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Tensor decomposition (TD) has been recognized as an effective technique for multilinear dimensionality reduc-
tion and feature extraction for decades. However, traditional TD approaches often struggle to capture complex
hierarchical structures and nonlinear relationships in high-dimensional datasets. For instance, in biomedical set-
tings, disease groups may naturally contain subgroups or exhibit hierarchical structures; mechanistic interactions
among diseases, drugs and targets often demonstrate nonlinearity. To address these challenges, a new paradigm,
deep tensor decomposition (deep TD) has recently emerged inspired by the success of deep learning. Deep TD
techniques can be mainly divided into two categories: linear and nonlinear deep TD. Linear deep TD exploits
the layered structure of deep neural networks (DNNs) to recursively factorize factor matrices obtained from the
classic TD enabling feature extraction at multiple levels of granularity. Nonlinear deep TD leverages the expres-
sive power of DNNs to capture nonlinear correlations within the data. Despite rapid progress, there remains no
unified treatment of deep TD methods. In this survey, we provide a comprehensive review of deep TD models,
together with the deep learning training schemes for TD, and applications of deep TD models. Finally, we discuss

open challenges and outline promising directions for future research.

1. Introduction

With the increasing availability of high-dimensional data in tensor
format across various domains, efficiently analyzing such data has be-
come a critical challenge. A key goal is to extract features and identify
latent structures that capture complex patterns in the data. Tensor de-
composition (TD), has emerged as a powerful technique for this purpose,
and has been successfully applied in diverse domains such as signal
processing [1,2], healthcare analysis [3,4], and transportation systems
[5,6]. Traditional TD approaches, such as CANDECOMP/PARAFAC (CP)
[7]1 and Tucker decomposition [8], focus on factorizing a tensor into
low-rank components to capture multilinear correlations among dif-
ferent modes. While these models perform well for relatively simple
and structured data, they often face challenges when applied to com-
plex datasets for representing hierarchical or nonlinear relationships.
To overcome these limitations, researchers have proposed advanced hi-
erarchical (multi-layer) and nonlinear TD approaches. Hierarchical TD
models [9,10] extend traditional TD methods by recursively factorizing
the components of initial decompositions. This enables the extraction
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of deeper, multi-level representations that better reflect the structure
of real-world data. For example, Hierarchical Alternating Least Squares
(HALS) [9] was the first to introduce layered TD structure, iteratively
capturing local representations within each decomposition level. In par-
allel, nonlinear TD models aim to explore more flexible patterns by
moving beyond the multilinear assumptions. For instance, [11] proposed
the Bayesian nonlinear tensor factorization framework which incorpo-
rates Gaussian process (GP) to model a variety of nonlinear relationships
in the tensor data.

In recent years, deep neural networks (DNNs) [12] have gained sig-
nificant attention and achieved state-of-the-art performance in a wide
range of tasks [13-15]. DNNs are composed of multiple layers between
the input and output layers, where the term “deep” refers to the pres-
ence of multiple hidden layers enabling networks to learn complex
representations from data that “shallow” architectures cannot easily
handle. Building upon the remarkable success of DNNs, researchers
have extended deep learning principles to tensor analysis, leading to
the development of deep tensor decomposition (deep TD). These models
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Fig. 1. Structure of the survey.

aim to integrate the representational power of deep learning with
the structure-preserving benefits of traditional tensor decomposition.
Broadly, existing deep TD methods mainly fall into two categories. The
first involves hierarchical decomposition structures, in which each layer
performs a basic multi-linear factorization of the previous layer’s output
[16-19]. These models are designed to extract features at varying levels
of abstraction, progressing from global, coarse-grained patterns to more
fine-grained, detailed structures. For example, HNCPD [17] and DNTF
[19] extend CP decomposition and Tucker decomposition, respectively,
through iterative decomposition to uncover hierarchical correlations
in complex tensor data. The second category of deep TD incorporates
layers of nonlinear operations through neural networks to model non-
linear interactions within tensor components [20-28]. A representative
example is CoSTCo (Convolutional Sparse Tensor Completion) [20], the
first method to embed convolutional neural network (CNN) structures
into CP decomposition, enabling the model to learn complex nonlinear
interactions among components. This integration leads to an improved
performance on the sparse tensor completion task. Building on this
line of work, [29] constructs a neural Tucker framework that employs
an auto-encoding module to refine the core of Tucker decomposition.
[30] introduced CoATR, a convolutional-based generalized autoregres-
sive tensor-ring decomposition method designed for spatio-temporal
data completion, extending the idea beyond CP and Tucker to more
expressive tensor-ring representations.

Despite the growing interest in developing deep TD approaches for
capturing hierarchical and nonlinear relationships within tensor data,
this field remains relatively underexplored, and a systematic overview
is still lacking. This paper aims to fill this gap by providing a thorough re-
view of recent advancements in deep TD, covering fundamental models,
key variants, training schemes, and representative applications, as sum-
marized in Fig. 1. The rest of the paper is organized as follows. Section 3
presents linear deep TD models and their extensions, including the in-
corporation of constraints such as non-negativity and sparsity. Section 4
summarizes nonlinear deep TD models that utilize various DNN struc-
tures such as multi-layer perceptron (MLP) and CNN. In Section 5, we
review the popular training schemes in deep learning being applied to
deep TD such as self-supervised learning and transfer learning. Section 6
summarizes the main applications of deep TD models across various
domains. Finally, Section 7 concludes this survey by discussing open
challenges and presenting perspectives on future research directions for
deep TD methods.

2. Tensor decomposition models

This section first introduces the notations used throughout the
survey. It then provides definitions and formulations of classical

Table 1

Description of the notations used in this survey.
Notations Description
xx, X, X scalar, vector, matrix, and tensor
X iy the (i, ...,iy)-element of the N-th order tensor X
X" transpose of the matrix X
X! inverse of the matrix X
Xy the mode-n matricization of the tensor X
0,%0,® outer, Hadamard, Khatri-Rao, and Kronecker product
X x, X the n-mode product of tensor X with matrix X
Tr(X) trace of the matrix X
Il 1lg Frobenius norm
I £, norm
I 11, £, norm

tensor decomposition models, including CANDECOMP/PARAFAC (CP),
Tucker, Tensor-Train (TT), and Tensor-Ring (TR) models.

2.1. Notations

Table 1 summarizes the commonly used notations in this survey pa-
per for ease of reference. More details can be found in this foundational
work [31]. Matricization, also known as unfolding or flattening, is the
process of converting a tensor into a matrix by rearranging its elements
along specific modes.

2.2. Tensor decomposition models

Definition 1 (CP decomposition). Given a N-way tensor X €
RIxIxxIy the CP model factorizes it into the sum of R component
rank-one tensors [31], formulated as follows,

R
X~ 2251)0252)0 . oagN) = [[A“),A(Z), ,A(N)]], [€))

r=1

where R is a positive integer denoting tensor canonical rank, A &
RI*R (n € {1,...,N}) is the n-th factor matrix and a’” € Rl» (» €
{1,..., R}) denotes the r-th column of the n-th factor matrix.

