda-

tion systems, where data is often sparse and noisy, deep TD models 

that incorporate explicit regularization are better suited to handle miss-

ing values and uncertainty. In contrast, spatiotemporal domains such 

as transportation and sensor networks benefit from architectures that 

explicitly capture temporal dependencies, such as attention-augmented 

or recurrent deep TD models. For high-dimensional image and video 

data, CNN-based deep TD models are more effective in capturing lo-

cal structures while maintaining scalability. Finally, when relational or 

graph structure is intrinsic, as in social networks or bioinformatics, GNN-

based deep TD models may provide stronger performance. Although 

developing a comprehensive framework for model selection lies beyond 

the scope of this survey, these examples illustrate how practitioners can 

align data characteristics with appropriate deep TD designs in real-world 

scenarios.

6.3. Commonly used datasets

To support these diverse applications, a wide variety of datasets 

have been commonly used in the development and assessment of deep 

TD models in the literature. Here we provide an overview of the key 

datasets.

• Text data: WordNet, 

1 Reddit, 

2 NeurIPS Publication Data, 

3 Enron

Emails, 

4 and Github Archive Data. 

5

• Image data: MNIST 

6 Moving MNIST, 

7 CIFAR-10, 

8 Weizmann

Human Action, 

9 and Yale-B Dataset. 

10

1 https://www.wordnet.princeton.edu/
2 https://www.reddit.com/r/datasets/
3 https://www.papers.nips.cc/
4 https://www.cs.cmu.edu/~enron/
5 https://www.gharchive.org/
6 MNIST http://www.yann.lecun.com/exdb/mnist/,
7 https://www.web.cs.toronto.edu/
8 https://www.cs.toronto.edu/
9 https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

10 https://www.vision.ucsd.edu/datasets/extended-yale-face-database-b-b
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• Other data: domain-specific datasets in healthcare (e.g., DrugBank 

11

and UniProt 

12 ) and recommendation systems (e.g. MovieLens, 

13 

Gowalla, 

14 and Foursquare 

15 ).

In summary, the expanding diversity of applications demonstrates 

both the effectiveness and adaptability of deep tensor decomposition 

models. From sensor networks recovery and personalized recommenda-

tion to electronic health records modeling and genomic profile classi-

fication, deep TD methods have emerged as essential tools for tackling 

complex and multi-aspect data. Future research may further extend their 

impact to emerging domains such as natural language understanding, 

large-scale scientific simulations, and personalized education.

7. Challenges and future directions

Deep tensor decomposition (deep TD) is an emerging research topic 

situated at the intersection of low-rank tensor approximation and deep 

learning. It introduces either multi-layered decomposition schemes or 

integrates nonlinear transformations through deep learning architec-

tures. These approaches significantly enhance the expressiveness and 

performance of traditional TD models. In this survey, we have provided 

a comprehensive review of deep TD, covering both linear and non-

linear deep TD models and their variants, as well as several training 

schemes that integrate deep learning techniques. We also summarized a 

broad range of applications of deep TD models spanning topic modeling, 

recommendation systems, image processing, and healthcare. By consol-

idating the most recent advances and practical implementations, this 

work offers a thorough understanding of the state-of-the-art in deep TD 

research. Despite substantial progress, certain limitations and challenges 

remain. This section outlines key challenges from multiple perspectives, 

including initialization, parameter selection, computational complex-

ity, interpretability, and software support, thereby identifying potential 

directions for future research.

Initialization. The performance of deep TD models is highly sensi-

tive to initialization. Poor initialization may result in suboptimal factor-

ization, slow convergence, or convergence to local minima. However, 

this survey reveals that initialization techniques for deep TD models are 

not thoroughly discussed or developed. Future research should investi-

gate more robust initialization schemes, potentially incorporating prior 

knowledge or data-driven heuristics.

Parameter selection. Currently, there are no established systematic 

strategies for determining the key parameters of deep TD models, such as 

the number of decomposition layers, inner ranks, as well as the regular-

ization parameters. Thus, establishing proper guidelines for parameter 

selection is a crucial direction for future work.

Computational complexity and optimization strategies. Most 

deep TD models are currently solved by a two-stage process that includes 

a fine-tuning phase, resulting in high computational costs compared 

to traditional TD methods. Besides, as the dimensionality of tensor 

data increases, the computational complexity of deep TD rises sig-

nificantly. This creates a clear trade-off for practitioners, i.e., when 

data exhibits strong nonlinear interactions that cannot be captured 

by shallow or linear TD, deep TD methods may justify their higher 

costs by delivering superior accuracy and representational power. In 

addition, systematic optimization strategies for deep TD remain un-

derexplored. Therefore, developing resource-aware training algorithms, 

lightweight model designs, and hardware-optimized implementations 

for deep TD is essential to make the models more broadly applicable in 

practice.

Interpretability. One of the most persistent challenges in deep TD 

is the lack of “ground-truth” baselines. The hierarchical or nonlinear

11 https://www.go.drugbank.com/releases/latest
12 https://www.uniprot.org/
13 https://www.grouplens.org/datasets/movielens/
14 https://www.snap.stanford.edu/data/loc-gowalla.html
15 https://www.sites.google.com/site/yangdingqi/home/foursquare-dataset

structure of deep TD models makes it difficult to trace or under-

stand the role of individual components and their interactions across 

layers. Moreover, the lack of standardized benchmarks or ground-

truth decompositions hinders fair evaluation. Advancing explainable 

deep TD methods through layer-wise attribution, disentanglement met-

rics, or interpretable training objectives remains a promising research 

frontier.

Software and toolboxes. At present, no standardized software li-

brary or toolbox exists for deep TD models. This absence restricts 

experimentation, reproducibility, and wider adoption by a broader 

research community. Developing an open-source toolbox (e.g., in 

Python or MATLAB) that integrates basic models, training routines, 

and visualization tools would significantly accelerate progress in 

this field.

The above challenges highlight promising opportunities for future 

research in deep TD techniques. By utilizing the hierarchical feature 

extraction capabilities of deep learning with the structural interpretabil-

ity of low-rank tensor methods, deep TD offers a unique foundation for 

building more transparent, scalable, and generalizable machine learn-

ing models. Continued research in this area is essential to fully realize 

its potential across diverse scientific and applied domains.
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