Definition 2 (Tucker decomposition). Tucker model factorizes the N-
way tensor X as the mode products of a core tensor G € R/1*/2X--x/y
and N factor matrices A® e RI»*</» [8],

X Gxp AV AN =[G AN AP, AN, ©)
where J,(1 < n < N) is the number of dimensionality in mode-n of the
core tensor C.
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Definition 3 (Tensor-Train decomposition). Tensor-Train (TT) model
[32] expresses the N-way tensor X as multilinear products of a chain of
third-order tensors except the first and last are matrices. It is formulated
as,

X iy R AL AL s ] e A iy 1, 3

where A, € Rn-1XI" js called the n-th TT-core and r,, is the TT-rank
(ro=ry=0D.

Definition 4 (Tensor-Ring decomposition). Tensor-Ring (TR) model
[33] decomposes the N-way tensor X by a sequence of third-order latent
tensors multiplied circularly where the first and last tensors are also
connected. It is formulated as,

X i R THADA () -+ An (i)
N
~ Tr{[ [ A, @
n=1

where A, (i,,) € R™*»+1 is the i -th lateral slice matrix of the latent tensor
A,, also called the n-th TR-core or node.

3. Track I: linear deep TD models

This section reviews the first category of deep TD models, namely
linear deep TD, in which the factor matrices or core tensors derived
from each layer are recursively decomposed into deeper levels, en-
abling the capture of hierarchical features within the tensor data. The
main idea of linear deep TD leverages the multi-layer architecture of
DNNs.

3.1. Basic linear deep TD models

In this subsection, we primarily introduce two types of linear deep TD
models: deep CP decomposition and deep Tucker decomposition, which
are built upon the foundations of the traditional CP and Tucker models,
as illustrated in Fig. 2. The flowchart of linear deep TD built on CP model
is demonstrated in Fig. 3.

3.1.1. Deep CP decomposition

Traditional one-layer CP decomposition defined in Eq. (1) may fail
to extract hierarchical structures or multi-level features in complex
datasets. To address this limitation, [17] proposed a deep CP decom-
position model which extends the basic CP into a multi-layer structure
by minimizing the total reconstruction loss resulting from using the fac-
tor matrices in each layer to reconstruct the tensor data. The first step
of a deep CP model is to perform the regular CP decomposition defined
in Eq. (1). For the layers that follow, a sequential and hierarchical TD is
performed on each of the factor matrices. The loss function for deep CP
is given as follows,

min |2 ~ [APAT . ADSY. L APVATY L ATYS VG ®)

where L is the number of decomposition layers, Af”) e R-1*1(l =
2,...,L), S(L") € R't*R_and r, is the tensor rank for layer /.

Q

Neurocomputing 664 (2026) 132074

(b) Second-layer decomposition

(a) First-layer CP decomposition

Fig. 3. Flowchart of linear deep TD model using CP decomposition as an
example.

3.1.2. Deep tucker decomposition

Similarly, deep Tucker decomposition takes Tucker model as a
building block to stack up a multi-layer structure, therefore, gradually
extracting more abstract structures at higher layers. It begins with a basic
Tucker decomposition defined in Eq. (2), followed by iterative decompo-
sition of the core tensor from the previous step. Tensor X' is reconstructed
using the core tensor G; in the highest layer and the factor matrices in
each layer [19] by minimizing the following least square loss,

. (1) N (1) (N2
min % = Gpx; A oy AN s AV o AV (6)

where L is the number of layers and in the /-th layer, the core tensor
G € RIOX™™XNa( = 1,...,L); A" € R Al € RIne-0%n) (1 =
2,...,L).

3.2. Variants of linear deep TD models

Beside basic linear deep TD models, recent studies have also intro-
duced their variants by adding constraints on factor matrices, such as
non-negativity, to enhance solution uniqueness and interpretability. For
example, the non-negativity constraint has been imposed on the factor
matrices A®(n = 1,..., N) in deep CP model and the core tensor G in
deep Tucker model [17,19]. This subsection reviews the two most com-
mon variants of linear deep TD models: deep nonnegative TD and deep
sparse TD. Using Tucker decomposition as an example, constrained lin-
ear deep TD can be generally formulated by incorporating regularization
terms into the original objective function, as shown below,

min % =G x; A oy A s AV oy A2 (7)
GL(AY (A

+acgGr)+ D0 Y Buicar(A),
n 1

where ¢¢() and c,,(-) are penalty functions for core tensor and factor
matrices; « and f,, are their corresponding penalty coefficients.

3.2.1. Deep nonnegative TD
In certain applications, domain knowledge imposes specific condi-
tions and requirements for deep TD models. A notable example is topic

5% @ A®

Fig. 2. Illustration of CP decomposition (left) and Tucker decomposition (right).
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modeling, where non-negativity is essential to ensure the interpretability
and semantic consistency of the extracted topics. To address this, [18]
proposed a deep nonnegative CP decomposition based on Egs. (5), where
non-negativity constraints were applied to all factor matrices. The model
began with a nonnegative CP decomposition in the first layer. From the
second layer onward, each additional layer will right multiply all of the
factor matrices by a nonnegative subtopic selection matrix S;"), where / is
the level of the layer and » is the n-th dimension. The model achieved su-
perior reconstruction performance compared to the benchmarks and was
capable of capturing latent hierarchical structures in multi-modal tensor
data. Similarly, [19] proposed a deep non-negative Tucker factorization
(DNTF) model, which enforces non-negativity on both the core tensor
and the mode matrices to ensure a clearer clustering interpretation of
the decomposed components.

3.2.2. Deep sparse TD

In specific fields such as signal processing, text mining, and gene ex-
pression analysis, obtaining sparse representations is often desirable to
enhance interpretability and improve the uniqueness of decomposition.
While sparsity constraints have been widely applied in single-layer TD
models, their integration into deep TD frameworks remains an active
area of research. To this end, [34] proposed a hierarchical sparse TD
with a two-layer decomposition structure. In the first layer, the input
tensor is factorized using a Tucker model augmented with an additive
noise term, yielding a core tensor and three factor matrices. In the second
layer, the core tensor is decomposed into a low-rank component and a
sparse component, with a #; norm and a nuclear norm imposed, respec-
tively. Then the model was optimized using a block coordinate descent
(BCD) and alternative direction method of multipliers (ADMM), which
together enable efficient convergence and robust anomaly detection.

4. Track II: nonlinear deep TD models

This section presents a taxonomy of nonlinear deep TD models
based on the underlying DNN architectures. We categorize these mod-
els into three main groups: (1) MLP-based nonlinear deep TD models,
(2) CNN-based nonlinear deep TD models, and (3) other nonlinear deep
TD models. Table 2 summarizes the recent advancements in this area.
Notably, most existing approaches adopt CP decomposition as the foun-
dational structure in conjunction with DNN, while Tucker, TT, and
TR models remain underexplored. In addition, we also briefly mention
emerging developments that integrate TD with neural networks [35] or
advanced architectures such as Transformers [36,37] and diffusion mod-
els [38,39], primarily for parameter compression and model efficiency.
While these approaches illustrate the versatility of TD in enhancing
state-of-the-art deep learning models and presents a promising direc-
tion for further exploration, they fall outside the primary scope of this
survey and are not reviewed in detail here. An illustrative flowchart of
nonlinear deep TD models is presented in Fig. 4.

4.1. MLP-based nonlinear deep TD models

Multilayer perceptrons (MLPs) form the backbone of many deep
learning architectures due to their ability to capture complex nonlin-
ear relationships in hidden layers through activation functions such as
ReLU, sigmoid, and tanh. When integrated with tensor decomposition
(TD), MLPs extend traditional multilinear decomposition to better cap-
ture nonlinear structures in multi-dimensional data. This integration has
demonstrated effectiveness across various domains such as healthcare
and knowledge representation.

Two early approaches, NeuralCP [41] and the Bayesian neural tensor
decomposition for knowledge base completion [40], both incorporate
MLPs into a Variational Bayesian Inference framework but differ in
applications and architectures. [41] replaces the standard multilinear
product in CP decomposition with an MLP, allowing the model to learn

Table 2
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Categories of nonlinear deep TD models based on the model structure.

Years Models Brief Description
2018 BNTD [40] Bayesian NTN + MLP
NeuralCP [41] Bayesian CP + MLP
2019 CoSTCo [20] CP + CNN
NTF [21] CP + MLP
2020 NeurTN [22] CP + MLP
POND [42] GP + CNN
NTM [43] Generalized CP (GCP) + tensorized MLP
NTC [23] CP + CNN + MLP
Avocado [44] 3D tensor + DNNs
2021 DAIN [45] TD + MLP + CNN
C-PIC [46] Tensor-Train + CNN
NePTuNe [47] Tucker + CNN
2022 DeepTensor [48] Low-rank MF/CP + 1D & 2D CNN
JULIA [24] CP + MLP
PSC [49] CP + hierarchical VAE + tiny MLP
M2DMTF [25] Tucker + MLP
HLRTF [26] t-SVD + DNN
2023 LightNestle [50] CP + MLP
DATC [51] Tensor completion model + Autoencoder
GNTD [52] CP +GNN
2024 ConvTR [53] Tensor-Ring + CNN
Dp-NORM[54] CP + CNN
NTRD[55] Tensor-Ring + NNs
NeAT[56] CP + MLP
2025 MSNTucF [28] Tucker + Multi-head self-attending NN

Coatr [30] Tensor-Ring + CNN
NCPF [27] CP + MLP
ANLFT [57] CP + Attention-mechanism-based NN

ANTucF [29]

Tucker + Autoencoder

complex interactions while incorporating Bayesian uncertainty model-
ing. [40] utilizes a Stochastic Gradient Variational Bayesian (SGVB)
framework with a multivariate Bernoulli likelihood to model fact ex-
istence in knowledge graphs. MLPs are employed to enhance the in-
teractions between latent entity and relation factors. Later, Chen and
Li proposed neural tensor network (NeurTN) and neural tensor ma-
chine (NTM) [22,43], to model biomedical data. NeurTN combines tensor
algebra and DNNs, which offers a more powerful way to capture the non-
linear relationships among drugs, targets, and diseases. Meanwhile, NTM
extends multilinear decomposition by introducing a shallow Generalized
CP (GCP) layer followed by a deep tensorized MLP. This hybrid de-
sign enables the model to learn rich nonlinear feature interactions from
multi-aspect tensors.

Several other approaches that combine CP decomposition with
MLPs architectures include neural tensor factorization (NTF) framework
[21], Joint mUlti-linear and nonLinear IdentificAtion (JULIA) [24], and
LightNestle [50]. Specifically, NTF generalizes the conventional CP
model by incorporating a LSTM structure to learn temporal dynam-
ics and a MLP structure to model the nonlinear relationships between
latent factors; JULIA decomposes a tensor into both linear and nonlin-
ear components, where the linear part is modeled by CP decomposition
and the nonlinear part consists of a nonlinear function. The MLP with
I, error is trained to fit the nonlinear relationships between factor
matrices. LightNestle designs a three-component framework: (1) an ex-
pressive NN that transfers spatial knowledge from previous embeddings
to current embeddings; (2) an attention-based module that encodes
temporal patterns into current embeddings with linear complexity; (3)
meta-learning-based algorithm that iteratively recovers missing data and
updates transfer modules to catch up with learned knowledge.

In contrast to CP-based models, [25] proposed a Tucker-based multi-
mode deep nonlinear TD where each factor matrix was parameterized by
an MLP. Experiments on two real-world network traffic datasets showed



M. Zhao, J. Hu, Z. Li et al.

Q

Xisiis

v
Xiginis = FAAT (i, D), 0)

Neurocomputing 664 (2026) 132074

Fig. 4. Flowchart of nonlinear deep TD model using CP as an example.

that the proposed methods achieve both fast retraining and high re-
covery accuracy. Extending to Tensor Ring (TR) decomposition, [55]
proposed a nonlinear TR model by fitting an MLP for each core ten-
sor. These nonlinear mappings are set to be different for all the samples
and dimensions, with Gaussian processes used to dynamically adjust the
training step size.

4.2. CNN-based nonlinear deep TD models

The layer of CNN is a fundamental part in deep learning, par-
ticularly for processing spatially structured data such as images and
videos. Combining CNN layer rather than fully connected MLP struc-
ture in nonlinear deep TD allows the model to efficiently capture spatial
hierarchies and patterns and reduces the risk of overfitting. As the pi-
oneering work in combination of CNN and TD, [20] proposed CoSTCo
(Convolutional Sparse Tensor Completion), which leverages the expres-
sive power of CNN to model the complex interactions inside tensors and
its parameter-sharing scheme to preserve the desired low-rank structure.
Based on this pioneering work, [58] provided NTDMDA method to obtain
miRNA-gene-disease association prediction scores.

Other works in combination of CNN and CP decomposition include
Neural Tensor Completion (NTC) [23], DeepTensor [48], and Distributed
Neural tensOR coMpletion (p-NORM) [54]. NTC [23] is a scheme to infer
the missing data in a large network with a representation of three-way
tensor. This algorithm consists of a fully connected embedding layer to
project the three one-hot encoding features from three dimensions into
feature vectors; an interaction map layer to use outer product to map the
feature vectors into a tensor; a feature extraction layer with CNN, and
an inferring layer perception to complete the missing data. DeepTensor
[48] decomposed a tensor into low-rank factors, where each factor is
further modeled by 2D CNN layers. b-NORM [54] adopts two schemes to
solve the data recovery problem. First, they design a parameter-efficient
multi-layer architecture with CNN to learn nonlinear correlations among
data. Second, they reformulate the initial model as an equivalent set
function optimization problem under a matroid base constraint.

Additionally, several works have explored other tensor decom-
position structures. [47] proposed Neural Powered Tucker Network
(NePTuNe) to specifically resolve the overfitting in link prediction prob-
lem. In extension to Neural Tensor Network (NTN), NePTuNe utilized a
shared core tensor to solve the potential overfitting problem. [42] pro-
posed Probabilistic Neural-kernel tensor Decomposition (POND) that uses
Gaussian processes (GPs) to model the hidden relationships to automat-
ically detect their complexity in tensors, preventing both underfitting
and overfitting, and then incorporates CNN to construct the GP kernel to
greatly promote the capability of estimating highly nonlinear relation-
ships. [53] proposed a novel tensor-ring (TR) decomposition method
based on the convolutional computation (ConvTR), which can be re-
garded as a natural extension of deep learning models for the LRTC
problem. Specifically, ConvTR employs the multi-layer CNN to model the
complex interactions between TR factors. Each element in the index vec-
tor of the observation tensor can be embedded as a corresponding tensor
slice in the factor tensor decomposed by the TR model. CoATR [30] cou-
ples a tensor-ring (TR) decomposition for global low-rank structure with
a CNN-based nonlinear mapping and a learned autoregressive (AR) mod-
ule for local temporal consistency, yielding a generalized TR model that
replaces matrix products with convolutional operators. [45] presented

DAIN, a general data augmentation framework that enhances the predic-
tion accuracy of neural tensor completion methods. As a framework,
DAIN is compatible with multiple tensor decomposition methods and
multiple neural networks such as MLP, CNN, RNN, to recover and
augment data.

4.3. Other nonlinear deep TD models

While most nonlinear deep TD models are built on MLP and CNN
structures, a growing number of studies explore the integration of TD
with alternative neural network architectures such as auto-encoder (AE),
general adversarial network (GAN), graph neural network (GNN), etc.
These models demonstrate the flexibility of deep TD and extend its appli-
cability to more diverse and complex data modeling tasks. For example,
[46] developed a modular deep TD, structured into four blocks for
large-scale datasets. The model begins with an encoder block to reduce
dimensionality, followed by tensor train decomposition combined with
feature projection to extract compact latent representations. A final pre-
diction block is then applied to perform forecasting tasks. Specifically,
the use of cross-approximation within the tensor train decomposition
enables efficient approximation of high-dimensional tensors. [49] in-
troduced a novel 3D shape completion model by integrating tensor
rank decomposition and the hierarchical variational autoencoder (VAE)
to estimate the canonical factors. Their results showed that the de-
veloped approach outperforms previous methods in both fidelity and
diversity metrics, when the input consists of the bottom half of the point
cloud. [51] designed a novel deep Adversarial Tensor Completion (DATC)
scheme based on DL techniques. DATC is the first scheme that exploits the
data reconstruction ability of autoencoder and the power of adversarial
training from Generative Adversarial Networks to infer the missing data.
Furthermore, [52] introduced a graph-guided neural tensor decompo-
sition (GNTD) model for reconstructing whole spatial transcriptomes in
tissues. GNTD employs a hierarchical tensor structure and formulation
to explicitly model the high-order spatial gene expression data with a
hierarchical nonlinear decomposition in a three-layer neural network,
enhanced by spatial relations among the capture spots and gene func-
tional relations for accurate reconstruction from highly sparse spatial
profiling data.

These models exemplify the potential of deep TD when integrated
with advanced neural architectures beyond MLPs and CNNs. They also
highlight the adaptability of TD frameworks in addressing challeng-
ing tasks such as shape reconstruction, clinical forecasting, adversarial
imputation, and biological data recovery. Future research may fur-
ther explore such hybrid approaches, combining TD with transformers,
diffusion models, and other emerging architectures.

5. Track III: deep learning training schemes for TD

In this section, we further discuss the popular training schemes in
deep learning being applied to TD to overcome innate limitations of
original TD, including self-supervised learning, transfer learning, and
multi-task learning (Fig. 5).

5.1. TD with self-supervised learning

Traditional TD is trained to minimize the reconstruction loss.
As stated in [59], training via reconstruction loss ensures that the
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Fig. 5. Deep learning training schemes with tensor decomposition.

“reconstructed values“ are close to the “ground truth values”; however,
when the data have class structure, e.g., the four types of movement in
human activity dataset [60], the decomposed components do not effec-
tively represent and align the class features when the training is only
supervised by the reconstruction loss.

Researchers [59] proposed using self-supervised learning, especially
contrastive learning [61] to enhance the classification discrimination
power of TD models. Contrastive learning is a training scheme originated
in the computer vision community for more robust classification against
noise and other perturbations [61]. It has three key steps: (1) data aug-
mentation, which generates augmented images from the original one via
various augmentation techniques; (2) positive and negative pairs: the
child images (generated by various augmentation techniques) from the
same parent image are usually positive pairs usually, otherwise, negative
pairs; (3) contrastive loss, which puts positive pairs closer to each other,
and pushes negative pairs away from each other. As such, the trained
classification model will boost its robustness against perturbations. ATD
[59] and PCL [62] adopted similar training scheme for TD: firstly, the
original tensor X is augmented to a second tensor X based on adding
noise, jittering, bandpass and so on. Then, both tensors go through the
TD model: given the n-th sample X" and its augmented counterpart
X®™, both are decomposed, with share factor matrices and their unique
weight vectors, representing this n-th sample’s original feature and the
one after augmentation,

xm — [[W(");A(l),A(2), ,A(K)]],
8
X0 = (W AD A AB ®)

In ATD, the n-th sample’s original feature w and the augmented
one W are considered to be positive pairs. Apart from the regular
reconstruction loss, a self-supervision loss is also added,

¢ % Tr(WTA(WIA(W)W), (9

sel f—supervised =

where A(W) = diag (1/|wV]l,, ..., 1/[w™)|l,) is the row-wise scaling
matrix, and T'r(-) is the trace of a matrix. Such a self-supervision loss is
designed to maximize the similarity of the (%, i ;V(f:)uz )

However, PCL further claimed that the ATD still only treats the same
sample, e.g., the n-th sample’s original feature and augmented feature
as positive pair to each other, which basically only boosts the decompo-
sition model’s robustness to the perturbation, not actually helping the
model to recognize the sample i and j are from the same class. Thus,
PCL [62] uses the features {w}s and {W}s to construct a pseudo graph,
and updates the self-supervised loss to achieve better class-awareness,

simply by replacing the I to the graph Laplacian matrix L,

1 —~—
fclass—awarcness = F TI'(WTA(W)LA(W)W) (10)

5.2. TD with multi-task learning

Multi-task learning is designed to learn a model with multiple tasks
completed at the same time [63]: It aims to leverage useful information
contained in multiple related tasks to help improve the generalization
performance of all the tasks. In TD, multi-task learning is interpreted
as two kinds: (1) decomposition, prediction, anomaly detection, and so
on are considered as different tasks, or (2) different samples or datasets
are considered as different tasks. For the first type, multi-task learning
is simply achieved by combining multiple losses together [64],

minlossyp + 0SSy pertasks an

For example, to learn both the spatiotemporal pattern and de-
composition, [65] simultaneously performed decomposition (splitting
spatiotemporal data into spatial and temporal matrices) and prediction
(using these matrices). Consequently, a prediction loss was added as
% X X T (WTAY atial T pgtemporaly _ s 1) where W and V are the
spatial and temporal prediction coefficients. To achieve both subspace
learning, anomaly detection, and decomposition, [64] combined the
sparse coding loss, i.e., [X =S — G x, A® x3 AP, as well as the self-
expression term in subspace learning, i.e., |G- GX, Z|| + % ||Z||§, where S
is the anomaly, and Z is the self-expression matrix. To classify the EEG
signals better, [66] also added the loss of minimizing the within-class
variation and maximizing the between-class boundary together with the
tensor decomposition loss.

For the second type, where different related samples or datasets are
considered as different tasks, the intuition is to use a regularization term
[67,68] to encourage such a shared relatedness across different samples
or tasks, such as shared progressive patterns of different patients, shared
temporal smoothness of traffic flow of different stations [5]. This can be
generally formulated as,

minlossyp + Ryoaredness (A }5) 12

where R,,ueaness (1A }s) is the regularization added on the decom-
posed factor matrices to achieve relatedness across different samples.
For example, one of the most popular regularizations for controlling the
shared relatedness across different samples is the low-rank regulariza-
tion, which can be formulated by L, norm [5], nuclear or trace norm
[67,68], generalized trace norm [69] and so on. Usually, the regular-
ization is designed specifically according to the application domain and
purposes, and we recommend that readers who are interested refer to
[63] for various design choices of regularizations.

5.3. TD with transfer learning

Transfer learning is designed to transfer the knowledge from the
source data or tasks to the target data or tasks [70]. Tensor transfer
learning, similarly, assumes that the source tensor and target tensor
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share transferable knowledge in some subspaces [71]. Taking four-
dimensional tensors as example, the source tensor Xy € RU1xxI3)xls
and the target tensor X, € RUIX2XI9XIT ghare the same feature dimen-
sions {1}, I,, I;}, but have their own sample dimensions I, Iy. When
conducting the transfer of X — X, it is usually assumed that,

« Both target and source tensor are projected in the same space on the
feature dimension.

« The low-rank representation can be used to format using the target
representing the source.

For example, [71] formulated such a tensor transfer learning based
on Tucker decomposition: (1) Both target and source tensor are projected
on the feature dimension, i.e., A”Gy C A®Gy; (2) Low-rank repre-
sentation can be achieved by regularization. The formulation is given
as,

min [1Z]l,

st AWGg = AWGLZ, 13)
ADTAMW =1 p=1,2,3,

where Z is the projection matrix mapping from the target tensor to the
source tensor.

Disclaimer: Methods that only use TD as a way to decompose the tensor
of parameters and transfer learning is totally independently designed will not
be covered [72-75].

6. Applications of deep TD models

Deep tensor decomposition (Deep TD) models have been applied
across a wide range of domains due to their ability to model com-
plex, nonlinear relationships within data. This section reviews their
applications in five major areas: transportation, healthcare, computer
vision, web and social media, and other emerging fields. Within these
domains, deep TD methods support a variety of tasks including data re-
covery, feature extraction, classification, and prediction, as summarized
in Table 3.

6.1. Domain-Specific Applications

Transportation. Deep TD models have been successfully applied to
spatiotemporal data imputation and traffic forecasting. Approaches such
as LightNestle [50] and JULIA [24] have demonstrated strong perfor-
mance in recovering missing traffic flow and mobility data, leveraging

Table 3
Applications of deep TD methods in different areas according to various tasks.
Task Area
Transportation Healthcare Computer Web & social ~ Other
vision media domains
Data recovery [50], [46],
[24] [55], [49], [24],
[54] [25], [55], [24], [201,
[511, [22] [48], [45], [76],
[20], [24], [20], [54] [77]
[53], [52], [53]
[27] [48]
Feature [511, [55],
extraction
[30] [22] [42] [42] [43]
[16],
Classification [78],
[19], [48]
[79]
[21],
Prediction [46], [47]. [40],
[41] [40] [20]
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multilayer perceptrons (MLPs) and attention mechanisms within the TD
framework.

Healthcare. In healthcare systems, deep TD has been applied for
reconstructing clinical measurements and modeling complex patient
records. Studies such as [25,46], and [55] show that deep TD models
can recover patient health records accurately. Beyond recovery, deep
TD models have also been applied to diagnostic tasks; for example,
works including [16,19,78], and [79], leverage deep TD for phenotype
classification and disease prediction.

Computer vision. In visual data analysis, deep TD techniques have
been used for data recovery (e.g., occluded image restoration) and object
and scene classification. For example, [48] applies deep TD to capture
spatial correlations in image data, improving recognition accuracy in
complex scenes.

Web and social media. Deep TD has proven valuable in modeling
social networks, temporal behavior prediction, and so on. Models such as
[21,40] exploit deep TD to learn interactions among users, content, and
time, enabling applications ranging from personalized recommendations
to knowledge graph completion.

Other domains. Emerging areas such as bioinformatics and ge-
nomics have also benefited from deep TD models. For example, deep
TD models have been used to analyze protein interactions and drug-
target-disease relationships [22,43] by extracting nonlinear features
from high-dimensional biological tensors.

6.2. Guidance for deep TD model selection in practice

Beyond cataloging application scenarios, it is important to consider
how the characteristics of domain data can influence the choice of deep
TD methods in practice. For example, in healthcare and recommenda-
tion systems, where data is often sparse and noisy, deep TD models
that incorporate explicit regularization are better suited to handle miss-
ing values and uncertainty. In contrast, spatiotemporal domains such
as transportation and sensor networks benefit from architectures that
explicitly capture temporal dependencies, such as attention-augmented
or recurrent deep TD models. For high-dimensional image and video
data, CNN-based deep TD models are more effective in capturing lo-
cal structures while maintaining scalability. Finally, when relational or
graph structure is intrinsic, as in social networks or bioinformatics, GNN-
based deep TD models may provide stronger performance. Although
developing a comprehensive framework for model selection lies beyond
the scope of this survey, these examples illustrate how practitioners can
align data characteristics with appropriate deep TD designs in real-world
scenarios.

6.3. Commonly used datasets

To support these diverse applications, a wide variety of datasets
have been commonly used in the development and assessment of deep
TD models in the literature. Here we provide an overview of the key
datasets.

Text data: WordNet,! Reddit,2 NeurIPS Publication Data,> Enron
Emails,* and Github Archive Data.’

Image data: MNIST ® Moving MNIST,” CIFAR-10,8 Weizmann
Human Action,® and Yale-B Dataset.1?

https://www.wordnet.princeton.edu/
https://www.reddit.com/r/datasets/

https://www.papers.nips.cc/

https://www.cs.cmu.edu/~enron/

https://www.gharchive.org/

MNIST http://www.yann.lecun.com/exdb/mnist/,
https://www.web.cs.toronto.edu/

https://www.cs.toronto.edu/
https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
https://www.vision.ucsd.edu/datasets/extended-yale-face-database-b-b
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« Other data: domain-specific datasets in healthcare (e.g., DrugBank!!
and UniProt 12) and recommendation systems (e.g. MovieLens,!?
Gowalla,'4 and Foursquare!®).

In summary, the expanding diversity of applications demonstrates
both the effectiveness and adaptability of deep tensor decomposition
models. From sensor networks recovery and personalized recommenda-
tion to electronic health records modeling and genomic profile classi-
fication, deep TD methods have emerged as essential tools for tackling
complex and multi-aspect data. Future research may further extend their
impact to emerging domains such as natural language understanding,
large-scale scientific simulations, and personalized education.

7. Challenges and future directions

Deep tensor decomposition (deep TD) is an emerging research topic
situated at the intersection of low-rank tensor approximation and deep
learning. It introduces either multi-layered decomposition schemes or
integrates nonlinear transformations through deep learning architec-
tures. These approaches significantly enhance the expressiveness and
performance of traditional TD models. In this survey, we have provided
a comprehensive review of deep TD, covering both linear and non-
linear deep TD models and their variants, as well as several training
schemes that integrate deep learning techniques. We also summarized a
broad range of applications of deep TD models spanning topic modeling,
recommendation systems, image processing, and healthcare. By consol-
idating the most recent advances and practical implementations, this
work offers a thorough understanding of the state-of-the-art in deep TD
research. Despite substantial progress, certain limitations and challenges
remain. This section outlines key challenges from multiple perspectives,
including initialization, parameter selection, computational complex-
ity, interpretability, and software support, thereby identifying potential
directions for future research.

Initialization. The performance of deep TD models is highly sensi-
tive to initialization. Poor initialization may result in suboptimal factor-
ization, slow convergence, or convergence to local minima. However,
this survey reveals that initialization techniques for deep TD models are
not thoroughly discussed or developed. Future research should investi-
gate more robust initialization schemes, potentially incorporating prior
knowledge or data-driven heuristics.

Parameter selection. Currently, there are no established systematic
strategies for determining the key parameters of deep TD models, such as
the number of decomposition layers, inner ranks, as well as the regular-
ization parameters. Thus, establishing proper guidelines for parameter
selection is a crucial direction for future work.

Computational complexity and optimization strategies. Most
deep TD models are currently solved by a two-stage process that includes
a fine-tuning phase, resulting in high computational costs compared
to traditional TD methods. Besides, as the dimensionality of tensor
data increases, the computational complexity of deep TD rises sig-
nificantly. This creates a clear trade-off for practitioners, i.e., when
data exhibits strong nonlinear interactions that cannot be captured
by shallow or linear TD, deep TD methods may justify their higher
costs by delivering superior accuracy and representational power. In
addition, systematic optimization strategies for deep TD remain un-
derexplored. Therefore, developing resource-aware training algorithms,
lightweight model designs, and hardware-optimized implementations
for deep TD is essential to make the models more broadly applicable in
practice.

Interpretability. One of the most persistent challenges in deep TD
is the lack of “ground-truth” baselines. The hierarchical or nonlinear

11
12
13
14
15

https://www.go.drugbank.com/releases/latest

https://www.uniprot.org/
https://www.grouplens.org/datasets/movielens/
https://www.snap.stanford.edu/data/loc-gowalla.html
https://www.sites.google.com/site/yangdingqi/home/foursquare-dataset
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structure of deep TD models makes it difficult to trace or under-
stand the role of individual components and their interactions across
layers. Moreover, the lack of standardized benchmarks or ground-
truth decompositions hinders fair evaluation. Advancing explainable
deep TD methods through layer-wise attribution, disentanglement met-
rics, or interpretable training objectives remains a promising research
frontier.

Software and toolboxes. At present, no standardized software li-
brary or toolbox exists for deep TD models. This absence restricts
experimentation, reproducibility, and wider adoption by a broader
research community. Developing an open-source toolbox (e.g., in
Python or MATLAB) that integrates basic models, training routines,
and visualization tools would significantly accelerate progress in
this field.

The above challenges highlight promising opportunities for future
research in deep TD techniques. By utilizing the hierarchical feature
extraction capabilities of deep learning with the structural interpretabil-
ity of low-rank tensor methods, deep TD offers a unique foundation for
building more transparent, scalable, and generalizable machine learn-
ing models. Continued research in this area is essential to fully realize
its potential across diverse scientific and applied domains.

Funding sources

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Meng Zhao: Writing — original draft, Investigation. Jiuyun Hu:
Writing - original draft. Ziyue Li: Writing — original draft, Investigation.
Zekai Wang: Writing — original draft. Lijun Sun: Writing — original
draft.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, H.A. Phan,
Tensor decompositions for signal processing applications: from two-way to multiway
component analysis, IEEE Signal Process. Mag. 32 (2015) 145-163.

[2] N.D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E.E. Papalexakis, C. Faloutsos,
Tensor decomposition for signal processing and machine learning, IEEE Trans. Signal
Process. 65 (2017) 3551-3582.

[3] M. Zhao, M.R. Gahrooei, N. Gaw, Robust coupled tensor decomposition and feature
extraction for multimodal medical data, IISE Trans. Healthc. Syst. Eng. 13 (2023)
117-131.

[4] M. Zhao, M.R. Gahrooei, Fedpar: federated parafac2 tensor factorization for compu-
tational phenotyping, IISE Trans. Healthc. Syst. Eng. (2024) 1-12.

[5] Z. Li, N.D. Sergin, H. Yan, C. Zhang, F. Tsung, Tensor completion for weakly-
dependent data on graph for metro passenger flow prediction, in: Proceedings of
the AAAI conference on artificial intelligence, vol. 34, 2020, pp. 4804-4810.

[6] M. Zhao, M.R. Gahrooei, M. Ilbeigi, Change detection in partially observed large-
scale traffic network data, IEEE Trans. Intell. Transp. Syst. (2024).

[7] R.A.Harshman, et al., Foundations of the parafac procedure: models and conditions
for an “explanatory” multi-modal factor analysis, UCLA Work. Pap. Phon. 16 (1970)
84.

[8] L.R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika
31 (1966) 279-311.

[9] A. Cichocki, R. Zdunek, S.-I. Amari, Hierarchical als algorithms for nonnegative
matrix and 3d tensor factorization, in: International conference on independent
component analysis and signal separation, Springer, 2007, pp. 169-176.

[10] W. Lu, F.-L. Chung, W. Jiang, M. Ester, W. Liu, A deep bayesian tensor-based system
for video recommendation, ACM Trans. Inf. Syst. 37 (2018) 1-22.

[11] S.Zhe, K. Zhang, P. Wang, K.-C. Lee, Z. Xu, Y. Qi, Z. Ghahramani, Distributed flexible
nonlinear tensor factorization, Adv. Neural Inf. Process. Syst. 29 (2016).

[12] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436-444.



M. Zhao, J. Hu, Z. Li et al.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

L. Deng, J. Platt, Ensemble deep learning for speech recognition, in: Proc. inter-
speech, 2014.

R. Chauhan, K.K. Ghanshala, R. Joshi, Convolutional neural network (cnn) for image
detection and recognition, in: 2018 first international conference on secure cyber
computing and communication (ICSCCC), IEEE, 2018, pp. 278-282.

R. Miotto, F. Wang, S. Wang, X. Jiang, J.T. Dudley, Deep learning for healthcare:
review, opportunities and challenges, Brief. Bioinform. 19 (2018) 1236-1246.

L. Perros, R. Chen, R. Vuduc, J. Sun, Sparse hierarchical tucker factorization and its
application to healthcare, in: 2015 IEEE International Conference on Data Mining,
IEEE, 2015, pp. 943-948.

J. Vendrow, J. Haddock, D. Needell, Neural nonnegative cp decomposition for hi-
erarchical tensor analysis, in: 2021 55th Asilomar Conference on Signals, Systems,
and Computers, IEEE, 2021, pp. 1340-1347.

J. Vendrow, J. Haddock, D. Needell, A generalized hierarchical nonnegative tensor
decomposition, in: ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2022, pp. 4473-4477.

Q. Tan, P. Yang, G. Wen, Deep non-negative tensor factorization with multi-way emg
data, Neural Comput. Appl. (2022) 1-11.

H. Liu, Y. Li, M. Tsang, Y. Liu, Costco: a neural tensor completion model for sparse
tensors, in: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 324-334.

X. Wu, B. Shi, Y. Dong, C. Huang, N.V. Chawla, Neural tensor factorization for tempo-
ral interaction learning, in: Proceedings of the Twelfth ACM international conference
on web search and data mining, 2019, pp. 537-545.

H. Chen, J. Li, Learning data-driven drug-target-disease interaction via neural ten-
sor network, in: International joint conference on artificial intelligence (IJCAI),
2020.

K. Xie, H. Lu, X. Wang, G. Xie, Y. Ding, D. Xie, J. Wen, D. Zhang, Neural tensor com-
pletion for accurate network monitoring, in: IEEE INFOCOM 2020-1EEE Conference
on Computer Communications, IEEE, 2020, pp. 1688-1697.

C. Qian, K. Huang, L. Glass, R.S. Srinivasa, J. Sun, Julia: joint multi-linear and
nonlinear identification for tensor completion, arXiv preprint arXiv:2202.00071,
(2022).

J. Fan, Multi-mode deep matrix and tensor factorization, in: International conference
on learning representations, 2021.

Y. Luo, X.-L. Zhao, D. Meng, T.-X. Jiang, Hlrtf: hierarchical low-rank tensor fac-
torization for inverse problems in multi-dimensional imaging, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.
19303-19312.

W. Luo, Y. Hou, P. Tang, Neural canonical polyadic factorization for traffic analysis,
arXiv preprint arXiv:2506.15079, (2025).

Y. Hou, P. Tang, Multi-head self-attending neural tucker factorization, arXiv preprint
arXiv:2501.09776, (2025).

P. Tang, X. Luo, J. Woodcock, Auto-encoding neural tucker factorization, IEEE Trans.
Knowl. Data Eng. (2025).

T. Liao, L. Zhang, J. Yang, C. Chen, Z. Zheng, Coatr: a convolutional autore-
gressive tensor-ring decomposition method for sparse spatio-temporal traffic data,
Neurocomputing 617 (2025) 129006.

T.G. Kolda, B.W. Bader, Tensor decompositions and applications, SIAM Review 51
(2009) 455-500.

L.V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33 (2011)
2295-2317.

Q. Zhao, G. Zhou, S. Xie, L. Zhang, A. Cichocki, Tensor ring decomposition, arXiv
preprint arXiv:1606.05535, (2016).

T. Wu, B. Gao, W.L. Woo, Hierarchical low-rank and sparse tensor micro defects
decomposition by electromagnetic thermography imaging system, Philos. Trans. R.
Soc. A 378 (2020) 20190584.

K. Xie, C. Liu, X. Wang, X. Li, G. Xie, J. Wen, K. Li, Neural network compression
based on tensor ring decomposition, IEEE Trans. Neural Netw. Learn. Syst. 36 (2024)
5388-5402.

X. Ma, P. Zhang, S. Zhang, N. Duan, Y. Hou, M. Zhou, D. Song, A tensorized
transformer for language modeling, Adv. Neural Inf. Process. Syst. 32 (2019).

P. Zhen, Z. Gao, T. Hou, Y. Cheng, H.-B. Chen, Deeply tensor compressed trans-
formers for end-to-end object detection, in: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, 2022, pp. 4716-4724.

M. Bai, D. Zhou, Q. Zhao, Tendiffpure: a convolutional tensor-train denoising
diffusion model for purification, Front. Inf. Technol. Electron. Eng. 25 (2024)
160-169.

Z. Wang, S. Fang, S. Li, S. Zhe, Dynamic tensor decomposition via neu-
ral diffusion-reaction processes, Adv. Neural Inf. Process. Syst. 36 (2023)
23453-23467.

L. He, B. Liu, G. Li, Y. Sheng, Y. Wang, Z. Xu, Knowledge base completion
by variational bayesian neural tensor decomposition, Cogn. Comput. 10 (2018)
1075-1084.

B. Liu, L. He, Y. Li, S. Zhe, Z. Xu, Neuralcp: bayesian multiway data analysis with
neural tensor decomposition, Cogn. Comput. 10 (2018) 1051-1061.

C. Tillinghast, S. Fang, K. Zhang, S. Zhe, Probabilistic neural-kernel tensor decompo-
sition, in: 2020 IEEE International Conference on Data Mining (ICDM), IEEE, 2020,
pp. 531-540.

H. Chen, J. Li, Neural tensor model for learning multi-aspect factors in recommender
systems, in: International Joint Conference on Artificial Intelligence (IJCAI), vol.
2020, 2020.

J. Schreiber, T. Durham, J. Bilmes, W.S. Noble, Avocado: a multi-scale deep ten-
sor factorization method learns a latent representation of the human epigenome,
Genome Biol. 21 (2020) 1-18.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75]

[76]

Neurocomputing 664 (2026) 132074

S. Oh, S. Kim, R.A. Rossi, S. Kumar, Influence-guided data augmentation for neural
tensor completion, in: Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, 2021, pp. 1386-1395.

M. Usvyatsov, A. Makarova, R. Ballester-Ripoll, M. Rakhuba, A. Krause, K. Schindler,
Cherry-picking gradients: learning low-rank embeddings of visual data via dif-
ferentiable cross-approximation, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 11426-11435.

S. Sonkar, A. Katiyar, R. Baraniuk, Neptune: neural powered tucker network-
for knowledge graph completion, in: Proceedings of the 10th International Joint
Conference on Knowledge Graphs, 2021, pp. 177-180.

V. Saragadam, R. Balestriero, A. Veeraraghavan, R.G. Baraniuk, Deeptensor:
low-rank tensor decomposition with deep network priors, arXiv preprint
arXiv:2204.03145, (2022).

W. Jiang, K. Daniilidis, Probabilistic shape completion by estimating canonical
factors with hierarchical vae, arXiv preprint arXiv:2212.03370, (2022).

Y. Li, W. Liang, K. Xie, D. Zhang, S. Xie, K. Li, Lightnestle: quick and accurate neu-
ral sequential tensor completion via meta learning, in: IEEE INFOCOM 2023-1EEE
Conference on Computer Communications, IEEE, 2023, pp. 1-10.

K. Xie, Y. Ouyang, X. Wang, G. Xie, K. Li, W. Liang, J. Cao, J. Wen, Deep adversar-
ial tensor completion for accurate network traffic measurement, IEEE/ACM Trans.
Netw. 31 (2023) 2101-2116.

T. Song, C. Broadbent, R. Kuang, Gntd: reconstructing spatial transcriptomes with
graph-guided neural tensor decomposition informed by spatial and functional
relations, Nat. Commun. 14 (2023) 8276.

T. Liao, J. Yang, C. Chen, Z. Zheng, A neural tensor decomposition model for high-
order sparse data recovery, Inf. Sci. 658 (2024) 120024.

C. Liu, K. Xie, T. Wu, C. Ma, T. Ma, Distributed neural tensor completion for network
monitoring data recovery, Inf. Sci. 662 (2024) 120259.

Z. Tao, T. Tanaka, Q. Zhao, Nonparametric tensor ring decomposition with scalable
amortized inference, Neural Networks 169 (2024) 431-441.

D. Ahn, U.S. Saini, E.E. Papalexakis, A. Payani, Neural additive tensor decomposition
for sparse tensors, in: Proceedings of the 33rd ACM International Conference on
Information and Knowledge Management, 2024, pp. 14-23.

X. Xu, M. Lin, Z. Xu, X. Luo, Attention-mechanism-based neural latent-factorization-
of-tensors model, ACM Trans. Knowl. Discov. Data 19 (2025) 1-27.

Y. Liu, J. Luo, H. Wu, Mirna-disease associations prediction based on neu-
ral tensor decomposition, in: Intelligent Computing Theories and Application:
17th International Conference, ICIC 2021, Shenzhen, China, August 12-15, 2021,
Proceedings, Part III 17, Springer, 2021, pp. 312-323.

C. Yang, C. Qian, N. Singh, C.D. Xiao, M. Westover, E. Solomonik, J. Sun, Atd: aug-
menting cp tensor decomposition by self supervision, Adv. Neural Inf. Process. Syst.
35 (2022) 32039-32052.

D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain dataset
for human activity recognition using smartphones, in: Esann, vol. 3, PMLR, Menlo
Park, Calif, 2013, pp. 3.

T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive
learning of visual representations, in: International conference on machine learning,
PMLR, 2020, pp. 1597-1607.

M. Li, Z. Li, L. Sun, F. Tsung, Enabling tensor decomposition for time-series clas-
sification via a simple pseudo-laplacian contrast, arXiv preprint arXiv:2409.15200,
(2024).

Y. Zhang, Q. Yang, A survey on multi-task learning, IEEE Trans. Knowl. Data Eng.
34 (2021) 5586-5609.

N.D. Sergin, J. Hu, Z. Li, C. Zhang, F. Tsung, H. Yan, Low-rank robust subspace tensor
clustering for metro passenger flow modeling, INFORMS J. Data Sci. (2024).

J. Xu, J. Zhou, P.-N. Tan, X. Liu, L. Luo, Wisdom: weighted incremental spatio-
temporal multi-task learning via tensor decomposition, in: 2016 IEEE International
Conference on Big Data (Big Data), IEEE, 2016, pp. 522-531.

Q. Zheng, Y. Wang, P.A. Heng, Multitask feature learning meets robust tensor
decomposition for eeg classification, IEEE Trans. Cybern. 51 (2019) 2242-2252.

K. Wimalawarne, M. Sugiyama, R. Tomioka, Multitask learning meets tensor factor-
ization: task imputation via convex optimization, Adv. Neural Inf. Process. Syst. 27
(2014).

X. Zhang, J. Wu, M.K. Ng, Multilinear multitask learning by transformed tensor
singular value decomposition, Mach. Learn. Appl. 13 (2023) 100479.

Y. Zhang, Y. Zhang, W. Wang, Multi-task learning via generalized tensor trace norm,
in: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, 2021, pp. 2254-2262.

S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng. 22
(2009) 1345-1359.

C. Jia, Z. Ding, Y. Kong, Y. Fu, Semi-supervised cross-modality action recognition by
latent tensor transfer learning, IEEE Trans. Circuits Syst. Video Technol. 30 (2019)
2801-2814.

W. Mao, Z. Chen, Y. Zhang, X. Liang, Tensor-daad: when tensor meets online early
fault detection with transfer learning, Measurement 208 (2023) 112478.

V. Bishnoi, N. Goel, Tensor-rt-based transfer learning model for lung cancer classifi-
cation, J. Digit. Imaging 36 (2023) 1364-1375.

L. Karlsson, E. Fallenius, C. Bergeling, B. Bernhardsson, Tensor decomposition of
eeg signals for transfer learning applications, Brain-Computer Interfaces 11 (2024)
178-192.

C. Dai, X. Liu, Z. Li, M.-Y. Chen, A tucker decomposition based knowledge distillation
for intelligent edge applications, Appl. Soft Comput. 101 (2021) 107051.

X. Luo, H. Wu, Z. Li, Neulft: a novel approach to nonlinear canonical polyadic de-
composition on high-dimensional incomplete tensors, IEEE Trans. Knowl. Data Eng.
35 (2022) 6148-6166.



M. Zhao, J. Hu, Z. Li et al.

[77]1 X. Liao, H. Wu, X. Luo, A novel tensor causal convolution network model for
highly-accurate representation to spatio-temporal data, IEEE Trans. Autom. Sci. Eng.

(2025).

[78] J. Luo, Z. Lai, C. Shen, P. Liu, H. Shi, Graph attention mechanism-based deep ten-
sor factorization for predicting disease-associated mirna-mirna pairs, in: 2021 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2021,

pp- 189-196.

[79] S.You, Z. Lai, J. Luo, Multi-source data-based deep tensor factorization for predicting
disease-associated mirna combinations, in: International Conference on Intelligent
Computing, Springer, 2022, pp. 807-821.

Author biography

Meng Zhao is an Assistant Professor of the Department of
Industrial and Systems Engineering at Lehigh University. She
received the Ph.D. degree in the Department of Industrial and
Systems Engineering, the University of Florida, Gainesville,
Florida, USA. Her research interests focus on high-dimensional
data modeling, tensor analysis, machine learning, and data
mining techniques. She is a member of the Institute for
Operations Research and the Management Science (INFORMS)
and the Institute of Industrial and Systems Engineers (IISE).

Jiuyun Hu received his PhD degree at the School of
Computing and Augmented Intelligence at Arizona State
University. His research focuses on (1) High-dimensional
tensor data analysis with specific interest in domain graph
structure incorporation and personalization; (2) Statistical
modeling and machine learning on signal monitoring and
threat detection; (3) Large data mining and feature extrac-
tion. He is a member of the Institute for Operations Research
and the Management Science (INFORMS) and the Institute of
Industrial and Systems Engineers (IISE).

10

Neurocomputing 664 (2026) 132074

Ziyue Li is W2 professor in the Department of Operations
and Technology and Heilbronn Data Science Center, Technical
University of Munich. His research focuses on spatiotempo-
ral machine learning models for smart cities. His works have
been published as 40+ peer-reviewed papers in top-tier Al
conferences (IJCAI, AAAI, KDD, ICLR, NeurIPS), 10+ papers
in top journals (TKDE, TITS, TMM), awarded with 10+ best
paper awards. His research focuses on spatiotemporal analysis,
high-dimensional data modeling and tensor analytics.

Zekai Wang is an Assistant Professor in the Department of
Analytics at the Charles F. Dolan School of Business, Fairfield
University. Before joining Fairfield, he earned his Ph.D.
in Industrial and Systems Engineering from the University
of Tennessee, Knoxville. His research focuses on advanced
data analytics, deep learning, and health informatics. He
is a member of the Institute for Operations Research and
the Management Science (INFORMS) and the Institute of
Industrial and Systems Engineers (IISE).

Lijun Sun is an Associate Professor in the Department of Civil
Engineering at McGill University. He received his PhD degree
in Civil Engineering (Transportation) from National University
of Singapore. His current research centers on the area of
urban computing and smart transportation, developing inno-
vative methodologies and applications to address efficiency,
resilience, and sustainability issues in urban transportation
systems. His work has been featured in popular media out-
lets, including Wired, Citylab, Scientific American, and MIT
Technology Review.



